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Abstract. We report a computer simulation of the visuospatial delayed-response experiments of Funahashi et al.
(1989), using a firing-rate model that combines intrinsic cellular bistability with the recurrent local network ar-
chitecture of the neocortex. In our model, the visuospatial working memory is stored in the form of a continuum
of network activity profiles that coexist with a spontaneous activity state. These neuronal firing patterns provide
a population code for the cue position in a graded manner. We show that neuronal persistent activity and tuning
curves of delay-period activity (memory fields) can be generated by an excitatory feedback circuit and recurrent
synaptic inhibition. However, if the memory fields are constructed solely by network mechanisms, noise may in-
duce a random drift over time in the encoded cue position, so that the working memory storage becomes unreliable.
Furthermore, a “distraction” stimulus presented during the delay period produces a systematic shift in the encoded
cue position. We found that the working memory performance can be rendered robust against noise and distraction
stimuli if single neurons are endowed with cellular bistability (presumably due to intrinsic ion channel mechanisms)
that is conditional and realized only with sustained synaptic inputs from the recurrent network. We discuss how
cellular bistability at the single cell level may be detected by analysis of spike trains recorded during delay-period
activity and how local modulation of intrinsic cell properties and/or synaptic transmission can alter the memory
fields of individual neurons in the prefrontal cortex.
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Introduction

Working memory is the distinct memory ability of hu-
mans and animals to retain information in temporal
storage and manipulate it “online,” usually for a short
time span of seconds. It subserves to “mediation of
cross-temporal contingencies” (Fuster, 1988), which
is indispensable for such cognitive tasks as performing

a sequence of motor movements, planning, or compre-
hending a written sentence.

The prefrontal cortex (PFC) plays a preeminent role
in the working memory processes of all sensory modal-
ities. This has been demonstrated by converging evi-
dence from lesion and brain cooling studies (Fuster,
1988; Goldman-Rakic, 1987), as well as PET scans
(Petrides et al., 1993; Haxby et al., 1995) and fMRI
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imaging (McCarthy et al., 1994; Cohen et al., 1997;
Courtney et al., 1997). Neuronal correlates of work-
ing memory have been documented by electrophysi-
ological studies, using single-unit recordings from an
awake monkey’s PFC during delayed-response tasks.
In these experiments, between a sensory cue and the
behavioral response, some PFC neurons were found
to exhibit enhanced firing activity that persisted across
the entire delay period after the removal of the sensory
input (Fuster and Alexander, 1971; Kubota and Niki,
1971; Funahashi et al., 1989; Goldman-Rakic, 1995).
Presumably, during the delay period (typically of a few
seconds), information specific to the sensory stimulus
is being encoded and actively held online in the form
of PFC neural network firing patterns. This informa-
tion is then read out by downstream neural systems at
the “go” signal and used by the animal to carry out the
required behavioral response.

In a particularly well-controlled oculomotor dela-
yed-response experiment (Funahashi et al., 1989), a
monkey is trained to keep its gaze on a light spot at the
center of a monitor. A cue light spot is shown to the
monkey transiently for 0.5 s, at one of eight equidis-
tant positions (in a random sequence) on a circle cen-
tered at the fixation spot. This fixation signal is present
during the whole delay period (3 to 5 s) that follows
the suppression of the cue input. After this delay, the
fixation spot is turned off. This constitutes the go sig-
nal for the monkey, who has then to saccade toward
the original position of the cue. Since anticipatory
responses and other possible causes of the sustained
activity (such as motor-related activity) are discarded,
correct performance is possible only based on an actual
recall of the cue position (Funahashi et al., 1989). In
this study, neurons in the principal sulcal region (PS)
were found to exhibit persistent delay-period activity.
This activity was interpreted as a mnemonic coding
for the position of the original stimulus (the cue) in
the monkey’s visual field. Moreover, it was shown in
Funahashi et al. (1989) that some PFC neurons have
memory fields—namely, a neuron shows strong per-
sistent activity during the delay period only when the
cue is close to a particular location in the visual field
(sayθ , corresponding to a preferred position on the cue
circle). A tuning curveof a PFC cell is then defined as
the mean firing rate during the delay period as function
of the cue position. Such a curve shows a maximum at
the preferred positionθ and a minimum (which is nor-
mally lower than the spontaneous firing rate of the cell)
at the cue position 180 degrees away fromθ (Funahashi
et al., 1989; Goldman-Rakic, 1995).

The PFC local circuitry underlying persistent firing
patterns remains not well understood. Goldman-Rakic
(1995) has proposed a network wiring scheme with re-
current excitation and lateral inhibition, which would
underlie the formation of the memory fields of the dor-
solateral PFC neurons. Horizontal connections are a
salient feature of cortical circuits (Douglas et al., 1991;
Gilbert 1993), and recurrent network models have been
proposed to underlie various kinds of cortical tuning
computation (Somers et al., 1995; Ben-Yishai et al.,
1995; Stemmler et al., 1995; Salinas and Abbott, 1996;
Lukashin et al., 1996; Zhang, 1996; Ben-Yishai et al.,
1997). In contrast to these examples, in order to per-
form a working memory rather than a purely sensory or
motor function the PFC network should be able to be
“switched on” into a persistent firing pattern bytran-
sientcue stimuli and be “turned off” back to its resting
state of spontaneous activity by a suitable “go” signal.
Early theoretical modeling works have shown that a
recurrent neural network may be capable of display-
ing under equal conditions either a uniform rest state
or an excited state with a nonuniform spatial profile
of neuronal activity (Wilson and Cowan, 1973; Amari,
1977). Thisbistability phenomenon, solely originated
in the network circuit, provides a candidate mechanism
for sustained neuronal representation of sensory stimuli
that can be turned on by transient inputs.

