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Abstract

Traditional methods of computer vision and machine
learning cannot match human performance on tasks such
as the recognition of handwritten digits or traffic signs. Our
biologically plausible, wide and deep artificial neural net-
work architectures can. Small (often minimal) receptive
fields of convolutional winner-take-all neurons yield large
network depth, resulting in roughly as many sparsely con-
nected neural layers as found in mammals between retina
and visual cortex. Only winner neurons are trained. Sev-
eral deep neural columns become experts on inputs pre-
processed in different ways; their predictions are averaged.
Graphics cards allow for fast training. On the very com-
petitive MNIST handwriting benchmark, our method is the
first to achieve near-human performance. On a traffic sign
recognition benchmark it outperforms humans by a factor
of two. We also improve the state-of-the-art on a plethora
of common image classification benchmarks.

1. Introduction
Recent publications suggest that unsupervised pre-

training of deep, hierarchical neural networks improves su-
pervised pattern classification [2, 10]. Here we train such
nets by simple online back-propagation, setting new, greatly
improved records on MNIST [19], Latin letters [13], Chi-
nese characters [22], traffic signs [33], NORB (jittered, clut-
tered) [20] and CIFAR10 [17] benchmarks.

We focus on deep convolutional neural networks (DNN),
introduced by [11], improved by [19], refined and simpli-
fied by [1, 32, 7]. Lately, DNN proved their mettle on data
sets ranging from handwritten digits (MNIST) [5, 7], hand-
written characters [6] to 3D toys (NORB) and faces [34].
DNNs fully unfold their potential when they are wide (many
maps per layer) and deep (many layers) [7]. But training
them requires weeks, months, even years on CPUs. High
data transfer latency prevents multi-threading and multi-
CPU code from saving the situation. In recent years, how-
ever, fast parallel neural net code for graphics cards (GPUs)

has overcome this problem. Carefully designed GPU code
for image classification can be up to two orders of magni-
tude faster than its CPU counterpart [35, 34]. Hence, to train
huge DNN in hours or days, we implement them on GPU,
building upon the work of [5, 7]. The training algorithm
is fully online, i.e. weight updates occur after each error
back-propagation step. We will show that properly trained
wide and deep DNNs can outperform all previous methods,
and demonstrate that unsupervised initialization/pretraining
is not necessary (although we don’t deny that it might help
sometimes, especially for datasets with few samples per
class). We also show how combining several DNN columns
into a Multi-column DNN (MCDNN) further decreases the
error rate by 30-40%.

2. Architecture

The initially random weights of the DNN are iteratively
trained to minimize the classification error on a set of la-
beled training images; generalization performance is then
tested on a separate set of test images. Our architecture does
this by combining several techniques in a novel way:

(1) Unlike the small NN used in many applications,
which were either shallow [32] or had few maps per layer
(LeNet7, [20]), ours are deep and have hundreds of maps
per layer, inspired by the Neocognitron [11], with many
(6-10) layers of non-linear neurons stacked on top of each
other, comparable to the number of layers found between
retina and visual cortex of macaque monkeys [3].

(2) It was shown [14] that such multi-layered DNN are
hard to train by standard gradient descent [36, 18, 28], the
method of choice from a mathematical/algorithmic point
of view. Today’s computers, however, are fast enough for
this, more than 60000 times faster than those of the early
90s1. Carefully designed code for massively parallel graph-
ics processing units (GPUs normally used for video games)
allows for gaining an additional speedup factor of 50-100
over serial code for standard computers. Given enough la-
beled data, our networks do not need additional heuristics
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such as unsupervised pre-training [29, 24, 2, 10] or care-
fully prewired synapses [27, 31].

(3) The DNN of this paper (Fig. 1a) have 2-dimensional
layers of winner-take-all neurons with overlapping recep-
tive fields whose weights are shared [19, 1, 32, 7]. Given
some input pattern, a simple max pooling technique [27]
determines winning neurons by partitioning layers into
quadratic regions of local inhibition, selecting the most ac-
tive neuron of each region. The winners of some layer rep-
resent a smaller, down-sampled layer with lower resolution,
feeding the next layer in the hierarchy. The approach is
inspired by Hubel and Wiesel’s seminal work on the cat’s
primary visual cortex [37], which identified orientation-
selective simple cells with overlapping local receptive fields
and complex cells performing down-sampling-like opera-
tions [15].

