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Abstract

Cyber-physical systems are ubiquitous in power systems, transportation networks, industrial process

control and critical infrastructures. These systems need to operate reliably in the face of unforeseen

failures and external malicious attacks. In this paper (i) we propose a mathematical framework for cyber-

physical systems, attacks, and monitors; (ii) we characterize fundamental monitoring limitations from

system-theoretic and graph-theoretic perspectives; and (iii) we design centralized and distributed attack

detection and identification monitors. Finally, we validate our findings through compelling examples.

I. INTRODUCTION

Cyber-physical systems integrate physical processes, computational resources, and communi-

cation capabilities. Examples of cyber-physical systems include transportation networks, power

generation and distribution networks, water and gas distribution networks, and advanced com-

munication systems. As recently highlighted by the Maroochy water breach [1] in March 2000,

multiple recent power blackouts in Brazil [2], the SQL Slammer worm attack on the Davis-Besse

nuclear plant in January 2003 [3], the StuxNet computer worm [4] in June 2010, and by various

industrial security incidents [5], cyber-physical systems are prone to failures and attacks on their

physical infrastructure, and cyber attacks on their data management and communication layer.

Concerns about security of control systems are not new, as the numerous manuscripts on

systems fault detection, isolation, and recovery testify [6], [7]. Cyber-physical systems, however,

suffer from specific vulnerabilities which do not affect classical control systems, and for which
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appropriate detection and identification techniques need to be developed. For instance, the

reliance on communication networks and standard communication protocols to transmit measure-

ments and control packets increases the possibility of intentional and worst-case attacks against

physical plants. On the other hand, information security methods, such as authentication, access

control, and message integrity, appear inadequate for a satisfactory protection of cyber-physical

systems. Indeed, these security methods do not exploit the compatibility of the measurements

with the underlying physical process or the control mechanism, and they are therefore ineffective

against insider attacks targeting the physical dynamics [1].

Related work. The analysis of vulnerabilities of cyber-physical systems to external attacks has

received increasing attention in the last years. The general approach has been to study the

effect of specific attacks against particular systems. For instance, in [8] deception and denial

of service attacks against a networked control system are defined, and, for the latter ones, a

countermeasure based on semi-definite programming is proposed. Deception attacks refer to the

possibility of compromising the integrity of control packets or measurements, and they are cast

by altering the behavior of sensors and actuators. Denial of service attacks, instead, compromise

the availability of resources by, for instance, jamming the communication channel. In [9] false

data injection attacks against static state estimators are introduced. False data injection attacks

are specific deception attacks in the context of static estimators. It is shown that undetectable

false data injection attacks can be designed even when the attacker has limited resources. In a

similar fashion, stealthy deception attacks against the Supervisory Control and Data Acquisition

system are studied, among others, in [10]. In [11] the effect of replay attacks on a control

system is discussed. Replay attacks are cast by hijacking the sensors, recording the readings

for a certain amount of time, and repeating such readings while injecting an exogenous signal

into the system. It is shown that these attacks can be detected by injecting a signal unknown

to the attacker into the system. In [12] the effect of covert attacks against control systems is

investigated. Specifically, a parameterized decoupling structure allows a covert agent to alter

the behavior of the physical plant while remaining undetected from the original controller. In

[13] a resilient control problem is studied, in which control packets transmitted over a network

are corrupted by a human adversary. A receding-horizon Stackelberg control law is proposed to

stabilize the control system despite the attack. Recently the problem of estimating the state of a

linear system with corrupted measurements has been studied [14]. More precisely, the maximum



number of tolerable faulty sensors is characterized, and a decoding algorithm is proposed to detect

corrupted measurements. Finally, security issues of specific cyber-physical systems have received

considerable attention, such as power networks [15]–[19], linear networks with misbehaving

components [20], [21], and water networks [22], [23].

Contributions. The contributions of this paper are as follows. First, we describe a unified

modeling framework for cyber-physical systems and attacks (Section II). Motivated by existing

cyber-physical systems and existing attack scenarios, we model a cyber-physical system under

attack as a descriptor system subject to unknown inputs affecting the state and the measurements.

For our model, we define the notions of detectability and identifiability of an attack by its effect

on output measurements. Informed by the classic work on geometric control theory [24], [25],

our framework includes the deterministic static detection problem considered in [9], [10], and

the prototypical deception and denial of service [8], stealth [16], (dynamic) false-data injection

[26], replay attacks [11], and covert attacks [12] as special cases.

Second, we show the fundamental limitations of a class of monitors (Section III-A). This

class includes the widely-studied static, dynamic, and active monitors. We prove that (i) a cyber-

physical attack is undetectable by our monitors if and only if the attackers’ signal excites uniquely

the zero dynamics of the input/output system, and (ii) that undetectable and unidentifiable attacks

can be cast without knowing monitoring signals or the system noise.

Third, we provide a graph-theoretic characterization of undetectable attacks (Section III-B).

We borrow some tools from the theory of structured systems, and we identify conditions on the

system interconnection structure for the existence of undetectable attacks. These conditions are

generic, in the sense that they hold for almost all numerical systems with the same structure, and

they can be efficiently verified. As a complementary result, we extend a result of [27] on structural

left-invertibility to regular descriptor systems. Finally, with respect to our earlier work [20], [21],

we consider continuous-time descriptor systems, and we include parameters constraints.

Fourth, we design centralized and distributed monitors (Section IV). Our centralized monitors

and our distributed detection monitor are complete, in the sense that they detect and identify

every (detectable and identifiable) attack. Our centralized monitors are designed by leveraging

on tools from geometric control theory, while our distributed detection monitor relies upon

techniques from distributed control and parallel computation. Additionally, we characterize the

computational complexity of the attack identification problem.



Fifth and finally, we illustrate the potential impact of our theoretical findings through com-

pelling examples. In particular, (i) we design an undetectable state attack to destabilize the

WSSC 3-machine 6-bus power system, (ii) we characterize the resilience to output attacks of the

IEEE 14 bus system, (iii) we show the detection performance of our distributed monitor on the

IEEE 118 bus system, and (iv) we use the RTS 96 network model to illustrate that our methods

are effective also in the presence of system noise, nonlinearities, and modeling uncertainties.

Through these examples we show the advantages of dynamic monitors against static ones, and

we provide insight on the design of attacks.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

In this paper we model cyber-physical systems under attack as linear time-invariant descriptor

systems subject to unknown inputs. This simplified model neglects system nonlinearities and the

presence of noise in the dynamics and the measurements. Nevertheless, such a simplified model

has long proven useful in studying stability, faults, and attacks in, for instance, power networks,

sensor networks, and water networks. It is our premise that more detailed models are unlikely

to change the basic conclusions of this work.

Model of cyber-physical systems under attack. We consider the descriptor system1

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈
Rp×m. Here the matrix E is possibly singular, and the inputs Bu and Du are unknown signals

describing disturbances affecting the plant. Besides reflecting the genuine failure of systems

components, these disturbances model the effect of attacks against the cyber-physical system.

Without loss of generality, we assume that each state and output variable can be independently

compromised by an attacker, and we let B = [In×n 0n×p] and D = [0p×n Ip×p].

The attack signal t 7→ u(t) ∈ Rn+p depends upon the specific attack strategy. In particular, if

K ⊆ {1, . . . , n+ p} is the attack set, with |K| = k, then all (and only) the entries of u indexed

by K are nonzero over time, that is, for each i ∈ K, there exists a time t such that ui(t) 6= 0,

1The results stated in this paper for continuous-time descriptor systems hold also for discrete-time descriptor systems and

nonsingular systems. Moreover, due to linearity of (1), known inputs do not affect our results.



and uj(t) = 0 for all j 6∈ K and at all times. To underline this sparsity relation, we sometimes

use uK to denote the attack signal, that is the subvector of u indexed by K. Accordingly, the

pair (BK , DK), where BK and DK are the submatrices of B and D with columns in K, denote

the attack signature. Hence, Bu(t) = BKuK(t), and Du(t) = DKuK(t). Since the matrix E

may be singular, we make the following assumptions on system (1):

(A1) the pair (E,A) is regular, that is, the determinant |sE − A| does not vanish identically;

(A2) the initial condition x(0) ∈ Rn is consistent, that is, (Ax(0) +Bu(0)) ∈ Im(E); and

(A3) the input signal u(t) is smooth.

Assumption (A1) assures the existence of a unique solution x(t) to (1). Assumptions (A2) and

(A3) guarantee smoothness of the state trajectory x(t) and the measurements y(t), [28, Lemma

2.5]. If assumptions (A2) and (A3) are dropped, then there are inconsistent initial conditions and

impulsive inputs by which a powerful attacker can avoid detection; see Remark 4. Throughout

the paper, the cardinality k of the attack set, or an upper bound, is assumed to be known.

