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Abstract For Java, industry and academia typically use the SPEC Java
Since benchmarks drive computer science research and industryoenchmarks (the SPECjvm98 benchmarks and SPECjbb2000 [37,
product development, which ones we use and how we evaluate38]). When SPEC introduced these benchmarks, their evaluation
them are key questions for the community. Despite complex run- rules and the community’s evaluation metrics glossed over some of
time tradeoffs due to dynamic compilation and garbage collection the key questions for Java benchmarking. For example, (1) SPEC
required for Java programs, many evaluations still use methodolo- reporting of the “best” execution time is taken from multiple it-
gies developed for C, C++, and Fortran. SPEC, the dominant pur- erations of the benchmark within a single execution of the virtual
veyor of benchmarks, compounded this problem by institutionaliz- machine, which will typically eliminate compile time. (2) In ad-
ing these methodologies for their Java benchmark suite. This paperdition to steady state application performance, a key question for
recommends benchmarking selection and evaluation methodolo-Java virtual machines (JVMs) is the tradeoff between compile and
gies, and introduces the DaCapo benchmarks, a set of open sourceapplication time, yet SPEC does not require this metric, and the
client-side Java benchmarks. We demonstrate that the complex in-community often does not report it. (3) SPEC does not require re-
teractions of (1) architecture, (2) compiler, (3) virtual machine, (4) ports on multiple heap sizes and thus does not explore the space-
memory management, and (5) application require more extensivetime tradeoff automatic memory management (garbage collection)
evaluation than C, C++, and Fortran which stress (4) much less, andmust make. SPEC specifies three possible heap sizes, all of which
do not require (3). We use and introduce new value, time-series, over-provision the heap. Some researchers and industry evaluations
and statistical metrics for static and dynamic properties such as of course do vary and report these metrics, but many do not.

code complexity, code size, heap composition, and pointer muta- ~ This paper introduces the DaCapo benchmarks, a set of gen-
tions. No benchmark suite is definitive, but these metrics show that eral purpose, realistic, freely available Java applications. This pa-
DaCapo improves over SPEC Java in a variety of ways, including per also recommends a number of methodologies for choosing and
more complex code, richer object behaviors, and more demandingevaluating Java benchmarks, virtual machines, and their memory
memory system requirements. This paper takes a step towards immanagement systems. Some of these methodologies are already in
proving methodologies for choosing and evaluating benchmarks to use. For example, Eeckhout et al. recommend that hardware ven-
foster innovation in system design and implementation for Java and dors use multiple JVMs for benchmarking because applications
other managed languages. vary significantly based on JVM [19]. We recommend and use this
methodology on three commercial JVMs, confirming none is a con-

Categories and Subject Descriptors:.4 Measurement Techniques sistent winner and benchmark variation is large. We recommend

General Terms Measurement, Performance

Keywords methodology, benchmark, DaCapo, Java, SPEC here a deterministic methodology for evaluating compiler optimiza-
i ' ' ' ' tions that holds the compiler workload constant, as well as the stan-
1. Introduction dard steady-state stable performance methodology. For evaluating

When researchers explore new system features and optimizationsgarbage collectors, we recommend multiple heap sizes and deter-
they typically evaluate them with benchmarks. If the idea does not Ministic compiler configurations. We also suggest new and previ-
improve a set of interesting benchmarks, researchers are unlikelyous methodologies for selecting benchmarks and comparing them.
to submit the idea for publication, or if they do, the community is  For example, we recommend time-series data versus single values,
unlikely to accept it. Thus, benchmarks set standards for innovation including heap composition and pointer distances for live objects as

and can encourage or stifle it. well as allocated objects. We also recommend principal component
analysis [13, 18, 19] to assess differences between benchmarks.
*This technical report is an extended version of [6]. We use these methodologies to evaluate and compare DaCapo

This work is supported by NSF ITR CCR-0085792, NSF CCR-0311829, and SPEC, finding that DaCapo is more complex in terms of static
NSF CCF-CCR-0311829, NSF CISE infrastructure grant EIA-0303609, and dynamic metrics. For example, DaCapo benchmarks have
ARC DP0452011, DARPA F33615-03-C-4106, DARPA NBCH30390004, muych richer code complexity, class structures, and class hierarchies
IBM, and Intel. Any opinions, findings and conclusions expressed herein than SPEC according to the Chidamber and Kemerer metrics [12].
are those of the authors and do not necessarily reflect those of the SponsorsFurthermore, this static complexity produces a wider variety and
more complex object behavior at runtime, as measured by data
structure complexity, pointer source/target heap distances, live and
allocated object characteristics, and heap composition. Principal
component analysis using code, object, and architecture behavior
metrics differentiates all the benchmarks from each other.
The main contributions of this paper are new, more realistic Java
benchmarks, an evaluation methodology for developing benchmark
suites, and performance evaluation methodologies. Needless to say,



the DaCapo benchmarks are not definitive, and they may or may notadd to Eeckhout et al.'s good practices in methodology that the
be representative of workloads that vendors and clients care abouthardware designers should include multiple heap sizes and memory
most. Regardless, we believe this paper is a step towards a widermanagement strategies. We confirm Eeckhout et al.'s finding. We
community discussion and eventual consensus on how to selectpresent results for three commercial JVMs on one architecture that
measure, and evaluate benchmarks, VMs, compilers, runtimes, andshow a wide range of performance sensitivities. No one JVM is best

hardware for Java and other managed languages. across the suite with respect to compilation time and code quality,
and there is a lot a variation. These results indicate there is plenty
2. Related Work of room for improving current commercial JVMs.

We build on prior methodologies and metrics, and go further to _ Many recent studies examine and characterize the behavior of
recommend how to use them to select benchmarks and for bestJava programs in simulation or on hardware [19, 21, 23, 28, 29,

practices in performance evaluation. 30, 31, 32, 33]. This work focuses on workload characterization,
] application behavior on hardware, and key differences with C pro-
2.1 Java Benchmark Suites grams. For example, Hauswirth et al. mine application behavior

