
Repairing Structurally Complex Data

Sarfraz Khurshid and Iv́an Garćıa and Yuk Lai Suen

Department of Electrical and Computer Engineering
The University of Texas at Austin

1 University Station C5000
Austin, TX 78712

{khurshid,igarcia,suen }@ece.utexas.edu

Abstract. We present a novel algorithm for repairing structurally complex data.
Given an assertion that represents desired structural integrity constraints and a
structure that violates them, the algorithm performs repair actions that mutate the
given structure to generate a new structure that satisfies the constraints. Assertions
are written as imperative predicates, which can express rich structural properties.
Since these properties can be arbitrarily complex, our algorithm is sound but not
complete, and it may not terminate in certain cases. Experimental results with
our prototype implementation, Juzi, show that it is feasible to efficiently repair a
variety of complex data structures that are routinely used in library code. Juzi can
often repair structures comprising of over a hundred objects (even when majority
of the objects have some corrupted field) in less than one second. Our algorithm
is based on systematic backtracking but does not require storing states and can
easily be implemented in a variety of software model checkers, such as the Java
PathFinder, SPIN, and VeriSoft.

1 Introduction
Assertions have long been used to state crucial properties of code. A variety of tools and
techniques make use of assertions to check program correctness statically at compile-
time or dynamically at run-time [3–5,7,10,12,14,16,20,23,29]. If an assertion violation
is detected at run-time, the program is deemed to have reached an inconsistent state. The
usual process then is to terminate the execution, debug the program (if necessary and
possible), and re-execute it.

In some cases, however, termination and re-execution is not feasible. And at times,
it is simply impossible to re-execute a program on a desired input since the input may
now represent (persistent) data that has been corrupted. Even correct programs can
have corrupt data due to errors in transmission, hardware, etc. In such cases, it may
be desirable to have a routine that can repair the corrupted data and bring the data in
a state that is consistent with the integrity constraints expressed in the assertion, which
would enable the program (to continue) to execute. A goal of such a routine is not to
bring the data in a state that a correct execution/environment would have resulted in, but
to bring it in a state that is acceptable to the user for continuing program execution [25].

We present a novel algorithm [11,27] for repairingstructurally complex data, which
pervade modern software, in particular object-oriented programs. A defining character-
istic of such data is theirstructural integrity constraints, e.g., in a binary tree, there

KhurshidS
Text Box
To appear in 12th International SPIN Workshop on Model Checking of Software(SPIN 2005).



are no cycles. Examples of complex structures include textbook data structures, such
as circular linked lists and red-black trees, which are routinely used in library code to
implement a variety of abstract data types. Complex structures arise in various other
contexts, e.g., intentional naming systems [1] and fault-tree analyzers [28].

The integrity constraints of a structure can be written as a formula that evaluates to
true if and only if the input satisfies the desired constraints. Such formulas can be written
declaratively [15,17,23], e.g., using fist-order logic, or imperatively [4,22], e.g., using a
Java or C++ predicate (i.e., a method that returns a boolean). Declarative notations often
provide a more natural and succinct way of expressing constraints. However, these no-
tations are usually syntactically and semantically different from common programming
languages, which can impede their wide-spread adoption among practitioners.

Our repair algorithm uses imperative descriptions of constraints. In object-oriented
programs such constraints are often already present as class invariants (which are usu-
ally called repOk methods) [21]. Given a predicate that represents desired structural
integrity constraints and a structure that violates them, the algorithm performs repair
actions that mutate the given structure to generate a new structure that satisfies the con-
straints. Each repair action assigns some value to a field of an object in the structure.

The repair actions are governed by the (1) exploration of the set of field assign-
ments to reference variables and (2) evaluation of constraints on values of primitive
data fields. Due to the enormous number of combinations of field assignments, it is
not possible to simply enumerate all possible assignments (even for small structures)
and check whether any assignment represents a repaired structure. For efficient repair,
our algorithm employs (1) pruning techniques that are based on our previous work on
the Korat framework for specification-based testing of Java programs [4], and (2) deci-
sion procedures for primitive data, similar to our previous work on test input generation
using symbolic execution [18].