Other modeling works have hypothesized thatsingle
PFC neurons could be bistable and could be switched
on and off by synaptic inputs (Guigon et al., 1995).
By cellular bistability we mean the ability of a single
neuron to possess two stable membrane states corre-
sponding to different activation conditions of various
voltage-dependent ionic currents. For instance, a neu-
ron can be either in a spontaneous low-rate firing state
or in an excited state if a certain plateau potential is
switched on by transient input perturbations. (For an
explanation and examples from vertebrate and inverte-
brate motoneurons, see Kiehn, 1991, and Marder et al.,
1996, respectively). Typically, neuromodulatory inhi-
bition of certain output potassium currents is required
to unmask the plateau potential and enable the bistabil-
ity behavior. Recent in vitro rat PFC slice experiments
revealed that PFC neurons are endowed with a multi-
tude of voltage-gated ion channels, including persis-
tent Na+ channel (Geijo-Barriento and Pastore, 1995),
slowly inactivating K+ channel (Hammond and Cr´epel,
1992), high-threshold Ca2+ channels located at the den-
dritic sites (Yang et al., 1996), and Ca2+-activated non-
selective cation channels (Haj-Dahmane and Andreda,
1996). Computer simulations have shown that both
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persistent Na+ current (Steinberg, 1988) and dendritic
high-threshold Ca2+ currents (Booth and Rinzel, 1995;
Booth et al., 1997) are capable of producing a plateau
potential giving rise to neuronal bistability. Therefore,
although there is yet no evidence that mammalian (pri-
mate in particular) PFC neurons may become bistable
(for example, under specific neuromodulatory influ-
ences), it is of interest to consider how cellular bista-
bility may contribute to the formation of memory fields
of PFC neurons.

In this work, we present a neural network com-
puter simulation of the oculomotor delayed-response
experiment of Funahashi et al. (1989). We assume that
the visuospatial persistent activity is generated locally
in a module of the dorsolateral PFC near the principal
sulcus, and our model combines recurrent network
synaptic mechanisms (Goldman-Rakic, 1995) with
intrinsic cellular bistability. Our main objective is to
assess how the interplay between single neuron prop-
erties (bistability) and network circuits can reproduce
the main experimental observations, especially the tun-
ing curves of delay-period activity (neuronal memory
fields). In our model, the working memory of the cue
stimulus position is assumed to be coded by a persistent
activity profile distributed across the neural population.
In fact, there should be a continuum of stable, non-
uniform activity profiles, which can be used to encode
any cue position in a graded manner. These nonuniform
activity profiles are steady states of the model. In ad-
dition, there is also another steady state—a uniform,
stable rest state, where the whole neuronal population
is characterized by a spontaneous firing at low rates.
In the absence of any external input, the network will
choose the rest state. The transient cue and the sub-
sequent go signal act as the switches between the rest
state and one of the active states. We also show that
memory fields may be formed solely by recurrent net-
work circuits, without cellular bistability. In that case,
however, the working memory storage is not robust
against noise or distraction inputs.

A brief report of the present work has appeared in
Camperi and Wang (1997).

Methods

Single-Neuron Bistability

The activity of a single neuron is modeled by its
firing rate r , which obeys the following dynamical

equation:

τ0
dr

dt
= − f (r )+ g(I ), (1)

whereτ0 is a characteristic time of the cell andI is
the total input. The functionf (r ) and the gaing(I )
represent the intrinsic properties of the neuron. In order
to guarantee that the firing rate is always positive,g(I )
(Fig. 1B) is taken to beg(I ) = I if I is larger than a
threshold and zero otherwise (actually, the threshold is
normally set to be zero).

For convenience, we considerr and f (r ) asdimen-
sionlessby assumingr = r̂ /r̂0, wherer̂ is the actual
firing rate of the neuron (in Hz) and̂r0 is a reference
firing rate. We used̂r0 = 7 Hz, so that in thenet-
workmodel (see below), the neuronal spontaneous fir-
ing rate is about 3 to 5 Hz, comparable to the mea-
surements from dorsolateral PFC neurons (Funahashi
et al., 1989). In addition, we usedτ0 = 25 ms. Bothτ0

andr̂0 are fixed throughout the article. The particularly
chosen values do not affect the qualitative behavior of
the model.

The steady state of this system is obtained by setting
dr/dt = 0 in Eq. (1)—namely, by solving the equation
f (r ) = g(I ) = I (assumingI is above the threshold).
Thus,r = f −1(I ) (where f −1 is the inverse function
of f ) constitutes the neuronal input-output relation.
The neuron is bistable if this relation displays an S-
shape curve, as shown in Fig. 1A. In this case, there is
a range of input amplitudes,I1 < I < I2, for which
the cell can be in either one of two possible steady
states, corresponding to a low (spontaneous) and high
(activated) firing rate, respectively. The bistability can
be realized iff (r ) is not linear but cubic inr , like

f [r ] = c+ r − ar2+ br3, (2)

where the parametersa= 0.36, b= 0.038, andc=
−0.2 were used for Fig. 1A. The input range of the
bistable regime (I2 − I1) and the gap between the
spontaneous and excited activity levels (r+ − r−) are
controlled by the parametersa andb. In the Results
section, we discuss how the network behavior depends
on the values chosen for these parameters. Moreover,
as illustrated in Fig. 1C, switching between the two
states can be induced by transient inputs. Note that in
this model, the bistable behavior is not possible with-
out a baseline input driveI betweenI1 and I2. In
the network model, such a tonic drive originates from
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Figure 1. A: Input-output relation for a bistable neuron (solid lines: stable states, dashed line: unstable states), obtained usingf (r ) as a cubic
function ofr (Eq. (2)). For the parameters used in this work,r+ andr− correspond to firing rates of 29.75 and 14.42 Hz, respectively. Note
that the model neuron’s bistability isconditionaland requires a sustained input of an appropriate amplitude betweenI1 = 0.46 andI2 = 0.66.
B: The gain functiong(I ). C: Simulation (with white noise added) of the neuron in A. Plotted are (bottom to top panels) transient input pulses,
firing rater (t), and sample spike train (generated by a Poisson process with rater (t)). The baseline input (I = 0.5) corresponds to a value
in betweenI1 and I2, with transient pulses of amplitude±0.5. The average firing rates in the lower and upper states are approximately 7.5
and 42.5 Hz, respectively. Note that these firing rates are not the actual rest and excited firing rates of neurons in a network, which depend on
recurrent excitatory and inhibitory synaptic interactions.

reverberating synaptic inputs through recurrent exci-
tatory connections, which are activated only by some
stimulus. In this sense, a single neuron is assumed to
be only aconditionalbistable device.

Network Model

We use a simple model that captures the relevant ar-
chitectural organization of local cortical circuits. It is
adapted from a model of orientation selectivity in a
hypercolumn of primary visual cortex (Ben-Yishai
et al., 1995). The network consists ofN neurons (typi-
cally N = 50− 200), each labeled by its preferred

cue location or memory fieldθ . This parameter ranges
from−π to π , along a circle.

