
Privacy-Preserving Data Integration and Sharing

Chris Clifton
Purdue University

clifton@cs.purdue.edu

Murat Kantarcıoǧlu
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ABSTRACT
Integrating data from multiple sources has been a long-
standing challenge in the database community. Techniques
such as privacy-preserving data mining promises privacy,
but assume data has integration has been accomplished.
Data integration methods are seriously hampered by inabil-
ity to share the data to be integrated. This paper lays out a
privacy framework for data integration. Challenges for data
integration in the context of this framework are discussed,
in the context of existing accomplishments in data integra-
tion. Many of these challenges are opportunities for the data
mining community.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases;
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; H.2.8 [Database

Management]: Database Applications—Data mining

General Terms
Security

1. INTRODUCTION
The goal of this paper is to identify potential research di-

rections and challenges that need to be addressed to perform
privacy-preserving data integration. Increasing privacy and
security consciousness has lead to increased research (and
development) of methods that compute useful information
in a secure fashion. Data integration and sharing have been
a long standing challenge for the database community. This
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need has become critical in numerous contexts, including
integrating data on the Web and at enterprises, building e-
commerce market places, sharing data for scientific research,
data exchange at government agencies, monitoring health
crises, and improving homeland security.

Unfortunately, data integration and sharing are hampered
by legitimate and widespread privacy concerns. Companies
could exchange information to boost productivity, but are
prevented by fear of being exploited by competitors or an-
titrust concerns. Sharing healthcare data could improve sci-
entific research, but the cost of obtaining consent to use indi-
vidually identifiable information can be prohibitive. Sharing
healthcare and consumer data enables early detection of dis-
ease outbreak[26], but without provable privacy protection
it is difficult to extend these surveillance measures nationally
or internationally. Fire departments could share regulatory
and defense plans to enhance their ability to fight terror-
ism and provide community defense, but fear loss of privacy
could lead to liability. The continued exponential growth of
distributed personal data could further fuel data integration
and sharing applications, but may also be stymied by a pri-
vacy backlash. It is critical to develop techniques to enable
the integration and sharing of data without losing privacy.

The need of the hour is to develop solutions that enable
widespread integration and sharing of data, especially in do-
mains of national priorities, while allowing easy and effec-
tive privacy control by users. A comprehensive framework
that handles the fundamental problems underlying privacy-
preserving data integration and sharing is necessary. The
framework should be validated by applying it to several im-
portant domains and evaluating the result.

Concurrently, various privacy-preserving distributed data
mining methods have also been developed which mine global
data while protecting the privacy/security of the underly-
ing data sites. However, all of these methods also assume
that data integration (including record linkage) has already
been done. Note that while data integration is related to
privacy-preserving data mining, it is still significantly dif-
ferent. Privacy-preserving data mining deals with gaining
knowledge after integration problems are solved. First, a
framework and methods for performing such integration is
required.
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2. MOTIVATION
There are numerous real-world applications which require

data integration while meeting specific privacy constraints.
We now discuss some of these “motivating drivers”.

2.1 Sharing Scientific Research Data
Analyzing the prevalence, incidence, and risk factors of

diseases is crucial to understanding and treating them. Such
analyses have significant impact on policy decisions. An
obvious pre-requisite to (carrying out) such studies is to have
the requisite data available. First, data needs to be collected
from disparate health care providers and integrated while
sanitizing privacy-sensitive information.

This process is extremely time consuming and labor inten-
sive. Privacy concerns are a major impediment to streamlin-
ing these efforts. A breach of privacy can lead to significant
damage (harm) to individuals both materially and/or emo-
tionally. Another problem is the possibility of discrimination
against various sub-groups from seemingly conclusive statis-
tical results. Similarly, health care providers themselves risk
loss by leaking accurate data reflecting their performance
and weaknesses.

Privacy is addressed today by preventing dissemination
rather than integrating privacy constraints into the data
sharing process. Privacy-preserving integration and shar-
ing of research data in health sciences has become crucial to
enabling scientific discovery.

