
Streaming Meshes

Martin Isenburg
University of North Carolina

at Chapel Hill

Peter Lindstrom
Lawrence Livermore
National Laboratory

Figure 1: Illustrations of the coherence in the layout of a mesh: On the left the original layout; on the right the layout after reordering the vertex and triangle arrays
using spectral sequencing. The large rendering color-codes triangles based on their position in the array. The layout diagram connects triangles that share the same
vertex with horizontal line segments (green) and vertices referenced by the same triangle with vertical line segments (gray).

Abstract
Recent years have seen an immense increase in the complexity of
geometric data sets. Today’s gigabyte-sized polygon models can
no longer be completely loaded into the main memory of common
desktop PCs. Unfortunately, current mesh formats, which were de-
signed years ago when meshes were orders of magnitudes smaller,
do not account for this. Using such formats to store large meshes is
inefficient and complicates all subsequent processing.

We describe astreamingformat for polygon meshes that is sim-
ple enough to replace current offline mesh formats and is more suit-
able for representing large data sets. Furthermore, it is an ideal in-
put and output format for I/O-efficient out-of-core algorithms that
process meshes in a streaming, possibly pipelined, fashion. This pa-
per chiefly concerns the underlying theory and the practical aspects
of creating and working with this new representation. In particular,
we describe desirable qualities for streaming meshes and methods
for converting meshes from a traditional to a streaming format.

A central theme of this paper is the issue of coherent and compat-
ible layouts of the mesh vertices and polygons. We present metrics
and diagrams that characterize the coherence of a mesh layout and
suggest appropriate strategies for improving its “streamability.” To
this end, we outline several out-of-core algorithms for reordering
meshes with poor coherence, and present results for a menagerie of
well known and generally incoherent surface meshes.

1 Introduction
The advances in computer speed and memory size are matched by
the growth of data and model sizes. Modern scientific technologies
enable the creation of digital 3D models of incredible detail and
precision. Recent examples include statues scanned for historical
reconstruction and isosurfaces visualized to understand the results
of scientific simulation. These polygonal data sets easily reach sizes
of several gigabytes, making subsequent processing a difficult task.
The sheer amount of data may not only exhaust the main memory
resources of common desktop PCs, but also exceed the 4 gigabyte
address space limit of these 32-bit machines.

In order to process geometric data sets that do not fit in main
memory, one resorts toout-of-corealgorithms. These arrange the
mesh so that it does not need to be kept in memory in its entirety,
and adapt their computations to operate mainly on the loaded parts.
Such algorithms have been studied in several contexts, including
visualization, simplification, and compression. A major problem
for all these algorithms is dealing with the initial format of the input.

Current mesh formats were designed in the early days of mesh
processing when models like the Stanford bunny, with less than
100,000 faces, were considered complex. They use an array of
floats to specify the vertex positions followed by an array of in-
dices into the vertex array to specify the polygons. The order in
which vertices and polygons are arranged in these arrays is left to
the discretion of the person creating the mesh. This was convenient
when meshes were relatively small, however our data sets today are
up to four orders of magnitude larger. Storing such large meshes
in the same format means that a gigabyte-sized array of vertex data
is indexed by a gigabyte-sized block of triangle data. This unduly
complicates all subsequent processing.

Most processing tasks need todereferencethe input mesh (i.e.
resolve all triangle-to-vertex references). Memory mapping the ver-
tex array and having the operating system swap in the relevant sec-
tions is only practical given a coherentmesh layout. The lack of
coherence in the layout of the Lucy model is illustrated on the left
in Figure1. Loosely speaking, the farther the green and gray line
segments are from the diagonal, the less coherent the layout is. In
order to operate robustly on large indexed meshes an algorithm ei-
ther needs to be prepared to handle the worst possible inputs or
make assumptions that are bound to fail on some models.

In this paper we propose astreamingformat for large polygon
meshes that solves the problem of dereferencing. In addition, it
enables the design of new I/O-efficient algorithms for out-of-core
stream processing. The basic idea is to interleave indexed vertices
and triangles and to provide information when vertices are last ref-
erenced. We call such a mesh representation astreaming mesh.

The terms “progressive” and “streaming” are often used synony-
mously in computer graphics. Our streaming meshes are funda-
mentally different from the multi-resolution representations used
for progressive geometry transmission, in which detail is added to
a coarse base mesh stored in-core, possibly until exhausting avail-
able memory [9]. In our windowed streaming model triangles and
vertices are added to, or removed from, a partial but seamless re-
construction of the mesh that is kept in a finite, fixed-size memory
buffer—a “sliding window” over the full resolution mesh.

The advantage of a streaming representation for meshes was first
identified by Isenburg and Gumhold [11], who propose a com-
pressed mesh format that allows streaming decompression—but not
streaming compression. During compression a front sweeps over
the entire mesh once, which is accessed through a complex external
memory data structure. During decompression, however, only the
front needs to be maintained in memory. Later, Isenburg et al. [12]
showed that the streaming access provided by the decompressor can

mailto:isenburg@cs.unc.edu
mailto:pl@llnl.gov

be used for I/O-efficient out-of-core simplification. However, these
works pay little attention to what makes good stream orders. In
fact, we show that the streaming meshes produced by these prior
methods are not particularly well-suited for stream processing.

In this paper we extract the essence of streaming to define a
simple inputand output format. We propose definitions and met-
rics that give us a language for talking about streaming meshes.
We identify two fundamental stream characteristics, thewidth and
thespanof streaming meshes, and describe the practical impact of
these metrics on stream processing. We report the stream charac-
teristic for a number of different mesh orderings and describe out-
of-core techniques for creating such orders using limited memory.
We briefly discuss a novel scheme forstreaming compressionthat,
while being the topic of a separate paper [13], is another example of
the type of I/O-efficient algorithm design enabled by our streaming
mesh format.