In the large network limit, we can assume that the
neurons cover uniformly all the angles. In this limit,
the firing rater (θ, t) of the cell with memory field in
the neighborhood ofθ and at timet obeys the following
mean-field equation:

τ0
d

dt
r (θ, t)=− f [r (θ, t)]+ g[ I (θ, t)]+ ση(t),

(3)

where we have assumed that all neurons are identi-
cal and exhibit conditional bistability inf (r ) given by
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Eq. (2). The second term,g[ I (θ, t)], is the synaptic
drive. The third term,ση(t), is a white-noise input,
which is uncorrelated between cells. The total input
current to each neuronI is the sum of an external input
I ext for the transient cue and the go signal, and a recur-
rent synaptic input that is the product of the coupling
strengthW and the presynaptic firing rate (summed
over all presynaptic cells). Thus, the inputI to the
neuron with memory fieldθ is represented by the fol-
lowing equation:

I (θ, t)= I ext(θ, t)+
∫ π

−π

dθ ′

2π
W(θ − θ ′) r (θ ′, t),

(4)

where W(θ − θ ′)r (θ ′, t) is the input from the pre-
synaptic cell atθ ′ to the postsynaptic cell atθ and the
integral represents the summation over all presynaptic
cells. The interactionW between two neurons includes
a global inhibition and a structured excitation that de-
pends on the difference of their respective memory
fields,θ − θ ′. It is given by (cf. Fig. 2)

W(θ) = −WI +WE

(
1+ cosθ

2

)q

. (5)

Figure 2. Synaptic connectivity of the network model, given by Eq. (5). The curvesE and I represent, respectively, the excitatory and
inhibitory coupling strengths from the presynaptic neuron atθ = 0 to postsynaptic neurons located at anyθ . The net synaptic effect(I + E) is
excitatory to nearby neurons and inhibitory to distal neurons.

Here, the constantsWI andWE represent the stre-
ngths of the inhibitory and excitatory interactions, re-
spectively. Notice that the modulation function,(1+
cosθ)/2 (with q controlling its width), was chosen
for its simplicity. Other reasonable periodic functions
would work as well. Furthermore, the external input
I ext(θ, t) contains a constant bias inputI0 and a cue
stimulus. It is given by

I ext(θ, t) = I0+ Icue

(
1+ cos(θ − θ0)

2

)p

, (6)

where the constantIcue is nonzero only during the tran-
sient cue stimulus—say, starting att0 and lasting for a
time1t = 500 ms. The modulation function, similar
to that used in Eq. (5), peaks atθ0, and thus represents
a cue centered atθ = θ0 (again, the actual form is
irrelevant, as long as it is strong enough and modu-
lated with a peak at the cue location). Since it is not
known how the persistent activity in PFC neurons is
turned off at the end of the delay period, we did not
model it explicitly. The go signal was then simulated
with a uniform inhibitory input to all the neurons. Un-
less specified otherwise, the parameter values used are
WE = 2.6, WI = 2.0, I0 = 0.45, p = q = 1, and
Icue= 1.
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Population Vector

In our model, the memory of the cue is coded by the
peak of the network activity profile. However, in
the presence of noise, the neuronal firing pattern
in the network fluctuates over time, and it is no longer
clear where the peak is located. To read out the memo-
rized cue position for delay-period activity, we used a
population vector(Georgopoulos et al., 1986), which
involves a vectorial average across neurons in the net-
work with weights given by their instantaneous firing
ratesr (θ). Specifically, each angular valueθ corre-
sponds to a unit vector(cosθ, sinθ) on the circle.
Given a discrete profile of neural activitiesr (θi , t) in
the network, the population vector(vx, vy) is given by
the weighted sum of individual unit vectors:

(vx, vy) =
(∑

i

r (θi , t) cosθi ,
∑

i

r (θi , t) sinθi

)
.

(7)

Let us write

(vx, vy) = v (cosθpeak, sinθpeak), (8)

wherev=
√
v2

x + v2
y is the length of the vector(vx, vy).

Then, the orientation of the population vector, given by

θpeak= tan−1

(
vy

vx

)
, (9)

is the cue location encoded by the distributed neuronal
activity pattern in the network.

Results

An example of the model simulation is shown in Fig. 3.
After the network settles into a uniform rest state with
spontaneous firing rate of about 5 Hz, a cue input
(Eq. (6)) is presented transiently. A network activity
profile is thus generated that outlasts the cue stimulus.
The persistent activity profile is unique and largely de-
termined by recurrent excitatory and inhibitory con-
nections. Hence, it does not depend on the details of
the input; in particular, it is considerably narrower than
the chosen input cue profile (Fig. 3). The persistent
activity can be turned off by an inhibitory go signal.
Note that for any amplitude of this negative input, the

actual drive to neurons cannot be smaller than zero, due
to the gain functiong(I ).

The working memory of the cue stimulus is thus en-
coded in the form of this network activity profile, which
peaks at the location of the original cue (Fig. 4A). This
behavior is partly due to the cellular bistability of single
neurons in the network: those neurons that receive suf-
ficiently large inputs during the cue stimulus are driven
to jump to the upper activity level on their input-output
relation curve (Fig. 1A). However, they are sustained
in the excited state only by the recurrent excitation in
the network, without which the total inputs to those
cells would have been belowI1 (cf. Fig. 1A), and
thus neurons would not be able to stay active after the
cue is turned off. The network model presents a con-
tinuum of possible steady-state activity profiles such
as that in Fig. 4A, each centered at a differentθ loca-
tion. Such states are calledmarginal states(Ben-Yishai
et al., 1995; Zhang, 1996). A particular profile is se-
lected by the cue input location. The shape of all the
nonuniform activity profiles is unique; its width being
delimited by the number of cells whose synaptic inputs
exceedI1 (Fig. 4B). The remaining cells with synaptic
input belowI1 stay inactive during delay period; in fact,
their firing rates aredecreasedcompared to the sponta-
neous rate because they receive lateral inhibitory inputs
from the activated cells. This effect has been seen ex-
perimentally (Funahashi et al., 1989). The feedback
inhibition is crucial in generating a nonuniform activ-
ity profile (hence, a tuning curve for individual cells,
as we shall see below).