2.2 Effective Public Safety
Integration and sharing between public agencies, and pub-

lic and private organizations, can have a strong positive im-
pact on public safety. But concerns over the privacy im-
plications of such private/public sector sharing [25] have
impacted uses of data mining in public safety: The U.S.
Terrorism Information Awareness program was killed over
privacy concerns [18].

For example, fire fighting departments in Illinois routinely
seek sample regulations and training materials from fellow
fire fighting departments (e.g., handling a bio-hazard situ-
ation, or an unknown emerging public safety threat). Such
materials allow them to develop similar programs and to pro-
vide the most up-to-date effective community defense. How-
ever, fellow departments are reluctant to share such materi-
als, for fear of liability if programs are deemed inadequate.
They would be happy to share the material if identity (and
thus liability exposure) was protected.

2.3 Monitoring Healthcare Crises
Detecting and containing disease outbreaks early is key to

preventing life-threatening infectious diseases, witness the
successful eradication of smallpox. Outbreaks of infectious
diseases such as West Nile, SARS, and bird flu; as well as
threats of bio-terrorism; have made disease surveillance into
a national priority. Outbreak detection works best when a
variety of data sources (human health-care, animal health,
consumer data) are integrated and evaluated in real time.

For example, the Real-Time Outbreak Detection System
[26] (at the University of Pittsburgh Medical Center) uses
data collected from regional healthcare providers and pur-
chase records of over-the-counter drugs to determine out-
break patterns. This system forwards all regional data to a
central data warehouse for evaluation purposes. Although
data is de-identified in accordance with HIPAA safe-harbor

rules (by removing 19 kinds of identifiers), privacy concerns
remain about both patient privacy and organizational pri-
vacy (e.g., some participant organizations wish to keep the
number of visits by ZIP code secret.)

Privacy laws typically do not cover government public
health organizations, raising the spectre of systems with in-
adequate privacy protection. The concerns are similar to
the risks noted above for healthcare research data: External
attacks or insider misuse can damage individuals, health-
care providers, or groups within society. Protecting identity
and liability exposure by effective privacy-preserving data
integration and sharing techniques will enable advances in
emergency preparedness and response, public safety, health
care and homeland security that might otherwise be pre-
vented due to privacy concerns.

2.4 Facilitating E-commerce
There are innumerable opportunities in e-commerce to en-

able beneficial collaboration, if privacy concerns could be
met. Corporation will not (in some cases, cannot) share
confidential data with each other, but are willing to en-
gage in some process for mutual benefit. As an example,
consider secure supply-chain management[4]. An example
scenario would be two companies that use a common raw
material. Knowing that they share this need and coordi-
nating their orders and production would enable smoothing
out the supply line and improving overall supply chain ef-
ficiency. A prerequisite for this coordination is the ability
to identify the common raw material, suppliers, customers,
etc., without giving up competitive knowledge advantages
or violating anti-trust law. Standards for sharing logistics
information cover such a wide ground that ambiguity is in-
evitable (e.g., the ECCMA Open Technical Dictionary has
over 30,000 standard attribute names).

3. DATA INTEGRATION AND DATA MIN-
ING

Data Integration and Data Mining are quite closely cou-
pled. Integration is a necessary pre-requisite before mining
data collected from multiple sources. At the same time,
data mining/machine learning techniques are used to en-
able automatic data integration. Several systems have been
developed to implement automatic schema matching [19, 12,
5, 7]. The systems use machine learning/data mining tools
to help automate schema matching. SemInt [19] uses neural
networks to determine match candidates. Clustering is done
on similar attributes of the input schema. The signatures
of the cluster centers are used as training data. Matching is
done by feeding attributes from the second schema into the
neural network. LSD [12] also uses machine learning tech-
niques for schema matching. LSD consists of several phases.
First, mappings for several sources are manually specified.
Then source data is extracted (into XML) and training data
is created for each base learner. Finally the base learners
and the meta-learner are trained. Further steps are car-
ried out to refine the weights learned. The base learners
used are a nearest neighbor classification model as well as a
Näıve Bayes learner. Again, there has been work on differ-
ent privacy-preserving classification models [27] that is ap-
plicable. Artemis [5] is another schema integration tool that
computes “affinities” in the range 0 to 1 between attributes.
Schema integration is done by clustering attributes based
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on those affinities. Clearly, a lot of work in both privacy-
preserving data mining as well as cryptography is relevant to
the problem of privacy-preserving schema integration. How-
ever, it is not yet clear how this could be applied efficiently.