The algorithm executes the predicate on the corrupted structure and monitors the
execution to record the order in which fields are accessed before the execution returns
false. The algorithm then backtracks on the last field that was accessed and either as-
signs that field a different reference or assigns it a symbolic primitive value (which is
different from the original value), and re-executes the predicate using (forward) sym-
bolic execution [19] where needed. To determine the feasibility of path conditions, our
prototype implementation, Juzi, uses CVC Lite [2].

At its core, our algorithm performs a systematic search using backtracking based
on field accesses and on results of decision procedure invocations. Our algorithm does
not require storing states. These characteristics make it very easy to implement our
algorithm to work in conjunction with a variety of software model checkers, such as the
Java PathFinder [29], SPIN [14], and VeriSoft [12].

Imperative predicates enable formulation of rich structural properties. Since these
properties can be arbitrarily complex, our algorithm is sound but not complete: the re-
paired structures that the algorithm returns satisfy the constraints, but the algorithm may
not terminate in certain cases. Experimental results with our prototype implementation
show that it is feasible to efficiently repair a variety of complex data structures, which
are used routinely in library code. Juzi can repair structures with a hundred nodes—half
of which have some field that needs repair—in less than one second.



1.1 Background

Fault-tolerance and error recovery have been a part of software systems for a long time.
File system utilities, such asfsck , routinely check and correct the underlying file struc-
ture. Some commercially developed systems, such as IBM MVS operating system [24]
and the Lucent 5ESS telephone switch [13], have provided routines for monitoring and
maintaining data structure properties. These routines, however, typically focus on re-
pairing particular structures by performing specific repair actions that work only in the
contexts for which they are designed.

Checkpointing and roll-back are standard mechanisms in databases to recover data
to the last known good state. DIRA [26] adapts these mechanisms to detect buffer over-
flow attacks and repair the structures damaged by the attack.

Demsky and Rinard have recently proposed a generic model-based framework for
data structure repair [9]. Given consistency constraints in a declarative language, their
repair algorithm translates these constraints into a repair routine, which corrects the
given corrupt structure. A distinguishing feature of our work from previous work on
repair is that we provide a generic repair algorithm that does not require any input from
the user beyond a description of the desired constraints and does not require learning a
language different from the underlying programming language.

1.2 Contributions

This paper makes the following contributions:

– Imperative constraints in data structure repair . Our use of imperative con-
straints in the context of generic data structure repair is novel. It enables users
to write constraints in a familiar notation and eliminates the need for requiring
mappings between abstract models of data and concrete values; such mappings are
often required when the constraint language differs from the implementation lan-
guage [9].

– Forward symbolic execution in data structure repair. Forward symbolic exe-
cution has traditionally been used to check correctness of programs (via static or
dynamic analyses) and to debug the programs. We have developed an unconven-
tional application of symbolic execution: we use it to repair thedataon which the
programs operate on.

– Data structure repair algorithm . We build on algorithms from our previous work
on specification-based test generation to develop a novel technique for performing
generic data structure repair.

– Repair as an application of a model checker. We have designed our algorithm
to work with off-the-shelf model checkers. To our knowledge this is the first in-
stance that shows how a standard model-checking tool can efficiently perform data
structure repair.

– Repair studies from library code. We perform repairs on a suite of complex struc-
tures used routinely in library code and evaluate the feasibility of structure repair.
Experiments show that moderately large structures, e.g., red-black trees with a few
hundred nodes, can often be repaired within a few seconds.



rootsize: 7 rootsize: 7

(a) (b)

Fig. 1. Repairing a binary tree. (Solid arrows representleft fields; dashed arrows represent
right fields; androot field is labeled appropriately.) (a) A corrupted binary tree structure:
values of left and right fields of some nodes introduce directed cycles in the structure. (b) Tree
resulting after repair has been performed.