Experimentally recorded spike trains of persistent
delay-period activity appear to be quite noisy (Fuster
and Alexander, 1971; Funahashi et al., 1989; Goldman-
Rakic, 1995), and we included this effect in the simula-
tions by the addition of white noise in Eq. (3). A spatial
activity profile can be obtained by averaging over a long
period of time, which is equivalent to an average over
different trials. In Fig. 4A, we compare the steady-
state network profile during the delay period following
a cue centered atθ = 0◦, without and with white noise.
Without noise, there are two gaps in the activity pro-
file. The gaps are caused by a finite jump in the firing
rate between the lower and upper branches of the input-
output relation (Fig. 1A) and are not related to the num-
ber of neurons used in the simulation (they still exist
when N goes to infinity). These gaps appear to have
been rounded off when noise is present because neu-
rons that are within the bistable regime—namely, with
inputs betweenI1 andI2 (cf. Fig. 1A)—are induced to
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Figure 3. Space-time plots of the network activity (upper panel) and external input (lower panel) for a delayed-response simulation. The
persistent network activity profile is triggered by a transient cue stimulus and is switched off by an inhibitory go signal, both lasting for 500 ms.
The steady-state activity profile during the delay period is not sensitive to the form of the anisotropic input and is narrower than the input spatial
distribution. In addition, note that the firing rate of neurons far away from the peak activity isdecreasedwith respect to the spontaneous firing
rate. The model parameters are given in the Methods section.

switch between the upper and lower states by virtue of
the noise. This is obviously more likely to happen for
cells closer to the gaps of the activity profile (whose
inputs are closer toI1). That is, a given cell is expected
to display random switching when the cue location is
intermediate between its “best” and “worst” stimuli.

Tuning Curve

For a very large number of cue positions, the shape of
the spatial activity profile (Fig. 4A) must be the same
as that of the tuning curve for an individual neuron, de-
fined as the mean firing rate during the delay period as
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Figure 4. A: Steady-state profile of the persistent network activity during delay period, with and without noise (solid and dashed curves,
respectively). Discrete data points were obtained by simulations using a finite number of cells (50 in this case). In the absence of noise, the
activity profile displays two (symmetrical) discontinuities, due to a finite gap between bistable levels in the single cell input-output relation (cf.
Fig. 1A). With added noise, cells near the discontinuities can switch randomly between the two states, so that the activity profile averaged over
long time appears to be smooth. B: Total input profile (constant bias+ synaptic) during the delay period. Note that the cells in the up state are
those whose total inputs exceedI1 (cf. Fig. 1A).

function of the input cue location. However, if a small
number of cue positions are used, the tuning curve of
a given cell will appear to be different. This will also
depend on whether any of the presented cue positions
coincides with the neuron’s memory field or not. We
computed tuning curves of single neurons, using eight
different input cues located at intervals of 45 degrees,
a setup similar to the experiment of Funahashi et al.
(1989). Results from such simulation are shown in

Fig. 5, which bears a close similarity with analogous
plots in Funahashi et al. (1989).

The tuning curves of two neurons, one with memory
field at a cue location and another with memory field in
between cues, were calculated in this way (Figs. 6A and
6B, respectively). The data obtained was fitted well by a
Gaussian function, using the conventional Marquardt-
Levenberg algorithm. The width of the tuning curve
calculated this way is 30.89 degrees in Fig. 6A and
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Figure 5. Firing activity of a neuron with memory field centered atθ = 0 degree, when eight cue stimuli are presented at every 45 degrees
(indicated at the upper-left corner of each panel). Solid lines: firing rater (θ = 0 degree,t) averaged over trials (in the presence of noise).
Rastergrams for four different trials were produced by a Poisson model of spike generation with rater (t). The cue stimulus presentation, delay
period, and post-go-signal (or response) periods are indicated by C, D and R, respectively.

25 degrees in Fig. 6B. These are comparable with ex-
perimentally measured tuning curves of delay period
activity of PFC cells (20 to 50 degrees by Gaussian
fit, see Funahashi et al., 1989). Indeed, results from
these simulations could always be fitted to Gaussian
functions with similar widths. The width of the tuning
curve depends on the model parameters (see below).
In particular, the exponentq in Eq. (5) controls the
extent of recurrent excitatory connection, which is a
major factor in shaping the activity profile and the tun-
ing curves of single cells.

Note that fitting to a Gaussian function was done only
for the practical purpose of direct comparison with the
results of Funahashi et al. (1989). In the model, it is not

rigorously correct since we know that if a sufficiently
large number of cues is used, the tuning curve of a single
cell should look the same as the network activity profile
(cf. Fig. 4A), which cannot be fitted by a Gaussian
function. Therefore, it would be interesting to compare
our model with experimentally measured tuning curves
using more than eight cue positions. Furthermore, in
principle, a tuning curve should be a periodic function
of the cue positionθ , while a Gaussian is not.

State Diagrams

Our model exhibits three qualitatively different steady-
state behaviors—a uniform Down state, representing
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Figure 6. Tuning curves of delay period activity for two neurons (averaged over noise). A: Neuron atθ = 0 degree (which coincides with one of
the eight cues). B: Neuron atθ ' 28 degrees (which is in between presented cues). The solid lines are nonlinear regression fits of the tuning curve
data (using the Marquardt-Levenberg algorithm). In both panels, the data fit well to a Gaussian functionG(θ) = γ + α exp[−(θ − δ)2/2σ 2],
with α = 36.84, γ = 1.67, δ = 0 degree, andσ = 30.89 degrees for panel A, andα = 43.25, γ = 1.82, δ = 28.9 degrees, andσ = 25 degrees
for panel B. Again, note that the activity level isdecreasedwith respect to the spontaneous activity (indicated by the dashed line), when the cues
are far away from the memory field of the given neuron.

the rest state with a low spontaneous firing rater̃ <
r− ' 14 Hz for all θ ; a nonuniform activity Profile
state (such as those shown in Figs. 3 and 4), which
in fact consists of a continuum of profiles which peak
at anyθ (“marginal states” due to the spatial transla-
tional symmetry of the network); and a uniform Up
state, where every neuron fires at a same and high rate

r̃ > r+ ' 30 Hz (r− andr+ as in Fig. 1A). The Up state
cannot be used to encode spatial information of a cue
position and is more akin to a pathological epileptic
behavior. For a given parameter set, some of the three
states may not exist or may be unstable. The working
memory mechanism of the model is based on a coex-
istence of a stable rest Down and active Profile states,
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where by coexistence we mean that both are possible
steady states under the same condition, and the net-
work can be in either of the two states. This requires
certain constraints to be satisfied by single neuronal
input-output properties as well as circuit connections.

Concerning the single-cell input-output relation
(Fig. 1A), there are two limiting cases. First, the single-
cell conditional bistability requires this curve to exhibit
a sharp S-shape, which, for the given value ofb, im-
poses thata be larger than a critical valuea1 ' 0.3376.
On the other hand, whena is larger thana2 ' 0.3819,
I1 becomes negative, which means that even in the
absence of any sustained excitation, all neurons can
be in either a low or a high firing states: they be-
come “unconditional” bistable devices. Thus, individ-
ual neurons would have two possible spontaneous firing
rates, which is not observed experimentally. Moreover,
if neurons are unconditionally bistable, they are more
likely to be switched on by noise, which would create
errors in the memory storage of the population-coded
cue position. Therefore, the value ofa should be limited
betweena1 anda2, so that single neurons are only con-
ditionally bistable—that is, can be brought into bistable
regime only by recurrent excitatory synaptic inputs.

