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Abstract. For abstract data types (ADTs) there are many potential op-
timizations of code that current compilers are unable to perform. These
optimizations either depend on the functional specification of the com-
putational task performed through an ADT or on the semantics of the
objects defined. In either case the abstract properties on which optimiza-
tions would have to be based cannot be automatically inferred by the
compiler. In this paper our aim is to address this level-of-abstraction
barrier by showing how a compiler can be organized so that it can make
use of semantic information about an ADT at its natural abstract level,
before type lowering, inlining, or other traditional compiler steps oblit-
erate the chance. We present an extended case study of one component
of a C++ compiler, the simplifier; discuss the design decisions of a new
simplifier (simplifier generator) and its implementation in C++; and give
performance measurements. The new simplifier is connected to the Gnu
C++ compiler and currently performs optimizations at very high level in
the front end. When tested with the Matrix Template Library, a library
already highly fine-tuned by hand, we achieved run-time improvements
of up to six percent.

1 Introduction

The introduction of abstract data types (ADTs) marks an important step for
software production. By encapsulating implementation details of a type, abstract
data types allow new separations of concerns and play a large role in making
code sharing and large scale programming more feasible, especially after the ex-
tension of ADTs in the 1980s and 1990s to the object-oriented programming
and generic programming styles. Although data abstraction is accepted in the-
ory without reservation, it is fair to say that there is still considerable hesitation
when it comes to using this style in practice. Ironically, the larger and more
computationally intensive a project is, and the more it could take advantage of
the safety and robustness an object-oriented approach provides, the stronger the
opposition. The main concern articulated is efficiency, based on widespread expe-
rience that non-object-oriented programs outperform object-oriented ones, even
when, in hybrid languages, features like dynamic method binding or inheritance
are used cautiously. Depending on the programming language used, some simply



accept overhead, while others resort to a programming style that anticipates and
then avoids the overhead of object-based programming. Thereby, however, they
frequently sacrifice coding styles considerably. Especially in C++ there now exist
high-performance libraries, e.g., BLITZ [33], the Parallel Object Oriented Meth-
ods and Applications project (POOMA) [24], and the Matrix Template Library
(MTL) [28], that are able to compete with the efficiency of Fortran code, but
pay for the performance gains with cryptic code at the user’s level. For exam-
ple, a simple operator expression in these libraries is written as a function call
with additional parameters or, even more unexpectedly from the user’s view,
by a so-called expression template, a nest of class templates—constructs that
allow library designers to hand-optimize away temporary variables and to thus
overcome the “abstraction penalty.”

In this paper we address this level-of-abstraction barrier in a different way.
We suggest that optimizations of ADTs take place during compilation and not
in the source code. At the same time we suggest performing these optimizations
directly at the level of ADTs. We claim that ADTs offer opportunities that
are not available at a lower level of abstraction and would be obliterated by
premature type lowering, inlining, or other traditional compiler steps. Since these
optimizations either depend on the functional specification of the computational
task performed through an ADT or on the semantics of the objects defined, and
cannot be automatically inferred by a compiler, our approach is characterized
by a flow of semantic information from the user program to the optimizer. While
traditionally a compiler is a program that came into existence long before the
user program, is applied to it as a black box, and delivers an executable without
any communication with the program designer, a compiler in our understanding
rather is a compilation generator that depends on (static) user information for
its completion. With users extending the semantic knowledge available to the
compiler, it can operate on strong assumptions about a type’s behavior and, as a
result, generate more efficient code. Especially library designers, therefore, might
find our approach useful: once they have provided the semantic information of a
data type, its optimizations are available not only in all further compilations or
linkings but also to all applications on top of the respective type. Thus, library
clients get the benefit of efficient abstract data types in an entirely transparent
way. When we use the term “user” in the following, we therefore mostly envision
library designers and the like.