In addition to SPEC (discussed in Section 3), prior Java bench- to understand performance [21]. The bulk of our evaluation fo-
marks suites include Java Grande [26], Jolden [11, 34], and cuses on benchmark properties that are independent of any particu-
Ashes [17]. The Java Grande Benchmarks include programs with lar hardware or virtual machine implementation, whereas this prior
large demands for memory, bandwidth, or processing power [26]. work concentrates on how applications behave on certain hardware
They focus on array intensive programs that solve scientific com- with one or more virtual machines. We extend these results to sug-
puting problems. The programs are sequential, parallel, and dis-gest that these characteristics can be used to separate and evaluate
tributed. They also include microbenchmark tests for language andthe benchmarks in addition to the software and hardware running
communication features, and some cross-language tests for comthem. Much of this Java performance analysis work either disables
paring C and Java. DaCapo also focuses on large, realistic pro-garbage collection [15, 35], which introduces unnecessary mem-
grams, but not on parallel or distributed programs. The DaCapo ory fragmentation, or holds the heap size and/or garbage collector
benchmarks are more general purpose, and include both client andconstant [19, 28], which may hide locality effects.
server side applications. A number of researchers examine garbage collection and its in-
The Jolden benchmarks are single-threaded Java programdfluence on application performance [3, 4, 20, 22, 28, 40]. For ex-
rewritten from parallel C programs that use dynamic pointer data ample, Kim and Hsu use multiple heap sizes and simulate different
structures [11, 34]. These programs are small kernels (less than 600memory hierarchies with a whole heap mark-sweep algorithm, as-
lines of code) intended to explore pointer analysis and paralleliza- sisted by occasional compaction [28]. Kim and Hsu, and Rajan et
tion, not complete systems. The Soot project distributes the Ashesal. [33] note that a mark-sweep collector has a higher miss rate than
benchmarks with their Java compiler infrastructure, and include the application itself because the collector touches reachable data
the Jolden benchmarks, a few more realistic benchmarks such aghat may not be in the program’s current working set. Blackburn
their compiler, and some interactive benchmarks [17]. The DaCapo et al. use the methodology we recommend here for studying the
benchmarks contain many more realistic programs, and are moreinfluence of copying, mark-sweep, and reference counting collec-
ambitious in scope. tors, and their generational variants on three architectures [4]. They
. L show a contiguously allocating generational copying collector de-
2.2 Benchmark Metrics and Characterization livers better mutator cache performance and total performance than
Dufour et al. recommend characterizing benchmarks with architec- 3 whole-heap mark-sweep collector with a free-list. A few studies
ture independent value metrics that summarize: (1) size and struc-explore heap size effects on performance [9, 10, 28], and as we
ture of program, (2) data structures, (3) polymorphism, (4) memory, show here, garbage collectors are very sensitive to heap size, and
and (5) concurrency into a single number [17]. We do not consider in particular to tight heaps. Diwan et al. [16, 41], Hicks et al. [22],
concurrency metrics to limit the scope of our efforts. We use met- and others [7, 8, 24] measure detailed, specific mechanism costs
rics from the first four categories and add metrics, such as filter- and architecture influences [16], but do not consider a variety of

ing for just the live objects, that better expose application behavior. collection algorithms. Our work reflects these results and method-
Our focus is on continuous metrics, such as pointer distributions glogies, but makes additional recommendations.

and heap composition graphs, rather than single values. Dufour et ]
al. show how to use these metrics to drive compiler optimization 3. Benchmark and Methodology Introduction
explorations, whereas we show how to use these metrics to developThis section describes SPEC Java and SPEC execution rules, how

methodologies for performance and benchmark evaluation. we collected DaCapo benchmarks, and our execution harness.
Prior work studied some of the object properties we present
3.1 SPEC Java Benchmarks.

here [4, 15, 21, 39], but not for the purposes of driving benchmark ) ) .
selection and evaluation methodologies. For example, DieckmannWe compare the DaCapo suite to SPECjvm98 [37] and a modified
and Hblzle [15] measure object allocation properties, and we add Version of SPECjbb2000 [38], and call them the SPEC Java bench-
to their analysis live object properties and pointer demographics. marks, or SPEC for short. We exclude SPECjAppServer because it
Stefanovt pioneered the use of heap composition graphs which requires multiple pieces of hardware and software to execute. The

we use here to show inherent object lifetime behaviors [39]. original SPECjbb2000 is a server-side Java application and reports
) ) its score as work done over a fixed time rather than elapsed time for
2.3 Performance Evaluation Methodologies a fixed work load. Although throughput (measuring work done over

Eeckhout et al. study SPECjvm98 and other Java benchmarks usinga fixed time) is one important criteria for understanding applica-

a number of virtual machines on one architecture, AMD’s K7 [19]. tions such as transaction processing systems, most applications are
Their cluster analysis shows that methodologies for designing new not throughput oriented. Superficially, the difference between fix-
hardware should include multiple virtual machines and benchmarks ing the time and workload is minor, however a variable workload is
because each widely exercises different hardware aspects. Onenethodologically problematic. First, throughput workloads force a
limitation of their work is that they use a fixed heap size, which repetitive loop into the benchmark, which influences JIT optimiza-
as we show masks the interaction of the memory manager’s space+ion strategies and opportunities for parallelism, but is not represen-
time tradeoff in addition to its influence on mutator locality. We tative of the wide range of non-repetitive workloads. Furthermore,



variable workloads make performance hard to analyze and reasonWe considered other potential criteria, such as long running, GUI,
about. For example, the level and number of classes optimized andand client-server applications. We settled on the above character-
re-optimized at higher levels and the number of garbage collec- istics because their focus is similar to the existing SPEC bench-
tions vary with the workload, leading to complex cascading effects marks, while addressing some of our key concerns. Around 20 stu-
on overall performance. We therefore modify SPECjbb2000, creat- dents and faculty at six institutions then began an iterative process
ing pseudojbb, which executes a fixed workload (by default, 70,000 of identifying, preparing, and experimenting with candidate bench-
transactions execute against a single warehouse). marks. Realizing the difficulty of identifying a good benchmark
SPEC benchmarking rules discourage special casing the vir- suite, we made the DaCapo benchmark project open and transpar-
tual machine, compiler, and/or architecture for a specific SPEC ent, inviting feedback from the community [14]. As part of this
Java benchmark. They specify the largest input size (100), se-process, we have released three beta versions.
qguencing through the benchmarks, no harness caching, and no pre- We identified a broad range of static and dynamic metrics,
compilation of classes. The SPECjvm98 harness runs all the bench-including some new ones, and developed a framework in Jikes
marks multiple times, and intersperses untimed and timed execu-RVM [1] for performing these detailed analyses. Sections 6, 7,
tions. Benchmarkers may run all the programs as many times asand 8 describe these metrics. We systematically analyzed each can-
they like, and then report the best and worst results using the samedidate to identify ones with non-trivial behavior and to maximize
virtual machine and compiler configurations. SPEC indicates that the suite’s coverage. We included most of the benchmarks we eval-
reporting should specify the memory sizes: 48MB, 48—-256MB, and uated, excluding only a few that were too trivial or whose license
greater than 256MB, but does not require reporting all three. All agreements were too restrictive, and one that extensively used ex-
these sizes over provision the heap. Excluding the virtual machine, ceptions to avoid explicit control flow.
SPEC programs allocate up to 271MB, and have at most 8MB live ) ] ]
in the heap at any time, except for pseudojbb with 21MB live (see The Constituent Benchmarks We now briefly describe each

Section 7). Since 2000, none of the vendors has published resultsPenchmark in the final pre-release of the suitetq-2006-0O8that
for the smaller heaps. we use throughout the paper. More detailed descriptions appear in

The SPEC committee is currently working on collecting a new Figures 4 through 22. The source code and the benchmark harness
set of Java benchmarks. The SPEC committee consists of industriaf@re available on the DaCapo benchmark web site [14].
representatives and a few academics. One of their main criteriagntlr A parser generator and translator generator.

is representativeness, which industry is much better to judge thany o4t A bytecode-level optimization and analysis tool for Java.
academia. When SPEC releases new benchmark sets, they 'nCIUdghart A graph plotting toolkit and pdf renderer

a performance comparison point. They do not include or describe i An int ted devel L envi t (IDE
any measured metrics on which they based their selection. This €C'IPS€ AN Intégrated development environmen (IDE).
paper suggests methodologies for both selecting and evaluatingfoP An output-independent print formatter.

Java Benchmarks, which are not being used or recommended inhsaldb An SQL relational database engine written in Java.

current industrial standards, SPEC or otherwise. jython A python interpreter written in Java.
luindex A text indexing tool.
3.2 DaCapo Benchmarks lusearch A text search tool.