Remark 1: (Examples of cyber-physical systems requiring advanced security mechanisms)

Future power grids will combine physical dynamics with a sophisticated coordination infrastruc-

ture. The cyber-physical security of the grid has been identified as an issue of primary concern,

see [19], [29] and [10], [16]–[18], [30], [31].

Mass transport networks are cyber-physical systems, such as gas transmission and distribution

networks [32], large-scale process engineering plants [33], and water networks. Examples of

water networks include open channel flows [34] for irrigation purposes and municipal water

networks [35], [36]. The vulnerability of open channel networks to cyber-physical attacks has

been studied in [12], [22], and municipal water networks are also known to be susceptible to

attacks on the hydraulics [1] and biochemical contamination threats [23].

Power networks and mass transport network under attack can be modeled by descriptor systems

with unknown inputs. For instance, the small-signal version of the classical structure-preserving

power network model reads as [30], [31]



I 0 0
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0 0 0



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0
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
, (2)

where δ and ω denote the generator rotor angles and frequencies, θ are the voltage angles at the

buses, L =
[
Lgg Lgl
Llg Lll

]
is the network susceptance matrix, Mg and Dg are the diagonal matrices



of the generator inertial and damping coefficients, and Pω and Pδ are power injections at the

generators and buses. We refer to [35], [36] for the modeling of water networks. �

Model of monitors. A monitor is a deterministic algorithm Φ : Λ → Ψ with access to

continuous-time measurements and knowledge of the system dynamics, that is, Λ = {E,A,C, y(t) ∀t ∈
R≥0}. The output of a monitor is Ψ = {ψ1, ψ2}, with ψ1 ∈ {True,False}, and ψ2 ⊆ {1, . . . , n+

p}. In particular, the output ψ1 reveals the presence of attacks, while ψ2 corresponds to the attack

set.

Let y(x, u, t) be the output signal of (1) generated from the initial state x by the attack input

u. Then, the monitoring input y(t) equals y(x0, uK , t) at all times, where x0 is the system initial

state and uK is the attack signal of the attack set K. Since we only consider deterministic

cyber-physical systems, we assume monitors to be consistent, that is,

(i) ψ1 = True only if the attack set K is nonempty (ψ1 = False, otherwise),

(ii) ψ2 = ∅ if and only if ψ1 = False, and

(iii) ψ2 = K only if K is the (unique) smallest subset S ⊆ {1, . . . , n + p} satisfying y(t) =

y(x1, uS, t) for some initial state x1 and at all times t ∈ R≥0 (ψ2 = {1, . . . , n + p},
otherwise).

Observe that, if S = {1, . . . , n + p}, then there always exists an attack signal uS satisfying

y(t) = y(x0, uK , t) = y(x1, uS, t). Our consistency assumption ensures that false-alarms are not

triggered by our monitors. Examples of monitors can be found in [10], [11], [17].

The objective of a monitor is twofold:

Definition 1: (Attack detection and identification) Consider system (1) with nonzero attack

(BKuK , DKuK). The attack (BKuK , DKuK) is detected by a monitor Φ if ψ1 = True. The

attack (BKuK , DKuK) is identified by the monitor Φ if ψ2 = K.

An attack is undetectable (respectively unidentifiable) if no monitor detects (respectively

identifies) the attack. Of course, an undetectable attack is also unidentifiable, since it cannot be

distinguished from the zero attack. An attack set K is undetectable (respectively unidentifiable)

if there exists an undetectable (respectively unidentifiable) attack (BKuK , DKuK).

Model of attacks. In this work we consider colluding omniscient attackers with the ability of

altering the cyber-physical dynamics through exogenous inputs. In particular, we let the attack

(Bu(t), Du(t)) in (1) be designed based on knowledge of the system structure and parameters

E,A,C, and the full state x(t) at all times. Additionally, attackers have unlimited computation
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(a) Static stealth attack

(sE − A)−1 C
x(t)

+ y(t)
x(0)
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(d) Dynamic false data injection

Fig. 1. A block diagram illustration of prototypical attacks is here reported. In Fig. 1(a) the attacker corrupts the measurements

y with the signal DKuK ∈ Im(C). Notice that in this attack the dynamics of the system are not considered. In Fig. 1(b) the

attacker affects the output so that y(t) = y(x(0), [ūT uT]T, t) = y(x̃(0), 0, t). The covert attack in Fig. 1(c) is a feedback

version of the replay attack, and it can be explained analogously. In Fig. 1(d) the attack is such that the unstable pole p is made

unobservable.

capabilities, and their objective is to disrupt the physical state or the measurements while avoiding

detection or identification. Note that specific attacks may be cast by possibly-weaker attackers.

Remark 2: (Existing attack strategies as subcases) The following prototypical attacks can be

modeled and analyzed through our theoretical framework:

(i) stealth attacks defined in [16] correspond to output attacks compatible with the measure-

ments equation;

(ii) replay attacks defined in [11] are state and output attacks which affect the system dynamics

and reset the measurements;

(iii) covert attacks defined in [12] are closed-loop replay attacks, where the output attack is

chosen to cancel out the effect on measurements of the state attack; and

(iv) (dynamic) false-data injection attacks defined in [26] are output attacks rendering an

unstable mode (if any) of the system unobservable.

A possible implementation of the above attacks in our model is illustrated in Fig. 1. �

To conclude this section we remark that our modeling framework captures failures and attacks

against power networks and water supply networks. Possible genuine failures include variations

in demand and supply of power or water, line outages or pipe leakages, and failures of sensors



and actuators. Possible cyber-physical attacks include measurements corruption [9], [10], [22]

and attacks on the control architecture or the physical state [1], [15], [18], [19].

III. FUNDAMENTAL MONITORING LIMITATIONS

In this section we highlight fundamental monitoring limitations from system-theoretic and

graph-theoretic perspectives.

A. System-theoretic monitoring limitations

Following the discussion in Section II, an attack is undetectable if the measurements due to

the attack coincide with the measurements due to some nominal operating condition.

Lemma 3.1: (Undetectable attack) For the descriptor system (1), the nonzero attack (BKuK , DKuK)

is undetectable if and only if y(x1, uK , t) = y(x2, 0, t) for some initial states x1, x2 ∈ Rn and

for all t ∈ R≥0.

Proof: (If) Let y(x1, uK , t) = y(x2, 0, t). Since monitors are deterministic, the monitor inputs

y1(t) = y(x1, uK , t) and y2(t) = y(x2, 0, t) yield the same output {ψ1, ψ2}. Since monitors are

consistent, we have ψ1 = False for the input y2. Hence, ψ1 = False also for the input y1, and

the attack is undetectable.

(Only if) Suppose that y(x1, uK , t) 6= y(x2, 0, t) for every initial states x1 and x2. Then

the attack (BKuK , DKuK) is distinguishable from nominal operating conditions via the system

output. Hence, the attack is detectable. See Section IV for a complete detection monitor.

Analogous to detectability, the identifiability of an attack is the possibility to distinguish from

measurements between the action of two distinct attacks. We measure the strength of an attack

through the cardinality of the corresponding attack set. Since an attacker can independently

compromise any state variable or measurement, every subset of the states and measurements of

fixed cardinality is a potential attack set.

Lemma 3.2: (Unidentifiable attack) For the descriptor system (1), the nonzero attack (BKuK , DKuK)

is unidentifiable if and only if y(x1, uK , t) = y(x2, uR, t) for some initial states x1, x2 ∈ Rn,

attack (BRuR, DRuR) with |R| ≤ |K| and R 6= K, and for all t ∈ R≥0.

A proof of Lemma 3.2 follows the same reasoning as the proof of Lemma 3.1. We now

elaborate on the above lemmas to derive fundamental detection and identification limitations.

For a vector x ∈ Rn, let supp(x) = {i ∈ {1, . . . , n} : xi 6= 0}, and let ‖x‖`0 = |supp(x)| denote

the number of non-zero entries.



Theorem 3.3: (Detectability of cyber-physical attacks) For the descriptor system (1) and an

attack set K, the following statements are equivalent:

(i) the attack set K is undetectable; and

(ii) there exist s ∈ C, g ∈ R|K|, and x ∈ Rn, with x 6= 0, such that (sE − A)x − BKg = 0

and Cx+DKg = 0.

Moreover, there exists an undetectable attack set K, with |K| = k, if and only if there exist

s ∈ C and x ∈ Rn such that ‖(sE − A)x‖0 + ‖Cx‖0 = k.

Proof: By Lemma 3.1 and linearity of system (1), the attack uK is undetectable if and only

if there exists x0 such that y(x0, uK , t) = 0 for all t ∈ R≥0, that is, if and only if system (1)

features zero dynamics. For a linear descriptor system with smooth input and consistent initial

condition, the existence of zero dynamics is equivalent to the existence of invariant zeros as

in (ii), see [28, Theorem 3.2 and Proposition 3.4]. The equivalence of statements (i) and (ii)

follows. The last statement follows from (ii), and the fact that B = [I, 0] and D = [0, I].