The collective network dynamics depends ona
and other parameters such as the excitatory coupling
strengthWE. Such astate diagram(the network be-
havior as function ofa andWE) is shown in Fig. 7. In
order for the uniform rest state to exist and be stable,
WE should be below a critical line (solid curve). At
higherWE values, this Down state is destabilized by
strong recurrent excitations. IfWE is too large (above
the dashed line), the stable uniform Up state exists,
which cannot be used to encode the cue position. On
the other hand, ifWE is too small (below the dotted
curve), the excitatory reverberations are not powerful
enough to sustain a nonuniform activity profile. There-
fore, WE should be limited between the dotted curve
and the solid curve; too large or too smallWE would
disrupt the normal working memory function of the
network model.

To conclude, normal working memory function of
the network model is based on the coexistence between
a low spontaneous state and nonuniform profiles. This
depends on an interplay between intrinsic cell proper-
ties and synaptic connections and requires that botha
andWE be limited within certain ranges:a1 < a < a2,
andWE between the dotted and solid curves in Fig. 7.

When the (a,WE) values are close to one of these
four curves in Fig. 7, the quantitative properties of the

nonuniform activity profiles are changed as follows.
First, asa is decreased towarda1, the profiles become
narrower, and the maximal firing rate becomes unreal-
istically small (although the gap, given byr+ − r− (cf.
Fig. 1A), never becomes zero). As a consequence, the
memory storage of the cue position is not robust against
noise. Second, asa is increased abovea2, there is still
a coexistence of a stable Down state and a Profile state.
However, the network’s ability to hold the profile is
not due exclusively to the recurrent excitations, since
all the cells in the network are in the bistable regime (I1

is now below zero). Consequently, the widths of the
profiles become unrealistically large, and Gaussian fits
for tuning curves are no longer possible. Third, asWE

is increased across the dotted curve, there is a discon-
tinuous transition for the emergence of Profile states
with a finite width and gap. ForWE slightly above
the dotted line,a is the dominant factor in shaping
the form of the profile, while the synaptic parameters
control the ability for the network to sustain such a pro-
file. Finally, for WE above the solid curve, the Down
state is no longer stable, and the only stable behaviors
are nonuniform profile states. Note that, in fact, Profile
states can exist even in the absence of intrinsic condi-
tional bistability (a < a1 = 0.3376), in which case
the activity profiles are smooth without gaps. How-
ever, they do not coexist with a stable resting state and
hence cannot be used for working memory storage. We
show below that, in a different regime of model param-
eters, network bistability between a rest state and active
profile states is possible without intrinsic conditional
bistability of single neurons.

We also considered the state diagram on the (WE,
WI ) plane (Fig. 8). Again, the coexistence between
a resting state and active profile states requires that
WE be between the dotted and solid curves. The most
noticeable feature of this diagram is that the dotted
and solid curves run somewhat in parallel along the
diagonal line. That is, more powerful excitation needs
to be controlled by stronger inhibition, and vice versa;
a balance between synaptic excitation and inhibition is
required for working memory function of the network
model.

We can see from Fig. 8 that the stronger the in-
hibitory coupling strengthWI , the narrower the range
for WE between the dotted and solid curves. Synaptic
inhibition also modulates strongly the shape of tuning
curves and thus the neuronal memory fields: stronger
inhibition leads to narrower tuning and smaller maxi-
mum firing rate (Fig. 9). Note that as the profile width
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Figure 7. State diagram of the network model on the two-dimensional plane corresponding to the cellular parametera and the synaptic
parameterWE . There are three types of steady states: Down state (the resting state), Up state (a uniformly excited state), and Profile states (a
continuum of nonuniform activity patterns). The Down state is stable below the solid line and becomes unstable above it. The stable Up state
emerges above the dashed curve. The Profile states exist only above the dotted curve. Between the solid and dotted curves, nonuniform profiles
coexist with a stable resting state of spontaneous activity, which is required for the working memory storage by the network. The reference
parameter set (in the Methods section) is indicated by a filled circle. The limiting cases for the single-cell input-output relation are indicated by
the two vertical dot-dashed lines (see text for discussions).

increases (corresponding to smallerWI ), the tuning
curves are wider, and their fit to Gaussian curves be-
comes unsatisfactory. This is due to the fact that more
neurons are in the upper level of activity in the profile
state.

Local Change in Parameters

In a large neural population, the behavior of each in-
dividual neuron is determined by the convergent ac-
tion from all other cells in the network. Therefore,
local changes of either intrinsic properties or synap-
tic strengths in one or a few cells should modify only
the tuning curves of the affected cells but not those of
other neurons. This was shown in simulations, where

the synaptic parameterWE or intrinsic parametera was
decreased for a single cell (Figs. 10B and 10C, respec-
tively). The manipulations reduced the neuronal ex-
citability and the width of its memory field, compared
to control (Fig. 10A). However, other cells in the pop-
ulation are not affected. The network activity profile
remains the same except for the affected cell (data not
shown). Conversely, an increase in either of the two
parameters could selectively enhance the tuning curve
of the affected cell.

Memory Fields Without Cellular Bistability

Until now, we have assumed that PFC neurons ex-
hibit intrinsic conditional bistability. On the other hand,
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Figure 8. State diagram as function ofWI andWE . Coexistence of a stable rest state and nonuniform activity profiles requires a rough balance
between recurrent synaptic excitation and inhibition, as seen by the diagonal shapes of the curves. Same symbol and line conventions as in
Fig. 7.

activity patterns that coexist with the rest or Down state
can arise as a network dynamical property, even when
bistability is not present at the single-cell level (see,
for example, Amari, 1977; Wilson and Cowan, 1973).
Thus, it is important to investigate which of the results
reported above relies on intrinsic bistability. This can
be achieved by modifying our model in two possible
ways. On the one hand,a can be chosen to be smaller
thana1= 0.3376, in which case the input-output rela-
tion loses its S-shape and becomes monostable
(Fig. 11A). Alternatively, we can leta = 0, b = 0, and
c = 0 in f (r ) (cf. Eq. (2)), so that Eq. (1) is reduced to
τ0 dr/dt = −r + g(I ). In this case, the gain function
g(I ) (which is also the input-output relationr = g(I ))
is changed to acquire a nonlinear form (Fig. 11B).
Both modifications yield an input-output relation of the

sigmoid type. There is no intrinsic conditional bista-
bility, but the network working memory behavior de-
scribed below does depend crucially on properties of
this single cell input-output relation. In particular, the
slope of the curve (the gain) should be sufficiently large
within a certain input range.