We began the DaCapo benchmarking effort in mid 2003 as the re- pmd A source code analyzer for Java.
sult of an NSF review panel in which the panel and the DaCapo xalan An XSLT processor for transforming XML documents.
research group agreed that the existing Java benchmarks were lim- o . N .
tingour progress. Whatolowed as a o ronged ot o gen- |12 DNk SUle s packaged o g e e conianing
B e e e pnchmar, e rarics ey requre,thrce nput sizes, a4 npu
began with the following criteria. data (e.g.Juindex Iu_searchanc!xala_n all use the works o_f Shake-
speare). We experimented with different inputs and picked repre-
1. Diverse real applicationdVe want applications that are widely ~ Sentative ones.
used to provide a compelling focus for the community’s innova-
tion and optimizations, as compared to synthetic benchmarks.
2. Ease of useWe want the applications to be relatively easy to
use and measure.

The Benchmark Harness We provide a harness to invoke the
benchmarks and perform a validity check that insures each bench-
mark ran to completion correctly. The validity check performs
checksums orrr andout streams during benchmark execution

We implemented these criteria as follows. and on any generated files after benchmark execution. The harness
) ) passes the benchmark if its checksums match pre-calculated values.
1. We chose onlppen sourcéenchmarks and libraries. The harness supports a range of options, including user-specified
2. We chose diverse programstaximize coveragef application hooks to call at the start and end of the benchmark and/or after the
domains and application behaviors. benchmark warm-up period, running multiple benchmarks, and

3. We focused on client-side benchmarks thatem®y to measure  printing a brief summary of each benchmark and its origins. It also
in a completely standard way, with minimal dependences out- supports workload sizetnall default large), which iteration (first,
side the scope of the host JVM. second, or nth), or performance-stabléeration for reporting ex-

4. We excluded GUI applications since they are difficult to bench- ecution time. To find a performance-stable iteration, the harness
mark systematically. In the case e¢lipse we exercise a non-  takes a window siz& (number of executions) and a convergence
GUI subset. targetv, and runs the benchmark repeatedly until either the coef-

5. We provide a range of inputs. With the default input sizes, ficient of variation,ﬁ, of the lastw runs drops below, or reports
the programsre timelyenough that it takes hours or days to failure if the number of runs exceeds a maximomiwhereo is the
execute thousands of invocations of the suite, rather than weeks.standard deviation andis the arithmetic mean of the lastexe-
With the exception oéclipse which runs for around a minute,  cution times). Once performance stabilizes, the harness reports the
each benchmark executes for between 5 and 20 seconds orexecution time of the next iteration. The harness provides defaults
contemporary hardware and JVMs. for w andv, which the user may override.
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Figure 1. The Impact of Benchmarks and Architecture in Identifying Tradeoffs Between Collectors
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4. Virtual Machine Experimental Methodologies methods at the highest level with static profile information or us-

We modified Jikes RVM [1] version 2.4.4+ to report static met- ing all baseline code is also deterministic, but it does not provide
. ja realistic code base. These methodologies provide compiler and

rics, dynamic metrics, and performance results. We use this virtua " h i trol the virtual
machine because it is open source and performs well. Unless otherN€MOry managément résearchers a way (o control thé virtual ma-

wise specified, we use a generational collector with a variable sized Ch'n? t?]nd. cftlampller, ?Old'”g pa(;rts of the systtemvsonhs.tamt to tease
copying nursery and a mark-sweep older space because it is a higkﬁpard the In uer;ﬁedo Ipr(_)po?e |tr'111prov_terr]’nenls. € 'gf. ytr_ecom-d
performance collector configuration [4], and consequently is popu- MeNd these methodologies together with a clear specilication an
lar in commercial virtual machines. We call this collec@enMS justification of which methodology is appropriate and why. In Sec-

Our research group and others have used and recommended the fof—'(i.n 5.t1’b\INe pr?r\]"dde lan eximlfr’]"? evaluathntthzt uses the determin-
lowing methodologies to understand virtual machines, application 'SUC Stablé methodoiogy which IS appropriate because we compare
behaviors, and their interactions. garbage collection algorithms across a range of architectures and

heap sizes, and thus want to minimize variation due to sampling
Mix. The mix methodology measures an iteration of an applica- and JIT compilation.
tion which mixes JIT compilation and recompilation work with
application time. This measurement shows the tradeoff of total 5.  Benchmarking Methodology
time with compilation and application execution time. SPEC'S rpjg section argues for using multiple architectures and multiple
worst” number may often, butis not guaranteed to, correspond e, sizes related to each program’s maximum live size to evaluate
to this measurement. the performance of Java, memory management, and its virtual ma-
Stable. To measure stable application performance, researcherschines. In particular, we show a set of results in which the effects
typically report a steady-state run in which there is no JIT com- of locality and space efficiency trade off, and therefore heap size
pilation and only the application and memory management sys- and architecture choice substantially affect quantitative and quali-
tem are executing. This measurement corresponds to the SPEGative conclusions. The point of this section is to demonstrate that
“best” performance number. It measures final code quality, but because of the variety of implementation issues that Java programs
does not guarantee the compiler behaved deterministically. encompass, measurements are sensitive to benchmarks, the under-
Deterministic Stable & Mix. This methodology eliminates sam-  lying architecture, the choice of heap size, and the virtual machine.
pling and recompilation as a source of non-determinism. It Thus presenting results without varying these parameters is at best
modifies the JIT compiler to perforneplay compilationwhich unhelpful, and at worst, misleading.
applies a fixed compilation plan when it first compiles each g 1 How not to cook your books.

method [25]. We first modify the compiler to record its sam- ) ) )
pling information and optimization decisions for each method, This experiment explores the space-time tradeoff of two full heap

execute the benchmarktimes, and select the best plan. We collectors: SemiSpace and MarkSweep as implemented in Jikes
then execute the benchmark with the plan, measuring the first RYM [1] with MMTk [4, 5] across four architectures. We exper-

iteration (mix) or the second (stable) depending on the experi- imentally determine the minimum heap size for each program us-
ment. ing MarkCompact in MMTK. (These heap sizes, which are specific

to MMTk and Jikes RVM version 2.4.4+, can be seen in the top
The deterministic methodology produces a code base with opti- x-axes of Figures 2(a)-(d).) The virtual machine triggers collec-
mized hot methods and baseline compiled code. Compiling all the tion when the application exhausts the heap space. The SemiSpace