(4) Note that at some point down-sampling automati-
cally leads to the first 1-dimensional layer. From then on,
only trivial 1-dimensional winner-take-all regions are pos-
sible, that is, the top part of the hierarchy becomes a stan-
dard multi-layer perceptron (MLP) [36, 18, 28]. Recep-
tive fields and winner-take-all regions of our DNN often
are (near-)minimal, e.g., only 2x2 or 3x3 neurons. This re-
sults in (near-)maximal depth of layers with non-trivial (2-
dimensional) winner-take-all regions. In fact, insisting on
minimal 2x2 fields automatically defines the entire deep ar-
chitecture, apart from the number of different convolutional
kernels per layer [19, 1, 32, 7] and the depth of the plain
MLP on top.

(5) Only winner neurons are trained, that is, other neu-
rons cannot forget what they learnt so far, although they
may be affected by weight changes in more peripheral lay-
ers. The resulting decrease of synaptic changes per time
interval corresponds to biologically plausible reduction of
energy consumption. Our training algorithm is fully online,
i.e. weight updates occur after each gradient computation
step.

(6) Inspired by microcolumns of neurons in the cere-
bral cortex, we combine several DNN columns to form a
Multi-column DNN (MCDNN). Given some input pattern,
the predictions of all columns are averaged:

yiMCDNN =
1

N

#columns∑
j

yiDNNj
(1)

where i corresponds to the ith class and j runs over
all DNN. Before training, the weights (synapses) of all
columns are randomly initialized. Various columns can be
trained on the same inputs, or on inputs preprocessed in
different ways. The latter helps to reduce both error rate
and number of columns required to reach a given accuracy.
The MCDNN architecture and its training and testing pro-
cedures are illustrated in Figure 1.
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Figure 1. (a) DNN architecture. (b) MCDNN architecture. The
input image can be preprocessed by P0 − Pn−1 blocks. An ar-
bitrary number of columns can be trained on inputs preprocessed
in different ways. The final predictions are obtained by averag-
ing individual predictions of each DNN. (c) Training a DNN. The
dataset is preprocessed before training, then, at the beginning of
every epoch, the images are distorted (D block). See text for more
explanations.

3. Experiments

We evaluate our architecture on various commonly used
object recognition benchmarks and improve the state-of-
the-art on all of them. The description of the DNN architec-
ture used for the various experiments is given in the follow-
ing way: 2x48x48-100C5-MP2-100C5-MP2-100C4-MP2-
300N-100N-6N represents a net with 2 input images of size
48x48, a convolutional layer with 100 maps and 5x5 filters,
a max-pooling layer over non overlapping regions of size
2x2, a convolutional layer with 100 maps and 4x4 filters,
a max-pooling layer over non overlapping regions of size
2x2, a fully connected layer with 300 hidden units, a fully
connected layer with 100 hidden units and a fully connected
output layer with 6 neurons (one per class). We use a scaled
hyperbolic tangent activation function for convolutional and
fully connected layers, a linear activation function for max-
pooling layers and a softmax activation function for the
output layer. All DNN are trained using on-line gradient
descent with an annealed learning rate. During training,
images are continually translated, scaled and rotated (even
elastically distorted in case of characters), whereas only the
original images are used for validation. Training ends once
the validation error is zero or when the learning rate reaches
its predetermined minimum. Initial weights are drawn from
a uniform random distribution in the range [−0.05, 0.05].



3.1. MNIST

The original MNIST digits [19] are normalized such that
the width or height of the bounding box equals 20 pix-
els. Aspect ratios for various digits vary strongly and we
therefore create six additional datasets by normalizing digit
width to 10, 12, 14, 16, 18, 20 pixels. This is like seeing
the data from different angles. We train five DNN columns
per normalization, resulting in a total of 35 columns for
the entire MCDNN. All 1x29x29-20C4-MP2-40C5-MP3-
150N-10N DNN are trained for around 800 epochs with an
annealed learning rate (i.e. initialized with 0.001 multiplied
by a factor of 0.993/epoch until it reaches 0.00003). Train-
ing a DNN takes almost 14 hours and after 500 training
epochs little additional improvement is observed. During
training the digits are randomly distorted before each epoch
(see Fig. 2a for representative characters and their distorted
versions [7]). The internal state of a single DNN is depicted
in Figure 2b, where a particular digit is forward propagated
through a trained network and all activations together with
the network weights are plotted.