2 Examples
We present two examples of repairing linked structures to illustrate the use of our algo-
rithm and prototype implementation. The first example illustrates an acyclic data struc-
ture that has been corrupted. The second example illustrates a structure that has cycles
and also shows how repair can sometimes even correct program behavior on-the-fly.

2.1 Binary tree

Consider the following declaration of a binary tree:

class BinaryTree {
Node root;
int size;

static class Node {
Node left;
Node right;

}

boolean repOk() { ... }
}

Each tree has aroot node and caches the number of nodes in thesize field. Each node
has aleft child and aright child. The methodrepOk checks the structural integrity
constraints forBinaryTree . It can be implemented as a simple graph traversal algo-
rithm that checks for acyclicity by keeping track of the set of visited nodes and checking
that it never encounters the same node twice. The method also checks for consistency
of thesize field. (Appendix A gives an implementation ofBinaryTree.repOk .)

As an illustration of the repair algorithm, consider the corrupted structure shown
in Figure 1(a). Incorrect values of fieldsleft andright in some of the nodes result
in the structure having directed cycles, which violates acyclicity. Given a description
of this structure and therepOk method, our repair algorithm produces the repaired
structure shown in Figure 1(b). Note that the field assignments now satisfy the desired
constraints. To repair the corrupted structure shown in this example, Juzi takes a tenth
of a second.



(a)

header

6 4 3 2 1 05

size: 0

(b)

constraint: IL == 7

6 4 3 2 1 05

size: IL header

Fig. 2. Repairing a doubly-linked list. (Solid arrows representnext fields; dotted arrows rep-
resentprevious fields; andheader field that points to the sentinel node is appropriately
labeled.) (a) List generated as result of erroneousaddFirst : all previous pointers incor-
rectly point to theheader entry, andsize is set to 0. (b) List resulting after repair has been
performed: all reference fields have correct values andsize field is correctly constrained to 7.

2.2 Doubly-linked list

We illustrate how repair can potentially even correct program behavior on-the-fly. The
classLinkedList declares doubly-linked circular lists similar to those implemented
in java.util.LinkedList :

class LinkedList {
Entry header; // sentinel header entry
int size; // number of non-sentinel entries

static class Entry {
Object element;
Entry next;
Entry previous;

}
}

The inner classEntry models the entries in a list. Each list has aheader entry, which
is treated as asentinel. An empty list consists of just the header entry, whose next and
previous fields point to itself. Thesize field stores the number of non-sentinel entries
in the list.

Consider a methodLinkedList.addFirst that given an objecto, adds a new
entry with elemento at the head ofthis list (i.e., it makes the new entry the first non-
sentinel entry in the list while preserving the original entries of the list). The following
code gives an erroneous implementation of theaddFirst method:

void addFirst(Object o) {
Entry t = header.next;
Entry e = new Entry();
e.element = o;
header.next = e;
e.previous = header;
e.next = t;
t.previous = header;

}



The above code contains two bugs:

– it does not maintain the correspondence betweennext andprevious fields of an
entry as it erroneously setst.previous to header instead of setting it toe

– it does not update the value of thesize field.

Figure 2(a) illustrates the list that is generated by inserting integer objects with val-
ues[0, . . . , 6] in that order into an empty list using the erroneousaddFirst . Notice the
incorrect values forprevious pointers (dotted arrows) andsize field. All previous

pointers incorrectly point to theheader entry, andsize is 0 even though there are 7
non-sentinel entries in the list.

Given this corrupted list and theLinkedList.repOk method, which we have not
given here due to brevity, Juzi generates the structure illustrated in Figure 2(b). Notice
how theprevious pointers have been set to correct values and how the size field is
constrained to have the correct value 7. For this example, Juzi took a tenth of a second
to complete the repair.