First iteration Second iteration Third iteration
Benchmark A ] BIA [ CIA | Best A ] BIA ] CIA [ Best] 2M/15 A ] BIA ] CIA [ Best] 39/1%
SPEC
_201.compress 72| 0.76 | 0.75| 0.75 3.3 151 | 1.65| 1.00 0.75 3.2 1.02 | 1.69| 1.00 0.65
_202jess 32| 080 | 058 0.58 20| 127 | 081 | 0.81 0.82 20| 063 | 0.79 | 0.63 0.65
_205.raytrace 26| 0.86| 054 | 0.54 15| 099 | 0.82| 0.82 0.66 15| 0.64| 0.82| 0.64 0.58
_209.db 8.0 1.07 | 1.00| 1.00 6.9 1.14 | 1.14| 1.00 0.91 6.8 1.05| 1.14| 1.00 0.88
_213javac 6.0 | 048 | 0.69 | 0.48 25| 093 1.34| 0.93 0.62 22| 1.06 | 150 | 1.00 0.60
_222 mpegaudio 3.8 1.73| 122 | 1.00 2.8 1.11| 1.65| 1.00 0.69 2.7 1.10| 1.64 | 1.00 0.67
_227_mtrt 29| 072 | 051 0.51 14| 153 | 094 | 094 0.74 15| 0.61| 081 0.61 0.56
_228jack 57| 1.08 | 0.61 | 0.61 3.1| 1.27| 1.05| 1.00 0.66 30| 1.21| 1.08 | 1.00 0.64
geomean 0.94 | 0.74 | 0.68 122 | 118 | 0.94 0.73 091 | 1.18 | 0.86 0.65
DaCapo
antlr 6.0 0.53| 0.68| 0.53 34| 0.69| 0.94 | 0.69 0.66 32| 0.69| 0.97 | 0.69 0.64
bloat 12.0| 098 | 1.03 | 0.98 9.7 1.28 | 1.20 | 1.00 0.93 9.1 1.24 | 1.28 | 1.00 0.88
chart 12.2 | 0.97 | 147 | 0.97 9.5 1.30 | 1.68 | 1.00 0.90 9.2 | 073 | 171 | 0.73 0.75
eclipse 61.7| 128 | 096 | 096 | 394 | 160 | 1.17| 1.00 0.74 || 23.8| 1.60| 1.94| 1.00 0.54
fop 71| 0.40 | 0.40 | 0.40 48 | 033 | 0.36 | 0.33 0.63 51| 0.31| 035 0.31 0.66
hsqldb 12.0| 0.82 | 047 | 0.47 7.7 | 0.67 | 0.66 | 0.66 0.66 73| 0.86| 0.68| 0.68 0.67
luindex 155 | 1.04| 094 | 0.94 9.8 141 | 141 1.00 0.80 9.1 155| 1.49 | 1.00 0.79
lusearch 13.1| 0.74| 0.90 | 0.74 106 | 0.92 | 1.06 | 0.92 0.91 105 | 156 | 1.07 | 1.00 1.10
jython 16.5| 052 | 0.68 | 0.52 83| 092 287 | 0.92 1.09 79| 092 | 0.83| 0.83 0.59
pmd 104 | 1.04 | 0.95| 0.95 7.5 150 | 1.15| 1.00 0.89 6.9 1.18 | 1.27 | 1.00 0.76
xalan 83| 0.87 | 0.90| 0.87 5.3 153 | 1.20 | 1.00 0.86 5.0 1.24 | 1.26 | 1.00 0.76
geomean 0.84 | 0.85| 0.76 1.10 | 1.25| 0.86 0.83 1.08 | 1.17| 0.84 0.74

Table 1. Cross JVM Comparisons

collector must keep in reserve half the heap space to ensure thaside in either of these graphs would lead to an entirely different
if the remaining half of the heap is all live, it can copy into it. The interpretation of the data.

MarkSweep collector uses segregated fits free-lists. It collects when  This example shows the tradeoff between space efficiency and
there is no element of the appropriate size, and no completely freelocality due to the garbage collector, and similar issues arise with
block that can be sized appropriately. Because it is more space effi-almost any performance analysis of Java programs. For example,
cient, it collects less often than the SemiSpace collector. However, a compiler optimization to improve locality would clearly need a
SemiSpace’s contiguous allocation offers better locality to contem- similarly thorough evaluation [4].

poraneously allocated and used objects than MarkSweep. i )

Figure 1 shows how this tradeoff plays out in practice for SPEC 5.2 Java Virtual Machine Impact
and DaCapo. Each graph normalizes performance as a function ofThis section explores the sensitivity of performance results to
heap size, with the heap size varying from 1 to 6 times the mini- JyMs. Table 1 presents execution times and differences for three
mum heap in which the benchmark can run. Each line shows the leading commercial Java 1.5 JVMs running one, two, and three
geometric mean of normalized performance using either a Mark- jterations of the SPEC Java and DaCapo benchmarks. We have
Sweep (MS) or SemiSpace (SS) garbage collector, executing onmade the JVMs anonymous (‘A, ‘B’, & ‘C’) in deference to li-
one of four architectures. Each line includes a symbol for the ar- cense agreements and because JVM identity is not pertinent to the
chitecture, unfilled for SS and filled for MS. The first thing to note  point. We use a 2GHz Intel Pentium M with 1GB of RAM and
is that the MS and SS lines converge and cross over at large heapa 2MB L2 cache, and in each case we run the JVM ‘out of the
sizes, illustrating the point at which the locality/space efficiency box’, with no special command line settings. Columns 2—4 show
break-even occurs. Note that the choice of architecture and benchperformance for a single iteration, which will usually be most im-
mark suite impacts this point. For SPEC on a 1.6GHz PPC, the pacted by compilation time. Columns 6-8 present performance for
tradeoff is at 3.3 times the minimum heap size, while for DaCapo a second iteration. Columns 11-13 show performance for a third
on a 3.0GHz Pentium 4, the tradeoff is at 5.5 times the minimum iteration. The first to the third iteration presumably includes pro-
heap size. Note that while the 2.2GHz AMD and the 2.0 GHz Pen- gressively less compilation time and more application time. The
tium M are very close on SPEC, the Pentium M is significantly Speedumolumns 10 and 15 show the average percentage speedup
faster in smaller heaps on DaCapo. Since different architecturesseen in the second and third iterations of the benchmark, relative to
have different strengths, it is important to have a good coverage the first. Columns 2, 6 and 11 report the execution time for JVM A
in the benchmark suite and a variety of architectures. Such resultsto which we normalize the remaining execution results for JVMs B
can paint a rich picture, but depend on running a large number of and C. TheBestcolumn reports the best normalized time from all
benchmarks over many heap sizes across multiple architectures. three JVMs, with the best time appearing in bold in each case.

The problem of using a subset of a benchmark suite, using a  One interesting result is that no JVM is uniformly best on all
single architecture, or choosing few heap sizes is further illustrated configurations. The results show there is a lot of room for over-
in Figure 2. Figures 2(a) and (b) show how careful benchmark all JvM improvements. For DaCapo, potential improvements range
selection can tell whichever story you choose, wi#09.dband  from 14% (second iteration) to 25% (first iteration). Even for SPEC
hsgldb performing best under the opposite collection regimens. potential improvements range from 6% (second iteration) to 32%
Figures 2(c) and (d) show that careful choice of architecture can (first iteration). If a single JVM could achieve the best performance
paint a quite different picture. Figures 2(c) and (d) are typical of on DaCapo across the benchmarks, it would improve performance
many benchmarks. The most obvious point to draw from all of by a geometric mean of 24% on the first iteration, 14% on the
these graphs is exploring multiple heap sizes should be requiredsecond iteration, and 16% on the third interaction @eemean
for Java and should start at the minimum in which the program can row). Among the notable results are that JVM C slows down sig-
execute with a well performing collector. Eliminating the left hand nificantly for the second iteration gfthon and then performs best



on the third iteration, a result we attribute to aggressive hotspot
compilation during the second iteration. Tkelipsebenchmark
appears to take a long time to warm up, improving considerably
in both the second and third iterations. On average, SPEC bench-
marks speed up much more quickly than the DaCapo benchmarks,
which is likely a reflection on their smaller size and simplicity. We
demonstrate this point quantitatively in the next section.

These results reinforce the importance of good methodology
and the choice of benchmark suite, since we can draw dramatically
divergent conclusions by simply selecting a particular iteration,
virtual machine, heap size, architecture, or benchmark.