Results of all individual nets and various MCDNN are
summarized in Table 1. MCDNN of 5 nets trained with
the same preprocessor achieve better results than their con-
stituent DNNs, except for original images (Tab. 1). The
MCDNN has a very low 0.23% error rate, improving state
of the art by at least 34% [5, 7, 25] (Tab. 2). This is the
first time an artificial method comes close to the ≈0.2% er-
ror rate of humans on this task [21]. Many of the wrongly
classified digits either contain broken or strange strokes, or
have wrong labels. The 23 errors (Fig. 2c) are associated
with 20 correct second guesses.

We also trained a single DNN on all 7 datasets simul-
taneously which yielded worse result (0.52%) than both
MCDNN and their individual DNN. This shows that the
improvements come from the MCDNN and not from using
more preprocessed data.

Table 2. Results on MNIST dataset.
Method Paper Error rate[%]

CNN [32] 0.40
CNN [26] 0.39
MLP [5] 0.35

CNN committee [6] 0.27
MCDNN this 0.23

How are the MCDNN errors affected by the number of
preprocessors? We train 5 DNNs on all 7 datasets. A
MCDNN ’y out-of-7’ (y from 1 to 7) averages 5y nets
trained on y datasets. Table 3 shows that more preprocess-
ing results in lower MCDNN error.

We also train 5 DNN for each odd normalization, i.e.
W11, W13, W15, W17 and W19. The 60-net MCDNN
performs (0.24%) similarly to the 35-net MCDNN, indicat-
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Figure 2. (a) Handwritten digits from the training set (top row)
and their distorted versions after each epoch (second to fifth row).
(b) DNN architecture for MNIST. Output layer not drawn to scale;
weights of fully connected layers not displayed. (c) The 23 errors
of the MCDNN, with correct label (up right) and first and second
best predictions (down left and right).

ing that additional preprocessing does not further improve
recognition.

Table 3. Average test error rate [%] of MCDNN trained on y pre-
processed datasets.

y # MCDNN Average Error[%]
1 7 0.33±0.07
2 21 0.27±0.02
3 35 0.27±0.02
4 35 0.26±0.02
5 21 0.25±0.01
6 7 0.24±0.01
7 1 0.23

We conclude that MCDNN outperform DNN trained on
the same data, and that different preprocessors further de-
crease the error rate.



Table 1. Test error rate [%] of the 35 NNs trained on MNIST. Wxx - width of the character is normalized to xx pixels
Trial W10 W12 W14 W16 W18 W20 ORIGINAL

1 0.49 0.39 0.40 0.40 0.39 0.36 0.52
2 0.48 0.45 0.45 0.39 0.50 0.41 0.44
3 0.59 0.51 0.41 0.41 0.38 0.43 0.40
4 0.55 0.44 0.42 0.43 0.39 0.50 0.53
5 0.51 0.39 0.48 0.40 0.36 0.29 0.46

avg. 0.52±0.05 0.44±0.05 0.43±0.03 0.40±0.02 0.40±0.06 0.39±0.08 0.47±0.05
35-net average error: 0.44±0.06

5 columns 0.37 0.26 0.32 0.33 0.31 0.26 0.46
MCDNN

35-net MCDNN: 0.23%

3.2. NIST SD 19

The 35-columns MCDNN architecture and preprocess-
ing used for MNIST are also applied to Latin characters
from NIST SD 19 [13]. For all tasks our MCDNN achieves
recognition rates 1.5-5 times better than any published re-
sult (Tab. 4). In total there are 82000 characters in the test
set, but there are many more easy to classify digits (58000)
than hard to classify letters (24000). This explains the lower
overall error rate of the 62-class problem compared to the
52-class letters problem. From all errors of the 62-class
problem 3% of the 58000 digits are misclassified and 33%
of the 24000 letters are misclassified. Letters are in general
more difficult to classify, but there is also a higher amount
of confusion between similar lower- and upper-case letters
such as i,I and o,O for example. Indeed, error rates for the
case insensitive task drop from 21% to 7.37%. If the con-
fused upper- and lower-case classes are merged, resulting
in 37 different classes, the error rate is only slightly bigger
(7.99%). Upper-case letters are far easier to classify (1.83%
error rate) than lowercase letters (7.47%) due to the smaller
writer dependent in-class variability. For a detailed analysis
of all the errors and confusions between different classes,
the confusion matrix is most informative (Supplementary
material Fig. S1).