For the rest of the paper we focus on C++ [31]. Restricting ourselves to one
component of a C++ optimizer, the simplification component, hence to the op-
timization of expressions, we show how to organize this component so that a
normal C++ program can provide the semantic information needed to statically
simplify an ADT in a correct and optimal way. In section 2 we summarize both
the process of traditional simplification and the specification of the new simpli-
fier. Key in decoupling the process of simplification and the semantics of data
types is the concept-based approach, an approach that is increasingly used in
the design of reusable software components, but also in compiler design in the
related sense of formal concept analysis. In section 3 we briefly characterize



programming with concepts, explain its advantages for the design of generative
optimizers, and illustrate concept-based simplification rules. We summarize the
major design decisions behind the implementation in section 4 and illustrate our
approach using an extended example of an algorithm of the MTL that is instan-
tiated with a LiDIA [32] data type. In section 5 we demonstrate how the LiDIA
user can guide the simplifier to replace expressions used in the MTL by more
efficient LiDIA expressions—without changing the MTL code or compromising
the readability of the source code. The statistical data of the run-time and code-
size improvement of this and other experiments are reported in section 6. The
approach of generative compilation seems to fit well in a recent trend of design-
ing compilers that are more flexible or responsive. We compare our approach to
others in more detail in section 7 and conclude the paper with a brief discussion
of our future plans.

2 Simplification

We selected the simplification component because of its minimal dependencies
on other components. In particular we wanted to avoid the need for any mod-
ifications to the data dependency analysis part of an optimizer. We will see,
however, that the new approach to simplification not only extends the original
functionality to user-defined types, but opens up new kinds of high-level opti-
mizations. In the next subsections we summarize both traditional simplification
and the features of our proposed generalization, including its benefits specifically
for high-level optimizations.

2.1 Algebraic Simplification

A simplifier is an optimization component that operates on expressions. It rewrites
a given expression (expression tree) to a different expression which is in some
sense simpler: either as an expression tree of lower height or as an expression
with cheaper operators, or as a combination of both. Its semantic knowledge
base is a set of simplification rules that are subsequently matched against the
expression under consideration; if no simplification rules applies, the expression
is returned unchanged. A standard example of a simplification rule is

r+0—zx. (*)

When this rule is applied, it replaces the addition by its first argument and thus
saves carrying out the addition. Simplification rules can apply to more than one
operator as in

@!=0[@!'=0—=(@=ly!=0

and furthermore can be conditional:

max(x,c) =z if ¢ is the smallest possible value.



Since constant arguments like the 0 in the first simplification rule (*) rarely
appear directly in user code, simplification traditionally takes place after other
parts of the optimizer have transformed a user-defined expression, possibly sev-
eral times and from several perspectives. In the SGI MIPS and Pro64 compilers,
for example, constant folding, constant propagation, array analysis, loop fusion,
and several other loop transformations all have a subsequent simplification step
that cleans up the previous results. Whether high- or low-level, however, simpli-
fication rules are phrased in terms of integral or floating-point expressions and,
with a few exceptions of complex expressions, do not even apply to the classes
of the C++ standard library, such as string, bitmap, bool, or the types of the
Standard Template Library, much less to user-defined types.

2.2 User-extensible Simplification

What are the characteristics of the proposed simplifier? First, it can be extended
by arbitrary user-defined types. Admitting arbitrary types, however, gives rise
to the question whether the current simplification rules and their operators, de-
signed mainly for integers and floating-point numbers, are “substantial enough”
to represent frequently occurring user-defined expressions that are worthwhile to
optimize. Quite certainly, a numeric library uses different expressions with dif-
ferent frequencies than, say, a graphics package. If we admit new types but keep
the simplification rules the same, the benefits of simplification might be severely
restricted. Therefore, users should have the opportunity to extend the simplifier
by their own operator (function) expressions as well as by simplification rules
for those.