2 Previous Work
While models from 3D scanning or iso-surface extraction have be-
come too large to fit in the main memory of commodity PCs, storing
the models on hard disk is always possible. Out-of-core algorithms
are designed to efficiently operate on large data sets that mostly re-
side on disk. To avoid constant reloading of data from slow external
memory, the order in which they access the mesh must be consistent
with the arrangement of the mesh on disk. Currently the main ap-
proaches are: cutting the mesh into pieces, using external memory
data structures, working on dereferenced triangle soup, and oper-
ating on a streaming representation. All these approaches have to
go through great efforts to create their initial on-disk arrangement
when the input mesh comes in a standard indexed format.

Mesh cutting methods partition large meshes into pieces small
enough to fit into main memory and then process each piece sepa-
rately. This strategy has been used for distribution [16], simplifica-
tion [10, 1], and compression [7]. The initial cutting step requires
dereferencing, which is expensive for standard indexed input.

Approaches that useexternal memory data structuresalso par-
tition the mesh, but into a much larger number of smaller pieces of-
ten calledclusters. At run-time only a small number of clusters are
kept in memory, with the majority residing on disk from where they
are paged in as needed. Cignoni et al. [4], for example, use such an
external memory mesh to simplify large models using iterative edge
contraction. Similarly, Isenburg and Gumhold [11] use an out-of-
core mesh to compress large models via region growing. Building
these data structures from a standard indexed mesh involves addi-
tional dereferencing passes over the data.

One approach to overcome the problems associated with indexed
data is to not use indices. Abandoning indexed meshes as in-
put, such techniques work ondereferenced triangle soup, which
streams from disk to memory in increments of single triangles,
and either attempt to reconstruct or entirely disregard connectiv-
ity. Lindstrom [17] implements clustering-based simplification this
way. Although his algorithm does not use indices, his input meshes
usually come in an indexed format. Ironically, in this case an initial
dereferencing step [3] is needed that does exactly what the algo-
rithm later avoids: resolving all triangle-to-vertex references. To
take full advantage of this type of processing, the input must al-
ready be streamable.

While the entire mesh may not fit in main memory, one can
easily store a working set of several million triangles. Wu and
Kobbelt [21] simplify large models by streaming coherent triangle
soup through a fixed-sized memory buffer, on which they perform
randomized edge collapses. Connectivity between triangles is re-
constructed through geometric hashing on vertex positions. Only
vertices surrounded by a closed ring of triangles are deemed eligi-
ble for simplification. Thus mesh borders cannot be simplified until
the entire mesh has been read, and adjacent vertices and triangles

Figure 2: Visual illustrations of mesh layouts: (a) The bunny and (b) the 10,000
times more complex Atlas model. Successive triangles are rendered with
smoothly changing colors. Layout diagrams intuitively illustrate incoherence
in the meshes. (c) Highlighting triangles with high vertex span often reveals
something about how the mesh was created or modified.

must remain in the buffer until the end. Their output is therefore
guaranteed to be incoherent. Isenburg et al. [12] show that their
compressedstreaming representationprovides exactly the infor-
mation that Wu and Kobbelt’s algorithm needs: “finalization” of
vertices. Instead of the algorithm having to guess when a vertex is
final, their compressed format informs when this is indeed the case.

Coherence in reference has also been investigated in the con-
text of efficient rendering. Modern graphics cards use a vertex
cache to buffer a small number of vertices. In order to make good
use of the cache it is imperative for subsequent triangles to re-
reference the same vertices. Deering [5] stores triangles together
with explicit instructions that tell the cache which vertices to re-
place. Hoppe [8] produces coherent triangle orderings optimized
for a particular cache size, while Bogomjakov and Gotsman [2] and
Yoon et al. [22] create orderings that work well for all cache sizes.

An on-disk layout that is good for streaming seems similar to
an in-memory layout that is good for rendering. But there are dif-
ferences: For the graphics card cache it is expected that at least
some vertices are loaded multiple times. In our case, each vertex
is loaded only once as main memory can hold all required vertices
for any reasonable traversal. Once a vertex is expelled from the
cache of a graphics card, it makes no difference how long it takes
until it is loaded again. In our case, the duration between first and
last use of a vertex does matter. While local coherence is of crucial
importance for a rendering sequence, it has little significance for
streaming. What is of big practical difference here is whether the
layout has global coherence or not.

3 Layouts of Indexed Meshes
Indexed mesh formats impose no constraints on the order of either
vertices or triangles. The three vertices of a triangle can be located
anywherein the vertex array and need not be close to each other.
And while subsequent triangles may reference vertices at opposite

2 4 9 0 3 1 5 7 6 8 10

0
6

2
1

8
4

5
3

7
9

v-width = 4

t-span = 7

triangles

ve
rt

ic
es

v-span = 5

triangles
ve

rt
ic

es

0 1 2 3 4 5 6 7 8 9 10
0

1
2

3
4

5
6

7
8

9

v-width = 7

t-span = 10

v-span = 7

skip = 2

0 1 2 3 4 5 6 7 8 9 10

4
1

2
5

0
6

8
7

3
9

t-width = 9

t-span = 10

triangles

ve
rt

ic
es

v-span = 8

5

7

9

0

4

3

6

2

8

1

10
4

3 5
2

7
8

9
6 10

a)

b) c)

… and three different layouts for it.

A small example mesh …

v-width = 7

t-width = 9

t-width = 6

Figure 3: Three layouts of a mesh: (a) An incompatible vertex order results in a
skip. (b) Reordering the vertices eliminates the skip but does not affect triangle
span or vertex width. (c) Reordering also the triangles can reduce those.

ends of the array, the first and the last triangle may reference the
same vertex. This flexibility was convenient for small meshes, but
has become a major headache with the arrival of gigabyte-sized data
sets. Today’s mesh formats have originated from a smorgasboard
of legacy formats (e.g. PLY, OBJ, IV) that were designed when
polygon models were of the size of the Stanford bunny. This model,
which has helped popularize the PLY format, abuses this flexibility
like no other. Its layout is incoherent in every respect, as illustrated
in the form of alayout diagramin Figure2a.