6. Code Complexity and Size

This section shows static and dynamic software complexity met-
rics which are architecture and virtual machine independent.
We present Chidamber and Kemerer’s software complexity met-
rics [12] and a number of virtual machine and architecture in-
dependent dynamic metrics, such as, classes loaded and byte-
codes compiled. Finally, we present a few virtual machine depen-
dent measures of dynamic behavior, such as, methods/bytecodes
the compiler detects as frequently executed (hot), and instruc-
tion cache misses. Although we measure these features with Jikes
RVM, Eeckhout et al. [19] show that for SPEC, virtual machines
fairly consistently identify the same hot regions. Since the DaCapo
benchmarks are more complex than SPEC, this trend may not hold
as well for them, but we believe these metrics are not overly influ-
enced by our virtual machine. DaCapo and SPEC differ quite a bit;
DaCapo programs are more complex, object-oriented, and exercise
the instruction cache more.

6.1 Code Complexity

Benchmark [WMCT DIT [NOC[ CBO [ RFC ][ LCOM
SPEC
_201.compress 154 19 0 55 426 780
_202jess 614 97 1] 632 1846 2032
_205raytrace 330 33 3| 117 743 1046
_209.db 152 12 0 42 454 789
_213javac 1011 186 38| 1175 3293 3753
_222mpegaudio| 367| 40 0| 167 796 1350
227 mtrt 332 33 3| 117 743 1046
_228jack 375 46 0| 163 860 6911
pseudojbb 541 35 0| 254 1419 2487
min 152 12 0 42 426 780
max 1011 186 38| 1175 3293 6911
geomean 366| 40 2| 176 950 1701
DaCapo
antlr 1253 84 8] 674 3094 8444
bloat 2265| 206 21| 1661 6232 6521
chart 1627 101 16| 648 3979 29169
eclipse 10763 830 | 164| 7277 | 26209 | 218199
fop 1433| 148 17| 998 3867 13041
hsqldb 2419 73 3| 766 4676 | 47371
jython 3023 225 60| 1398 5725 97111
luindex 494| 50 0| 246 1372 2260
lusearch 618 55 0| 297 1441 3419
pmd 2348 215 4| 1199 5384 | 126893
xalan 2433 161 24| 971 5682 37394
min 494| 50 0| 246 1372 2260
max 10763 830 | 164| 7277 | 26209 | 218199
geomean 1857 138 10| 935 4420 22561
WMC | Weighted methods/clas€BO | Object class coupling
DIT |Depth Inheritance Tree RFC |Response for a Class
NOC | Number of Children LCOM | Lack of method cohesign

To measure the complexity of the benchmark code, we use the Chi- Table 2. CK Metrics for Loaded Classes (Excluding Libraries)

damber and Kemerer object-oriented programming (CK) metrics
[12] measured with the ckjm software package [36]. We apply the
CK metrics to classes that the application actually loads during exe-

DaCapo compared to SPEC. However, boft02jess and
_213javachave relatively high CBO values.

cution. We exclude standard libraries from this analysis as they are RFC Response for a Class. RFC measures the number of different

heavily duplicated across the benchmarks (column two of Table 3
includes all loaded classes). The average DaCapo program loads
more than twice as many classes during execution as SPEC. The
following explains what the CK metrics reveal and the results for
SPEC and DaCapo.

WMC Weighted methods per class. Since ckjm uses a weight
of 1, WMC is simply the total number of declared methods

methods that may execute when a method is invoked. Ideally,
we would find for each method of the class, the methods that
class will call, and repeat for each called method, calculating

the transitive closure of the method’s call graph. Ckjm calcu-

lates a rough approximation to the response set by inspecting
method calls within the class’s method bodies. The RFC metric
for DaCapo shows a factor of around five increase in complex-
ity over SPEC.

for the loaded classes. Larger numbers show that & program; conm | ack of cohesion in methods. LCOM counts methods in

provides more behaviors, and we see SPEC has substantially
lower WMC values than DaCapo, except f@d 3 javac which
as the table shows is the richest of the SPEC benchmarks and
usually falls in the middle or top of the DaCapo’s program
range of software complexity. Unsurprisingly, fewer methods
are declared (WMC in Table 2) than compiled (Table 3), but
this difference is only dramatic faclipse

DIT Depth of Inheritance Tree. DIT provides for each class a
measure of the inheritance levels from the object hierarchy top.
In Java where all classes inherit Object the minimum value
of DIT is 1. Except for_213javac and 202 jess DaCapo
programs typically have deeper inheritance trees.

NOC Number of Children. NOC is the number of immediate

subclasses of the class. Table 2 shows that in SPEC, only

_213javac has any interesting behavior, basgldh luindex
lusearchandpmdin DaCapo also have no superclass structure.

CBO Coupling between object classes. CBO represents the num-

ber of classes coupled to a given class (efferent couplings).

a class that are not related through the sharing of some of
the class’s fields. The original definition of this metric (used
in ckjm) considers all pairs of a class’s methods, subtracting
the number of method pairs that share a field access from the
number of method pairs that do not. Again, DaCapo is more
complex, e.g.eclipseandpmdhave LCOM metrics at least two
orders of magnitude higher than any SPEC benchmark.

In summary, the CK metrics show that SPEC programs are not very
object-oriented in absolute terms, and that the DaCapo benchmarks
are significantly richer and more complex than SPEC. Furthermore,
DaCapo benchmarks extensively use object-oriented features to
manage their complexity.

6.2 Code Size and Instruction Cache Performance

This section presents program size metrics. Column 2 of Table 3
shows the total number of classes loaded during the execution of
each benchmarkncluding standard libraries. Column 3 shows the

Method calls, field accesses, inheritance, arguments, returntotal number of declared methods in the loaded classes (compare to

types, and exceptions all couple classes. The interactions be-

tween objects and classes is substantially more complex for

column 2 of Table 2, which excludes standard libraries). Columns
4 and 5 show the number of methods compiled (executed at least



Methods & Bytecodes Compiled I-Cache Misses
Classes| Methods All Optimized % Hot L1 I-cache ITLB
Benchmark| Loaded | Declared || Methods [ BCKB | Methods | BCKB | Methods| BC /ms [ norm /ms [ norm
SPEC
_201.compress 157 1118 254 23.9 16 3.7 6.3 | 155 69 0.08 4 0.07
202 jess 293 1777 655 42.4 46 4.3 7.0 | 10.1 383 | 0.45 31 0.56
_205 raytrace 177 1316 381 324 44 9.0 115 | 27.8 1826 | 2.12 191 | 3.42
_209.db 149 1108 249 23.7 11 15 4.4 6.3 34 0.04 2 0.04
_213javac 302 2261 978 89.0 141 25.4 14.4 | 28.5 6356 | 7.39 | 672 | 12.04
_222 mpegaudio 200 1407 425 68.3 88 19.4 20.7 | 28.4 731 | 0.85 24 0.43
_227-mtrt 178 1318 379 324 39 7.6 10.3 | 235 1940 | 2.25 45 0.81
_228jack 202 1392 488 53.6 33 5.4 6.8 | 10.1 3142 | 3.65| 201 | 3.60
pseudojbb 238 2622 824 69.7 174 25.7 21.1| 36.9 5556 | 6.46 | 759 | 13.60
min 149 1108 249 23.7 11 15 4.4 6.3 34 0.04 2 0.04
max 302 2622 978 89.0 174 25.7 21.1| 36.9 6356 | 7.39 | 759 | 13.60
geomean 204 1523 464 43.6 46 7.8 10.0 | 18.0 860 1.00 56 1.00
DaCapo
antlr 307 3517 1541 212.7 101 14.1 6.6 6.6 6198 | 7.20 | 597 | 10.70
bloat 471 5231 2023 169.1 100 9.5 4.9 5.6 6031 | 7.01| 398 7.13
chart 706 8972 2299 204.1 113 20.8 49| 10.2 || 11919 | 13.85| 952 | 17.06
eclipse 1023 12450 3713 243.0 14 2.0 0.4 0.8 5053 | 5.87 | 702 | 12.58
fop 865 5761 2593 206.0 69 7.8 2.7 3.8 6603 | 7.68 | 532 9.53
hsqgldb 355 5970 1411 130.2 122 18.9 8.6 | 14.5 4866 | 5.66 | 524 | 9.39
luindex 309 3118 940 74.3 168 29.3 179 | 394 1876 | 2.18 154 2.76
lusearch 295 2795 822 65.5 133 21.7 16.2 | 33.1| 10183 | 11.84 | 1888 | 33.84
jython 886 9443 3242 462.5 297 28.5 9.2 6.2 2114 | 246 | 226 | 4.05
pmd 619 6163 2247 152.4 137 14.3 6.1 9.4 2819 | 3.28 | 223 | 4.00
xalan 552 6562 1747 126.2 194 36.0 11.1 | 285 3718 | 4.32| 268 | 4.80
min 295 2795 822 65.5 14 2.0 0.4 0.8 1876 | 2.18 154 2.76
max 1023 12450 3713 462.5 297 36.0 179 | 39.4 || 11919 | 13.85 | 1888 | 33.84
geomean 527 5768 1866 162.4 108 14.8 5.8 9.1 4792 | 557 | 455 | 8.16