In model simulations, we found that memory fields
could be realized using either of the two kinds of input-
output relations described above. In what follows, we
shall limit ourselves to the second case, witha = b =
c = 0 and g(I ) being a piece-wise linear function
(Fig. 11B). Note that the slope ofg(I ) betweenI1 and
I2 is twice as large as in Fig. 1B.

Figure 12 shows a network profile of persistent ac-
tivity and the tuning curve for a single neuron, obtained
using the same simulation protocols as in Figs. 3 to 5.
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Figure 9. The widths of activity profiles and tuning curves are modulated by the synaptic inhibition strength. A: Network activity profiles
obtained with three different values ofWI . Wider profiles correspond to smallerWI values. B: Tuning curves for the cell atθ = 0 degree with
the same threeWI values as in A. The Gaussian widths are 27.06, 42.55, and 45.59 degrees, respectively. C: The width of activity profile (right
panel) and the peak firing rate (left panel), as function ofWI . A network activity profile with gaps cannot be fitted by Gaussian curves, in which
case its width is defined as half the angular size of the upper plateau. No noise was present for simulations in panels A and C.

In contrast with the case where single cells are con-
ditionally bistable, here the activity profile is contin-
uous and smooth (Fig. 12A). In the absence of gaps,
tuning curves appear to be wider; a larger exponentq

(cf. Eq. (5)) was used so that the excitatory connections
were more localized, and the tuning curve (Fig. 12B)
remained comparable with the experimental data of
Funahashi et al. (1989).
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Figure 10. Effect of local modulation of synaptic excitation or intrinsic neuron properties. (A) Control: tuning curves for neurons with memory
field atθ = 0 degree (circles) and atθ = 45 degrees (triangles), respectively, together with their best Gaussian fits. The excitatory synaptic
parameterWE is decreased from 2.6 to 2.26 (B), or the intrinsic parametera is decreased from 0.36 to 0.335 (C), only for the cell atθ = 0
degree, in both cases, the reduction of persistent activity of the affected cell is selective. The turning curves of other cells, such as the one at
θ = 45 degrees, remain unaltered.

Can the two models with and without cellular bista-
bility be distinguished by existing data and future ex-
perimental tests? Tuning curves calculated with eight
cue locations do not allow us to distinguish between
a smooth profile and a discontinuous one with gaps.
Furthermore, gaps can be averaged out with noise

(see Fig. 4A). However, given a cue, the predicteddis-
tribution of firing rates of delay-period activity across
the neural population is significantly different for the
two models: it shows a much more conspicuous bi-
modality in the presence of cellular bistability, when
there are very few cells with firing rates intermediate
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Figure 11. A: Single-cell input-output relation for Eqs. (1) and (2) without cellular bistability (a = 0.33< a1, cf. Fig. 7). B: Modified gain
functiong(I ), used in the case witha = b = c = 0. The parameters areg1 = 0.5, g2 = 4.1, I1 = 1, andI2 = 2.8, so that the slope between
I1 and I2 is 2. The slope of the function is 0.2 belowI1, and 1.0 aboveI2. Notice the sigmoidal character of both curves, a necessary condition
for the emergence of network activity profiles that coexist with a stable rest state, in the absence of bistability at the single-cell level.

between the active and inactive neural groups (Fig. 13).
Note that the rate distribution can be bimodal even
without cellular bistability, if the input-output curve
r = g(I ) is sufficiently steep near the threshold (such
as a step function) so that there is an effective gap be-
tween the firing rates of the active and inactive states.
However, this situation occurs only if the middle branch
of g(I ) is almost vertical in Fig. 11B, and thus the neu-
ron is nearly bistable (it becomes truly bistable when
the middle slope is negative).

Furthermore, we found that thetemporal dynamics
of the network persistent activity is quite different

between the two models, especially in their respec-
tive ability to sustain the working memory of the cue
position against noise or a distraction.

Noise-Induced Drift

How well the model can retain an accurate memory
of cue information depends on its ability to keep its
peak activity localized near the neurons whose mem-
ory field represent the cue location, even in the presence
of noise. In other words, we should determine whether
the cue position, network-encoded by the population



P1: SAD/ASH P2: SAD/VSK P3: SAD/VSK QC:

Journal of Computational Neuroscience KL646-02-Camperi October 20, 1998 17:25

Cortical Model of Working Memory 399

Figure 12. A: Steady-state profile of the persistent network activity during delay period, for the model without intrinsic bistability (using
f (r ) = r and the modified gain function of Fig. 11B). In this case, a larger excitation/inhibition ratio (WE/WI ) is needed for the maintenance
of an active profile. In contrast to Fig. 4A, here the profile is smooth without gaps. B: The corresponding tuning curve (with best Gaussian fit)
for the neuron atθ = 0 degree. The Gaussian width of the tuning curve is 46 degrees. (Other parameters areWI = 1,WE = 5, p = 1,q = 6,
and I0 = 0.6.)

vector (θpeak, Eq. (9)), stays close to the actual cue
positionθcue over time, in spite of random noise per-
turbations. We performed simulations to address this
question for both models (Fig. 14). (Note that, since
a limited number of neurons were used in the simu-
lations, the noise should be viewed as being locally
coherent.) If q= 1 (cf. Eq. (5)) for both versions
of the model, the activity profile is wider without
cellular bistability, and the time courses ofθpeak are

dramatically different for the two models (Fig. 14, top
and middle panels). The network endowed with intrin-
sic conditional bistability is able to stabilizeθpeaknear
θcuefor a long time. By contrast, the network with only
sigmoid cellular input-output relation displays a signif-
icant random drift inθpeak, which increases in amplitude
with time and reaches up to±30 degrees away fromθcue

within 5 to 10 s (comparable to delay-period durations).
Clearly, the effect is partly caused by the difference in
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Figure 13. Distribution of firing rates during delay-period activity
across the neural population with cellular conditional bistability (A)
and without it (B). There is a much clearer bimodality in panel A
than in panel B. The simulation was done with a network of 100
neurons; parameters as in Figs. 3 and 12, respectively; noise present
in simulations.

the activity profile tuning. We also simulated the model
without intrinsic bistability usingq = 6. As expected,
the network with a narrower activity profile (q = 6
versusq = 1) shows less noise-induced drift (Fig. 14,
middle and lower panels). However, given that the two
model versions display comparable activity profiles,
we can see that with cellular bistability the network
is still much more robust against noise-induced drift
(Fig. 14, upper and lower panels).