A layout diagram intuitively visualizes the coherency in refer-
ence between vertices, which are indexed along the vertical axis,
and triangles, which are indexed along the horizontal axis. Both are
numbered in the order they appear in the file. We draw for each tri-
angle a point (violet) for all its vertices and a vertical line segment
(gray) connecting them. Similarly, we draw for each vertex a hori-
zontal line segment (green) connecting the first and last triangle that
reference it. Intuitively speaking, the closer points and lines group
around the diagonal the more coherent the layout is.

Nowadays the PLY format is used to archive the scanned stat-
ues created by Stanford’s Digital Michelangelo Project [16]. For
the Atlas statue of 507 million triangles, a six gigabyte array of
triangles would reference into a three gigabyte array of vertex po-
sitions. Its layout diagram (see Figure2b) reveals that vertices are
used over spans of up to 61 million triangles, equaling 700 MB of
the triangle array. Since such an indexed mesh cannot be dealt with
on commodity PCs, the statue is provided in twelve pieces.

We characterize thelayoutof an indexed mesh with several mea-
sures that tell us how “streamable” the current vertex and triangle
orderings are: Thetriangle spanof a vertex, shown as a green hori-
zontal line in the layout diagram, is the number of triangles between
and including the first and last reference to the vertex. Conversely,
the vertex spanof a triangle, shown as a gray vertical line, is the
maximal index difference (plus one) of its vertices. The vertex (tri-
angle) span of a layout is the maximal span of all triangles (ver-
tices). Thevertex widthof a layout is the maximal number of green
segments that can be cut by a vertical line; thetriangle widthis the
maximal number of gray segments cut by a horizontal line. Finally,
anticipating sequential access to vertices and triangles, we say a
vertexv is skipped from the point that a vertex with higher index
is referenced untilv is first referenced. Theskipof a layout is the
maximal number of “concurrently” skipped vertices. See Figure3
for example layouts of a simple mesh.

1
2

3
4

5

1 2 3 4

1
3

4
2
4

5

3

2

1

standard .obj

v 0.3 1.1 0.2
v 0.4 0.4 0.5
v 1.4 0.8 1.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1
f 2 4 1
f 2 5 4
f 3 1 4
f 4 5 3

1
2

3
4

5

1 2 3 4

pre-order

v 0.3 1.1 0.2
v 0.4 0.4 0.5
v 1.4 0.8 1.2
v 0.9 0.5 0.7
f 2 4 1
v 1.0 0.1 1.1
f 4 5 4
f 3 5 4
f 2 1 3

-
-

- - -

1
2

3
4

5

1 2 3 4

post-order

f 2 4 1
f 2 5 4
f 3 1 4
v 0.3 1.1 0.2
v 0.4 0.4 0.5
f 4 5 3
v 1.4 0.8 1.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1

1
2

3
4

5

1 2 3 4

1
3

4
2
3

4

5

1

2 1
2

3
4

5

1 2 3 4

compatibleincompatible postpre

a) b) c)

 d)

Figure 4: Examples of a streaming ASCII format. (a) Standard OBJ format.
(b) Streaming pre-order format: finalization is coded through negative rela-
tive indices, introduction coincides with appearance of vertex in the stream.
(c) Streaming post-order format: finalization coincides with appearance of ver-
tex in stream, introduction occurs at first vertex reference. (d) If the vertex and
triangle layouts are compatible, the meshes can be compact.

4 Streaming Meshes
A streaming mesh format provides concurrent access to indexed
vertices and triangles that reference them plus explicit information
about the last time a vertex is referenced. While such formats re-
quire only simple changes over standard formats (Figure4), they
have tremendous advantages. Because the format tells us which
vertices to keep in memory, the problem of repeated, possibly in-
coherent look-up of vertex data in a gigantic array does not exist.
Furthermore, the ability to process and deallocate vertices after they
are last referenced keeps the memory footprint small. To formally
discuss streaming meshes, we first provide some definitions.

Definitions
A streaming meshis a logically interleaved sequence of indexed
vertices and triangles with information about when vertices arein-
troducedand when they arefinalized. Vertices becomeactivewhen
they are introduced and cease to be active when they are finalized.
We call the evolving set of active vertices thefront Fi , which at time
i partitions the mesh into finalized (i.e. processed) vertices and ver-
tices not yet encountered in the stream. Thefront width (or simply
thewidth) is the maximal size maxi{|Fi |} of the front, i.e. the maxi-
mal number of concurrently active vertices. The width gives a lower
bound on the memory footprint as any stream process must main-
tain the front, e.g. as a hash. Thefront span(or simply thespan) is
the maximal index difference maxi{maxFi −minFi +1} of vertices
on the front, and intuitively measures the longest duration a vertex
remains active. Clearlywidth≤ span. Note that at most log2(span)
bits are needed for relative indexing of the vertices.

We place no restriction on whether vertices precede triangles (as
would normally be the case in a standard indexed mesh) or fol-
low them. Streaming meshes arepre-orderif each vertex precedes
all triangles that reference it, and arepost-orderif each vertex suc-
ceeds all triangles that reference it; otherwise they arein-order. The
introduction of a vertex does not necessarily coincide with its ap-
pearance in the stream as triangles can reference and thus introduce
vertices before they appear. In this paper we only consider pre- and
post-order meshes.

The latest that a vertex can be introduced is just before the first
triangle that references it, and the earliest that a vertex can be fi-
nalized is just after the last triangle that references it. We can
keep the front small in a pre-order mesh by delaying the appear-
ance (introduction) of a vertex as much as possible, i.e. such that
each vertex when introduced is referenced by the next triangle in
the stream. Conversely, in a post-order mesh each finalized vertex
would be referenced by the previous triangle. We say that a stream
is vertex-compactif each vertex is referenced by the previous or
the next triangle in the stream. Vertices can always be made com-
pact with respect to the triangles by rearranging them, which causes
front width to equal vertex width. Similarly, we say that a stream
is triangle-compactif each triangle references the previous or the
next vertex in the stream. For a pre-order mesh this means that each
triangle appears immediately after its last vertex has appeared; for
a post-order mesh each triangle appears just before its first vertex
is finalized. (Note that vertex-compactness does not imply triangle-
compactness, and vice versa.) It is always possible to rearrange the
triangles to make them compact with respect to a given vertex lay-
out, which causes front span to equal vertex span (since the oldest
active vertex could be finalized if it were not waiting on a neigh-
bor). Finally, a streaming mesh iscompactif it is both vertex- and
triangle-compact. At least one of three indices per triangle in a
compact mesh is redundant, and may be omitted.