Next, all extensions should be easy to do. Although we can expect that users
who are interested in the subtleties of performance issues are not programmer
novices—as already mentioned, we envision library designers and the like as
our special interest group—we certainly do not want them to have to modify
the compiler source code. All extensions, in other words, should be done at the
user’s level, through a user’s program. In section 3 we will explain how a concept-
based approach helps to realize this requirement; here we only point out that
all user-defined extensions are organized in header files and are compiled along
with the main program. In the current implementation users have to manually
include two header files—the predefined header simplify.h and the file with
their own, application-specific simplifications—but we will automate the inclu-
sion. All that’s left to do, then, is to turn on the simplifier with the optimization
flag ~-fsimplify:

g++ -03 -fsimplify prog.C
In summary, the new simplifier is characterized by the following properties:

— It is extensible by user-defined types, operators and function identifiers.
— It is extensible by user-defined simplification rules.
— All extensions are specified in ordinary user programs.



— It is organized so that the extensions do not entail any run-time overhead
but are processed entirely at compile time.

Given a simplifier with these capabilities, users can then in fact go beyond the
traditional, algebraic nature of simplification rules and use the simplification pro-
cess to rewrite expressions in non-standardized ways. Thus far, we have come
across two motivations for the introduction of non-algebraic rules: one is the
separation of readability and efficiency at the source code level and the other is
the possibility of rewriting certain expressions for the purpose of invoking spe-
cialized functions. In the first case simplification rules can be used to perform
optimizations that otherwise take place in the source, e.g., of high-performance
libraries. Rather than replacing operator expressions manually and at the user’s
level by expression templates or other constructs that are efficient but hard to
digest, library designers can introduce simplification rules that automatically
rewrite expressions in the most optimal form. Thereby, neither readability nor
efficiency is compromised. The other case occurs in the situation of parameter-
ized libraries, where one library is instantiated with types of another, providing
optimization opportunities the carrier library did not anticipate. Without the
need to change this carrier’s code, simplification rules can be used here for replac-
ing one function invocation by another. In both cases, the extensible simplifier
allows library designers to pass optimizations on to the compiler that otherwise
have to be done manually and directly at the source code level; for examples of
both sets of rules see section 5.

3 Concept-based Rules

Simplifying user-defined types, at first glance, might look like an impossible
task because the types to be optimized are not known at simplifier design time.
Without any knowledge of a type, its behavior or even its name, how could the
simplifier treat it correctly and efficiently? However, the situation is similar to
the situation in component-based programming where the clients and servers of
a component also are unknown at component design-time—and yet the inter-
action with them has to be organized. In component-based programming there
are several techniques available to model the necessary indirection between a
component and its clients. The one that seems most appropriate for optimizer
generators is the concept-based approach.

There are many definitions of “concept,” but as we use the term here, it
means a set A of abstractions together with a set R of requirements, such that
an abstraction is included in A if and only if it satisfies all of the requirements
in R. This definition is derived in part from formal concept analysis [35, 36], in
which, however, the abstractions are usually merely names or simple descrip-
tions of objects. Another source is the Tecton concept description language ([13,
14]; see also [21]), in which the abstractions are more complex: they are algebras
or other similar abstract objects such as abstract data types. An informal but
widely known example of this understanding of concepts is the documentation



of the C++ Standard Template Library developed at SGI [2]. There, the abstrac-
tions are types, and concepts like Assignable or Less Than Comparable are used
to explicitly specify which requirements each type must satisfy in order to be
used as a specialization of a certain template parameter. In analogy, we state
a simplification rule at a conceptual level, in terms of its logical or algebraic
properties. While traditional simplification rules are directly tied to the types
to which they apply, the concept-based approach allows referring, for example,
to the rule (*) of section 2 abstractly as Right-identity simplification (fig. 1 lists
more examples; for the representation of concepts in C++, see [26]).

left-id op X — X XeM (M, op) monoid
X op right-inv(X) — right-id Xed (G, 0p) group
X=Y.Z — multiply(X,Y,Z) X, Y, Z LiDIA::bigfloat

X = bigfloat(0) — X.assign zero() X LiDIA::bigfloat

Fig. 1. Concept-based rules (left) and the requirements for their parameters (right)