The strikingly different behaviors of the two models
originate in the presence or absence of gaps in the net-
work activity profile. If single cells are conditionally
bistable, the gaps act to “protect” the memory of the
cue position against noise: to perturb this memory by
effectively moving the peak of the profile to another
position, perturbations must be locally coherent and
sufficiently large to overcome the barrier across a finite
gap, otherwise an inactive cell could not be brought up
to the excited state or an active cell be switched down
to the rest state. By contrast, in the model without in-
trinsic bistability there are no gaps in the activity pro-
file. Thus small (but locally coherent) perturbations
can move the profile slightly. This leads to random
diffusion of the encoded cue positionθpeak, as seen in
Fig. 14.

Distraction Simulation

Another manipulation to assess the robustness of the
model performance is to observe its response to a dis-
traction stimulus—that is, a second cue input presented
transiently during the delay period at a location differ-
ent from the first cue. Would the network preserve the
memory of the first cue, or would it be perturbed and
thereafter “remember” a wrong cue position?

Figure 15 shows the results of a distraction simu-
lation with both versions of the model. The first cue
position is located atθcue= 0◦. A second stimulus is
presented during the delay period, with a cue identi-
cal in size and duration to the first one but at different
positions (θdistraction = 45, 90, and 135 degrees, top
to bottom panels). Noise is present in these simula-
tions but with a smaller amplitude than in Fig. 14, so
that the noise-induced drift does not interfere with the
distraction effect (the effect is still present with a higher
level of noise, but its visualization is more difficult). We
observed that in the model with cellular conditional
bistability (Fig. 15, left panels), the population-vector
coded cue positionθpeak is somewhat perturbed by the
distraction but remains much closer to the original cue
positionθcue than toθdistraction. Again, the robustness
against distraction is related to the presence of gaps in
the activity profile, as with the noise-induced drift ef-
fect. Moreover, the shiftθpeak− θcue is not significant
whenθdistractoris far away fromθcue(left bottom panel).
This is because cells at large distances away fromθcue

are strongly inhibited by active cells. Therefore, these
cells are less likely to be excited and switched on by
the distraction stimulus, even if the latter is of the same
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Figure 14. Noise-induced drift in the cue position encoded by the population vector (θpeak, cf. Eq. (9)), during delay period. The cue position
was atθ = 0 degree, and data were recorded starting right after the transient cue. Left panels show activity profiles, while right panels show the
corresponding noisy time evolutions ofθpeak. The top panels correspond to the model endowed with intrinsic bistability, usingq = 1 (WI = 2,
WE = 2.6). The middle and bottom panels correspond to the model without intrinsic bistability, withq = 1 andq = 6, respectively. We note
that the drift is always significant without cellular bistability, although the effect is somewhat diminished ifq is larger (and hence the profile
more sharply tuned). The top and bottom panels compare the two models with similar activity profiles, the noise-induced drift is still much
smaller in the model with intrinsic bistability, due to the presence of gaps in its activity profile (WI = 1; WE = 2.9 for q = 1 and 5 forq = 6).
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Figure 15. Simulated distraction experiment for a network model with or without cellular bistability (panels A and B, respectively), in the
same setup as that for Fig. 14. Att ' 4.5 s into the delay period, a distraction stimulus, equal in strength and duration to the original cue, was
presented at 45, 90, or 135 degrees. The time evolution of the population-vector encoded cue position,θpeak, is plotted in each case (top to
bottom panels, respectively). In the presence of cellular bistability (A), the working memory storage is reliable against distractions. This is in
striking contrast to the situation in (B), where systematic shifts inθpeakare produced by the distraction stimuli. (q = 1 for both models.)

amplitude and time duration as the first cue stimulus.
By contrast, in the model without cellular bistabil-
ity, distraction is very effective, and the farther away
θdistractor is from θcue, the larger is the shift (Fig. 15,
right panels). After the distraction, the population-
vector coded cue positionθpeak becomes very close to
θdistractor in all three cases; thus, the memory about the
original cue position is completely lost.

Discussion

The present computational work is based on the
premise that the persistent activity observed dur-

ing oculomotor delayed-response experiments of
Funahashi et al. is generated locally within the the dor-
solateral PFC. The PFC carries out working memory
tasks in interplay with multiple cortical regions. Indeed,
delay-period persistent activity has also been observed
in other cortical areas that are involved in the partic-
ular tasks, such as neurons in the posterior parietal
cortex during visuospatial experiments (Gnadt and
Andersen, 1988; Chafee and Goldman-Rakic, 1998) or
in the inferior-temporal cortex during object delayed-
response experiments (Miyashita and Chang, 1988;
Miller et al., 1993). An important question is whether
such mnemonic neuronal activity is generated locally
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within each cortical area. Recent experiments, using a
protocol similar to our distraction simulation, indicate
that the PFC may be at the origin of the persistent
activity observed in the parietal and inferior-temporal
cortices. In a delayed match-to-sample experiment,
nonmatch (distraction) stimuli were presented between
the sample and match stimuli. Persistent activity
recorded from inferior temporal cortex (Miller et al.,
1993) or from posterior parietal cortex (Constantinidis
and Steinmetz, 1996) was found to be abolished imme-
diately after the first nonmatch stimulus; whereas the
monkey’s behavioral performance was not affected. By
contrast, sustained activity of the PFC cells was found
to persist in the presence of the intervening stimuli
(Miller et al., 1996). These data suggest that the PFC
network alone should be capable of forming the mem-
ory fields of its constituent neurons, which subserve
the neuronal basis of active working memory. Never-
theless, further experiments need to be carried out in
order to determine the precise roles of the reciprocal
interaction loops between the PFC and sensory corti-
cal areas, in the working memory storage and online
information manipulation.