Working with Streaming Meshes
A streaming format allows reading and writing meshes of practi-
cally arbitrary size in an I/O-efficient manner without forcing any
particular ordering upon the process or the person creating the
mesh. Whether a mesh is extracted layer by layer (like the “ppm”
isosurface) or block by block (like the “atlas” statue), simply out-
putting vertices and triangles in the order they are created while
finalizing vertices that are not longer in use makes operating on the
largest of data sets a feasible task. For example, all images in this
paper are renderedout-of-corefrom full resolution input on a laptop
with 512 MB of memory.1 Read vertices are stored in a hash where
they are looked up by incoming triangles, which are immediately
rendered. The fact that a hash entry can be removed as soon as the
vertex is finalized keeps the memory requirements low.

A streaming mesh format is also the ideal input and output for
stream processing. In this model, the mesh streams through an in-
corestream bufferlarge enough to hold all active mesh elements.
For straightforward tasks that simply need to dereference the ver-
tices, such as rendering a flat shaded mesh, a minimal stream buffer,
consisting only of the front, is needed. For more elaborate process-
ing tasks, a larger stream buffer may hold as many additional mesh
elements as there are memory resources, allowing random access to
a localized but continuously changing subset of the mesh.

We call the loops of edges that separate already read triangles
from those not yet read an inputstream boundary. For applications
that write meshes, there is an equivalent output boundary. Stream-
ing meshes allow pipelined processing, where multiple tasks run
concurrently on separate pieces of the mesh. One module’s output
boundary then serves as the down-stream input boundary for an-
other module. Envision a scenario where one module extracts an
isosurface and pipes it as a streaming mesh to a simplification pro-
cess, which in turn streams the simplified mesh to a compression
engine that encodes it and transmits the resulting bit stream to a
remote location where triangles are rendered as they decompress.
In fact, we now have all components of this pipeline—and it is the
streaming format that makes it possible to pipe them all together.

Any stream process must map external indices to whatever inter-
nal data structures are used for the active vertices. This is conve-
niently done using a hash table, however a more efficient solution
is possible for low-span meshes. If the front span does not exceed
the size of the internal vertex buffer, then a fixed-size circular ar-
ray can be used in place of a hash as “collisions” due to overflow

Figure 5: Error-driven [12] (left, middle) vs. order-preserving (right) simplified
output for depth-first [11] (left) and breadth-first (middle, right) input.

are not possible. To handle arbitrary streams, we advocate a hybrid
approach in which stagnant high-span vertices are moved from the
circular array to an auxiliary hash whenever collisions occur.

While the width of a streaming mesh is a lower bound on the
amount of memory required to process it, some processing tasks
are inherently span-limited. Any process that needs to access adja-
cencyandmaintain the same element order between input and out-
put must buffer on the order of span elements. Conversion between
pre-order and post-order meshes as well as on-the-fly vertex com-
paction are span-limited operations if the triangle order needs to be
maintained. These are common operations on streaming meshes as
algorithms like to consume vertex-compact pre-order input but of-
ten produce non-compact post-order output. Hence keeping both
width and span low is useful. As such, the depth-first compression
order of [11] and the error-driven simplification order of [12] are
poor design choices as they unnecessarily result in near-maximal
span (Figure5). Preferably such processes not only utilize but also
preserve the stream layout they are provided with.

Processing Sequences
Streaming meshes are a lightweight mesh representation and do not
provide information such as manifoldness, valence, incidence, and
other useful topological attributes with each read triangle.Process-
ing sequences[12] are a specialization of streaming meshes that
provide such information as well as a mechanism for storing user
data on the stream boundaries (e.g. for mapping between external
and in-core vertex indices). We view processing sequences simply
as a richer interface for accessing streaming meshes. Implementing
a processing sequence API only involves bufferingO(width) mesh
elements until they are finalized, at which point complete connec-
tivity information about them is known. As a result we can read
and write simple streaming meshes but retain the option to process
them through the more powerful processing sequence API.

Streaming Compression
The sequential nature of streaming I/O invites the opportunity for
compression. However, popular mesh compression schemes, while
generally supporting streaming decompression, require random ac-
cess to the entire mesh during compression and globally reorder
the mesh. They traverse the mesh using a deterministic strategy
agreed upon by the compressor and decompressor and impose this
particular order on the mesh. Worse yet, the classic stack-based
approaches [20, 18, 14] traverse meshes in depth-first order and
thereby generate layouts of maximal span and unnecessarily high
width—especially for meshes with many topological handles. Lay-
out artifacts of such compressors are shown in Figures5 and6.

We have designed a streaming compressor [13] that accepts and
compresses vertices and triangles in whatever order the user pro-
vides them in. Optionally, the compressor is allowed to locally re-
order triangles within a small buffer to improve compression rates,
resulting in a connectivity cost within a factor of two of state of the
art. With geometry dominating the overall coding cost, this minor
overhead is more than made up for in usability by eliminating hours
of pre-processing and gigabytes of temporary disk space [7,11]—
even if the mesh already has a nice layout—and by supporting trans-
parent compressed I/O on-the-fly as the mesh is written.

1This refers to thesm viewer program included with our submission.
Use hot-key ’r’ for full resolution out-of-core rendering.

Figure 6: The dragon mesh reordered by (a) a depth-first compressor, (b) a breadth-first compressor, (c) z-order curve, (d) spatial sort, and (e) spectral sequencing.

5 Generating Streaming Meshes
Many applications that generate large meshes can easily produce
streaming meshes. They only need to interleave the output of ver-
tices and triangles and provide information when vertices are no
longer referenced. Even if this information is not exact, some con-
servative bounds often exist. For example, a marching cubes isosur-
face implementation could output all vertices of one volume layer,
followed by a set of triangles, and then finalize the vertices before
moving on to the next layer. This is the technique we used to pro-
duce the coherent ppm mesh from Table2. Here, evenimplicit
finalization in the form of a bound on the maximum number of ver-
tices per layer would be sufficient to finalize vertices.