Table 3. Bytecodes Compiled and Instruction Cache Characteristics

once) and the corresponding KB of bytecodes (BC KB) for each particular, none of the DaCapo benchmarks have remarkably few
benchmark. We count bytecodes rather than machine code, as it ismisses, whereas SPEC benchmag&l compress_202 jess and
not virtual machine, compiler, or ISA specific. The DaCapo bench- _209.db hardly ever miss the IL1. All DaCapo benchmarks have
marks average more than twice the number of classes, three timesnisses at least twice that of the geometric mean of SPEC.
as many declared methods, four times as many compiled methods . . .
and four times the volume of compiled bytecodes, reflecting a sub- 7. Objects and Their Memory Behavior
stantially larger code base than SPEC. Columns 6 and 7 show howThis section presents object allocation, live object, lifetime, and
much code is optimized by the JVM's adaptive compiler over the lifetime time-series metrics. We measure allocation demographics
course of two iterations of each benchmark (which Eeckhout et al.’s suggested by Dieckmann andkle [15]. We also measure lifetime
results indicate is probably representative of most hotspot finding and live object metrics, and show that they differ substantially from
virtual machines [19]). Columns 8 and 9 show that the DaCapo allocation behaviors. Since many garbage collection algorithms are
benchmarks have a much lower proportion of methods which the most concerned with live object behaviors, these demographics are
adaptive compiler regards as hot. Since the virtual machine selectsmore indicative for designers of new collection mechanisms. Other
these methods based on frequency thresholds, and these thresholdeatures, such as the design of per-object metadata, also depend on
are tuned for SPEC, it may be that the compiler should be selectingthe demographics of live objects, rather than allocated objects.
warm code. However, it may simply reflect the complexity of the The data described in this section and Section 8 is presented in
benchmarks. For exampleglipsehas nearly four thousand meth-  Table 4, and in Figures 4(a) through 22(a), each of which contains
ods compiled, of which only 14 are regarded as hot (0.4%). On data for one of the DaCapo or SPEC benchmarks. Each figure
the whole, this data shows that the DaCapo benchmarks are subincludes a brief description of the benchmark, key attributes, and
stantially larger than SPEC. Combined with their complexity, they metrics. It also plots time series and summaries for (a) object size
should present more challenging optimization problems. demographics (Section 7.2), (b) heap composition (Section 7.3),
We also measure instruction cache misses per millisecond asand (c) pointer distances (Section 8). Together this data shows that
another indicator of dynamic code complexity. We measure missesthe DaCapo suite has rich and diverse object lifetime behaviors.
with the performance counters on a 2.0 GHz Pentium M with a Since Jikes RVM is written in Java, the execution of the JIT
32KB level 1 instruction cache and a 2MB shared level two cache, compiler normally contributes to the heap, unlike most other JVMs,
each of which are 8-way with 64 byte lines. We use Jikes RVM where the JIT is written in C. In these results, we exclude the JIT
and only report misses during the mutator portion of the second compiler and other VM objects by placing then into a separate,
iteration of the benchmarks (i.e., we exclude garbage collection). excluded heap. To compute the average and time-series object data,
Columns 10 and 11 show L1 instruction misses, first as misses we modify Jikes RVM to keep statistics about allocations and to
per millisecond, and then normalized against the geometric meancompute statistics about live objects at frequenapshotsi.e.,
of the SPEC benchmarks. Columns 12 and 13 show ITLB misses during full heap collections.
using the same metrics. We can see that on average DaCapo ha§_1 Allocation and Live Object Behaviors
L1 I-cache misses nearly six times more frequently than SPEC,

and ITLB misses about eight times more frequently than SPEC. In Table 4 summarizes object allocation, maximum live objects, and
their ratios in MB (megabytes) and objects. The table shows that



Heap Volume (MB) Heap Objects Mean Object Size 4MB
Alloc/ Alloc/ Nursery
Benchmark Alloc Live Live Alloc Live Live Alloc Live Survival %
SPEC
_201.compress 1054 6.3 16.8 3,942 270 146 || 28,031] 24,425 6.6
_202jess 262.0| 1.2 221.3 7,955,141 22,150| 359.1 35 56 11
_205raytrace 1335| 3.8 35.1 6,397,943 153,555 41.7 22 26 3.6
_209.db 746 | 85 8.8 3,218,642 291,681 11.0 24 31 14.6
_213javac 1783| 7.2 24.8 5,911,991 263,383 224 32 29 25.8
_222 mpegaudio 07| 0.6 1.1 3,022 1,623 1.9 245 406 50.5
227 mtrt 1405| 7.2 195 6,689,424 307,043 21.8 22 25 6.6
_228jack 270.7| 0.9 292.7 9,393,097 11,949 | 786.1 30 81 2.8
pseudojbb 207.1| 211 9.8 6,158,131| 234,968 26.2 35 94 313
min 0.7 0.6 1.1 3,022 270 1.9 22 25 11
max 270.7| 211 292.7 9,393,097 307,043| 786.1| 28,031| 24,425 50.5
geomean 86.5| 3.8 23.0 1,180,850 35,886 32.9 77 110 8.7
DaCapo
antlr 2379] 1.0 248.8 4,208,403 15,566 | 270.4 59 64 8.2
bloat 1,2225| 6.2 195.6 33,487,434 149,395| 224.2 38 44 6.0
chart 742.8| 9.5 77.9 26,661,848 190,184| 140.2 29 53 6.3
eclipse 5,5682.0| 30.0 186.0 || 104,162,353| 470,333 2215 56 67 23.8
fop 100.3| 6.9 14.5 2,402,403 177,718 13.5 44 41 14.2
hsqldb 142.7| 72.0 2.0 4,514,965| 3,223,276 1.4 33 23 63.4
jython 1,183.4| 0.1 | 8,104.0| 25,940,819 2,788 | 9,304.5 48 55 1.6
luindex 201.4| 1.0 201.7 7,202,623 18,566 | 387.9 29 56 23.7
lusearch 1,780.8| 10.9 162.8 15,780,651 34,792 | 453.6 118 330 11
pmd 779.7 | 13.7 56.8 34,137,722 419,789 81.3 24 34 14.0
xalan 60,235.6| 25.5| 2,364.0|| 161,069,019 168,921| 953.5 392 158 3.8
min 100.3| 0.1 2.0 2,402,403 2,788 1.4 24 23 11
max 60,235.6| 72.0 | 8,104.0|| 161,069,019| 3,223,276 9,304.5 392 330 63.4
geomean 907.5| 6.2 147.6 18,112,439 103,890| 174.3 53 62 8.4

Table 4. Key Object Demographic Metrics

DaCapo allocates substantially more objects than the SPEC bench7.2 Object Size Demographics
marks, by nearly a factor of 20 on average. Tive objects and
memory are more comparable; but still DaCapo has on average
three times the live size of SPEC. DaCapo has a much higher ratio
of allocation to maximum live size, with an average of 147 com-
pared to SPEC’s 23 measured in MB. Two programs stand out
jython with a ratio of 8104, ancalan with a ratio of 2364. The
DaCapo benchmarks therefore put significantly more pressure on
the underlying memory management policies than SPEC.