What are the advantages of the concept-based approach? Most importantly,
concept-based rules allow for the decoupling of rules and types (type descriptors)
that makes the extension of the simplifier possible. Since only requirements are
mentioned and no particular types, the scope of a simplification is not limited to
whichever finite set of types can be identified at simplifier design time. Instead,
a rule can be applied to any type that meets its requirements. At the same time,
the simplification code can be laid out at an abstract level and independently
from particular types; it can contain the tests that check for the applicability of
a rule and can symbolically perform the simplification. Secondly, concept-based
rules help to reduce the amount of code of the compiler. The abstract Right-
identity simplification rule, for example, corresponds to 16 concrete instances
in the Pro64 SGI compiler, including  +0 — z, - 1 — z, z&&1 — z, or
max(z,c)=u= if ¢ is the smallest possible value. Lifting several concrete rules to
one abstract rule lowers the maintenance and debugging costs of the compiler
itself. Lastly, abstractions makes user-extensions manageable. If users describe
their types in the same abstract way that the simplifier states each of its rules,
type descriptors can be provided independently from any particular rule and
without any knowledge of the current set of simplifications. An internal query
system can then check for superconcept/subconcept relations between the re-
quirements of a rule and the behavior of a given type. The next section further
discusses the implementation.

4 Implementation

The simplification framework is divided into three parts: the core simplifier or
simplifier generator, which is the major part; an interface from a particular C++
compiler to the core simplifier; and the set of user-defined extensions (possibly



empty). The core simplifier is currently connected to the Gnu compiler front end
and can be used as-is with the Gnu and the Pro64 compilers, and others that use
the Gnu front end. It is, however, a stand-alone program, which, if an appropriate
interface from the internal representation of the previous compilation step to
the simplifier’s internal representation is provided, can work with any other C++
compiler that is standard-compliant and supports in particular all advanced
template features.

Of particular importance for our purpose is the C++ feature of specializa-
tion, including partial specialization, where a set of class templates specialize in
different ways one common class template (primary template, in C++ jargon).
Originally, specialization was introduced to support different levels of generic-
ity and different implementations of a generic task. The main advantage in our
situation, however, is the fact that the compiler selects the most appropriate
template based on the specializing type. Partial specialization is furthermore
responsible for the Turing-completeness of the template sublanguage of C++—
branching is modeled through template specialization, iteration through recur-
sive templates—which allows us at least theoretically to implement simplification
as a static program.

The key idea of the simplifier generator is in fact to express the generator
entirely within the template sublanguage. Provided simplification rules are cor-
rectly represented as class templates, the normal instantiation mechanism of C++
and the partial order of partially specializing templates can then be used not only
to select the best fitting simplification rule without additional effort on our part,
but also to perform the selection at compile time. In addition, representing each
rule as its own class, separated from all others, allows users to add new rules with-
out modifying the existing ones. For this to work, however, we have to reorganize
the formal side of a simplification rule as well as its actual instance. On the formal
side, it is necessary that the selection of a simplification rule becomes statically
decidable. While non-static simplification works on expressions directly, they now
have to be modeled as types, so-called expression templates. With expressions
as types, simplification rules can be represented as class templates so that the
left-hand side of a rule constitutes the template interface and the right-hand side
the template body. On the actual side of simplification expressions, consequently,
we have to provide mappings between the representations that expressions have
inside and outside the simplifier generator. Thus, the interface between the sim-
plifier and the Gnu compiler essentially is concerned with the conversion from
the Gnu’s internal TREE representation [4] to the expression-template represen-
tation used within the simplifier. Fig. 2 illustrates the template-based represen-
tation of a simplification rule using right-identity simplification. In this example,
the class template is a partial specialization of the primary template Simplify
by two parameters: an abstract binary expression, represented as expression
template BinaryExpr<BinaryOpClass,LeftOperand,RightOperand>, and the
set of constraints that a right-identity simplification imposes on the bindings of
the three template parameters (BinaryOpClass, LeftOperand, RightOperand),
encapsulated in the type RightIdentitySimpl. Together, the two parameters



