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Abstract

Video matting, or layer extraction, is a classic inverse prob-
lem in computer vision that involves the extraction of fore-
ground objects, and the alpha mattes that describe their
opacity, from a set of images. Modern approaches that
work with natural backgrounds often require user-labelled
“trimaps” that segment each image into foreground, back-
ground and unknown regions. For long sequences, the pro-
duction of accurate trimaps can be time consuming. In con-
trast, another class of approach depends on automatic back-
ground extraction to automate the process, but existing tech-
niques do not make use of spatiotemporal consistency, and
cannot take account of operator hints such as trimaps.

This paper presents a method inspired by natural image
statistics that cleanly unifies these approaches. A prior is
learnt that models the relationship between the spatiotem-
poral gradients in the image sequence and those in the alpha
mattes. This is used in combination with a learnt foreground
colour model and a prior on the alpha distribution to help
regularize the solution and greatly improve the automatic
performance of such systems.

The system is applied to several real image sequences
that demonstrate the advantage that the unified approach can
afford.

1 Introduction

Video matting is a technique that is central to special effects
in both the film and television industry. In any situation
where actors are extracted from footage to be later compos-
ited onto an artificial or alternate background, accurate sep-
aration of the actor and the background is vital. Video mat-
ting is similar to the computer vision problem of layer ex-
traction [1, 2, 9, 14, 15, 16], but has a stronger emphasis on
deriving object boundaries which accurately represent the
sub-pixel blending of foreground and background layers.
This problem is interesting because it is a difficult inverse
problem: the number of unknowns exceeds the number of
measurements, so regularization is crucial to the success
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Figure 1: Video matting. Given a sequence of composite
images (C) we wish to compute: background (B), opac-
ity information represented as an alpha matte (α) and fore-
ground layer (αF ).

of any automatic solution. Traditionally, the video matting
framework relies upon user interaction to assist the process,
while layer extraction concentrates on automatic decompo-
sition of the sequence, with less emphasis on sub-pixel ac-
curacy. In this paper, we combine these two strands of re-
search to produce a system which allows accurate mattes to
be extracted from video sequences with little or no user in-
tervention. Key features of this paper are threefold: first, in
contrast to previous efforts in this area, the prior probabili-
ties which are the key to regularizing the problem are learnt
from examples and fit to models from natural image statis-
tics. This means that stronger, more appropriate regulariza-
tion is applied than has been seen previously. Second, be-
cause we employ a consistent MAP estimation framework,
the panoply of previous techniques is easily unified in one
approach. Finally, because we use well-honed numerical
algorithms to solve for the MAP maxima, we have reliable
convergence.

The central problem is illustrated in figure 1. The input
to video matting is an image C which is a composite of
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a foreground image F and a background image B. The
compositing equation defines how C is formed as a linear
combination of F and B. Each pixel in the composite is

C = αF + (1 − α)B, (1)

where α, the alpha or opacity value is a number between
zero and one. Given the composite image, the task of video
matting is to recover the values of α,B, F at every pixel
in the sequence. Given only this statement of the problem,
it is apparent that it is hugely under-constrained: at each
pixel in a single-channel image, there are three unknowns
(α,B, F ) and only one equation. For a three-channel colour
image, this becomes three simultaneous equations in seven
unknowns: a small improvement in the ratio of constraints
to variables, but still an ill posed problem. In order to obtain
a solution, additional assumptions must be incorporated,
and the techniques in the literature are characterized by the
assumptions used.

Scientific study of the matting problem may be first as-
sociated with Smith and Blinn [12] who examined the tra-
ditional blue-screen matting scenario, in which the back-
ground B is engineered to be known. They showed that in
order to extract a unique alpha matte, the foreground must
be seen against at least two different background colours.