In this sense, streaming meshes are often the natural output of ex-
isting applications. Given limited memory resources, it is quitedif-
ficult to produce large incoherent meshes as the mesh generating ap-
plication can only hold and work on small pieces of the data at any
time. However, most current meshes are stored in legacy formats.
We now outline various out-of-core algorithms for converting from
a standard indexed format to a streaming format, and for improving
the layout of streaming meshes that either introduce/finalize ver-
tices too early/late or that have an overly incoherent layout.

5.1 Out-of-Core Mesh Layout
For all of our streaming mesh conversion tools, we rely on a few ba-
sic steps. To create a streaming mesh in pre- or post-order, we need:
a vertex layout, a triangle layout, and finalization information.

Layout In an initial pass over the input mesh we write vertices
and triangles to separate temporary files. We store with each ver-
tex its original index so that after reordering it can be identified by
its triangles. If we do not wish to keep both vertex and triangle
layouts fixed, we specify only one layout explicitly and ensure the
other layout is made compatible. Each explicit layout is specified
as an array of unique sort keys, one for each input vertex or triangle,
which we merge with the input elements into their temporary files
and on which we perform an external sort (on increasing key value)
to bring the elements into their desired order.

For a specified triangle layout, we assign (not necessarily
unique) sort keysk to verticesv based on their new incident trian-
gle indicest: for pre-order meshes we usekv = minv∈t t; for post-
orderkv = maxv∈t t. Conversely, if a vertex layout is specified, we
compute pre-order triangle keyskt = maxv∈t v and post-order keys
kt = minv∈t v. These keys are, of course, based on the indices in the
reordered layout. Thus, when an explicit vertex order is specified
we must first dereference triangles and update their vertex indices.
For a conventional indexed mesh, we accomplish this dereferenc-
ing step via external sorts on each vertex field [3]. If on the other
hand the input is already a streaming mesh, we can accomplish this
step much faster by dereferencing the (active) vertices, whose keys
are maintained in-core, on-the-fly while the input is first processed.
Whether we wish to create a streaming mesh or simply reorder an
indexed mesh, this is yet another benefit of having streaming input.

Finalization For nonstreaming input we compute implicit final-
ization information by first writing all corners〈v, t〉 to a temporary
file and sorting it on the vertex fieldv. We then compute the degree
d = |{t : v∈ t}| for each vertex, which will later be used as a refer-
ence count. For streaming input, degrees are computed on-the-fly.
Output We now have a file with vertex records〈kv,v,d,x,y,z〉 and
a file with triangle records〈kt ,v1,v2,v3〉 that we externally sort on
the k fields. We then output a streaming mesh by scanning these
files in parallel. Pre-order output is driven by triangles: for each
triangle we read and output vertices one at a time until all three
vertices of the triangle have been output (possibly also outputting
skipped vertices not referenced by this triangle). Conversely, for a
post-order mesh we drive the output by vertices: for each vertex we
tap the triangle file until all incident triangles have been output. We
maintain for each active vertex a degree counter that is decremented
each time the vertex is referenced. Once the counter reaches zero
the vertex is finalized and removed from the front.

5.1.1 Interleaving Indexed Meshes
If the indexed mesh layout is reasonably coherent, we can construct
a streaming mesh simply byinterleavingvertices and triangles, i.e.
without reordering them. As outlined above, we first separate ver-
tices and triangles and compute vertex degrees. Since the mesh ele-
ments are already in their desired order, no further sorting is needed
and we simply interleave them using the output procedure above.

5.1.2 Compaction
It makes little sense to apply pre-order interleaving to meshes with
high skip, such as the dinosaur or the lucy model. To stream these
meshes we must change at least one of the vertex and triangle lay-
outs. We can always eliminate the skip via pre-ordervertex com-
pactionby fixing the triangles and reordering the vertices using the
pre-order vertex sort keys defined above. Hence during output each
triangle’s vertices have either already been output or appear next in
the vertex file. Post-order vertex compaction is more difficult, and
either requiresO(span) memory or additional external sorts.

If the vertex layout is already coherent but the triangle layout is
not, triangle compactionis worthwhile. For each vertex, in pre-
order triangle compaction we immediately output all triangles that
can be formed with this and previous vertices; in post-order com-
paction we output all triangles formed with this and later vertices.

Because of inter-dependencies creating streams that are fully
compact is more challenging than ensuring vertex- or triangle-
compactness alone. Given a (not necessarily compact) triangle se-
quence we output a compact pre-order mesh as follows. For each
remaining trianglet in the sequence, we output its vertices one
at a time if they have not yet been output (thus ensuring vertex-
compactness). For each newly output vertexv, we also output any
triangle (other thant) incident onv whose other vertices have also
been output (thus ensuring triangle-compactness). We then outputt
and continue with the next triangle. This (possibly rearranged) tri-
angle order is therefore induced by the vertex-compact vertex order
given by the original triangle order, i.e.kt = maxv∈t minv∈ss.

mesh name
inter-

leaving
com-

paction
spatial sorting spectral sequencing

ranking total ranking total
buddha 0:05 0:09 0:02 0:13 0:27 0:33
lucy 4:36 5:11 1:03 11:33 3:41 6:59
st. matthew 1:41:29 2:08:36 21:18 4:09:52 45:42 2:31:47

Table 1: Timings (h:m:s) including compressed I/O on a 3.2 GHz PC.

5.1.3 Spatial Sorting
Perhaps the simplest method for constructing a streaming mesh is
to linearly order its elements along a spatial direction such as its
maximalx, y, or z extent. For nonstreaming input we first “rank”
the vertices by sorting them in geometric order and use the rank
both as the new (unique) index and sort key. Once vertices and tri-
angles have been sorted, we drive the output by triangles (vertices)
to produce a vertex-compact (triangle-compact) mesh.