ensure that the simplification class is instantiated only when the bindings of
all its parameters meet the requirements of a right-identity simplification. If
they are met, however, the class gets instantiated and the result of the sim-
plification, that is, the right-hand side of the simplification rule, becomes ac-
cessible through the type definition in the body of the class. For the binding
BinaryExpr<Add,X,0>, for example, (the type counterpart to the expression
x4 0) the type Simplify: :result resolves to X, as expected. To summarize the

template<class BinaryOpClass, class LeftOperand, class RightOperand>
struct Simplify<Expr<BinaryExpr<BinaryOpClass,LeftOperand,RightOperand>>,

RightIdentitySimp>
{
typedef typename Simplify<LeftOperand>::result result;

b

Fig. 2. Template representation of the right-identity simplification rule.

technical details, the simplifier generator is based on advanced features of generic
programming in C++, most notably the already mentioned expression templates
[34, 12], template metaprogramming [5], and traits (interface templates) [23]. As
already mentioned, these features are increasingly used in C++ libraries, but can
(or should, as we argued) be moved from the user level to the compiler level.

The set of concept-based rules is complemented by a set of conceptual type
descriptors for each type that is the subject of simplification. This is the part
where the simplifier is controlled by its users: they are expected to provide infor-
mation about the logical, algebraic, or computational behavior of their types—
whatever properties they omit, the simplifier will not be able to take advantage
of. It might seem strange to hold users responsible for defining a type’s behavior
but in some sense they only extend the responsibilities they already assume in
traditional variable declarations. There, they assert their variable to be of a cer-
tain type; here, they additionally assert semantic properties. It also might appear
that users have to provide a great amount of information or might even have to
revise their type descriptors each time the set of simplification rules is extended.
If stated abstractly enough, however, only a little information is necessary to
integrate a user-defined type. For example, the left column in fig. 3 uses the
LiDIA type bigfloat to show the complete, slightly idealized code to register
this type with the simplifier. Extending the simplifier by new functions or ex-
pressions follows a similar scheme: each property the simplifier cannot infer has
to be specified. Like type descriptors, the descriptors of functional expressions
are standardized and implemented as so-called interface templates (or traits).
The right column in fig. 3 gives two examples of traits defining the LiDIA mem-
ber functions is_zero and assign _zero. The complete code of all LiDIA-specific
extensions can be found in [10].



// Algebraic behavior

template<>

struct AlgebraTraits<bigfloat>

{

typedef Field<bigfloat,

Add, Mult,O
UnaryMinus, Sub, 1,
Recip, Div>
structure;

}s

// Computational behavior
template<>

struct TypeTraits<bigfloat>

{

typedef __true_type is_applicative;
typedef __true_type is_floating;

b

// Literal table

struct UnaryOpTraits<
LiDIA: :EqualsZero, bigfloat>

{
typedef __true_type is_applicative;
typedef __false_type has_side_effects;
typedef __true_type operand_ is_const;
typedef __false_type can_overflow;
typedef __false_type can_underflow;
typedef __false_type can_zero_divide;
typedef bool result_type;
static inline bool
apply(const bigfloat& operand)

return operand.is_zero();

}

+;

struct UnaryOpTraits<
LiDIA: :AssignZero, bigfloat>

{
typedef __false_type is_applicative;
typedef __true_type has_side_effects;
/...

static inline void
apply(bigfloat& operand)

template<> bigfloat
LiteralTable<bigfloat>::literals[] =
{

bigfloat(0), return operand.assign zero();
bigfloat (1) }

b s

Fig. 3. Left: user-provided descriptors of LiDIA’s type bigfloat (complete, but slightly
simplified). Right: user-defined expression descriptors of the LiDIA functions is_zero
and assign_zero