Following Theorem 3.3, an attack (BKuK , DKuK) is undetectable if it excites only zero

dynamics for the dynamical system (1). Moreover, the existence of undetectable attacks for the

attack set K is equivalent to the existence of invariant zeros for the system (E,A,BK , C,DK).

For the notions of zero dynamics and invariant zeros we refer the reader to [25], [28]. The

following theorem shows that analogous statements hold for the identifiability of attacks.

Theorem 3.4: (Identifiability of cyber-physical attacks) For the descriptor system (1) and an

attack set K, the following statements are equivalent:

(i) the attack set K is unidentifiable; and

(ii) there exists an attack set R, with |R| ≤ |K| and R 6= K, s ∈ C, gK ∈ R|K|, gR ∈ R|R|, and

x ∈ Rn, with x 6= 0, such that (sE−A)x−BKgK−BRgR = 0 and Cx+DKgK+DRgR = 0.

Moreover, there exists an unidentifiable attack set K, with |K| = k ∈ N0, if and only if there

exists an undetectable attack set K̄, with |K̄| ≤ 2k.

Proof: Due to linearity of the system (1), the unidentifiability condition in Lemma 3.2 is

equivalent to the condition y(xK − xR, uK − uR, t) = 0, for some initial conditions xK , xR, and

attack signals uK , uR. The equivalence between statements (i) and (ii) follows analogously to

the proof of Theorem 3.3. Finally, the last statement follows from Theorem 3.3, and the fact

that B = [I, 0] and D = [0, I].



Theorem 3.4 shows that the existence of an unidentifiable attack set K of cardinality k is

equivalent to the existence of invariant zeros for the system (E,A,BK̄ , C,DK̄), with |K̄| ≤ 2k.

Remark 3: (Static and active monitors, and noisy dynamics) A particular monitor is the

so-called static monitor which verifies the consistency of the measurements without knowledge

of the system dynamics and without exploiting relations among measurements taken at discrete

time instants. For instance, the bad data detector in [9], [37] is a static monitor. Then, an attack

(BKuK , DKuK) is undetectable by a static monitor if and only if, for some state trajectory

x : R≥0 → Rn and for all times t ∈ N it holds Cx(t) + DKuK(t) = 0. Note that state attacks

are undetectable by static monitors [17].

An active monitor injects an auxiliary input (Bv,Dv) to reveals attacks [11]. Since auxiliary

inputs do not alter the invariant zeros of system (1), active monitors share the same fundamental

limitations of our monitors.

An analogous reasoning shows that the existence of undetectable attacks for a noise-free

system implies the existence of undetectable attacks for the same system driven by noise. The

converse does not hold, since attackers may remain undetected by injecting a signal compatible

with the noise statistics. �

Remark 4: (Inconsistent initial conditions and impulsive attacks) If the consistency assump-

tion (A2) is dropped, then discontinuities in the state x(t ↓ 0) may affect the measurements

y(t ↓ 0). For instance, for index-one systems, inconsistent initial conditions lead to initial

jumps for the algebraic equations to be satisfied. Consequently, the inconsistent initial value

[0T x2(0)T]T ∈ Ker(E) cannot be recovered through measurements.

Assumption (A3) requires the attack signal to be sufficiently smooth such that x(t) and y(t)

are at least continuous. Suppose that assumption (A3) is dropped and the input u(t) belongs to

the class of impulsive smooth distributions Cimp = Csmooth ∪ Cp-imp, that is, loosely speaking, the

class of functions given by the linear combination of a smooth function on R≥0 (denoted by

Csmooth) and Dirac impulses and their derivatives at t = 0 (denoted by Cp-imp) [28]. In this case,

an attacker commanding an impulsive input can reset the initial state and evade detection.

The discussion in the previous two paragraphs can be formalized as follows. Let Vc be the

subspace of points x0 ∈ Rn of consistent initial conditions for which there exists an input

u ∈ Cmsmooth and a state trajectory x ∈ Cnsmooth to the descriptor system (1) such that y(t) = 0

for all t ∈ R≥0. Let Vd (respectively W) be the subspace of points x0 ∈ Rn for which there



exists an input u ∈ Cn+p
imp (respectively u ∈ Cn+p

p-imp) and a state trajectory x ∈ Cnimp (respectively

x ∈ Cnp-imp) to the descriptor system (1) such that y(t) = 0 for all t ∈ R≥0. From [28, Theorem

3.2 and Proposition 3.4] it is known that Vd = Vc +W + Ker(E).

In this work we focus on the smooth output-nulling subspace Vc, which is exactly space of

zero dynamics identified in Theorems 3.3 and 3.4. Hence, for inconsistent initial conditions, the

results presented in this section are valid only for strictly positive times. On the other hand, if

an attacker injects impulsive signals, then it can avoid detection for initial conditions in W . �

B. Graph-theoretic monitoring limitations

In this section we derive detectability conditions based upon a connectivity property of a graph

associated with the dynamical system. For the ease of notation, in this subsection we drop the

subscript K from BK , DK , and uK . Let ([E], [A], [B], [C], [D]) be the tuple of structure matrices

associated with the system (1) [27]. We associate a directed input/state/output graph Giso = (V , E)

with ([E],[A],[B],[C],[D]). The vertex set V = U ∪ X ∪ Y consists of input, state, and output

vertices given by U = {u1, . . . , um}, X = {x1, . . . , xn}, and Y = {y1, . . . , yp}, respectively. The

set of directed edges E is E[E] ∪ E[A] ∪ E[B] ∪ E[C] ∪ E[D], where E[E] = {(xj, xi) : [E]ij 6= 0},
E[A] = {(xj, xi) : [A]ij 6= 0}, E[B] = {(uj, xi) : [B]ij 6= 0}, E[C] = {(xj, yi) : [C]ij 6= 0}, and

E[D] = {(uj, yi) : [D]ij 6= 0}. In the latter, the expression [E]ij 6= 0 means that the (i, j)-th

entry of [E] is a free parameter. For the graph Giso, a set of l mutually disjoint and simple paths

between two sets of vertices S1, S2 is called linking of size l from S1 to S2. Finally, the matrix

s[E]−[A] is structurally non-degenerate if the determinant |sE−A| 6= 0 for a generic realization

of E and A, that is, |sE −A| 6= 0 holds in the whole parameter space of elements of E and A

with exception of a low dimensional variety [24], [38].

Example 1: (Power network structural analysis) Consider the power network illustrated in

Fig. 2(a), where, being ei the i-th canonical vector, we take [E] = blkdiag(1, 1, 1,M1,M2,M3, 0, 0, 0, 0, 0, 0),

[B] = [e8 e9], [C] = [e1 e4]T, [D] = 0, and [A] equal to



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
a4,1 0 0 a4,4 0 0 a4,7 0 0 0 0 0

0 a5,2 0 0 a5,5 0 0 a5,8 0 0 0 0
0 0 a6,3 0 0 a6,6 0 0 a6,9 0 0 0
a7,1 0 0 0 0 0 a7,7 0 0 a7,10 a7,11 0

0 a8,2 0 0 0 0 0 a8,8 0 a8,10 0 a8,12
0 0 a9,3 0 0 0 0 0 a9,9 0 a9,11 a9,12
0 0 0 0 0 0 a10,7 a10,8 0 a10,10 0 0
0 0 0 0 0 0 a11,7 0 a11,9 0 a11,11 0
0 0 0 0 0 0 0 a12,8 a12,9 0 0 a12,12



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Fig. 2. Fig. 2(a) shows the WSSC power system with 3 generators and 6 buses. The numerical value of the network

parameters can be found in [30]. The digraph associated with the network in Fig. 2(a). The self-loops of the vertices {δ1, δ2, δ3},

{ω1, ω2, ω3}, and {θ1, . . . , θ6} are not drawn. The inputs u1 and u2 affect respectively the bus b4 and the bus b5. The measured

variables are the rotor angle and frequency of the first generator.

The digraph associated with the structure matrices ([E], [A], [B], [C], [D]) is in Fig. 2(b). �

Recall from Lemma 3.1 that an attack u is undetectable if y(x1, u, t) = y(x2, 0, t) for some

initial states x1 and x2. In the following result, we consider the particular case that the system

initial state is known. Hence, an attack u is undetectable if y(x0, u, t) = y(x0, 0, t) for some

initial state x0. Equivalently, the system fails to be left-invertible [25]. We say that the struc-

tured system ([E], [A], [B], [C], [D]) is structurally left-invertible if every admissible realization

(E,A,B,C,D) is left-invertible, with exception, possibly, of a low dimensional variety.