Record linkage also uses various machine learning tech-
niques. Record linkage can be viewed as a pattern classifi-
cation problem [15]. In pattern classification problems, the
goal is to correctly assign patterns to one of a finite number
of classes. Similarly, the goal of the record linkage problem is
to determine the matching status of a pair of records brought
together for comparison. Machine learning methods, such
as decision tree induction, neural networks, instance-based
learning, clustering, are widely used for pattern classifica-
tion. Given a set of patterns, a machine learning method
builds a decision model that can be used to predict the class
of each unclassified pattern. Again, prior privacy-preserving
work is relevant. At the other end of the spectrum, privacy-
preserving data mining assumes that data integration has
already been done, which is clearly not a solved problem.

4. PRIVACY PRESERVATION CHALLENGES
As part of the overall problem, we see the following fun-

damental challenges in privacy-preserving data integration
and sharing:

4.1 Privacy Framework
How can we develop a privacy framework for data inte-

gration that is flexible and clear to the end users? This de-
mands understandable and provably consistent definitions
for building a privacy policy, as well as standards and mech-
anisms for enforcement.

Database security has generally focused on access control:
Users are explicitly (or perhaps implicitly) allowed certain
types of access to a data item. This includes work in multi-
level secure database as well as statistical queries[1].

Privacy is a more complex concept. Most privacy laws
balance benefit vs. risk[14]: access is allowed when there is
adequate benefit resulting from access. An example is the
European Community directive on data protection which al-
lows processing of private data in situations where specific
conditions are met. The Health Insurance Portability and
Accountability Act in the U.S. specifies similar conditions
for use of data. Individual organizations may define their
own policies to address their customers’ needs. The prob-
lems are exacerbated in a federated environment. The task
of data integration itself poses risks, as revealing even the
presence of data items at a site may violate privacy.

Some of the privacy issues have been addressed for the
case of a single database management system in Hippocratic
Databases [3]. Other privacy issues have been addressed for
the case of a single interaction between a user and a Website
in the P3P standard [10]. None of the current techniques
address privacy concerns when data is exchanged between
multiple organizations, and transformed and integrated with
other data sources.

A framework is required for defining private data and pri-
vacy policies in the context of data integration and sharing.
The notion of Privacy Views, Privacy Policies, and Purpose
Statements is essential towards such a framework. We illus-
trate using the “Sharing Scientific Research Data” example
of Section 2.

4.1.1 Privacy Views

The database administrator defines what is private data
by specifying a set of privacy views, in a declarative lan-
guage extending SQL. Each privacy view specifies a set of
private attributes and an owner. By definition, data that ap-
pears in some privacy view is considered private; otherwise
it is not private (but we will relax this categorical classifica-
tion of privacy into a continuous degree of privacy below).
For example, the database administrator in a health care
organization might define the following three privacy views:

PRIVACY-VIEW patientAddressDob
OWNER Patient.pid
SELECT Patient.address, Patient.dob
FROM Patient

PRIVACY-VIEW zipDisease
OWNER Patient.pid
SELECT Patient.address.zip, Disease.name
FROM Patient, Treatment, Disease
WHERE Patient.pid = Treatment.pid and Treatment.did

= Disease.did

PRIVACY-VIEW physicianDisease
OWNER Patient.pid
SELECT Physician.name, Disease.name
FROM Patient, Treatment, Disease, Physician
WHERE Patient.pid = Treatment.pid and Treatment.did