Table 4. Average error rates of MCDNN for all experiments, plus
results from the literature. * case insensitive

Data MCDNN Published results
(task) error [%] Error[%] and paper
all (62) 11.63
digits (10) 0.77 3.71 [12] 1.88 [23]
letters (52) 21.01 30.91[16]
letters* (26) 7.37 13.00 [4] 13.66[16]
merged (37) 7.99
uppercase (26) 1.83 10.00 [4] 6.44 [9]
lowercase (26) 7.47 16.00 [4] 13.27 [16]

3.3. Chinese characters

Compared to Latin character recognition, isolated Chi-
nese character recognition is a much harder problem,
mainly because of the much larger category set, but also
because of wide variability of writing styles, and the confu-
sion between similar characters. We use a dataset from the
Institute of Automation of Chinese Academy of Sciences
(CASIA [22]), which contains 300 samples for each of 3755
characters (in GB1 set). This resulted in a data set with more
than 1 Million characters (3GB of data) which posed a ma-
jor computational challenge even to our system. Without
our fast GPU implementation the nets on this task would
train for more than one year. Only the forward propagation
of the training set takes 27h on a normal CPU, and train-
ing a single epoch would consequently have lasted several
days. On our fast GPU implementation on the other hand,
training a single epoch takes 3.4h, which makes it feasible
to train a net within a few days instead of many months.

We train following DNN, 1x48x48-100C3-MP2-200C2-
MP2-300C2-MP2-400C2-MP2-500N-3755N, on offline as
well as on online characters. For the offline character recog-
nition task, we resize all characters to 40x40 pixels and
place them in the center of a 48x48 image. The contrast
of each image is normalized independently.

As suggested by the organizers, the first 240 writers from
the database CASIA-HWDB1.1 are used for training and
the remaining 60 writers are used for testing. The total num-
bers of training and test characters are 938679 and 234228,
respectively.

For the online dataset, we draw each character from its
list of coordinates, resize the resulting images to 40x40 pix-
els and place them in the center of a 48x48 image. Addi-
tionally, we smooth-out the resulting images with a Gaus-
sian blur filter over a 3x3 pixel neighborhood and uniform
standard deviation of 0.75. As suggested by the organiz-
ers, the characters of 240 writers from database CASIA-



OLHWDB1.1 are used for training the classifier and the
characters of the remaining 60 writers are used for testing.
The resulting numbers of training and test characters are
939564 and 234800, respectively.

All methods previously applied to this dataset perform
some feature extraction followed by a dimensionality re-
duction, whereas our method directly works on raw pixel
intensities and learns the feature extraction and dimension-
ality reduction in a supervised way. On the offline task we
obtain an error rate of 6.5% compared to 10.01% of the best
method [22]. Even though much information is lost when
drawing a character from it’s coordinate sequence, we ob-
tain a recognition rate of 5.61% on the online task com-
pared to 7.61% of the best method [22].

We conclude that on this very hard classification prob-
lem, with many classes (3755) and relatively few samples
per class (240), our fully supervised DNN beats the current
state-of-the-art methods by a large margin.

3.4. NORB

We test a MCDNN with four columns on NORB
(jittered-cluttered) [20], a collection of stereo images of
3D models (Figure 3). The objects are centrally placed on
randomly chosen backgrounds, and there is also cluttering
from a peripherally placed second object. This database
is designed for experimenting with 3D object recognition
from shape. It contains images of 50 toys belonging to 5
generic categories: four-legged animals, human figures, air-
planes, trucks, and cars. The objects were imaged by two
cameras under 6 lighting conditions, 9 elevations (30 to 70
degrees every 5 degrees), and 18 azimuths (0 to 340 every
20 degrees). The training set has 10 folds of 29160 images
each for a total of 291600 images; the testing set consists of
two folds totalizing 58320 images.

Figure 3. Twenty NORB stereo images (left image - up, right im-
age - down).