Theorem 3.5: (Structurally undetectable attack) Let the parameters space of the structured

system ([E], [A], [B], [C], [D]) define a polytope in Rd for some d ∈ N0. Assume that s[E]− [A]

is structurally non-degenerate. The system ([E], [A], [B], [C], [D]) is structurally left-invertible if

and only if there exists a linking of size |U| from U to Y .

Theorem 3.5 extends the structural left-invertibility results known for nonsingular systems to

regular descriptor systems, and its proof relies on classical concepts from structural analysis,

algebraic geometry, and graph theory. Additionally, Theorem 3.5 gives a characterization of

structurally undetectable attacks. The following result is useful to prove Theorem 3.5.

Lemma 3.6: (Polytopes and algebraic varieties) Let S ⊆ Rd be a polytope, and let T ⊆ Rd

be an algebraic variety. Then, either the set S ⊆ T , or the set S \ (S ∩ T ) is generic in S.



Proof: Let T ⊆ Rd be the algebraic variety described by the locus of common zeros of

the polynomials {φ1(x), . . . , φt(x)}, with t ∈ N, t < ∞. Then S ⊆ T if and only if every

polynomial φi vanishes identically on S. Suppose that some polynomials, say φi, do not vanish

identically on S. Then, S ∩ T 6= S, and S ∩ T = {x ∈ S : φi(x) = 0} is nowhere dense in

S, since its closure has empty interior [39]. Hence, S ∩ T is a meagre subset of S, and its

complement S \ (S ∩ T ) is a generic subset of S [39].

In Lemma 3.6 interpret the polytope S as the admissible parameters space of a structured

cyber-physical system. Then we have shown that left-invertibility of a cyber-physical system

is a generic property even when the admissible parameters space is a polytope of the whole

parameters space. Consequently, for a structured cyber-physical system, if the initial state is

known, either every admissible realization admits undetectable attacks, or there is no undetectable

attack for every realization, except possibly for those lying on a low dimensional variety.

Proof of Theorem 3.5: Because of Lemma 3.6, we need to show that, if there are |U| disjoint

paths from U to Y , then there exists admissible left-invertible realizations. Conversely, if there are

at most |U|−1 disjoint paths from U to Y , then every admissible realization is not left-invertible.

(If) Let (E,A,B,C,D), with |sE − A| 6= 0, be an admissible realization, and suppose there

exists a linking of size |U| from U to Y . Notice that |Y| ≥ |U|, and select |U| outputs on a

linking of size |U| from U to Y (let C̄ and D̄ be the submatrices of C and D associated with the

smaller set of outputs). Observe that left-invertibility of (E,A,B, C̄, D̄) implies left-invertibility

of (E,A,B,C,D). For the left-invertibility of (E,A,B, C̄, D̄) we need
∣∣∣∣∣∣


sE − A −B

C̄ D̄



∣∣∣∣∣∣

= |sE − A|
∣∣D̄ + C̄(sE − A)−1B

∣∣ 6= 0,

and hence we need
∣∣D̄ + C̄(sE − A)−1B

∣∣ 6= 0. Notice that D̄ + C̄(sE − A)−1B corresponds

to the transfer matrix of the cyber-physical system. Since there are |U| independent paths from

U to Y , the matrix D̄ + C̄(sE − A)−1B can be made nonsingular and diagonal by removing

some connection lines from the network. In particular, for a given linking of size |U| from

U to Y , a nonsingular and diagonal transfer matrix is obtained by setting to zero the entries

of E and A corresponding to the edges not in the linking. Then there exist admissible left-

invertible realizations, and thus the systems ([E], [A], [D], [C̄], [D̄]) and ([E], [A], [D], [C], [D])

are structurally left-invertible.



(Only if) Take any subset of |U| output vertices, and let the maximum size of a linking from

U to Y be smaller than |U|. Let [Ē] and [Ā] be such that s[Ē] − [Ā] =
[
s[E]−[A] [B]

[C̄] [D̄]

]
, where

[C̄] and [D̄] are the structured output matrices corresponding to the chosen |U| output vertices.

Consider the graph G(s[Ē] − [Ā]), that consists of N = |X | + |U| vertices, and an edge from

vertex j to i if Āij 6= 0 or Ēij 6= 0. Notice that a path from U to Y in the digraph associated with

the structured system corresponds, possibly after relabeling the output variables, to a cycle in

involving input/output vertices in G(s[Ē]−[Ā]). Observe that there are only |U|−1 such (disjoint)

cycles. Hence, there is no cycle family of length N , and the system ([E], [A], [B], [C̄], [D̄]) fails

to be structurally left-invertible [40, Theorem 1]. Since the same reasoning holds for every set

of |U| output vertices, every realization of the pencil
[
s[E]−[A] [B]

[C] [D]

]
has no invertible minor of

size N , and the claimed statement follows.

If the system initial state is unknown, then an undetectable attack u is characterized by

the existence of a pair of initial conditions x1 and x2 such that y(x1, 0, t) = y(x2, u, t), or,

equivalently, by the existence of invariant zeros for the given cyber-physical system. We will

now show that, provided that a cyber-physical system is left-invertible, its invariant zeros can be

computed by simply looking at an associated nonsingular state space system. Let the state vector

x of the descriptor system (1) be partitioned as [xT1 x
T
2 ]T, where x1 corresponds to the dynamic

variables. Let the network matrices E, A, B, C, and D be partitioned accordingly, and assume

that the descriptor system (1) is given in semi-explicit form, that is, E = blkdiag(E11, 0), where

E11 is nonsingular.2 In this case, the descriptor system (1) reads as

E11ẋ1(t) = A11x1(t) +B1u(t) + A12x2(t) ,

0 = A21x1(t) + A22x2(t) +B2u(t) ,

y(t) = C1x1(t) + C2x2(t) +Du(t) .

(3)

Consider now the associated nonsingular state space system which is obtained by regarding x2(t)

as an external input to the descriptor system (3) and the algebraic constraint as output:

ẋ1(t) = E−1
11 A11x1(t) + E−1

11 B1u(t) + E−1
11 A12x2(t),

ỹ(t) =


A21

C1


x1(t) +


A22 B2

C2 D




x2(t)

u(t)


 .

(4)

2Interesting cyber-physical systems, such as power and mass-transport networks (2), are readily given in semi-explicit form.



Theorem 3.7: (Equivalence of invariant zeros) Consider the structurally left-invertible system

([E], [A], [B], [C], [D]). The invariant zeros of every admissible realization (3) coincide with

those of the associated nonsingular system (4), except, possibly, for realizations lying on a low

dimensional variety of the parameters space.

Proof: In the interest of space we omit the proof, which follows from Theorem 3.5, [41,

Proposition 8.4] and a manipulation of the system pencil.

Following Theorem 3.7, under the assumption of structural left-invertibility, classical results

can be used to investigate the presence of undetectable attacks in structured system with unknown

initial state; see [38] for a survey of results on generic properties of linear systems.

IV. MONITOR DESIGN FOR ATTACK DETECTION AND IDENTIFICATION

We now design centralized and distributed filters for attack detection and identification.

A. Centralized attack detection

The output of the attack detection filters developed in this subsection will be a residual signal

r : R≥0 → Rp. If each monitor is equipped with such an attack detection filter and if the attack

is detectable, then the outputs of the monitor and the filter are related as follows: ψ1 = True if

and only if r(t) = 0 for all t ∈ R≥0. We next present a centralized attack detection filter based

on a modified Luenberger observer.

Theorem 4.1: (Centralized attack detection filter) Consider the descriptor system (1) and

assume that the attack set K is detectable, and that the network initial state x(0) is known.

Consider the centralized attack detection filter

Eẇ(t) = (A+GC)w(t)−Gy(t),

r(t) = Cw(t)− y(t),
(5)

where w(0) = x(0) and the output injection matrix G ∈ Rn×p is such that the pair (E,A+GC)

is regular and Hurwitz.3 Then r(t) = 0 at all times t ∈ R≥0 if and only if uK(t) = 0 at all times

t ∈ R≥0. Moreover, in the absence of attacks, the filter error w − x is exponentially stable.

3For a regular pair (E,A), let σ(E,A) = {λ : λ ∈ C, |λ| <∞, |λE−A| = 0}. The pair (E,A) is Hurwitz if real(λ) < 0

for each λ ∈ σ(E,A).