Wang and Adelson [15] and Irani et al [9] showed how
optic flow information could be used to automatically ex-
tract layers from an image sequence. Robust motion seg-
mentation identifies candidate layers which have consistent
motion, and then each layer is estimated by warping the
sequence so that the layer is stationary. The layer colour
is extracted at each pixel using a temporal median. This
works well when all layers in the sequence obey a tractable
motion model, but on the sequences which we analyse, the
foreground objects are typically articulated and do not obey
a parametric motion model for long enough to allow the
median operation to choose the correct colour. However,
the background image B is successfully estimated in the
majority of cases, and we used a local implementation of
the technique to estimate backgrounds for each of our se-
quences. Thus, our situation is the analogue of blue-screen
matting when some of the foreground may contain blue pix-
els. Figure 2 illustrates that even with knowledge of the
background, the problem remains under-constrained.

The second class of matting techniques loosens the re-
quirement that the background be precisely known, and
assumes only that background colours are drawn from a
known probability distribution [5, 7, 10]. This assump-
tion leads naturally to statistical inference problems where
the background, foreground and alpha values are simulta-
neously estimated from the composite image. Because such
approaches are even less well constrained than the single-
view blue-screen matting approach, significant human input
is required. This typically takes the form of a trimap where

Figure 2: Background subtraction. Restricting to binary α,
and with known background B, an estimate of alpha is ob-
tained by thresholding the difference image |C − B|. No
threshold value yields a correct alpha matte. The introduc-
tion of spatial and temporal priors will permit a good solu-
tion to be computed.

pixels are labelled as definitely inside the object of interest
(α = 1), definitely outside (α = 0), or unknown. Propa-
gating α from the known to the unknown regions produces
high-quality mattes. Chuang et al [4] combine this class of
technique with optic flow in order to temporally propagate
the trimaps, leading to impressive video-sequence mattes
which require a minimum of manual input.

Although many of the previous approaches are declared
to be Bayesian techniques, they eschew one of the most
important characteristics of the Bayesian approach: there
are no priors. Priors are an important component of any
Bayesian solution to an inverse problem as they embody the
regularization that is essential if reliable estimates are to be
computed. An exception is the work of Wexler et al [16],
who impose priors on the distribution of α values, and on
the joint distribution of edge magnitudes in the composite
image and in the alpha matte. However, their framework
is deficient in two ways: first, ad-hoc models were em-
ployed for the priors; and second, temporal coherence of the
video sequence was not fully exploited, leading to unsatis-
factory results when the single-image approach is extended
to multiple-image sequences.

The main contribution of this paper is to extend the
Bayesian approach to take proper account of spatiotempo-
ral information. This confers many of the advantages of the
optic-flow based technique, but with a system that has less
dependence on accurate trimaps. We show that a general-
purpose nonlinear optimization strategy can efficiently in-
corporate these priors leading to a robust, highly automated,
system for video matte extraction. If manual hints are avail-
able, they can easily be included into our framework.

This paper is structured as follows: we derive the
Bayesian matting framework, and then discuss how the
maximum a posteriori (MAP) estimate may be found in
practice. Demonstrations of the technique on some example
sequences precedes a discussion of the merits and disadvan-
tages of the new technique.
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2 Bayesian video matting

The input to the algorithm is a sequence of composite im-
ages with RGB pixels C(x, y, t). We assume that we can
obtain an estimate of the background [4, 9, 15, 16], which
we label B(x, y, t). The unknowns then are the sequence of
alpha mattes α(x, y, t) and foreground colours F (x, y, t).
Collecting the pixel location into a vector x = (x, y, t), and
colouring unknowns red, we obtain the per-pixel composit-
ing equations

Cr(x) = αxFr(x) + (1 − αx)Br(x)
Cg(x) = αxFg(x) + (1 − αx)Bg(x) (2)

Cb(x) = αxFb(x) + (1 − αx)Bb(x)

The Bayesian formulation of the video matting problem
now becomes one of finding the MAP estimate of the fore-
ground image F and the alpha-matte α given C and B:

{F, α} = argmax
F,α

p(F, α|C,B) (3)