We also examine layouts based on space-filling curves. For sim-
plicity, we chose the (Morton order) z-curve, for which we can com-
pute sort keys by quantizing the vertex coordinates and interleaving
their bits, e.g. asxnynznxn−1yn−1zn−1 · · ·x1y1z1.

5.1.4 Topological Sorting
An alternative to spatial sorting is topological traversal of the mesh.
In Table2 we report results for breadth-first vertex sorts and depth-
first triangle sorts. These meshes were laid out in-core on a com-
puter with large memory, although techniques based on external
memory data structures, e.g. [4], or a variation on the clustering
scheme below could also be employed.

5.1.5 Layouts of Minimal Width and Span
With width and span defining the streamability of a layout, it is nat-
ural to ask how to create layouts that minimize these measures. We
first note that in a triangle-compact mesh the triangle order is “in-
duced” by the vertex order, and we can therefore without loss of
generality focus only on ordering vertices and treat this as a graph
layout problem since triangle compaction can only further reduce
the width and span. In a triangle-compact mesh front span equals
vertex span, which in turn is equivalent to graphbandwidth[6],
while front width, also known in the finite element literature as
wavefront[19], is equivalent tovertex separation[6].

Both bandwidth and vertex separation are known to be NP-hard,
and hence heuristics are needed. Intuitively, breadth-first sorting
is a good heuristic for bandwidth, and is often used as an initial
guess in iterative bandwidth minimization methods. One popular
heuristic for vertex separation isspectral sequencing, which min-
imizes the sum of squared edge lengths in a linear graph arrange-
ment. Spectral sequencing amounts to finding a particular eigenvec-
tor (theFiedler vector) of the graph’s Laplacian matrix. To solve
this problem efficiently, we use the ACE multiscale method [15].

For large meshes, we presimplify the input using a variation of
the streaming edge collapse technique from [12], and contract ver-
tices into clusters based purely on topological criteria aimed at cre-
ating uniform and well-shaped clusters. Clusters are maintained in
a memory-mapped array as circular linked lists of vertices, using
one index per vertex. We then apply ACE to order the clusters in-
core, and finally order the mesh cluster by cluster, with no particular
vertex order within each cluster. While the intra-cluster order can
be improved, the reduction in width is bounded by the cluster size.

6 Results
We have measured the performance of our mesh layout tools on a
3.2 GHz Intel XEON PC running Linux with 2 GB of RAM. Ta-
ble 1 summarizes the performance on a few meshes. Interleaving
takes gzipped PLY as input and writes a binary streaming mesh.
We chose to use this as input to compaction, which outputs a com-
pressed streaming mesh for input to spatial sorting, and so on. Here
spatial sorting assumes that the input layout is unstreamable, while
spectral sequencing takes advantage of coherent streaming input;
hence the large speedup in the reordering phase.

Streamability of Layouts
We now turn our attention to Table2, which lists layout and stream
measures for several meshes and layout strategies. We immediately
notice the high vertex and triangle spans in the layout diagrams of
the original meshes. Often this can be explained by how the mesh
was produced. The horse, for example, is zipped together from
multiple range scans. While the zipping algorithm sorted the tri-
angles spatially along one axis, it simply concatenated the vertex
arrays—thereby creating triangles with high vertex spans along the
zips. The dinosaur has its triangles ordered along one axis and its
vertices along another axis. This projects the model along the third
axis into vertex and triangle indices such that they capture a dis-
torted 2D view of the shape. This layout is low in span, but has a
high skip. For the most part, the dragon has vertices and triangles
loosely ordered along thez-axis. But there are a few vertices at the
very end of the vertex array that are used all across the triangle ar-
ray, leading to high vertex span. This is due to a post-processing
operation for topological cleanup of holes in the mesh.

The large Stanford statues were extracted block by block from
a large volumetric representation. The resulting surfaces were then
stitched together on a supercomputer by concatenating triangle and
vertex arrays and identifying vertices between neighboring blocks,
which is evidenced by high vertex spans in Figure2. For the two
largest statues the vertex and triangle spans were somewhat reduced
when their “blocky” layouts were multiplexed into several files by
spatially cutting the statues into twelve horizontal slices.

Shifting our attention from layouts to streams, interleaving does
not work well on high-skip layouts (e.g. lucy), but otherwise pro-
duces results similar to vertex compaction. The width and span of
a vertex-compacted stream are proportional to the vertex width and
triangle span of the layout. Vertex compaction can create low-span
streams when only the vertex span is high (e.g. horse and dragon).
Triangle compaction produces streams whose width and span are
proportional to the triangle width and vertex span, and can produce
low-span streams for layouts where only the triangle span is high
(e.g. the buddha). To improve layouts where both spans (or both
widths) are high, we need to reorder both vertices and triangles.

Breadth-first traversals naturally are low in span—and hence
width—since the “oldest” vertex introduced tends to be finalized
first. Indeed, even for the 500+ million triangle atlas mesh, we
can reference vertices using only 15-bit relative indices. Thus us-
ing simple and fast sequential I/O we can very quickly dereference
(e.g. for previewing) the 8.5 GB atlas using no data structures other
than a 380 KB fixed-size circular array.

Depth-first traversals, on the other hand, leave the oldest ver-
tices hanging and therefore guarantee high-span layouts. Long
spans also tend to accumulate into high widths—especially for
high-genus meshes such as the ppm surface. For each topological
handle, the front elements of a traversal eventually split into two un-
connected groups. A depth-first traversal leaves one group hanging
on the stack until reaching it from the other side. This suggests that
standard mesh compression based on depth-first traversals, as used
for example in [11,12], is not well-suited for streaming. The z-order
layouts also consistently exhibit high spans, although of bounded
length and frequency, which results in a lower width.

While spatial or topological sorting produce good layouts for
many meshes, they can be far from optimal if the mesh is “curvy”
(e.g. the dragon), with changing principal direction, or “spongy”
(e.g. ppm), with complex topology and dense geometry. The spec-
tral order in Figure6e, for example, follows the winding body of
the dragon and achieves a much lower width. This low width often
comes at the expense of a high span, as the front in spectral lay-
outs does not always advance uniformly in order to be as short as
possible. For the large statues, even the width suffers due to coarse
granularity clustering (we used at most one million clusters), which
leaves the front increasingly ragged as it winds around the clusters.