Proof: Consider the error e = w−x between the filter (5) and system (1). The error system

with output r(t) is

Eė(t) = (A+GC)e(t)− (BK +GDK)uK(t),

r(t) = Ce(t)−DKuK(t),
(6)

where e(0) = 0. To prove the theorem we show that the error system (6) has no invariant zeros,

that is, r(t) = 0 for all t ∈ R≥0 if and only if uK(t) = 0 for all t ∈ R≥0. Since the initial

condition x(0) and the input uK are assumed to be consistent (A2) and non-impulsive (A3), the

error system (6) has no invariant zeros if and only if [28, Proposition 3.4] there exists no triple

(s, w̄, gK) ∈ C× Rn × Rp satisfying
sE − (A+GC) BK +GDK

C −DK




 w̄
gK


 =


0

0


 . (7)

The second equation of (7) yields Cw̄ = DKgK . By substituting Cw̄ by DKgK in the first

equation of (7), we obtain 
sE − A BK

C −DK




 w̄
gK


 =


0

0


 . (8)

Note that a solution (s,−w̄, gK) to (8) would yield an invariant zero, zero state, and zero input

for the descriptor system (1). By the detectability assumption, the descriptor system (1) has no

invariant zeros and the matrix pencil in (8) necessarily has full rank. It follows that the triple

(E,A,C) is observable, G can be chosen to make the pair (E,A+GC) Hurwitz [42], and the

error system (6) is stable without zero dynamics.

Notice that, if the initial state x(0) is not available, then, an arbitrary initial state w(0) ∈ Rn

can be chosen. In this case, since (E,A+GC) is Hurwitz, the filter (5) converges asymptotically,

and some attacks may remain undetected. Also, if the dynamics and the measurements of (1)

are affected by modeling uncertainties and noise with known statistics, then the output injection

matrix G should be chosen to optimize the sensitivity of the residual r to attacks versus the

effect of noise. Statistical testing techniques can [7] subsequently be used to analyze the residual

r. Finally, attacks aligned with the noise statistics may remain undetected.

B. Distributed attack detection

Notice that a direct implementation of the filter (5) requires continuous communication of

measurements to a central processor, which needs to integrate the possibly large-scale system
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Fig. 3. Partition of IEEE 118 bus system into 5 areas. Each area is monitored and operated by a control center. These control

centers cooperate to estimate the state and to assess the functionality of the whole network.

(5). In what follows, we will exploit the sparsity of the filter matrices (E,A,C) to develop a

distributed detection filter.

Assume that control centers are geographically deployed in a large scale cyber-physical system

to operate the whole plant via distributed computation; see Fig. 3. Let Gs = (V , E) be the directed

sparsity graph associated with the pair (E,A), where the vertex set V = X corresponds to the

system state, and the set of directed edges E = {(xj, xi) : eij 6= 0 or aij 6= 0} is induced by the

sparsity pattern of E and A. Let V be partitioned into N disjoint subsets as V = V1 ∪ · · · ∪ VN ,

with |Vi| = ni, and let Gis = (Vi, Ei) be the i-th subgraph of Gs with vertices Vi and edges

Ei = E ∩ (Vi × Vi). According to this partition, and possibly after relabeling the states, the

system matrix A in (1) can be written as

A =




A1 · · · A1N

...
...

...

AN1 · · · AN


 = AD + AC ,

where Ai ∈ Rni×ni , Aij ∈ Rni×nj , and AD = blkdiag(A1, . . . , AN). We make the following

assumptions:

(A4) the matrices E, C are block-diagonal, that is, E = blkdiag(E1, . . . , EN), C = blkdiag(C1, . . . , CN),

where Ei ∈ Rni×ni and Ci ∈ Rpi×ni; and

(A5) each pair (Ei, Ai) is regular, and each triple (Ei, Ai, Ci) is observable.



Given the above structure and in the absence of attacks, the descriptor system (1) can be written

as the interconnection of N subsystems of the form

Eiẋi(t) = Aixi(t) +
∑

j∈N in
i

Aijxj(t),

yi(t) = Cixi(t), i ∈ {1, . . . , N},
(9)

where xi and yi are the state and output of the i-th subsystem and N in
i = {j ∈ {1, . . . , N} \ i :

‖Aij‖ 6= 0} are the in-neighbors of subsystem i. We also define the set of out-neighbors as

N out
i = {j ∈ {1, . . . , N} \ i : ‖Aji‖ 6= 0}. We assume the presence of a control center in each

subnetwork Gis with the following capabilities:

(A6) the i-th control center knows the matrices Ei, Ai, Ci, as well as the neighboring matrices

Aij , j ∈ N in
i ; and

(A7) the i-th control center can transmit an estimate of its state to the j-th control center if

j ∈ N out
i .

Before presenting our distributed attack detection filter, we need the following result on a

decentrally stabilized filter.

Lemma 4.2: (Decentralized stabilization of the attack detection filter) Consider the descriptor

system (1), and assume that the attack set K is detectable and that the network initial state x(0)

is known. Consider the attack detection filter

Eẇ(t) = (AD +GC)w(t) + ACw(t)−Gy(t) ,

r(t) = y(t)− Cw(t) . (10)

where w(0) = x(0) and G = blkdiag(G1, . . . , GN) is such that (E,AD + GC) is regular and

Hurwitz. Assume that

ρ
(
(jωE − AD −GC)−1AC

)
< 1 for all ω ∈ R , (11)

where ρ(·) denotes the spectral radius operator. Then r(t) = 0 at all times t ∈ R≥0 if and only if

uK(t) = 0 at all times t ∈ R≥0. Moreover, in the absence of attacks, the filter error w(t)− x(t)

is exponentially stable.

Proof: The error e(t) = w(t)− x(t) obeys the dynamics

Eė(t) = (AD + AC +GC)e(t)− (BK +GDK)uK(t),

r(t) = Ce(t)−DKuK(t) . (12)



A reasoning analogous to that in the proof of Theorem 4.1 shows the absence of zero dynamics.

Hence, for r(t) = 0 at all times t ∈ R≥0 if and only if uK(t) = 0 at all times t ∈ R≥0.

To show stability of the error dynamics in the absence of attacks, we employ the small-

gain approach to large-scale systems and rewrite the error dynamics (12) as the closed-loop

interconnection of the two subsystems Γ1 : Eė(t) = (AD + GC)e(t) + v(t) and Γ2 : v(t) =

ACe(t). When regarded as input-output systems with respective input/output pairs (v, e) and

(e, v), both Γ1 and Γ2 are causal and internally stable. Hence, by [43, Theorem 4.11], the overall

error dynamics (12) are stable if the loop transfer function Γ1(jω) ·Γ2 satisfies the spectral radius

condition ρ(Γ1(jω) · Γ2) < 1 for all ω ∈ R. The latter condition is equivalent to (11).

An implementation of the decentrally stabilized filter (10) under assumptions (A1)-(A7) re-

quires the input ACw and hence continuous communication among control centers. To overcome

this continuous communication obstacle we rely on waveform relaxation methods [44], [45]

developed for parallel numerical integration. The Gauss-Jacobi waveform relaxation applied to

the filter (10) yields the waveform relaxation iteration

Eẇ(k)(t) = (AD +GC)w(k)(t) + ACw
(k−1)(t)−Gy(t), (13)

where k ∈ N denotes the iteration index, t ∈ [0, T ] is the integration interval for some uniform

time horizon T > 0, and w(k) : [0, T ]→ Rn is a trajectory with initial condition w(k)(0) = w0 for

each k ∈ N. Notice that (13) is a descriptor system with state w(k), and known input ACw(k−1),

since the value of w(t) at iteration k − 1 is used. The iteration (13) is initialized with an initial

profile w(0) : [0, T ]→ Rn.

The iteration (13) is said to be (uniformly) convergent if

lim
k→∞

max
t∈[0,T ]

∥∥w(k)(t)− w(t)
∥∥
∞ = 0 , (14)

where w is the solution of the non-iterative dynamics (10). In order to obtain a distributed

detection scheme, we use the waveform relaxation iteration (13) to iteratively approximate the

decentralized filter (10).

Theorem 4.3: (Distributed attack detection filter) Consider the descriptor system (1) and

assume that the attack set K is detectable, and that the network initial state x(0) is known.

Let the assumptions (A1) through (A7) be satisfied and consider the distributed attack detection



filter

Eẇ(k)(t) =
(
AD +GC

)
w(k)(t) + ACw

(k−1)(t)−Gy(t),

r(k)(t) = y(t)− Cw(k)(t), (15)

where k ∈ N, t ∈ [0, T ] for some T > 0, w(k)(0) = x(0) for all k ∈ N, and G = blkdiag(G1, . . . , GN)

is such that the pair (E,AD +GC) is regular, Hurwitz, and

ρ
(
(jωE − AD −GC)−1AC

)
< 1 for all ω ∈ R . (16)

Then limk→∞ ‖r(k)(t)‖∞ = 0 at all times t ∈ [0, T ] if and only if uK(t) = 0 at all times

t ∈ [0, T ]. Moreover, in the absence of attacks, the asymptotic filter error limk→∞(w(k)(t)−x(t))

is exponentially stable for t ∈ [0, T ].