In the model, we used a simple circuit connecti-
vity with localized feedback excitation and more
widespread inhibition, adapted from Ben-Yishai et al.
(1995). Such a network architecture is consistent with
known PFC circuit properties (Levitt et al., 1993;
Kritzer and Goldman-Rakic, 1995). Our model, how-
ever, does not assume inhibitory synaptic connec-
tions that are specific to cross-orientation columns
(Goldman-Rakic, 1995). We postulate that working
memory of visuospatial cues is stored in the form of a
continuumof network activity profiles, as distributed
population code of graded cue location, which coexist
with a uniform state of spontaneous activity. Under
these assumptions, we investigated whether a pure net-
work mechanism (Wilson and Cowan, 1973; Amari,
1977) was sufficient to reproduce the observations of
Funahashi et al. (1989) and whether the network model
would behave differently if single neurons were en-
dowed with cellular bistability (presumably due to in-
trinsic ion channel mechanisms). Note that, unlike in
Guigon et al. (1995), we did not assume that single
cells are bistable devices by themselves. Rather, bista-
bility is conditional and requires sustained synaptic
inputs originating from the network. We found that,
in principle, memory fields of neuronal delay-period
activity could be constructed with or without cellular
bistability. Note that, even in the latter case, the for-
mation of memory fields does depend on the single
cell’s input-output relation, especially its sufficiently

large slope (gain) within an intermediate input range
(Fig. 11). Therefore, in principle network behavior can
be altered through modulation of intrinsic cellular char-
acteristics.

Because of the spatial translational invariance of ac-
tivity profiles, noise or distraction stimuli could, in the
absence of cellular bistability, induce systematic drifts
over time of the population-vector coded cue position,
so that the memory would be lost after a few seconds.
The drifts are less likely if there is a gap between the
firing rates of inactive and active cells, which can be
overcome only by (infrequent) noise perturbations of
large amplitudes (Fig. 14). Such a gap is naturally real-
ized if single neurons are bistable with an input-output
relation like in Fig. 1A. If the input-output curve is
monotonic but very steep (almost vertical) near the in-
put threshold, the lower (inactive) and upper (active)
branches will also be separated by an apparent disconti-
nuity. This situation, however, is biologically unplausi-
bleunlesssingle neurons are close to be bistable. Thus,
our results suggest that cellular bistability represents
a candidate neuronal contribution to the robust work-
ing memory performance of the PFC network. Other
(synaptic) mechanisms are conceivable and will be in-
vestigated in future studies.

Can cellular bistability or its absence be assessed
using extracellular recording data from PFC cells of
the awake behaving monkey? Our results suggest two
testable predictions. One is based on the observation
that a cell with cellular bistability could be induced by
noise to switch randomly between a low spontaneously
firing state and a highly excited state, and switching is
expected to be more frequent for cue position located
intermediately between the cell’s best and worst stimuli
(cf. Fig. 4). The other prediction is that for a given cue
stimulus, the distribution of firing rates of delay period
activity across neural pools should be clearly bimodal
if single cells are conditionally bistable (Fig. 13). On
the other hand, the question of whether PFC neurons
are capable of intrinsic bistability can be addressed by
in vitro intracellular recordings. To detectconditional
bistability, brief current pulses should be applied to
the cell that is superimposed on a tonic current level
of appropriate intensity (cf. Fig. 1C). Such a stimula-
tion protocol has not been reported in previous stud-
ies using rat PFC slices (Geijo-Barriento and Pastore,
1995; Hammond and Cr´epel, 1992; Yang and Seamans,
1996). It is also not known how PFC cell eletrophysi-
ology may differ between rodents and primates. More-
over, it is likely that bistability at the single neuron level
may depend on neuromodulatory inputs (Kiehn, 1991;
Marder et al., 1996), hence, it would be observable in
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slices only when certain transmitter receptors are acti-
vated pharmacologically. For instance, acetylcholine,
serotonin, and norepinephrine are potent inhibitors of a
Ca2+-dependent K+ current (IAHP) and a voltage-gated
M-type K+ current (IM) (Madison et al., 1987; Mc-
Cormick and Williamson, 1989). The blockade ofIAHP

andIM could unmask a calcium plateau potential that, if
sufficiently large, could give rise to bistability (Kiehn,
1991; Booth et al., 1997). In addition, muscarinic ac-
tivation of a Ca2+-gated nonselective cation current
(ICan) (Haj-Dahmane and Andreda, 1996) could also
contribute to such bistability phenomenon.

The prefrontal cortex is a major target of the brain-
stem dopamine afferents, and several investigations
have suggested a link between dopamine receptors and
working memory in the PFC (Goldman-Rakic, 1995;
Williams and Goldman-Rakic, 1995). For example,
Sawaguchi and Goldman-Rakic (1991) found that D1
antagonists impaired memory-guided saccades for spe-
cific targets that varied with the site of drug injection.
This modulatory effect can be very selective and limited
to individual neurons (Williams and Goldman-Rakic,
1995). The action of dopamine in the PFC is complex,
through multiple pathways involving both intrinsic ion
currents (Geijo-Barriento and Pastore, 1995; Yang and
Seamans, 1996) and synaptic transmissions (C´epeda
et al., 1992). Motivated by these observations, we per-
formed model simulations where either an intrinsic cell
parameter (a) or the excitatory synaptic strength (WE)
is reduced locally in a single cell. Similarly to the find-
ings of Williams and Goldman-Rakic (1995), we found
that local modulation affects the cell’s response to its
preferred cue stimuli but not responses to other cue
stimuli or its spontaneous firing rate (Fig. 10). More-
over, the tuning curves of other cells remain the same
because changes in a single cell (or a few cells) cannot
influence substantially the memory fields of other cells
that are generated by collective dynamics in a large neu-
ronal assembly. It is also relevant to note that, if param-
eters are varied globally, there is an optimal combina-
tion of intrinsic cell properties and synaptic recurrent
connections for the working memory function of the
network model (Figs. 7 and 8). How these simulation
results may be related to the dopamine modulation of
the memory fields of PFC cells remains to be explored
in future studies.

The simple firing-rate model presented in this work
can be improved and extended in several respects. First,
a biologically more realistic model can be constructed,
using spiking neurons, two (excitatory and inhibitory)

populations of cells, and synaptic currents with realis-
tic gating kinetics. Second, more detailed anatomical
data about the PFC circuit (Levitt et al., 1993; Kritzer
and Goldman-Rakic, 1995) needs to be taken into ac-
count. Third, Hebbian synaptic plasticity has been
studied in models where memory items for objects are
stored by adiscretenumber of firing pattern attractors
(Zipser et al., 1993; Guigon et al., 1995; Amit et al.,
1994; Amit and Brunel, 1997). In the case of visu-
ospatial memory, acontinuumof activity profiles (or a
large number of discrete attractors with approximate
spatially translational symmetry) need to be stored.
How this can be achieved through Hebbian learn-
ing mechanisms remains to be investigated in future
research.
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