
CloneCloud – Elastic Execution

between Mobile Device and Cloud

Byung-Gon Chun Sunghwan Ihm Petros Maniatis

Intel Labs Berkeley Princeton University Intel Labs Berkeley

Mayur Naik Ashwin Patti

Intel Labs Berkeley Intel Labs Berkeley

Presenter : Das

Motivation

 With the increasing use of mobile devices,

mobile applications with richer

functionalities are becoming ubiquitous.

 But mobile phone devices are limited by

their resources for computing and power

consumption.

 Cloud – the place for abundant resources

 Clouds provide opportunity to do huge

computations quickly and accurately

Common approach

 Split in traditional client-server paradigm,

pushing most computation to the remote

server

 Few approaches

◦ Cloudlets

◦ MAUI

Questions

 Will it be efficient to move all the

computations to cloud?

 If programmer has to specify which

computation to be run in cloud, will that

be same for all mobile configuration like

Faster CPU with good network

connection, Slower CPU with slow

network connection.

Goals

Main goal

“….a flexible architecture for the seamless use
of ambient computation to augment mobile
device applications and energy-efficient”

Other aims:

 Allow such fine grained flexibility on what
run where(on mobile or in cloud)

 Take programmer out of the business of
application partitioning(make it automatic
and seamless)

CloneCloud

 CloneCloud envisions at an architecture that uses
cloud to do computations that consume
resources badly on mobiles.

 It believes in the intuition that “as long as
execution on the cloud is significantly faster than
execution on the mobile device, paying the cost
for sending the relevant data and code from
device to the cloud and back may be worth it”

 It aims at finding the right spots in an application
automatically where the execution can be
partitioned and migrated to the cloud.

Schema

 Clone an unmodified application executable.

 The modified executable is running at mobile device.

 At automatically chosen points individual threads migrate
from mobile device to device clone in a cloud.

 Remaining functionality on the mobile device keep executing.

 Remaining functionality blocks if attempts to access migrated
state.

 The migrated thread executes on the clone, possibly
accessing native features on hosting platforms(fast CPU,
hardware accelerations)

 Merge remote and local state back into original process.

Partitioning

 Partitioning mechanism yields the partitions
in the application that are optimal at
execution time and energy consumption

 It is run multiple time under different
conditions and objective functions – stores
all partitions in a database.

 It is done offline

 At run time, the execution picks a partition
among these modifies the executables
before invocation

 It has three components – static analyzer,
dynamic profiler and optimization solver.

Static Analyzer

 The static analyzer identifies the legal
partitions of the application executable
according to the set of constraints

 Migration is restricted to the method entry
and exit points

 Two more restrictions for simplicity

◦ Migration is allowed only at the boundaries of
application methods but not core system library
methods

◦ Migration is allowed at the VM-layer method
boundaries but not native method boundaries.

Static Analyzer – constraints

Three properties of any legal partition

 Methods that access specific features of a machine must be
pinned to the machine[Vm]

◦ Static analysis marks the declaration of such methods with a
special annotation M

◦ Done once for each platform, not repeated for each application

 Methods that share native state must be collocated at the
same machine[Vnat]

◦ When an image processing class has initialize, detect and fetch
result methods that access native state, they need to be
collocated

 Prevent nested migration

◦ Static analysis of the control flow graph to identity the set of
methods called directly by a method(DC) and transitively(TC).

Dynamic Profiler

 Profiler collects data that will be used to
construct the cost model.

 Currently using randomly chosen set of
inputs
◦ Future work is to explore symbolic-execution-

based techniques since randomly chosen inputs
may not explore all execution paths

 Each execution is run once on mobile device
and once on the clone in the cloud.

 Profiler outputs set of execution S and a
“profile tree”, for both mobile device and
the clone.

Profile Tree

 One node for each method invocation

 Every non-leaf node also has a leaf child called its residual
node.

 Residual node holds residual cost which represents the cost
of running of the body of code excluding the costs of the
methods called by it

 Each edge is annotated with the state size at the time of
invocation of the child node, plus the state size at the end of
that invocation

◦ Amount of data that migrator needs to capture and transmit in
both directions if edge were to be migration cost

 Computation cost Cc(I,l); l=0 on mobile device and filled
from T, l =1 on the clone and filled from T’

 Migration cost Cs(i); sum of a suspend/resume cost and the
transfer cost.

Dynamic Profiler

 For energy consumption model, we do the
energy measurements with off-board
equipment.

 CPU activity(processing/idle) , display
state(on/off), and network state (transmitting
or receiving/idle), and translate them to a
power value using func P.

 Cc(i,0) = P(CPUOn, ScrOn, NetIdle) * T[i]

 Cc(i,1) = P(CPUIdle, ScrOn, NetIdle)

 Cs(i) = <Cs(i) value from time model> * P
(CPUOn, ScrOn, netOn)

Optimization Solver

 It aims at picking up application methods

to migrate the clone from mobile device,

so as to minimize the expected cost of

partitioned application.

 Optimization problem is to minimize the

time taken to execute and energy

consumed.

Distributed Execution

 Thread granularity migration

◦ Migration operates at the granularity of a

thread.

 Native-Everywhere:

◦ Enables migrated threads to use native non-

virtualized hardware (GPUs, Cryptographic

accelerators, etc).

 Suspend and capture
◦ Thread migrator suspends migrant thread

◦ Captures its state, passes it to node manager

◦ Node manager transfers the capture to clone

 Resume and Merge
◦ Clone's thread migrator captures and packages the thread

state

◦ Node manager transfers the capture back to the mobile
device

◦ Migrator in the original process is given the capture for
resumption

Conclusion

 Pros

◦ Prototype delivers up to 20x speed up and
20x energy reduction.

◦ Programmer involvement is not required.

 Cons

◦ Programmer does not have the flexibility to
specify a method to be executed on cloud.

◦ It may not be possible to run dynamic profiler
for all possible parameters.

Questions?