Using Bayes rule, the posterior can be expressed as a com-
bination of priors on F , α, C and B, and a conditional prob-
ability on C and B:

p(F, α|C,B) =
p(C,B|F, α)p(F )p(α)

p(C)p(B)
(4)

The MAP estimation is converted into an energy minimiza-
tion by taking the negative log of the posterior, and noting
that p(C) and p(B) do not depend on the unknowns F and
α:

{F, α} = argmin
F,α

{L(C,B|F, α) + L(F ) + L(α)} (5)

where L(C,B|F, α) is the reconstruction error, L(F ) is the
foreground energy and L(α) is the negative log alpha prior.
These terms are described in more detail below.

2.1 Reconstruction likelihood L(C,B|F, α)

The first term L(C,B|F, α) in eq. (5) is written

L(C,B|F, α) =
∑
x

Ere (Fx, αx) (6)

where the per-pixel reconstruction error Ere (Fx, αx) is

Ere(x) =
1

2σ2
‖Cx − αxFx − (1 − αx) Bx‖2 (7)

This corresponds to an assumption that the deviations of
the given composite image from the exact composition are
drawn from a Gaussian distribution of covariance σ2I where
I is the 3 × 3 identity matrix. A value of σ = 5 graylevels
was typical in our experiments.

2.2 Foreground energy L(F )

The second term in eq. (5) is the foreground energy L(F ).
We follow previous authors [5, 10] and use a Gaussian mix-
ture model (GMM) in the RGB colour space to model the
distribution of foreground pixels colours for the foreground
object. The distribution at each pixel is generated from all
foreground pixels in a square neighborhood in the automat-
ically generated trimap (§3.3) as in [10]. The energy over
the image F is the sum over all foreground pixels Fx, given
by

L(F ) = −
∑
x

log(
Nk∑
k

G(Fx; Σk, µk)) (8)

where each per-cluster Gaussian is

G(X; Σ, µ) =
1√

(2π)3|Σ| exp(−(X − µ)�Σ−1(X − µ))

(9)

2.3 Alpha prior L(α)

The previous likelihood terms occur in some form, either
implicitly or explicitly, in almost all previous video matting
work. The transition to a fully Bayesian approach comes
when priors are placed on the parameters to be estimated. In
this problem, the parameters of interest are the foreground
image F , and the alpha matte α. The alpha matte is very
tightly constrained both spatially and temporally, and offers
an excellent opportunity to gain useful regularization at lit-
tle computational cost.

However, the alpha matte is unusual in that although
large areas are smooth, sharp edges must be maintained be-
tween the foreground and background objects. Previous at-
tempts to impose a prior [16] have tended to over-smooth
edges or to fail to enforce smoothness in the object interior.
By learning a prior which models the joint distribution of
edges in the alpha matte and in the composite image, we
obtain a prior which smooths strongly in areas where the
composite image is uniform, but can introduce sharp edges
where there are edges in the composite image. Note that
this imposes a constraint on the sequences which we can
successfully process: if there is no edge in the composite
image, the alpha image boundary will be blurred. However,
this constraint is implicit in all current video matting work,
as if there is no edge in the composite image, the foreground
and background pixel colour distributions are very close, so
alpha is poorly constrained.

In summary, these priors allow us to incorporate two im-
portant constraints into the estimation:

• alpha values of zero and one are more likely than mid-
range values;

• alpha edges are tightly correlated with edges in the
composite image.
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By capturing training sequences of objects moving against
blue-screen backgrounds, we are able to learn the parame-
ters of the prior distributions.

2.3.1 Alpha distribution

A Beta distribution [16] is used to model the distribution of
alpha values as primarily 0’s or 1’s and has the density and
energy functions:

p(α(x)) =
α(x)η−1(1 − α(x))τ−1

β(η, τ)
Ea(α(x)) = (1 − η) log(α(x))

+ (1 − τ) log(1 − α(x)) + Kβ

where Kβ is a constant and is ignored in the energy func-
tion. The values of η and τ are determined by comparing the
distribution to ground-truth alpha mattes, and typical values
are η = τ = 0.25.