Stream Processing
Because streaming operates on the mesh in a single pass and be-
cause all data access is sequential, disk latency is amortized and I/O
throughput is maximized. Our mesh simplification and compres-
sion algorithms, for example, achieve throughputs of 0.1–1 million
triangles per second. Using edge collapse and quadric error met-
rics we simplify the St. Matthew mesh to one million triangles in
45 minutes using 9 MB of RAM and 300 MB of disk (for the com-
pressed input) on a 3.2 GHz PC, compared to 14 hours (plus 11
hours of preprocessing time), 80 MB of RAM, and 12 GB of disk on
a 0.8 GHz PC for Cignoni et al.’s external memory method [4]. And
contrary to [12], who rely on a particular compressed streaming in-
put constructed in an elaborate preprocess, we can directly simplify
input from any streaming source as it arrives (e.g. a mesh generator,
a network), and typically using much less memory (e.g. 40 times
less for the ppm surface) by using more streamable layouts. Finally,
our streaming mesh compressor writes the St. Matthew mesh in 15
minutes while requiring no disk and only 4 MB of RAM, compared
to 10.5 hours, 384 MB of RAM, and 11 GB of disk for [11].

7 Discussion
Many of the ideas presented here are quite simple, however we be-
lieve they will have significant impact on how large meshes are
stored, organized, and processed. And while most of our theory
was developed with efficient stream processing in mind, some ideas
such as order-preserving compression and maximally compatible,
“compact” layouts may find utility in non-streaming applications.

We should point out that streaming formats are no universal so-
lution for all out-of-core processing purposes, as some interactive
tasks inherently require random access. However, as an archival and
interchange format, streaming meshes are a considerably improve-
ment over the only current alternatives: standard indexed meshes
and polygon soup. Even for coherent layouts, simply memory map-
ping a binary (uncompressed) indexed mesh is not a viable alterna-
tive as mesh adjacency and incidence cannot be resolved reliably
without finalization or equivalent information. While implicit final-
ization can be inferred, e.g., in a spatially sorted mesh [12], impos-
ing such a strict order on all mesh reading and writing applications
is quite inflexible. Instead memory mapping would require a heavy-
weight external mesh data structure, which seems undesirable as a
canonical mesh interchange format. On the other hand, such a data
structure can be constructed efficiently from streaming meshes [22].

Documenting coherency in the file format makes processing
large meshes considerably more efficient. It solves the main prob-
lem of dereferencing that complicates most out-of-core mesh ap-
plications, such as rendering an initial image to get an idea of
what data one is dealing with; counting the number of holes, non-
manifolds, and components; computing shared normals, the total
surface area, or curvature information; segmenting, simplifying, or
compressing the mesh; or constructing hierarchical mesh structures.
Streaming meshes are not tied to a particular format. One may
even read streaming meshes from standard formats such as PLY or
OBJ—given that the mesh layout is known to be low in span—by
buffering O(span) vertices and finalizing them conservatively. A
streaming format, on the other hand, allows processing even high-
span meshes using onlyO(width) memory.

Whereas prior work [21, 11, 12] demonstrated the potential of
stream processing as a framework for offline computations on large
meshes, the more principled study of streaming presented here re-
veals, e.g., that the read-only format of Isenburg and Gumhold,
which imposes a depth-first layout of inherently poor streamability,
is in fact of marginal utility for streaming. Instead, our more gen-
eral formats that can additionally bewritten in a streaming manner,
coupled with the new knowledge of how to create, preserve, and ex-
ploit streamable layouts, open up the possibility of truly pipelined
stream processing—a previously envisioned but unattained goal.

8 Conclusion
We have identified a major headache in mesh processing—large
meshes stored in standard indexed formats without coherence
guarantees—and suggested how to avoid this pain—by keeping the
mesh in a streaming format that documents how long each vertex
is needed. We have defined the metricswidth andspanas the two
qualities that affect stream processing. We have presented out-of-
core tools for converting a mesh from a standard to a streamable
format and for improving the width or span of a streaming mesh.
For this, we have reported measures and diagrams that characterize
existing mesh layouts. These give us a language to talk about the
“streamability” of a given layout and help us decide how much re-
ordering work is necessary. We have given simple ASCII examples
to show that a streaming format is just as easy to create and parse
as other formats.2 Finally, we have sketched a compression scheme
that encodes streaming meshes on-the-fly as they are written.

In the future we plan to investigate concurrent streaming at mul-
tiple resolutions, multiplexing streaming meshes for parallel pro-
cessing, and extensions to volume meshes. We also envision that
explicit “space finalization,” in contrast to the implicit finalization
possible in spatially ordered meshes, would be useful for algorithms
that require a spatially—as opposed to a strictly topologically—
coherent traversal, such as vertex clustering algorithms.

References
[1] F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier, and G. Taubin.

Building a Digital Model of Michelangelo’s Florentine Pieta.IEEE
Computer Graphics and Applications, 22(1):59–67, 2002.

[2] A. Bogomjakov and C. Gotsman. Universal Rendering Sequences for
Transparent Vertex Caching of Progressive Meshes.Graphics Inter-
face ’01, 81–90.

[3] Y.-J. Chiang and C. T. Silva. I/O Optimal Isosurface Extraction.Visu-
alization ’97, 293–300.

[4] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External Mem-
ory Management and Simplification of Huge Meshes.IEEE Transac-
tions on Visualization and Computer Graphics, 9(4):525–537, 2003.

[5] M. Deering. Geometry compression.SIGGRAPH 95, 13–20.
[6] J. D́ıaz, J. Petit, and M. Serna. A Survey of Graph Layout Problems.

ACM Computing Surveys, 34(3):313–356, 2002.
[7] J. Ho, K. Lee, and D. Kriegman. Compressing Large Polygonal Mod-

els. Visualization ’01, 357–362.
[8] H. Hoppe. Optimization of Mesh Locality for Transparent Vertex

Caching.SIGGRAPH 99, 269–276.
[9] H. Hoppe. Progressive meshes.SIGGRAPH 96, 99–108.