Concept-based rules and concept-based type (or function) descriptors, finally,
are brought together in an internal validation step that checks for each simplifi-
cation rule whether its semantic constraints are met. Given an actual expression
with an actual type the validator retrieves its type descriptor and compares the
type specification against the requirements of the corresponding variable of the
simplification rule that best fits the given expression. The comparison of require-
ments could be as simple as a check for equality, but often implies in practice
a more complicated confirmation of one concept as a subconcept of another.
To derive such relations the validator then searches a small internal repository.
Suppose, for example, the rule (*) for right-identity simplification is about to
be applied to an instance of, say, LiDIA’s bigfloat type. The validator first re-
trieves the requirements of the rule (which are specified for elements of monoid
structures) and the description of the type (which forms a field), then performs
a series of lookups in the internal repository to confirm the concept of a field as



a subconcept of the monoid concept, and finally gives way to the instantiation
of the simplification rule with the bigfloat-expression; as we have seen earlier
(fig. 2) the body of this class then holds the result of the symbolically simplified
expression.

5 Extended Example

To demonstrate the optimization opportunities that an extensible simplifier pro-
vides, we now discuss an extended example using the libraries MTL (Matrix
Template Library) [28] and LiDIA [32], a library for computational number the-
ory.

In short, MTL provides the functionality of a linear algebra package, but
also serves as basis for sophisticated iterative solvers. It provides extensive sup-
port for its major data types, vectors and matrices, but relies on C++ built-in
types for the element type of a matrix. LiDIA, on the other hand, provides a
collection of various multi-precision types, mainly for arithmetic (e.g., in num-
ber fields) and cryptography. For the example we selected the MTL algorithm
givens_rotation, performing the QR decomposition of the same name, and
instantiated it with vectors over the LiDIA type bigfloat. The core of the
function givens_rotation is listed in fig. 5. As the code listing (left column)
shows there are several operator expressions that, when applied to instances of
class types, require constructor calls, hence temporary variables. At the same
time LiDIA’s bigfloat class has member functions defined that are equivalent
to, but more efficient than some of these operator expressions: the application
of the member function is_zero, for example, requires one temporary less than
the equivalent operator expression b == T(0) (first line) and, likewise, the call
multiply(r_,b,tt) is more efficient than r_= b*tt (last line). In a traditional
compilation model, LiDIA users would have to either accept performance losses
or would have to modify MTL code; with the extensible simplifier, however, they
can leave the MTL source code unchanged, but “overwrite” the generated code.

Using the techniques described in the last section they can register the
bigfloat type and then specify which operator expressions they want to see
replaced. We showed in fig. 3 how to instruct the simplifier so that it replaces
test-for-zero expressions on bigfloat variables (EqualsZero) by calls to their
member function is_zero. Following this scheme, we added altogether 6 LiDIA-
specific rules for the example. These 6 rules, along with the general-purpose rules
already in the simplifier, result in the saving of 12 temporaries (see fig. 5, right
column); more precisely, the saving of constructing and destructing 12 bigfloat
instances. The next section reports on the speed-up and code size saving gained.

6 Experimental Results

We conducted a series of experiments where we instantiated different MTL al-
gorithms with LiDIA data types. For the presentation of the results in this
section we selected three MTL algorithms in addition to the already discussed



Givens rotation: the Householder QR transformation generate householder,
__tri_solve for solving triangular equation systems, and __major norm for com-
puting the 1- and oco-norms. All four routines are core routines for linear algebra
and numerical computations. Another, more practical reason for selecting them
was their code size in the MTL implementation, which, between 25 and 60 lines,
seems to be large enough to allow for noticeable simplification effects. In the
tests the simplifier was extended by the LiDIA-specific rules listed in figure 5.