2.3.2 Spatiotemporal Consistency Prior

The spatiotemporal consistency prior has the effect of
smoothing alpha along, but not across, edges in space and
time. Specifically, the prior relates gradients in the alpha
matte and gradients in the composite image. The gradient
of the composite image is denoted ∇C and is defined by the
central-difference approximation

∇C(x, y, t) =
1
2δ


C(x + δ, y, t) − C(x − δ, y, t)

C(x, y + δ, t) − C(x, y − δ, t)
C(x, y, t + δ) − C(x, y, t − δ)




where C is the grayscale representation of C. The gradient
of the alpha matte, ∇α is defined analogously. If we further
define the discrete directional derivative of α in the direction
of p as

∇pα =
1

2‖p‖ (α(x + p) − α(x − p)) (10)

then we may represent the prior of Wexler et al [16] by

Esc (x) =
∑
p∈N

(e−‖∇pC‖2 · ‖∇pα‖)2 (11)

where N is a small collection of pixel offsets, for example
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. On examining real images,
however, it quickly becomes apparent that this prior is a
poor approximation to the true situation. Figure 3 compares
the approximation to the values learnt from real image se-
quences (see §3.2), for the case where p = (1, 0, 0).

(a) (b) (c)

Figure 3: Spatiotemporal edge log priors. (a) Wexler et
al spatial consistency energy term Esc as a function of
edge strength in alpha and composite images. (b) Learnt
marginal prior log p(dα, dC). (c) Modelled conditional
prior log p(dα|dC). X axes are ∇pC, Y axes ∇pα, with
p = (1, 0, 0). Blue corresponds to low log-probability, red
to high. The difference between the learnt and analytic pri-
ors is considerable.
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(d) Temporal, |∇tC| = 100

Figure 4: Sampled and fitted spatiotemporal priors. The
dashed lines are the sample distributions of alpha-matte gra-
dients over the training set, for particular values of the com-
posite image gradient. The solid lines show the fit of the
data to a mixture of a t-distribution and a Gaussian. As well
as allowing analytic derivatives to be computed, the fitted
model is guaranteed to be unimodal, leading to improved
convergence of the minimization.

2.3.3 Learnt spatiotemporal consistency

In contrast to previous work, we learn the relationship be-
tween alpha and composite gradients using a library of
ground-truth sequences. Each ground-truth sequence pro-
vides a collection of composite-image gradients ∇C and
alpha gradients ∇α. The statistic we wish to learn is the
joint distribution p(∇C,∇α), a probability density over R

6.
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Ex = ||Cx − αx Fx −
(
1 − αx

)
Bx||2 — Reconstruction (§2.1)

− λ1 log
( Nk∑

k

1√
(2π)3|Σk|

exp(−( Fx − µk)�Σ−1
k ( Fx − µk))

)
— Foreground mixture model (§2.2)

− λ2

(
(η − 1) log αx + (τ − 1) log

(
1 − αx

))
— Alpha biased to 0 and 1 (§2.3.1)

− λ3

∑
p∈N

log
(

γ1(x)(1 + γ2(x)( ∇pαx )2)−γ3(x) + γ4(x)e
−γ5(x)( ∇pαx )2

)
— Learnt edge prior (§2.3.2)

Table 1: The complete log likelihood that the algorithm minimizes is E( α , F ) =
∑

x Ex, with Ex being the term above.
The red terms are the variables whose values are desired. Although visually busy, it is smooth, and analytic first and second
derivatives are easily computed and translated to source code. Optimizing the function using an off-the-shelf nonlinear
minimizer is straightforward, and converges from a wide range of starting positions.