Nursery survival rate is a rough measure of how closely a pro-
gram follows the generational hypothesis which we measure with
respect to a 4MB bounded nursery and report in the last column
of Table 4. Note that nursery survival needs to be viewed in the
context of heap turnover (column seven of Table 4). A low nurs-
ery survival rate may suggest low total GC workload, for exam-
ple, 222 mpegaudi@ndhsqldbin Table 4. A low nursery survival
rate and a high heap turnover ratio instead suggests a substanti
GC workload, for exampleeclipseand luindex SPEC and Da-
Capo exhibit a wide range of nursery survival rates. Blackburn et al.
show that even programs with high nursery survival rates and large
turnover benefit from generational collection with a copying bump-
pointer nursery space [4]. For exampl213javac has a nursery
survival rate of 26% and performs better with generational collec-
tors. We confirm this result for all the DaCapo benchmarks, even
onhsqldbwith its 63% nursery survival rate and low turnover ratio.

Table 4 also shows the average object size. The benchmark
suites do not substantially differ with respect to this metric. A sig-
nificant outlier is-201 compresswhich compresses large arrays of
data. Other outliers include222 mpegaudiplusearchand xalan,
all of which also operate over large arrays.

This section improves the above methodology for measuring object
size demographics. We show that these demographics vary with
time and when viewed from of perspective of allocated versus live

_ objects. Allocation-time size demographics inform the structure of

' the allocator. Live object size demographics impact the design of
per-object metadata and elements of the garbage collection algo-
rithm, as well as influencing the structure of the allocator. Fig-
ures 4(a) through 22(a) each use four graphs to compare size de-
mographics for each DaCapo and SPEC benchmark. The object
size demographics are measured both as a function of all alloca-
tions (top) and as a function of live objects seen at heap snapshots
(bottom). In each case, we show both a histogram (left) and a time-
series (right).

The allocation histogram plots the number of objects on the
-axis in each object size (x-axis in log scale) that the program
llocates. The live histogram plots the average number of live

objects of each size over the entire program. We color every fifth
bar black to help the eye correlate between the allocation and live
histograms. Considemtlr in Figure 4(a) andloatin Figure 5(a).
Forantlr, the allocated versus live objects in a size class show only
modest differences in proportions. Holoat however, 12% of its
allocated objects are 38 bytes whereas essentially no live objects
are 38 bytes, which indicates they are short lived. On the other
hand, less than 1% djloats allocated objects are 52 bytes, but
they make up 20% of live objects, indicating they are long lived.
Figure 14(a) shows that fotalan there is an even more marked
difference in allocated and live objects, where 50% of allocated
objects are 12 bytes, but none stay live. In fact, 65% of live objects
are 2 Kbytes, whereas they make up only 2% of allocated objects.



How well these large objects are handled will thus in large part snapshots of the heap, and dynamically as pointers change. These
determine the performance of the collecton@han properties influence aspects of memory performance, such as tem-
For each allocation histogram, we also present a time seriesporal and spatial locality and the efficacy of generational garbage
graph in Figures 4(a) through 22(a).. Each line in the time series collectors.
graph represents an object size class from the histogram on the Figures 4(c) through 22(c) show the relative distances between
left. We color every fifth object size black, stack them, and place the sources and targets of pointers in the heap for each benchmark.
the smallest size classes at the bottom of the graphs. The distancéointer distance is measured by the difference between the target
between the lines indicates the cumulative number of objects allo- and source object positions within (a close approximation to) a per-
cated or live of the corresponding size, as a function of time (in fectly compacted heap. We approximate a continuously perfectly
bytes of allocation by convention). compacted heap by tracking cohort sizes and the logical position
Together, the histogram and time-series data show marked dif- of each object within each cohort during frequent garbage collec-
ferences between allocated and live object demographics. For ex-tions. The youngest object has a heap position of 0 and the oldest
ample, the allocation histograms fbtoat, fop, and xalan (Fig- has a heap position equal to the volume of live objects in the heap.
ures 5(a), 8(a), 14(a)) are similar, but the time series data showsThus, positive values are old to young object pointers, and negative
many differences. Thgalan program has eight allocation phases values are young to old.
that are self-similar and mirrored in the live data, although in dif- We include both a ‘staticshapshotneasure of pointer distance,
ferent size class proportions. Whereashlioat allocation and live and a ‘dynamic’mutationmeasure. Snapshot pointer distance is
objects show much less phase behavior, and phases are not selfestablished by examining all pointers in the live object graph at a
correlated. Comparing live and allocated time-seriegdpishows garbage collection—measuring tetate of the object graph. Mu-
a different pattern. There is a steady increase in the live objectstation distance is established by examining every pointer as it is
of each size (and consequently, probably growing data structures),created—measuring tteetivity over the object graph. We express
whereadopallocates humerous sizes in a several distinct allocation these metrics as aggregate histograms for the execution of the en-
phases. Thus, the allocation and live graphs are very different. Thistire benchmark, and as a time series to reflect the changing shape
shows that live and allocation time series analysis can reveal com-of the histogram over time (measured in mutations).
plexity and opportunities that a scalar metric will never capture. We first considesnapshofointer distance, the top histogram
7.3 Heap Composition Graphs and time series in Figures 4(c) through 22(c). The most striking
: S feature of these graphs is the wide range of behaviors displayed
Figures 4(b) through 22(b) each plot heap composition in lines of py the benchmarks. Several programs show very irregular time-
constant allocation as a function of time, measured in allocations varying behavior, e.gantlr, chart, eclipse andluindex whereas
(top) and pointer mutations (bottom). Like the live object time pjoat hsqgldhandpmdare more stable, but still vary a bit; aralan
series graphs, these graphs expose the heap composition but showhows a very complex, but exactly repeated pattern. Several of the
object lifetime behaviors rather than object size. Since both graphs spgc benchmarks, such 202 jess _205 raytrace and_209.db
ShOW |iVe ObjeCtS, their Shapes are Similar. The heap Composition d|sp|ay a Comp'ete'y ﬂat pointer distance prof”e'
graphs group objects into cohorts based on allocation time. We  The mutationpointer distance graphs have the same axes and
choose cohort sizes as a power of twd)(Buch that there are  are shown below each snapshot pointer distance figure. These
between 100 and 200 cohorts, shown as a line in each graph. Theyraphs are computed by tracking pointer distances at all pointer
top line corresponds to the oldest cohort and indicates the total stores (in a write barrier), rather than at static snapshots of the
volume of live objects in the heap. The gaps between each of theheap. These graphs show a wider range of irregularity and patterns
lines reflects the amount in each cohort, and when objects in athan the heap snapshots.
cohort die, adjacent lines move closer together or if they all die,  To jllustrate the differences between these metrics, consider
the lines merge. It is not uncommon for programs to immediately pjoatin Figure 5(c). Many pointers point from old to new objects
allocate long lived data, |nd|cat_ed by a gap between the top Ilne and (positive numbers in the snapshot graphs in the top half of Fig-
the other cohortshloat, hsgldh jython andlusearchall show this ure: 5(c)), but almost all pointenutationsinstall new to old point-
behavior in Figures 5(b), 9(b), 10(b), and 12(b). ers (negative numbers in the mutation graphs). The snapshot graphs
Qualitatively, the complexity of the graphs in Figures 4(b) indicate that around 40% of pointers will point from old to new at
through 22(b) reflect the object lifetime behaviors of each of the any given snapshot (see the top-most line in the time series) and
benchmarks. With the exception pfthon and lusearch the Da- about 60% will point from new to old (the bottom-most line). On
Capo benchmarks show much richer lifetime behaviors than SPEC; the other hand, the mutation graphs show that for most of the execu-
jython is an interpreter, which leads to a highly regular execu- tion of the benchmark, nearly 100% of pointer mutations are in the
tion pattern. Althoughythonallocates more than any of the SPEC  new to old direction. The divergence of the snapshot and mutation
benchmarks, its behavior is highly regular. We experimented with gata, and the time-varying nature of each highlight the limitations
a number of interpreted workloads and found very similar, highly of single value summaries of benchmark behaviors.
regular behavior, suggesting that the interpreter rather than the in- . .
terpreted program dominates. The progranmart andxalanshow 9. Principal Components Analysis
distinct self-similar phases with respect to object lifetimes in Fig- Previous sections demonstrate that DaCapo is more object oriented,
ures 6(b) and and 14(b). The prografop andhsgldbshow regu- more complex, and larger than SPEC, whereas this section demon-
lar, steady heap growth in Figures 8(b) and 9(b). On the other hand,strates that all the constituent programs differ from each other, us-
bloat, eclipse luindex and pmd show irregular, complex object  ing principal component analysis (PCA) [18]. This result indicates