MTL provides small demonstration programs for each algorithm that just
generate its input arguments, run the algorithm, and print the result. We used
these programs, but inserted cycle counters around the algorithm invocation.
For the compilation we extended the Gnu compiler g+-+ 2.96 by an interface file
to the simplifier. The version 2.96 of g++ has a well-known, serious performance
bug in its inliner, which results in smaller performance improvements in three
cases; in the __tri_solve test, we had to manually perform expression rewriting
due to problems with the inliner interface, thus __tri_solve did not suffer from
the same abstraction penalty losses as the other three cases. We then compiled
each algorithm with and without the compilation flag ~-fsimplify at the highest
optimization level,-03, measured the size of the generated code and counted the
cycles at run time. We also varied the precision of the floating point type, but this
did not change a program’s behavior. To determine the number of cycles we ran
each example 100,000 times, eliminated values that were falsified by interrupts,
and computed the arithmetical means of the remaining values; each test was
repeated several times. The tests were performed on a Linux platform with an
AMD Duron processor, using MTL 2.1.2-19 and LiDIA 2.0.1.

The results show that we were able to achieve performance gains in all four
cases, substantial gains for the Givens rotation (6%) and the __tri_solve algo-
rithm (8%), and still 1% and almost 4% speed-ups in the __major_norm algorithm
and the Householder transformation. It should be emphasized again both that
manual rewriting changes the test conditions for __tri_solve and that the prob-
lems with the inliner of g++ are temporary and will be solved in its next release.
With a fully working inliner without abstraction penalties we expect to further
improve on the current performance gains. The speed-ups came along with a
slight reduction of the code size in three cases, but the code size went up for
the major _norm (by 1320 bytes). We suspect, again, the problem was due to the
inliner.

Table 1 summarizes the changes to the code size and run time of each al-
gorithm. It also lists for each algorithm its length in lines of code, the number
of temporaries of type bigfloat that were saved, and, in parentheses, the total
number of temporaries that could be saved with our approach but would have
required extending the set of LiDIA-specific simplification rules.

7 Related Work

Our approach borrows from programming methodology and our motivation fits
in a modern understanding of compilation; in this section we discuss related



Table 1. MTL algorithms simplified with LiDIA-specific simplification rules

Algorithm Length|Temp.| Code size (bytes) Run time (cyles)
(lines) | saved | before after savings|before after speedup
major_norm 28 3(5) (682216 683540 -1324| 25704 25523 1.01 %
generate_householder| 38 9 |688037 687897 140[109343 105335 3.81 %
tri_solve 46 6 |688775 688300 475| 48095 44434 [8.24%]
givens_rotation 54 12 678450 678037 413| 30112 28290 6.44 %

work in more detail. Programming with concepts, first, is an old approach un-
derlying libraries in several languages, most notably Ada [22] and, with the most
success, C++, where the Standard Template Library became part of the language
specification [30,20]. The demand for adaptable components, at the same time,
describes a recent trend in software development, which comes in several vari-
eties. Although we were mostly inspired by generic programming in the sense
of STL and its successors, the methodologies of adaptive and aspect-oriented
programming [16] and intentional programming [29] bear resemblance to our
goals but typically work neither with C++ nor with traditional (compilation)
environments.

Extensible compilers are another recent trend, along with performance tuning
for selected types and the introduction of features that allow advanced users to
improve the optimizations their compilers perform. The ROSE source-to-source
preprocessor [6], for example, extends C++ by a small generator for optimization
specifications for class arrays. In the same direction, but not restricted to arrays,
are the “annotation language for optimizing libraries” [11] and the OpenC++
project, part of the Open Implementation project at Xerox [3]. While the former
can direct the Broadway compiler, the latter translates meta-objects in a C++
extension to source code that any C++ compiler can process. Particularly in C++,
as already mentioned, much work is also done using the language itself, through
traits, expression templates, and template metaprogramming, either to enforce
certain (statement-level or cache) optimizations or to hand-code them [34,23,
5,27]; see also [9] for a critical evaluation. Both ideas of modifying (extending)
the translated language and modifying (customizing) the translated data types,
however, are different from our approach of directly getting the optimization to
work with arbitrary user-defined types. In performing type-based alias analysis,
the latest implementation of the Gnu compiler realizes the advantages of higher
programming constructs and type information for optimization tasks, but re-
stricts type-based alias analysis to built-in types [18]; the Scale Compiler Group
also reports the implementation of a type-based method for alias analysis [25].
Probably closest to our approach, except for the level of generality, comes the
idea of semantic expansion in the Ninja (Numerically Intensive Java) project
where selected types are treated as language primitives; for complex numbers
and arrays the generated Java code outperforms both C++ and Fortran [19, 37].
Finally, we want to point out that rewriting techniques have long been used in
code generator generators, e.g., Twig [1], burg [8], and iburg [7].