No preprocessing is used for this dataset. We scale down
images from the original 108x108 to 48x48 pixels. This size
is big enough to preserve the details present in images and
small enough to allow fast training. We perform two rounds
of experiments, using only the first two folds (to compare
with previous results that do not use the entire training data)

Table 5. Error rates, averages and standard deviations over 4 runs
of a 9 layer DNN on the NORB test set.

training errors for 4 runs [%] mean[%]
set size

first 4.49 4.71 4.82 4.85 4.72± 0.16
2 folds 4-net MCDNN error: 3.57%

all 3.32 3.18 3.73 3.36 3.40± 0.23
10 folds 4-net MCDNN error: 2.70%
previous state of the art: 5.00% - [8]; 5.60% - [30]

and using all training data.
We tested several distortion parameters with small nets

and found that maximum rotation of 15◦, maximum transla-
tion of 15% and maximum scaling of 15% are good choices,
hence we use them for all NORB experiments.

To compare to previous results, we first train only on the
first 2-folds of the data. The net architecture is deep, but
has few maps per layer: 2x48x48-50C5-MP2-50C5-MP2-
50C4-MP2-300N-100N-6N. The learning rate setup is: eta
start 0.001; eta factor 0.95; eta stop 0.000003. Due to small
net size, training is fast at 156s/epoch for 114 epochs. Test-
ing one sample requires 0.5ms. Even when we use less data
to train, the MCDNN greatly improves the state of the art
from 5% to 3.57% (Table 5).

Our method is fast enough to process the entire train-
ing set though. We use the same architecture but
double the number of maps when training with all
10 folds: 2x48x48-100C5-MP2-100C5-MP2-100C4-MP2-
300N-100N-6N. The learning rate setup remains the same.
Training time increases to 34min/epoch because the net is
bigger, and we use five times more data. Testing one sam-
ple takes 1.3ms. All of this pays off, resulting in a very low
2.70% error rate, further improving the state of the art.

Although NORB has only six classes, training and test
instances sometimes differ greatly, making classification
hard. More than 50% of the errors are due to confusions
between cars and trucks. Considering second predictions,
too, the error rate drops from 2.70% to 0.42%, showing that
84% of the errors are associated with a correct second pre-
diction.

3.5. Traffic signs

Recognizing traffic signs is essential for the automotive
industry’s efforts in the field of driver’s assistance, and for
many other traffic-related applications. We use the GTSRB
traffic sign dataset [33].

The original color images contain one traffic sign each,
with a border of 10% around the sign. They vary in size
from 15 × 15 to 250 × 250 pixels and are not necessarily
square. The actual traffic sign is not always centered within
the image; its bounding box is part of the annotations. The
training set consists of 26640 images; the test set of 12569
images. We crop all images and process only within the



bounding box. Our DNN implementation requires all train-
ing images to be of equal size. After visual inspection of the
image size distribution we resize all images to 48× 48 pix-
els. As a consequence, scaling factors along both axes are
different for traffic signs with rectangular bounding boxes.
Resizing forces them to have square bounding boxes.

Our MCDNN is the only artificial method to out-
perform humans, who produced twice as many errors.
Since traffic signs greatly vary in illumination and con-
trast, standard image preprocessing methods are used to
enhance/normalize them (Fig. 4a and supplementary
material). For each dataset five DNN are trained (ar-
chitecture: 3x48x48-100C7-MP2-150C4-150MP2-250C4-
250MP2-300N-43N), resulting in a MCDNN with 25
columns, achieving an error rate of 0.54% on the test set.
Figure 4b depicts all errors, plus ground truth and first and
second predictions. Over 80% of the 68 errors are associ-
ated with correct second predictions. Erroneously predicted
class probabilities tend to be very low—here the MCDNN is
quite unsure about its classifications. In general, however,
it is very confident—most of its predicted class probabili-
ties are close to one or zero. Rejecting only 1% percent of
all images (confidence below 0.51) results in an even lower
error rate of 0.24%. To reach an error rate of 0.01% (a sin-
gle misclassification), only 6.67% of the images have to be
rejected (confidence below 0.94). Our method outperforms
the second best algorithm by a factor of 3. It takes 37 hours
to train the MCDNN with 25 columns on four GPUs. The
trained MCDNN can check 87 images per second on one
GPU (and 2175 images/s/DNN).