lifetime patterns in Figures 5(b), 7(b), 11(b), and 13(b). that we satisfy our goal of program diversity. It also confirms that
L . . DaCapo benchmarks differ from SPEC, which is unsurprising by
8. Reference Behavior in Pointer Distances now given the results from the preceding sections.

Java programs primarily use pointer-based data structures. This PCA is a multivariate statistical technique that reduces a large
section provides statistics that describe the connectivity of the dataN dimensional space into a lower dimensional uncorrelated space.
structures created and manipulated by the DaCapo and SPECPCA generates a positive or negative weight (factor loading) associ-
benchmarks. We measure pointer distance between its source andted with each metric. These weights transform the original higher
target objects by the relative ages of the objects, for both static dimension space int® principal components using linear equa-
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Mutation distance — standard deviation -12| 2| 15| 2 100 hsgidb ehar

Incoming pointers per object — standard deviation13| 5| -2| -8 0.75 o
Outgoing pointers per object — standard deviation11| 6| -4| -10 o 00 anl ‘

= 0.25 conipfss eclipsefY112ce

Table 5. Metrics Used for PC Analysis and Their PC Rankings g o & ﬁmk ?
tions. We follow the PCA methodology from prior work [13, 19], £ -050 i~
but use different constituent metrics. Table 5 shows these metrics ° o
which cover architecture, code, and memory behavior. We include 125 ® AL A
architecture metrics to expand over the code and memory met- -1.50 . pmd
rics presented and explored in depth by previous sections, and to L8
see which of these differentiate the benchmarks. Ede met- 00 Qe

-1 0 1 2
Component 3

rics include the i-cache miss rate for each benchmark, the number
of methods compiled and the volume of bytecodes compiled. The —
memorymetrics include static and dynamic pointer distances, and Figure 3. PCA Scatter Plots; PC1 & PC2 (top), and PC3 & PC4.
incoming and outgoing pointer distributions. o .

Following prior work [27], ourarchitecturemetrics are micro- ~ Methodology can therefore have a significant impact on a research
architecture neutral, meaning that they capture key architectural field, potentially accelerating, retarding, or misdirecting energy and
characteristics such as instruction mix, branch prediction, and innovation. Prompted by concerns among ourselves and others
register dependencies, but do so independently of the underlying@bout the state-of-the-art, we spent thousands of hours at eight
micro-architecture. We gather these metrics using a modified ver- Separate institutions examining and addressing the problems of
sion of Simics v. 3.0.11 [42]. We use our harness to measure stablebenchmarking Java applications. The magnitude of the effort surely
performance in Sun’s HotSpot JVM, v. 1.500-b03 running ona  €xplains why so few have developed benchmark suites.
simulated Sun Ultra-8.0 with Solaris 9. This paper makes two main contributions: 1) it describes a range

PCA computes four principal components (PC1, PC2, PC3, and of methodologie; for evaluating Java, including a numper of new
PC4) which in our case account for 70% of the variance between analyses, and 2) it presents the DaCapo benchmark suite. We show
benchmarks. PCA identifies principal components in order of sig- that good methodology is essential to drawing meaningful conclu-
nificance; PC1 is the most determinative component and PC4 is theSions and highlight inadequacies prevalent in current methodology.
least. Table 5 shows the relative ranks of each of the metrics for A few of our specific methodology recommendations are:
PC1-PC4. The absolute value of the numbers in columns 2-5 in- ) ] )
dicates the rank significance of the metric, while the sign indicates ® Whenselecting benchmarks for a suitese PCA to quantify
whether the contribution is negative or positive. We bold the ten ~ benchmark differences with metrics that include static and dy-
most significant values overall; six of these contribute to PC1, four namic code and data behavior.
to PC2, three to PC3, and none to PC4. Memory instruction mix is ® Whenevaluating architecturesse multiple JVMs. Evaluating
the most significant metric for PC1, and methods compiled is the new architecture features will also benefit from multiple JVMs.
next most significant. Note that the three most significant contribu- Whenevaluating JVM performanceise multiple architectures
tors to PC1 cover each of the three metric categories. with mix and stable methodologies, reporting first and/or sec-

Scatter plots in Figure 3 show how the benchmarks differ in ond iterations as well as steady-state to explore the compile and
two-dimensional space. Figure 3 plots each program’'s PC1 value  runtime tradeoffs in the JVM.
against its PC2 value in the top graph, and Figure 3 plots PC3 e When measuring memory performancese and report heap
and PC4 in the bottom graph. Intuitively, the further the distance sizes proportional to the minimums.
between two benchmarks, the further apart they are with respect o Whenmeasuring GC and JIT compilation performancs mix
to the metrics. The benchmarks differ if they are apart in either  and stable methodologies, and use constant workload (rather
graph. Since the programs are well distributed in these graphs, the  than throughput) benchmarks.
benchmarks differ. Whenmeasuring GC or compile time overhease determin-
istic stable and mix methodologies.

10. Conclusion

Benchmarks play a strategic role in computer science researchThis paper uses these methodologies to demonstrate that the Da-
and development by creating a common ground for evaluating Capo benchmarks are larger, more complex and richer than the
ideas and products. The choice of benchmarks and benchmarkingcommonly used SPEC Java benchmarks. The DaCapo benchmarks



are publicly available, evolving, and have and will remain open to
public feedback [14].
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