Proof: Since w(k)(0) = x(0), it follows from [45, Theorem 5.2] that the solution w(k) of

the iteration (15) converges, as k →∞, to the solution w of (10) if

ρ
(
((σ + jω)E − AD −GC)−1AC

)
< 1 for all ω ∈R, (17)

where σ = max{α, β}, α is the least upper bound on the real part of the spectrum of (E,A),

and β is such that the signal f : [0, T ] → R, f(t) = y(t)e−βt, and all its derivatives exist and

are bounded. Since the pair (E,AD + GC) is Hurwitz and y is smooth by assumptions (A2)

and (A3), we have that σ ≤ 0, and the convergence condition (17) equals condition (16).

Hence, we have uniform convergence (in the sense of (14)) of the solution and output
(
w(k), r(k)

)
of the distributed filter (15) to the solution and output

(
w, r

)
of the decentrally stabi-

lized filter. Due to the detectability assumption, it follows from Lemma 4.2 that limk→∞ ‖r(k)(t)‖∞ =

0 at all times t ∈ [0, T ] if and only if uK(t) = 0 at all times t ∈ [0, T ].

Under condition (16) and due to the Hurwitz assumption, it follows from Lemma 4.2 that the

error e = w− x between the state w of the decentralized filter dynamics (10) and the state x of

the descriptor model (1) is asymptotically stable in the absence of attacks. This concludes the

proof of Theorem 4.3.

The waveform relaxation iteration (13) can be implemented in the following distributed

fashion. Assume that control center i is able to numerically integrate the descriptor system

Eiẇ
(k)
i (t) = (Ai +GiCi)w

(k)
i (t) +

∑
j∈N in

i

Aijw
(k−1)
j (t)−Giyi(t), (18)



over a time interval t ∈ [0, T ], with initial condition w
(k)
i (0) = wi,0, measurements yi, and the

neighboring filter states w(k−1)
j as external inputs. Let w(0)

j be an initial guess of the signal wj .

Each control center performs the following operations assuming k = 0 at start:

(1) set k := k + 1, and compute the signal w(k)
i by integrating the local filter equation (18);

(2) transmit w(k)
i to the j-th control center if j ∈ N out

i ;

(3) update the input w(k)
j with the signal received from the j-th control center, with j ∈ N in

i ,

and iterate.

Following Theorem 4.3, for k sufficiently large, the local residuals r(k)
i = yi − Ciw(k)

i can be

used to detect attacks. A related large-scale example is given in Section V-C.

Remark 5: (Implementation of distributed attack detection filter) When implementing the

distributed attack detection filter (15) in the interval [0, T ], control center i needs to transmit

the signal w(k)
i (t) with t ∈ [0, T ] at each iteration k. In practice, only an approximation or a

finite basis representation ŵ
(k)
i (t) can be transmitted. The error due to this approximation can

be characterized, and we refer the reader to [46]. �

C. Complexity of the attack identification problem

In this subsection we study the problem of attack identification, that is, the problem of

identifying from measurements the state and output variables corrupted by the attacker. We

start our discussion by showing that this problem is generally NP-hard. For a vector-valued

signal v : R≥0 → Rn, let ‖v‖L0 = | ∪t∈R≥0
supp(v(t))|, and consider the following cardinality

minimization problem: given a descriptor system with matrices E,A ∈ Rn×n and C ∈ Rp×n and

a measurement signal y : R≥0 → Rp, find the minimum cardinality input signals vx : R≥0 → Rn

and vy : R≥0 → Rp and an arbitrary initial condition ξ0 ∈ Rn that explain the data y, that is,

min
vx, vy , ξ0

‖vx‖L0 + ‖vy‖L0

subject to Eξ̇(t) = Aξ(t) + vx(t),

y(t) = Cξ(t) + vy(t),

ξ(0) = ξ0 ∈ Rn .

(19)

Lemma 4.4: (Problem equivalence) Consider the system (1) with identifiable attack set K.

The optimization problem (19) coincides with the problem of identifying the attack set K given

the system matrices E, A, C, and the measurements y, where K = supp([vTx v
T
y ]).



Proof: Due to the identifiability of K, the attack identification problem consists of finding

the smallest attack set capable of injecting an attack (BKuK , DKuK) that generates the given

measurements y for the given dynamics E, A, C, and some initial condition; see Lemma 3.2.

The statement follows since B = [I, 0] and D = [0, I] in (1), so that (BKuK , DKuK) = (vx, vy).

As it turns out, the optimization problem (19), or equivalently our identification problem, is

generally NP-hard [47].

Corollary 4.5: (Complexity of the attack identification problem) Consider the system (1)

with identifiable attack set K. The attack identification problem given the system matrices E,

A, C, and the measurements y is NP-hard.

Proof: Consider the NP-hard [48] sparse recovery problem minξ̄∈Rn ‖ȳ−C̄ξ̄‖`0 , where C̄ ∈ Rp×n

and ȳ ∈ Rp are given and constant. In order to prove the claimed statement, we show that every

instance of the sparse recovery problem can be cast as an instance of (19). Let E = I , A = 0,

C = C̄, and y(t) = ȳ at all times. Notice that vy(t) = ȳ − Cξ(t) and ξ(t) = ξ(0) +
∫ t

0
vx(τ)dτ .

The problem (19) can be written as

min
vx, ξ
‖vx‖L0 + ‖ȳ − C̄ξ(t)‖L0 = min

vx(t), ξ̄
‖vx(t)‖L0 + ‖ȳ − C̄ξ̄ − C̄

∫ t

0

vx(τ)dτ‖L0 , (20)

where ξ̄ = ξ(0). Notice that there exists a minimizer to problem (20) with vx(t) = 0 for

all t. Indeed, since ‖ȳ − C̄ξ̄ − C̄
∫ t

0
vx(τ)dτ‖L0 = | ∪t∈R≥0

supp(ȳ − C̄ξ̄ − C̄
∫ t

0
vx(τ)dτ)| ≥

|supp(ȳ − C̄ξ̄ − C̄
∫ 0

0
vx(τ)dτ)| = ‖ȳ − C̄ξ̄‖`0 , problem (20) can be equivalently written as

minξ̄ ‖ȳ − C̄ξ̄‖`0 .

By Corollary 4.5 the general attack identification problem is combinatorial in nature, and its

general solution will require substantial computational effort. In the next subsection we propose

a complete identification algorithm.

D. Centralized attack identification

The identification of the attack set K requires a combinatorial procedure, since, a priori, K is

one of the
(
n+p
|K|

)
possible attack sets. The following centralized attack identification procedure

consists of designing a residual filter to determine whether a predefined set coincides with the

attack set. Analogously to the attack detection filter developed in Subsections IV-A and IV-B, the



output of the attack identification filter for the attack set K will be a residual signal rK . If each

monitor is equipped with such an attack identification filter and if the attack K is identifiable,

then the outputs of the monitor and the filter are related as follows: ψ2 = K if and only if

rK(t) = 0 for all t ∈ R≥0.

The design of this residual filter consists of three steps – an input output transformation,

a state transformation, and an output injection and definition of a specific residual. We start

by showing that the identification problem can be carried out for a modified system without

corrupted measurements.

Lemma 4.6: (Attack identification with safe measurements) Consider the descriptor system

(1) with attack set K. The attack set K is identifiable for the descriptor system (1) if and only

if it is identifiable for the following descriptor system without corrupted measurements:

Eẋ(t) = (A−BKD
†
KC)x(t) +BK(I −D†KDK)uK(t),

ỹ(t) = (I −DKD
†
K)Cx(t). (21)

Proof: Due to the identifiability hypothesis, there exists no attack set R with |R| ≤ |K|
and R 6= K, s ∈ C, gK ∈ R|K|, gR ∈ R|R|, and x ∈ Rn \ {0} such that




sE − A −BK −BR

C DK DR

C DK DR







x

gK

gR


 =




0

0

0


 , (22)

where we added an additional (redundant) output equation (see Theorem 3.4). A multiplication

of equation (22) from the left by the projectors blkdiag
(
I , DKD

†
K , (I −DKD

†
K)
)

yields



sE − A −BK −BR

DKD
†
KC DK DKD

†
KDR

(I −DKD
†
K)C 0 (I −DKD

†
K)DR







x

gK

gR


=




0

0

0


 .

The variable gK can be eliminated in the first redundant (corrupted) output equation according

to

gK = −D†KCx−D†KDRgR + (I −D†KDK)gK .

Thus, P (s)[xT gTK gTR]T = 0 has no solution, where P (s) is
[
sE −A + BKD†

KC −BK(I −D†
KDK) −BR + BKD†

KDR

(I −DKD†
K)C 0 (I −DKD†

K)DR

]



The statement follows.