8 Conclusions and Future Work

In conclusion, the new, extensible simplifier optimizes user-defined classes and
has been successfully integrated into the Gnu C++ front end. It coexists with the
original simplifier and lifts several old, concrete rules to an abstract level, but also
contains rules without counterparts in the original simplifier. The examples with
the LiDIA and MTL libraries show the substantial performance gains that are
possible even at the level of very-high intermediate representations, and hopefully
contribute toward overcoming the performance concerns of those who choose
non-object-oriented C or Fortran programming over object-based programming
in C++ or write code that compromises readability for efficiency. As pointed out
in the introduction we consider the simplification project to be the start of a
new approach to optimizer generators, which handle built-in types and classes
equally. For the next steps in that direction we want to get more experience with
other high-level optimizations, investigating in particular the required analytical
parts. A promising immediate next step seems to be to extend the type-based
(alias) analysis of the current Gnu compiler [18] to user-defined types.
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T a = a.in, b = b_in; T a = a.in, b = b_in;

if (b == T(0)) { if (b.is_zero()) { 1)
c. = T(1); c.assign one(); &)
s_ = T(0); s.assign zero(); &)
r. = a; r.=aj;

} else if (a == T(0)) { } else if (a.is_zero()) { (¢D)
c_ = T(0); c.assign zero(); (1)
s_ = sign(b); s_ = sign(b);

r_ = b; r_. = b;

} else { } else {

// cs=lal / sgrt(lal®+|bl?) // (see left column)

// sn=sign(a)b / sqrt(lal?+[bl?) //

T abs_a = MTL_ABS(a); T abs_a = MTL_ABS(a);

T abs_b = MTL_ABS(b); T abs_b = MTL_ABS(b);

if (abs_a > abs.b) { if (abs_a > abs_b) {
// 1/cs = sqrt( 1+|bl2/1al? ) // (see left column)
T t = abs_b / abs_a; T t = abs_b / abs_a;
T tt = sqrt(T(1) + t * t); T tt = sqrt(T(1)+square(t)); (%)
c.=T() / tt; inverse(c_,tt); (2)
S. =t % c_; multiply(s_,t,c.); (1)
r_ = a * tt; multiply(r_,a,tt); (1)

} else { } else {
// 1/sn=sign(a)- sqrt(1+lal?/Ibl?) // (see left column)
T t = abs_a / abs_b; T t = abs_a / abs_b;
T tt = sqrt(T(1) + t * t); T tt = sqrt(T(1)+square(t)); (*)
s_. = sign(a) / tt; divide(s_,sign(a),tt); (¢D)
c. =1t * s_; multiply(c_,t,s.); (1)
r_=Db * tt; multiply(r_,b,tt); (D)

} }

} }

Fig. 4. The body of the MTL algorithm givens_rotation with T bound to the LiDIA
bigfloat type: the original MTL code (left) and the code generated by the simplifier
(right). Numbers in parentheses at the end of a line indicate the number of saved
temporary variables of type bigfloat; (*) marks rewrites by more efficient functions.

X = bigfloat(0) — X.assign_zero() | X == bigfloat(0) — X.is_zero()

X = bigfloat(1) — X.assign-one() | X == bigfloat(l) — X.is_one()

X*X — square(X) X=XopY — X op=Y, op € {+,*}
X=o0pY — op'(X,Y), op € {1/_,square}, op’ € {invert, square}
X=YopZ—op(X,Y,Z),op € {+,—,%/}, op’ € {add, subtract, multiply, divide}

Fig. 5. LiDIA-specific simplification rules