= Disease.did and Physician.id = Treatment.id

This first specifies that a patient’s address and dob (date-
of-birth) are considered private data when occurring together.
Whenever these two attributes occur together in a piece of
data, e.g., to be exchanged with a partner or integrated with
other data, they are private. Notice that here dob is not pri-
vate by itself (and similarly address: more below). Similar
definitions can be given for patient name and other fields
commonly referred to as “individually identifiable informa-
tion”: Sets of attributes that can be used to tie a tuple or a
set of tuples in a data source to a specific real-world entity
(e.g., a person). Alternatively, administrators may choose
to define database IDs or tuple IDs as private data, both of
which could be used to breach privacy over time. Database
IDs are used to identify from which data source the data
comes. While not necessarily an individual privacy issue,
protecting the data source may be a prerequisite for orga-
nizations to participate in sharing. Tuple IDs are used to
identify tuples within a source. While this may not inher-
ently violate privacy, it may enable tracking of tuples that
can violate privacy over time. In general, privacy views can
be much more complex (i.e. by specifying associations be-
tween attributes from different tables).

The second privacy view, zipDisease, is more subtle: it
says that the patient’s zip code and the disease constitutes
private data. The zip code alone is not an individually iden-
tifiable information, still it is part of a person’s private data
and here the decision has been made to consider the as-
sociation zip, disease as private. Notice also that the two
attributes come from different tables. This example illus-
trates the power of the privacy views: any combination of
data can be declared to be private and have an owner.

The third privacy definition query specifies that even the
association between physician names and diseases is to be
considered private data, owned by the patient. This exam-
ple illustrates the difficulty in defining ownership for private
data. Suppose Dr. Johnson treats both patients “Smith”
and patient “Brown” for Diabetes. Who owns the associa-
tion (“Dr. Johnson”, “Diabetes”), Smith or Brown ? We
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address this by adopting bag semantics, i.e., we consider two
occurrences of the tuple (“Dr. Johnson”, “Diabetes”), one
owned by Smith the other by Brown.

Privacy views could be implemented by a privacy mon-
itor that checks every data item being retrieved from the
database and detects if it contains items that have been de-
fined as private. There are two approaches: compile-time
(based on query containment) and run-time (based on ma-
terializing the privacy views and building indices on the pri-
vate attributes). Both approaches need to be investigated
and tradeoffs evaluated.

4.1.2 Privacy Policies
Along with privacy views, it is necessary to have a notion

of privacy policies. The database administrator can decide
which policy applies to each view. Continuing the example,
the following privacy policies could be specified:

PRIVACY-POLICY individualData
ALLOW-ACCESS-TO y
FROM Consent x, patientAddressDob y
WHERE x.pid = y.owner and x.type = ’yes’
BENEFICIARY *

PRIVACY-POLICY defaultPolicy
ALLOW-ACCESS-TO x
FROM patientName x
BENEFICIARY x.owner
BENEFICIARY *

PRIVACY-POLICY militaryPersonellWaiver
ALLOW-ACCESS-TO x
FROM patientName x, Patient y
WHERE x.owner=y.pid and y.employer=’Military’
BENEFICIARY Government

The first privacy policy states that private data patien-
tAddressDob (defined above) can be released if the owner
has given explicit consent, as registered in a Consent table.
The second is a default policy which allows access to patient
names as long as benefit accrues to the patient. The second
policy says that any patient name can be released as long
as the application using it runs on behalf of (for the benefit
of) that patient. The third says that Military patientNames
can be released for use by the Government. As with privacy
views, more complex privacy policies are also possible.

Privacy policies can be enforced by the server holding the
data: data items will be shared only if the purpose statement
of the requester (see below) satisfies the policy. But, in addi-
tion, every data item leaving the server should be annotated
with privacy metadata expressing the privacy policies that
have to be applied. These annotations travel with the data,
and are preserved and perhaps modified when the data is
integrated with data from other sources or transformed.

Query execution becomes much harder, since all privacy
views and policies must result in a single piece of privacy
metadata; it is not obvious how to do that. Prior work [22]
addresses a similar but not identical challenge: how a set of
access control policies result in a single, multiple encrypted
data instance.

4.1.3 Purpose Statements
Finally, once data has been shared and integrated, it even-

tually reaches an application that uses it. Here, the privacy

metadata needs to be compared with the application’s stated
purpose. A flexible language is required in which applica-
tions can state the purpose of their action, and explicitly
mention the beneficiary.