The second design step of our attack identification monitor relies on the concept of condi-

tioned invariant subspace. We refer to [24], [25], [28], [49] for a comprehensive discussion

of geometric control theory. Let S∗ be the conditioned invariant subspace associated with the

system (E,A,B,C,D), that is, the smallest subspace of the state space satisfying

[
A B

]



E

−1S∗

Rm


 ∩Ker

[
C D

]

 ⊆ S∗, (23)

and let L be an output injection matrix satisfying

[
A+ LC B + LD

]

E

−1S∗

Rm


 ⊆ S∗. (24)

Notice that the conditioned invariant S∗ and an output injection L satisfying (23) and (24)

always exist (for instance, take S∗ = Rn). We transform the descriptor system (21) into a set of

canonical coordinates representing S∗ and its orthogonal complement. For a nonsingular system

(E = I) such an equivalent state representation can be achieved by a nonsingular transformation

of the form Q−1(sI −A)Q. However, for a singular system different transformations need to be

applied in the domain and codomain such as PT(sE − A)Q for nonsingular P and Q.

Lemma 4.7: (Input decoupled system representation) For system (21), let S∗ and L be as

in (23) and (24), respectively. Define the unitary matrices P =
[
Basis(S∗) Basis((S∗)⊥)

]
and

Q =
[
Basis(E−1S∗) Basis((E−1S∗)⊥)

]
. Then

PTEQ=


Ẽ11 Ẽ12

0 Ẽ22


 , PTBK(I −D†

KDK)=


B̃K(t)

0


 , PT(A−BKD†

KC + LC)Q=


Ã11 Ã12

0 Ã22


 ,

(I −DKD†
K)C)Q=

[
C̃1 C̃2

]
.

The attack set K is identifiable for the descriptor system (1) if and only if it is identifiable for

the descriptor system

Ẽ11 Ẽ12

0 Ẽ22




ẋ1(t)

ẋ2(t)


 =


Ã11 Ã12

0 Ã22




x1(t)

x2(t)


+


B̃K(t)

0


 ,

y(t) =
[
C̃1 C̃2

]

x1(t)

x2(t)


 . (25)



Proof: Let L = E−1S∗ and M = S∗. Notice that (A+LC)E−1S∗ ⊆ S∗ by the invariance

property of S∗ [28], [49]. It follows that L and M are a pair of right deflating subspaces for

the matrix pair (A+LC,E) [50], that is, M = AL+EL and dim(M) ≤ dim(L). The sparsity

pattern in the descriptor and dynamic matrices Ẽ and Ã of (25) arises by construction of the right

deflating subspaces P and Q [50, Eq. (2.17)], and the sparsity pattern in the input matrix arises

due to the invariance properties of S∗ containing Im(BK). The statement follows because the

output injection L, the coordinate change x 7→ Q−1x, and the left-multiplication of the dynamics

by PT does not affect the existence of zero dynamics.

For the ease of notation and without affecting generality, the third and final design step of

our attack identification filter is presented for the pre-conditioned system (25).

Theorem 4.8: (Attack identification for attack set K) Consider the preconditioned system (25)

associated with the descriptor system (1). Assume that the attack set is identifiable, the network

initial state x(0) is known, and the assumptions (A1) through (A3) are satisfied. Consider the

attack identification filter for the attack signature (BK , DK)

Ẽ22ẇ2(t) = (Ã22 + G̃(I − C̃1C̃
†
1)C̃2)w2(t)− G̃ȳ(t),

rK(t) = (I − C̃1C̃
†
1)C̃2w2(t)− ȳ(t), with ȳ(t) = (I − C̃1C̃

†
1)y(t),

(26)

where w2(0) = x2(0), and G̃ is such that (Ẽ22, Ã22+G̃(I−C̃1C̃
†
1)C̃2) is Hurwitz. Then rK(t) = 0

for all times t ∈ R≥0 if and only if K coincides with the attack set.

Proof: Let w(t) = [w1(t)T w2(t)T]T, where w1(t) obeys

Ẽ11ẇ1(t) + Ẽ12ẇ2(t) = Ã11w1(t) + Ã12w2(t).

Consider the filter error e(t) = w(t)− x(t), and notice that

Ẽ11 Ẽ12

0 E22




ė1(t)

ė2(t)


 =


Ã11 Ã12

0 Ā22




e1(t)

e2(t)


−


B̃K

0


uK(t),

rK(t) = (I − C̃1C̃
†
1)C̃2e2(t),

where Ā22 = Ã22 + G̃(I − C̃1C̃
†
1)C̃2. Notice that rK(t) is not affected by the input uK(t), so

that, since e2(0) = 0 due to w2(0) = x2(0), the residual rK(t) is identically zero when K is the

attack set. In order to prove the theorem we are left to show that for every set R, with |R| ≤ |K|
and R∩K = ∅, every attack mode uR results in a nonzero residual rK . From Theorem 3.4 and



the identifiability hypothesis, for any R 6= K, there exists no solution to




sẼ11 − Ã11 sẼ12 − Ã12 B̃K −BR1

0 sẼ22 − Ā22 0 −BR2

C̃1 C̃2 0 DR







x1

x2

gK

gR




=




0

0

0

0



.

A projection of the equation 0 = C̃1x1 + C̃2x2 +DRgR onto the image of C̃1 and its orthogonal

complement yields



sẼ11 − Ã11 sẼ12 − Ã12 BK −BR1

0 sẼ22 − Ā22 0 −BR2

C̃1 C̃1C̃
†
1C̃2 0 C̃1C̃

†
1DR

0 (I − C̃1C̃
†
1)C̃2 0 (I − C̃1C̃

†
1)DR







x1

x2

gK

gR




=




0

0

0

0



. (27)

Due to the identifiability hypothesis the set of equations (27) features no solution [xT1 x
T
2 g

T
K gTR]T

with [xT1 x
T
2 ]T = 0.

Observe that, for every x2 and gR, there exists x1 ∈ Ker(C̃1)⊥ such that the third equation of

(27) is satisfied. Furthermore, for every x2 and gR, there exist x1 ∈ Ker(C̃1) and gK such that the

first equation of (27) is satisfied. Indeed, since QE−1S∗ = [Im(I) 0]T and PTS∗ = [Im(I) 0]T,

the invariance of S∗ implies that S∗ = A(E−1S∗ ∩Ker(C)) + Im(BK), or equivalently in new

coordinates, Im(I) = Ã11 Ker(C̃1) + Im(B̃K). Finally note that [(sẼ11− Ã11) Ker(C̃1) B̃K ] is of

full row rank due to the controllability of the subspace S∗ [28]. We conclude that there exist no

vectors x2 and gR such that (sẼ22 − Ā22)x2 − BR2gR = 0 and (I − C̃1C̃
†
1)(C̃2x2 + DRgR) = 0

and the statement follows.

The design of the attack identification filter (26) is summarized as follows:

(1) from system (1) define the system (21);

(2) compute S∗ and L for system (21) as in (23) and (24), and apply L, P , and Q as in

Lemma 4.7 leading to system (25);

(3) for system (25), define rK and apply the output injection Ḡ as in (26).

Remark 6: (Literature comparison) Our identification filter extends classical results con-

cerning the design of unknown-input fault detection filters. In particular, our filter generalizes

the construction of [6] to descriptor systems with direct feedthrough matrix. Additionally, we

guarantee the absence of invariant zeros in the residual dynamics. By doing so, our attack

identification filter is sensitive to every identifiable attack strategy. Notice that classical fault
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Fig. 4. In Fig. 4(a), there is no linking of size 2 from the input to the output vertices. Indeed, the vertices θ1 and ω1 belong

to every path from {u1, u2} to {y1, y2}. Two input to output paths are depicted in red. In Fig. 4(b), the velocities ω2 and ω3

are driven unstable by the inputs u1 and u2, which are undetectable from the measurements of ω1 and δ1.

detection filters, for instance those presented in [6], are guaranteed to detect and isolate signals

that do not excite exclusively zero dynamics. Finally, an equivalent attack identification filter for

nonsingular or index-one systems is presented in our previous work [17]. �

Remark 7: (Complexity of centralized identification) Our centralized identification procedure

assumes the knowledge of the cardinality k of the attack set, and it achieves identification by

constructing a residual generator for
(
n+p
k

)
possible attack sets. Thus, our procedure constructs

O(nk) filters. If only an upper bound k̄ on the cardinality of the attack set is available, identifica-

tion can be achieved by constructing
(
n+p
k̄

)
filters, and by intersecting the attack sets generating

zero residuals. In Section IV-C we show that this non-polynomial complexity is inherent to the

identification problem. �

V. ILLUSTRATIVE EXAMPLES

A. An example of state attack against a power network

Consider the power network model analyzed in Example 1 and illustrated in Fig. 2(a). We

consider a load altering attack [18] affecting the power demand Pδ at the load buses 4 and 5.

Assume that the variables θ4 and θ5 are affected by the unknown and unmeasurable signals u1

and u2. Suppose that a monitoring unit measures the state variables of the first generator, that

is, y1 = δ1 and y2 = ω1.