3.6. CIFAR 10

CIFAR10 is a set of natural color images of 32x32 pixels
[17]. It contains 10 classes, each with 5000 training sam-
ples and 1000 test samples. Images vary greatly within each
class. They are not necessarily centered, may contain only
parts of the object, and show different backgrounds. Sub-
jects may vary in size by an order of magnitude (i.e., some
images show only the head of a bird, others an entire bird
from a distance). Colors and textures of objects/animals
also vary greatly.

Our DNN input layers have three maps, one for each
color channel (RGB). We use a 10-layer architecture
with very small kernels: 3x32x32-300C3-MP2-300C2-
MP2-300C3-MP2-300C2-MP2-300N-100N-10N. Just like
for MNIST, the initial learning rate 0.001 decays by a fac-
tor of 0.993 after every epoch. Transforming CIFAR color
images to gray scale reduces input layer complexity but in-
creases error rates. Hence we stick to the original color im-
ages. As for MNIST, augmenting the training set with ran-
domly (by at most 5%) translated images greatly decreases
the error from 28% to 20% (the NN-inherent local trans-
lation invariance by itself is not sufficient). By additional

(a)

(b)

Figure 4. (a) Preprocessed images, from top to bottom: original,
Imadjust, Histeq, Adapthisteq, Conorm. (b) The 68 errors of the
MCDNN, with correct label (left) and first and second best predic-
tions (middle and right).

Table 6. Error rates, averages and standard deviations for 10 runs
of a 10 layer DNN on the CIFAR10 test set. The nets in the first
row are trained on preprocessed images (see traffic sign prepro-
cessing), whereas those in the second row are trained on original
images.

preprocessing errors for 8 runs [%] mean[%]
yes 16.47 19.20 19.72 20.31 18.93± 1.69
no 15.63 15.85 16.13 16.05 15.91± 0.22

8-net average error: 17.42±1.96%
8-net MCDNN error: 11.21%

previous state of the art: 18.50% - [8]; 19.51% - [7]

scaling (up to ±15%), rotation (up to ±5◦), and up to ±15%
translation, the individual net errors decrease by another 3%
(Tab. 6). The above small maximal bounds prevent loss of
too much information leaked beyond the 32×32 pixels rect-
angle.



Figure 5. Confusion matrix for the CIFAR10 MCDNN: correct
labels on vertical axis; detected labels on horizontal axis. Square
areas are proportional to error numbers, shown both as relative
percentages of the total error number, and in absolute value. Left -
images of all birds classified as planes. Right - images of all planes
classified as birds. Confusion sub-matrix for animal classes has a
gray background.

We repeat the experiment with different random initial-
izations and compute mean and standard deviation of the er-
ror, which is rather small for original images, showing that
our DNN are robust. Our MCDNN obtains a very low error
rate of 11.21%, greatly rising the bar for this benchmark.

The confusion matrix (Figure 5) shows that the MCDNN
almost perfectly separates animals from artifacts, except for
planes and birds, which seems natural, although humans
easily distinguish almost all the incorrectly classified im-
ages, even if many are cluttered or contain only parts of the
objects/animals (see false positive and false negative images
in Figure 5). There are many confusions between different
animals; the frog class collects most false positives from
other animal classes, with very few false negatives. As ex-
pected, cats are hard to tell from dogs, collectively causing
15.25% of the errors. The MCDNN with 8 columns (four
trained on original data and one trained for each preprocess-
ing used also for traffic signs) reaches a low 11.21% error
rate, far better than any other algorithm.

4. Conclusion
This is the first time human-competitive results are re-

ported on widely used computer vision benchmarks. On
many other image classification datasets our MCDNN im-
proves the state-of-the-art by 30-80% (Tab. 7). We drasti-
cally improve recognition rates on MNIST, NIST SD 19,
Chinese characters, traffic signs, CIFAR10 and NORB. Our
method is fully supervised and does not use any additional

unlabeled data source. Single DNN already are sufficient
to obtain new state-of-the-art results; combining them into
MCDNNs yields further dramatic performance boosts.

Table 7. Results and relative improvements on different datasets.

Dataset Best result MCDNN Relative
of others [%] [%] improv. [%]

MNIST 0.39 0.23 41
NIST SD 19 see Table 4 see Table 4 30-80

HWDB1.0 on. 7.61 5.61 26
HWDB1.0 off. 10.01 6.5 35

CIFAR10 18.50 11.21 39
traffic signs 1.69 0.54 72

NORB 5.00 2.70 46
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