4.2 Schema Matching
To share data, sources must first establish semantic corre-

spondences between schemas. However, all current schema
matching solutions assume sources can freely share their
data and schema. How can we develop schema matching
solutions that do not expose the source data and schemas?
Once two data sources S and T have adopted their privacy
policies, as outlined in Section 4.1, they can start the process
of data sharing. As the first step, the sources must coop-
erate to create semantic mappings among their schemas, to
enable the exchange of queries and data [23]. Such seman-
tic mappings can be specified as SQL queries. For example,
suppose S and T are data sources that list houses for sale,
then a mapping for attribute list-price of source T is:

list-price = SELECT price * (1 + agent-fee-rate)
FROM HOUSES, AGENTS
WHERE (HOUSES.agent id = AGENTS.id)

which specifies how to obtain data values for list price from
the tables HOUSES and AGENTS of source S.

Creating mappings typically proceeds in two steps: find-
ing matches, and elaborating matches into semantic map-
pings[23]. In the first step, matches are found which spec-
ify how an attribute of one schema corresponds to an at-
tribute or set of attributes in the other schema. Exam-
ples of match include “address = location”, “name = con-
cat(first name,last name)”, and “list-price = price * (1 + agent-
fee-rate)”. Research on schema matching has developed a
plethora of automated heuristic or learning-based methods
to predict matches [23]. These methods significantly reduce
the human effort involved in creating matches.

In the second step, a mapping tool elaborates the matches
into semantic mappings. For example, the match “list-price
= price * (1 + agent-fee-rate)” will be elaborated into the
SQL query described earlier, which is the mapping for list-
price. This mapping adds information to the match Typi-
cally, humans must verify the predicted matches. Further-
more, recent work [23] has argued that elaborating matches
into mappings must also involve human efforts.

Schema matching lies at the heart of virtually all data
integration and sharing efforts. Consequently, numerous
matching algorithms have been developed [23]. All current
existing matching algorithms, however, assume that sources
can freely share their data and schemas, and hence are un-
suitable. To develop matching algorithms that preserve pri-
vacy, first the following components need to be developed:

4.2.1 Match Prediction
How do we create matches without revealing data at the

sources, or even the source schemas. An initial step is to
start with learning-based schema matching.

In learning-based approaches[19, 12], one or more classi-
fiers (e.g., decision tree, Naive Bayes, SVM, etc.) are con-
structed at source S, using the data instances and schema of
S, then sent over to source T . The classifiers are then used
to classify the data instances and schema of T . Similarly,
classifiers can be constructed at source T and sent over to
classify the data instances and schema of S. The classifi-
cation results are used to construct a matrix that contain a
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similarity value for any attribute s of S and t of T . This sim-
ilarity matrix can then be utilized to find matches between
S and T .

Schema matching in this approach reduces to a series of
classification problems that involve the data and schemas of
the two input sources. As such, it is possible to leverage
work in privacy-preserving distributed data mining, which
have studied how to train and apply classifiers across dis-
parate datasets without revealing sensitive information at
the datasets[20].

4.2.2 Human Verification of Matches
Suppose a match m has been found. Now humans at both

or one of the sources S and T must examine m to verify its
correctness. The goal is then to make certain such verifi-
cation is privacy-preserving. The goal is to give humans
enough information to verify matches, while preserving pri-
vacy. One way to achieve this can be randomly selecting
some values for particular attributes and show the user only
these values. It can be argued that revealing only few at-
tribute values does not reveal anything useful about the dis-
tribution. Since two attributes are found to be similar, it
can be argued that few samples does not reveal too much
useful information. Definitely, a measure for privacy loss is
needed in this context. We will give more details about this
in section 4.5.

4.2.3 Mapping Creation
Once a match has been verified and appears to be correct,

humans can proceed to the step of working in conjunction
with a mapping tool to refine the match into a mapping. In
this step, humans typically are shown examples of data, as
generated by various mapping choices, and asked to select
the correct example. It is necessary to ensure that people
are shown data that allows generating mappings, but does
not violate privacy.