In order to compactly represent the distribution we factor it
into the product of marginal distributions over the spatial
derivatives ∇x and ∇y and the temporal derivative ∇t.

p(∇C,∇α) = p(∇xC,∇xα)p(∇yC,∇yα)p(∇tC,∇tα)

However, since p(∇α|∇C) = p(∇α,∇C)/p(∇C) and be-
cause we assume the prior over C is a function only of the
image derivatives, so p(C) = p(∇C), then eq. (4) becomes
a function of the conditional distribution p(∇α|∇C) (fig-
ure 3(c)).

Each conditional is modelled analytically as a mixture
of a t-distribution and a Gaussian. This model is inspired
by the statistics of derivatives of natural images [8, 11, 13].
The parameters of this model are determined separately as
a function of ∇C by fitting to the sample data. This yields
three conditionals each of which is written

p(dα|dC) = γ1(1 + γ2dα2)−γ3 + γ4 exp(−γ5dα2)

where dα represents ∇x, ∇y or ∇t of α as appropriate, and
dC appears as follows. Because ∇C is constant throughout
the estimation of α, the coefficients γ1...5 are functions of
dC, stored in a lookup table. One lookup table is used for
the spatial derivatives, and one for the temporal.

Thus, the spatiotemporal priors are represented by the
energy term

Est(α,C) = −
∑
x

∑
p∈N

log(p(∇pαx|∇pCx)). (12)

The structure within the modelled prior (figure 3(c)) is
worth some explanation. First, there is a maximum at ∇α =
0 for all ∇C. Second, the value of this maximum decreases
the further ∇C is from zero. This says that we allow edges
in α wherever there are edges in C and that the strength of
this belief increases with increasing ∇C.

2.4 Combined likelihood

To summarize this section, the log posterior of a given α, F
combination is the sum of the reconstruction likelihood
eq. (6), the foreground colour term eq. (8), the log prior on
α and the log prior on the joint distribution of edges in the
alpha matte and edges in the composite image eq. (12). Ta-
ble 1 shows the full energy equation for reference. The rel-
ative weights of the terms are controlled by constants λ1,2,3

which are user-visible tuning parameters, whose values de-
fault to 1.

3 Implementation

The preceding section has motivated the error functional
which is minimized in order to yield estimates of F and
α. The overall strategy has been to ensure that the func-
tion is sufficiently smooth that a general-purpose nonlinear
optimizer can be used to find local minima, and that local
minima are widely separated. In this section, we elaborate
on some of the implementation considerations involved in
minimizing the function.

3.1 Constrained nonlinear minimization

It is important to include in the minimization of the error
functional the constraints that α and F are between zero and
one. Therefore an optimizer which can handle simple bound
constraints on the variables is required. For this work, we
used MATLAB’s constrained nonlinear optimizer fmincon.
This is a trust-region variant of the Newton method, and
requires second derivatives of the objective function to be
supplied. Derivatives of the objective function were com-
puted using Maple, and automatically written to C source
code. Using common subexpression elimination [6], the
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common terms among the various derivatives are identified,
so that the C code which computes all derivatives is not
much longer than that which computes the objective func-
tion itself. Carefully assembling these expressions into a
sparse Hessian allows the use of sparse solvers which are
efficient even though the number of unknowns is in the hun-
dreds of thousands.

Like graduated non-convexity [3], the minimization is
applied three times using smoothed versions of the spa-
tiotemporal prior, with the result from one level of smooth-
ing seeding the algorithm in the next level.

3.2 Learning the alpha prior

An important theme of this work is that priors on the vari-
ables are learnt from real image sequences. To this end, we
collected several blue-screen sequences for which reliable
alpha mattes can be generated using existing techniques.
These sequences can be used directly to determine the val-
ues of the Beta distribution which characterizes the prior
distribution over alpha values, and the results we obtain are
similar to those reported in [16]. The sequences are not suit-
able, however, as data from which to learn the spatiotempo-
ral prior p(∇α|∇C), because the blue-screen background
is not a typical natural image. In order to generate repre-
sentative training data, we artificially composed the blue-
screen foregrounds with natural movie backgrounds, using
the ground-truth alpha values, and measured edge statistics
from these images. This gives reasonable samples, and fig-
ure 4 shows 1D slices from p(∇xα|∇xC) for fixed values
of ∇xC.