Notice from Fig. 4(a) that the maximum size of a linking from the failure to the output vertices

is 1, so that, by Theorem 3.5, there exists a structural vulnerability. In other words, for every



choice of the network matrices, there exist nonzero u1 and u2 that are not detectable through

the measurements.4

We now consider a numerical realization of this system. Let the input matrices be B = [e8 e9]

and D = [0 0]T, the measurement matrix be C = [e1 e4]T, and the system matrix A be as in

Remark 1 with Mg = blkdiag(.125, .034, .016), Dg = blkdiag(.125, .068, .048), and

L =




.058 0 0 −.058 0 0 0 0 0
0 .063 0 0 −.063 0 0 0 0
0 0 .059 0 0 −.059 0 0 0

−.058 0 0 .235 0 0 −.085 −.092 0
0 −.063 0 0 .296 0 −.161 0 −.072
0 0 −.059 0 0 .330 0 −.170 −.101
0 0 0 −.085 −.161 0 .246 0 0
0 0 0 −.092 0 −.170 0 .262 0
0 0 0 0 −.072 −.101 0 0 .173


 .

Let U1(s) and U2(s) be the Laplace transform of the attack signals u1 and u2, and let

U1(s)

U2(s)


 =



−1.024s4−5.121s3−10.34s2−9.584s−3.531

s4+5s3+9.865s2+9.173s+3.531

1


 Ū(s),

for some arbitrary nonzero signal Ū(s). Then it can be verified that the attack cannot be detected

through the measurements y. In fact, the transfer matrix mapping Ū(s) to U(s) coincides with

the null space of the input/output transfer matrix. An example is in Fig. 4(b), where the second

and the third generator are driven unstable by the attack, but the first generator does not deviate

from its nominal operating condition.

Suppose now that the rotor angle of the first generator and the voltage angle at the 6-th bus

are measured, that is, C = [e1 e12]T. Then, there exists a linking of size 2 from U to Y , and the

system (E,A,B,C) is left-invertible. Following Theorem 3.7, the invariant zeros of the power

network can be computed by looking at its reduced system, and they are −1.6864±1.8070i and

−0.8136±0.2258i. Consequently, if the network state is unknown at the failure time, there exists

vulnerabilities that an attacker may exploit to affect the network while remaining undetected.

Finally, we remark that such state attacks are entirely realizable by cyber attacks [18].

B. An example of output attack against a power network

Consider the IEEE 14 bus power network (Fig. 5) modeled as a descriptor system as in

Section II. Following [9], let the measurements y = Cx be given by the real power injections

at all buses, of the real power flows of all branches, and one generator rotor angle (or one bus

4When these ouput-nulling inputs u1, u2 are regarded as additional loads, then they are entirely sustained by the second and

third generator.
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Fig. 5. For the IEEE 14 bus system in Fig. 5, if the voltage angle of one bus is measured exactly, then a cyber attack against

the measurements data is always detectable by our dynamic detection procedure. In contrary, as shown in [9], a cyber attack

may remain undetected by a static procedure if it compromises as few as four measurements.

angle). We assume that an attacker can compromise all the measurements, independently of each

other, except for one referring to the rotor angle.

Let k ∈ N0 be the cardinality of the attack set. It is known that an attack undetectable to a

static detector exists if k ≥ 4 [9]. In other words, due to the sparsity pattern of C, there exists

a signal uK(t), with (the same) four nonzero entries at all times, such that DuK(t) ∈ Im(C)

at all times. Hence the attack set K remains undetected by a static detector through the attack

input uK . On the other hand, following Theorem 3.3, it can be verified that, for the same output

matrix C, and independent of the value of k, there exists no undetectable (output) attacks for

a dynamic monitor. It should be noticed that this result relies on the fact that the rotor angle

measurement is known to be correct, because, for instance, it is protected using sophisticated

and costly security methods [29]. Since the state of the IEEE 14 bus system can be reconstructed

by means of this measurement only (the system turns out to be observable by measuring one

generator rotor angle), the output attack Du is easily identified as Du = y − Cx̂, where x̂ = x

is the reconstructed system state at time t.

C. An example of distributed detection

The IEEE 118 bus system shown in Fig. 3 is composed of 118 buses and 54 generators, and

its parameters can be found in [51]. Following Section II, a linear continuous-time descriptor

model of the system under attack takes the form (1).
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Fig. 6. Distributed detection of an output attack in the IEEE 118 system: The attacker compromises the measurements of all

generators in area 1 from time 30s with a signal uniformly distributed in the interval [0, 0.5]. The residuals in Fig. 6(a) show

that the attack is correctly detected, because the residual functions do not decay to zero. For the simulation, we run k = 100

iterations of the attack detection method. The plot in Fig. 6(b) represents the error of our waveform relaxation based filter (15)

with respect to the corresponding decentralized filter. As predicted by Theorem 4.3, the error is convergent.

For estimation and detection purposes, we partition the IEEE 118 system into 5 disjoint areas,

we assign a control center to each area, and we implement our detection procedure via the

filter (15); see Fig. 3 for a graphical illustration. Suppose that each control center continuously

measures the angle of the generators in its area, and suppose that an attacker compromises the

measurements of all the generators of the first area. In particular, starting at time 30s, the attacker

comprises all measurements in area 1 by adding a signal uK . It can be verified that the attack set

K is detectable, see Theorem 3.3. According to assumption (A3), the attack signal uK needs to

be continuous to guarantee a continuous state trajectory (since the associated descriptor model

is of index 1). To show the robustness of our detection filter (15), we let uK be discontinuous

and randomly distributed in the interval [0, 0.5] rad.

The control centers implement the distributed attack detection procedure described in (15),

with G = ACT. It can be verified that the pair (E,AD + GC) is Hurwitz stable, and that

ρ (jωE − AD −GC)−1AC) < 1 for all ω ∈ R. As predicted by Theorem 4.3, our distributed

attack detection filter is convergent; see Fig. 6(a). For completeness, in Fig. 6(b) we illustrate

the convergence rate of our waveform relaxation-based filter as a function of the number of

iterations k. Notice that the number of iterations directly reflects the communication complexity
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(b) Linear and noisy system dynamics
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(c) Nonlinear and noisy system dynamics

Fig. 7. In Fig. 7(a) we report our simulation results for the case of linear network dynamics without noise and for the proposed

detection monitor (5) and identification monitor (26), respectively. The state trajectory x consists of the generators angles and

frequencies. The detection residual r becomes nonzero after time 15s, and it reveals the presence of the attack. The identification

residual rK is identically zero even after time 15s, and it reveals that the attack set is K = {101, 102}. The identification residual

rR is nonzero after time 15s, and it reveals that R is not the attack set. In Fig. 7(b) we report our simulation results for the case

of linear network dynamics driven by state and measurements noise. For this case, we choose the output injection matrices of the

detection and identification filters as the corresponding optimal Kalman gain. Due to the presence of noise, the residuals deviate

from their nominal behavior reported in Fig. 7(a). Although the attack is clearly still detectable and identifiable, additional

statistical tools such as hypothesis testing [7] may be adopted to analyze the residuals r, rK , and rR. In Fig. 7(c) we report

our simulation results for the case of nonlinear network dynamics without noise. For this case, the detection and identification

filters are designed for the nominal linearized dynamics with output injection matrices as the corresponding optimal Kalman

gain. Despite the presence of unmodeled nonlinear dynamics, the residuals reflect their nominal behavior reported in Fig. 7(a).

of our detection scheme.

D. An example of detection and identification in the presence of noise and model uncertainties

We apply our centralized attack detection and identification methods to the IEEE RTS96 power

network [52]. In particular, we first consider the nominal case, in which the power network

dynamics evolve as linear time-invariant descriptor system, as described in Section II. Second,

we consider the case of additive state and measurement noise, and we show the robustness of the

attack detection and identification monitors. Third, we consider the case of nonlinear differential-

algebraic power network dynamics and show the effectiveness of our methods in the presence

of unmodeled nonlinear dynamics.

For our numerical studies, we assume the angles and frequencies of every generator to be

measured. Additionally, we let the attacker affect the angles of the generators {101, 102} with



a random signal starting from time 15s. Since the considered power network dynamics are of

index one, the filters are implemented using the nonsingular Kron-reduced system representation

[17]. The results of our simulations are in Fig. 7(a), Fig. 7(b), and Fig. 7(c). In conclusion, our

centralized detection and identification filters appears robust to state and measurements noise

and unmodeled dynamics.

VI. CONCLUSION

For cyber-physical systems modeled by linear time-invariant descriptor systems, we have

analyzed fundamental monitoring limitations. In particular, we have characterized undetectable

and unidentifiable attacks from a system-theoretic and a graph-theoretic perspective. Additionally,

we have designed centralized and distributed monitors.

Future and ongoing work includes (i) a detailed analysis of the convergence of our distributed

monitor, (ii) the design of distributed identification monitors, and (iii) the design of monitors

robust to system noise and unmodeled dynamics.
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