4.3 Object Matching and Consolidation
Data received from multiple sources may contain dupli-

cates that need to be removed. In many cases it is im-
portant to be able to consolidate information about enti-
ties (e.g., to construct more comprehensive sets of scientific
data). How can we match entities and consolidate informa-
tion about them across sources, without revealing the ori-
gin of the sources or the real-world origin of the entities?
Record Linkage is the identification of records that refer
to the same real-world entity. This is a key challenge to
enabling data integration from heterogeneous data sources.
What makes record linkage a problem in its own right, (i.e.,
different from the duplicate elimination problem), is the fact
that real-world data is “dirty”. In other words, if data were
accurate, record linkage would be similar to duplicate elimi-
nation. Unfortunately, in real-world data, duplicate records
may have different values in one or more fields (e.g. mis-
spelling causes multiple records for the same person).

Record linkage techniques can be used to disclose data
confidentiality. In particular, a privacy-aware corporation
will use anonymization techniques to protect its own data
before sharing it with other businesses. A data intruder
tries to identify as many concealed records as possible us-
ing an external database (many external databases are now
publicly-available). Anonymization techniques must be aware
of the capabilities of record linkage techniques to preserve

the privacy of the data.
On the other hand, businesses need to integrate their

databases to perform data mining and analysis procedures.
Such data integration requires privacy-preserving record link-
age, that is record linkage in presence of a privacy frame-
work that ensures the data confidentiality of each business.
Thus, we need solutions for the following problems:

• Privacy-preserving record linkage: discovering the records
that represent the same real world entity from two inte-
grated databases each of which is protected (encrypted
or anonymized). In other words, records are matched
without having their identity revealed.

• Record linkage aware data protection: that is protect-
ing the data, before sharing, using anonymization tech-
niques that are aware of the possible use of record link-
age, with public available data, to reveal the identity
of the records.

• Online record linkage: linking records that arrive con-
tinuously in a stream. Real-time systems and sensor
networks are two examples of applications that need
online data analysis, cleaning, and mining.

Record linkage has been studied in various contexts and
has been referred to using different names, such as the merge-
purge problem [16, 28]. The record linkage problem can also
be viewed as a pattern classification problem [15]. In pattern
classification problems, the goal is to correctly assign pat-
terns to one of a finite number of classes. Similarly, the goal
of the record linkage problem is to determine the match-
ing status of a pair of records brought together for com-
parison. Machine learning methods, such as decision tree
induction, neural networks, instance-based learning, clus-
tering, are widely used for pattern classification. Given a
set of patterns, a machine learning method builds a decision
model that can be used to predict the class of each unclas-
sified pattern. TAILOR [15], an interactive Record Linkage
toolbox, uses three classification models for record linkage
based on induction and clustering.

4.4 Querying Across Sources
Once semantic correspondences have been established, it

is possible to query (e.g., with SQL queries) across the sources.
How do we ensure that query results do not violate privacy
policy? How do we query the sources such that only the
results are disclosed? How can we prevent the leaking of
information from answering a set of queries? Only a few
general techniques exist today for querying datasets while
preserving privacy: statistical databases, privacy-preserving
join computation, and privacy-preserving top-K queries. In
statistical databases, the goal is to allow users to ask aggre-
gate queries over the database while hiding individual data
items. There exists a rich literature on this topic, and a
comprehensive survey is in [1]. Unfortunately, the main re-
sults are negative: while it is possible to preserve privacy
for a single query, ensuring that a sequence of query re-
sults cannot be combined to disclose individual data is not
practical. Privacy-preserving joins and the more restricted
privacy-preserving intersection size computation have been
addressed in [8, 2]. Here, each of the two parties learns only
the query’s answer, and nothing else. The techniques only
apply to a specialized class of queries.
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Privacy-preserving top-K queries have also recently been
studied. Such a query returns just the closest K matches to
a query without revealing anything about why those matches
are close, what the values of the attributes of the close items
are, or even which site the closest matches come from. This
is accomplished efficiently through the use of an untrusted
third party: a party that is not allowed to see private values,
but is trusted not to collude with any site to violate privacy.
(see Figure 1.) In this method, each site finds its own top k,
and encrypts each result with the public key of the querying
site. The parties then compare their top k with the top k