3.3 Automatic trimap extraction

Background subtraction can be used to automatically gen-
erate a coarse trimap, which confers three benefits. First, it
allows the Gaussian mixture model for the foreground to be
estimated. Second, it reduces the computational burden for
the minimization as only unknown pixels are included in the
optimization. Third, it eliminates the “all-foreground” so-
lution F = C,α = 1, which would otherwise be the global
optimum of eq. (5).

A binary matte is formed by background subtraction, set-
ting α = 1 where |B −C| exceeds a preset threshold. Then
morphological operations on α are used to generate a spa-
tially coherent trimap. Figure 5 shows typical trimaps ex-
tracted from a sequence.

4 Results

Figure 6 shows the output of the algorithm on a test se-
quence. For these examples, σ = 4 graylevels and λ1 =

λ3 = 1 while λ2 = 4, representing a desire for more bi-
nary alpha values. The recovered alpha matte has correctly
recovered the sub-pixel whiskers from the large area which
automatic trimap extraction has retained.

Figure 7 shows the output of the algorithm on a test se-
quence with significant clutter in the background. The ac-
tor’s hair and facial boundaries are recovered, however the
final matte does not have the fine structure that might be
expected in the hair regions, because of the low resolution
of the original sequence. On compositing with a new back-
ground, however, the smooth boundaries do not cause visi-
ble artifacts.

Figure 8 shows the effect of temporal consistency on
the solution using an image sequence with artificially poor
trimaps. Temporal consistency helps to fill some of the
holes that spatial consistency alone could not.

5 Discussion

This paper has shown how the incorporation of learnt pri-
ors in Bayesian video matting allows fully automatic layer
extraction to closely approach the accuracy of manually su-
pervised techniques. It is the first time that priors learned
from training sequences have been used in the video mat-
ting problem.

By imposing spatiotemporal consistency at edges, we es-
sentially incorporate the propagation of trimaps which is
achieved in earlier work by the explicit use of optic flow
code. In our work, this confers the advantage that propa-
gation happens only when there is ambiguity in the choice
of alpha. On the other hand, the explicit use of optical flow
gives the user access to algorithms which have been highly
tuned to perform well on a wide range of image sequences.
Incorporating flow-based hints is a potentially valuable di-
rection in which to take this work.

Although the various priors have been learnt from train-
ing examples, there remains some parameter tuning in the
system. For example, the relative weighting of the error
terms may need to be adjusted in order to deal with particu-
lar image sequences.

The automatic trimap extraction is not new, but has not
been useful before. This is because it can produce only
coarse trimaps, and previous algorithms tend to require
manual touch-up of the trimaps in order to generate clean
results. Because our solution has the additional regulariza-
tion conferred by the priors, it can use a coarser trimap and
still obtain good results.

We have shown that formally expressing the problem
as an energy minimization, and solving that minimization
problem using a general-purpose minimizer yields results
as reliable as those obtained by the special-purpose strate-
gies used in previous work. Because a general-purpose op-
timizer is used, the new approach is significantly easier to
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Figure 5: Dog sequence. Top row: input images. Second row: trimaps. Third row: computed alpha mattes. The whiskers are
accurately reconstructed in each frame.

C′ αF α

C B αbs

(a)

αrt

αps

(b)

Figure 6: Results: Dog sequence. (a) Our results. The input composite is C, the recovered background is B. The background
subtraction solution is αbs = |C−B| < 15 graylevels. The bottom row shows a new composite C ′, the recovered foreground
layer αF , and the recovered α. Note the fine detail in the dog’s whiskers which has been automatically recovered. (b) Top
row: results using the extract tool from photoshop αps. Bottom row: the Ruzon and Tomasi solution αrt.

modify, for example in order to incorporate stronger priors
for particular problems.
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