[10] H. Hoppe. Smooth View-Dependent Level-of-Detail Control and its
Application to Terrain Rendering.Visualization ’98, 35–42.

[11] M. Isenburg and S. Gumhold. Out-of-Core Compression for Gigantic
Polygon Meshes.SIGGRAPH 2003, 935–942.

[12] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large Mesh
Simplification using Processing Sequences.Visualization ’03, 465–72.

[13] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming Compression
of Triangle Meshes.Tech. Rep. UCRL-TR-210481, LLNL, 2005.

[14] M. Isenburg and J. Snoeyink. Face Fixer: Compressing Polygon
Meshes with Properties.SIGGRAPH 2000, 263–270.

[15] Y. Koren, L. Carmel, and D. Harel. ACE: A Fast Multiscale Eigenvec-
tor Computation for Drawing Huge Graphs.IEEE Information Visual-
ization ’02, 137–144.

[16] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The Digital Michelangelo Project.SIGGRAPH 2000, 131–144.

[17] P. Lindstrom. Out-of-Core Simplification of Large Polygonal Models.
SIGGRAPH 2000, 259–262.

[18] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 5(1):47–61, 1999.

[19] J. A. Scott. On Ordering Elements for a Frontal Solver.Communica-
tions in Numerical Methods in Engineering, 15:309–323, 1999.

[20] C. Touma and C. Gotsman. Triangle mesh compression.Graphics
Interface ’98, 26–34.

[21] J. Wu and L. Kobbelt. A Stream Algorithm for the Decimation of
Massive Meshes.Graphics Interface ’03, 185–192.

[22] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-
Oblivious Mesh Layouts.SIGGRAPH 2005, to appear.

2Software for reading and writing ASCII (sma), binary (smb), and
compressed (smc) streaming meshes is included with our submission.

mesh description original layout spectral sequencing

geo.
sort

topo.
sort

inter-
leaved

v-com-
pacted

t-com-
pacted

linear
width
span

z-order
width
span

breadth
width
span

depth
width
span

name skip
genus v-width

layout diagram snapshots snapshots
comp. t-width width width width width

vertices v-span span span span span
triangles t-span

bunny 34,569 413
1,502

583
22,999

334
354

405
21,704

0 9,133
1 11,135 34,813 9,133 3,924 228

35,947 35,742 34,834 34,549 34,641 785
69,451 69,181

horse 40,646 419
2,563

482
23,728

443
466

440
47,446

0 550
1 4,272 40,653 550 2,070 303

48,485 48,471 48,485 3,167 48,471 3,286
96,966 6,204

dinosaur 55,196 568
1,825

991
42,083

357
383

409
51,315

0 496
1 2,048 55,331 496 1,028 241

56,194 4,353 55,680 1,083 4,353 1,382
112,384 2,017

armadillo 171K 1,042
3,796

1,160
124K

1,115
1,199

1,457
171K

0 51,951
1 40,529 172K 51,951 17,873 638

172,974 172K 172K 172K 172K 4,405
345,944 345K

dragon 434K 1,274
9,243

1,713
252K

1,680
2,015

8,583
435K

46 4,586
151 7,147 434K 4,586 3,918 668

437,645 434K 434K 54,825 434K 11,617
871,414 109K

buddha 94,080 1,556
12,682

1,688
205K

1,975
2,335

14,639
543K

104 5,037
1 6,907 98,121 5,037 3,472 883

543,652 24,889 111K 102K 24,889 6,993
1,087,716 205K

thai statue 0 6,003
43,970

4,989
1.93M

7,051
7,897

35,461
4.99M

3 53,416
1 54,832 53,416 53,416 29,337 3,761

4,999,996 4.70M 4.70M 4.70M 4.70M 150K
10,000,000 9.41M

lucy 11.5M 4,985
20,362

11,654
5.63M

5,904
6,547

12,904
12.4M

0 255K
18 231K 11.6M 255K 113K 5,841

14,027,872 13.5M 13.5M 13.5M 13.5M 200K
28,055,742 26.8M

david1mm 1,568 8,919
36,421

10,705
6.30M

8,282
8,971

35,770
28.1M

137 26,383
2,322 52,515 26,405 26,383 26,375 7,862

28,184,526 15.8M 15.8M 15.8M 15.8M 752K
56,230,343 31.5M

st. matthew 2,121 33,207
157K

23,858
32.8M

23,602
25,554

110K
185M

483 31,931
2,897 58,916 31,932 31,931 31,895 33,029

186,836,665 29.1M 29.1M 29.1M 29.1M 3.85M
372,767,445 58.3M
ppm 306K 114K

290K

148K
125M

99,410
112K

3.07M
206M

167,636 311K
167,584 813K 616K 311K 381K 56,179

234,901,044 617K 617K 462K 617K 27.0M
469,381,488 924K
atlas 139 22,638

64,354

37,469
94.8M

29,923
32,156

246K
254M

5,496 28,701
38 58,281 28,705 28,701 28,701 45,998

254,837,027 30.6M 30.6M 30.6M 30.6M 28.5M
507,512,682 61.2M

Table 2: Layout and stream measures for the meshes used in our experiments. We report the skip, vertex span, and triangle width of the original vertex order,
and the vertex width and triangle span of the original triangle order (which can be quite incoherent). Starting from the original layout, we report the front width and
span of pre-order streaming meshes created by interleaving, vertex compaction, and triangle compaction. The rightmost columns highlight the improvements of
vertex-compact streams obtained by reordering both triangles and vertices using spectral sequencing, geometric sorting along the axis of maximum extent and along
a z-order space-filling curve, and topological breadth- and depth-first traversals. We also list the genus and component, vertex, and triangle counts for each mesh.

	Introduction
	Previous Work
	Layouts of Indexed Meshes
	Streaming Meshes
	Generating Streaming Meshes
	Out-of-Core Mesh Layout
	Interleaving Indexed Meshes
	Compaction
	Spatial Sorting
	Topological Sorting
	Layouts of Minimal Width and Span

	Results
	Discussion
	Conclusion