of all other sites – except that the comparison used gives
each site a random share of the result, so neither learns the
result. The results from all sites are combined, scrambled,
and given to the non-colluding untrusted site. This site can
combine the random shares to get a comparison result for
each pair, enabling it to sort and select the top k. The results
corresponding to these k are sent to the querying site. Each
site learns nothing about other sites (the comparison result
it sees appears to be a randomly chosen bit.) The untrusted
site sees k∗n encrypted results. It is able to totally order the
results, but since it knows nothing about what each means
or where it comes from, it learns nothing. The querying site
only sees the final result.

In the applications we envision the data about a single
individual is spread across data sources Ri, i = 1, n (ver-
tically partitioned). The data about all individual is ex-
pressed as a join 1

n

i=1 Ri, and we would like to enable certain
queries over this join while preserving privacy. Typically
these queries are computed without actually materializing
the join. For example if we ask for the cardinality of the
join, then it can be computed as | ∩n

i=1Πid(RI) |, where id

is the join attribute in all relations. This can be done using
privacy-preserving intersection algorithms.

Such simple queries only work for cross-sectional counts.
For cohort studies, query criteria will combine attributes
about individuals across data sources. Solutions have been
developed for this [24]. Privacy-preserving data mining also
provides some building blocks. However, the issue of in-

ference from multiple queries must still be resolved. Issues
include categorizing types of queries with respect to pri-
vacy policy, ensuring that query processing does not dis-
close information, and guarding against leakage from a set
of queries.

While there has been work in this area [11, 6, 9], many
practical challenges remain. For example, [13] gives criteria
where a set of queries can be shown to prevent inference of
individual values, but this requires tracking queries. Marks
gives a method for tracking queries to prevent inference in
multilevel secure databases[21]. To make this practical, we
need to establish the class of queries that need to be an-
swered, and determine criteria for ensuring that a set of
queries from this class provably prevent privacy breaches.
This will tie the work of Section 4.1 into mechanisms that
address privacy for real-world problems.

Another result is finding matches to a query without re-
vealing the query[17]. In this case, both the query and the
data are private – the only thing that can be revealed is
which items match. In addition, the method allows check-
ing for “forbidden” queries – even though the query is not
revealed, it can be checked against combinations of query
criteria that are not permitted.

4.5 Quantifying Privacy Disclosure
In real life, with any information disclosure there is al-

ways some privacy loss. We need reliable metrics for quan-
tifying privacy loss. Instead of simple 0-1 metrics (whether
an item is revealed or not), we need to consider probabilis-
tic notions of conditional loss, such as decreasing the range
of values an item could have, or increasing the probability
of accuracy of an estimate. In general, a starting classifi-
cation could measure the following: probability of complete
disclosure of all data, probability of complete disclosure of
a specific item, probability of complete disclosure of a ran-
dom item. Privacy-preserving methods can be evaluated on
the basis of their susceptibility to the above metrics. Also
some of the existing measures can be used in this direction.
For example, one of the popular metrics (Infer(x → y))
used in database security can be easily applied for measur-
ing privacy loss in schema matching phase. In the original
definition H(y) corresponds to entropy of y, and Hx(y) cor-
responds to conditional entropy of y given x then privacy
loss due to revelation of x is given as follows:

Infer(x → y) =
H(y) − Hx(y)

H(y)

Note that for schema matching phase,what is revealed to
the human for verification can be modeled as revealing x.
Although this measure can be used in many different cases,
it is hard to calculate the conditional entropies. Therefore,
there is need for developing different privacy metrics.

5. CONCLUSION
In this paper, we presented potential research directions

and challenges that need to be addressed in order to achieve
privacy-preserving data integration. We also pointed out
some plausible solution ideas. Though much work remains
to be done, we believe that the full potential of privacy-
preserving data management can only be exploited if privacy
is also maintained during data integration. Availability of
such tools will also enable us to use distributed data while
protecting privacy.
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