3 Background: Symbolic execution
Forward symbolic execution is a technique for executing a program on symbolic val-
ues [19]. There are two fundamental aspects of symbolic execution: (1) defining seman-
tics of operations that are originally defined for concrete values and (2) maintaining a
path conditionfor the current program path being executed—a path condition specifies
necessary constraints on input variables that must be satisfied to execute the correspond-
ing path.

As an example, consider the following program that returns the absolute value of its
input:

int abs(int i) {
L1. int result;
L2. if (i < 0)
L3. result = -1 * i;
L4. else result = i;
L5. return result;

}

To symbolically execute this program, we consider its behavior on a primitive integer
input, say I. We make no assumptions about the value of I (except what can be deduced
from the type declaration). So, when we encounter a conditional statement, we consider
both possible outcomes of the condition. To perform operations on symbols, we treat
them simply as variables, e.g., the statement on line 3 updates the value ofresult to be
-1 * I . Of course, a tool for symbolic execution needs to modify the type ofresult

to note updates involving symbols and to provide support for manipulating expressions,
such as-1 * I .

Symbolic execution of the above program explores the following two paths:

path 1:
[I < 0] L1 -> L2 -> L3 -> L5

path 2:
[I >= 0] L1 -> L2 -> L4 -> L5

Note that for each path that is explored, there is a corresponding path condition (shown
in square brackets). While execution on a concrete input would have followed exactly
one of these two paths, symbolic execution explores both.



4 Algorithm

This section describes our repair algorithm. Given a structures that is to be repaired
and a predicaterepOk that represents the structural constraints, the algorithm:

– invokess.repOk() ;
– monitors execution ofrepOk to note the order in which fields of objects ins are

accessed;
– if repOk returns false

• backtracks and mutatess by toggling the value of the last field1 that was ac-
cessed byrepOk (while maintaining the values of all other fields), and re-
executesrepOk

– else
• if (pathCondition is feasible)

∗ outputss (which now has been repaired)

The first execution of the algorithm is on the corrupted structure. Notice that all
fields of this structure have concrete values. Therefore, the first invocation ofrepOk

simply follows Java semantics. But whenrepOk returns false, the algorithm mutates
the given structure, and may introduce fields that have symbolic values for primitive
data; value updates to these field then follow standard forward symbolic execution [19].

To modify a field value when backtracking, the algorithm considers two primary
cases2:

– primitive field access: the field is assigned a symbolic valueI and the current path-
condition is updated to reflect thatI != v , wherev is the original value of this
field in the corrupt structure;

– reference field access: the field is nondeterministically assigned
• null , if the original field value was notnull ;
• an object (of a compatible type) that was encountered during the last execution

of repOk on the corrupt structure, if the field was not originally pointing to this
object;

• a new object (of a compatible type), unless the object that the field originally
pointed to was different from all objects in the structure encountered during the
last execution ofrepOk .

It is tempting to think that a reference field of an object in a structure can potentially
point to any other object that has a compatible type in that structure and to explore all
such assignments. However, our algorithm does not explore them all. It turns out that it
suffices to select the possible assignments from the part of the structure that has so far
been accessed, and only one object that is distinct from those previously encountered
during the last execution ofrepOk . In fact, trying more than one such object amounts
to making equivalent assignments since they result in isomorphic structures [4]. Indeed,

1 If all values for the last field accessed have already been explored, reset the value of that field
to its initial value and backtrack further to modify the value of the second-last field accessed
and so on.

2 Our current prototype does not handle arrays.



there is little reason to explore more than one structure from a set of isomorphic struc-
tures since they are either all valid or all invalid3.

Our repair algorithm builds on our previous work on test input generation using Ko-
rat [4] and generalized symbolic execution [18], and adapts those algorithms to perform
efficient data structure repair.

5 Implementation

Our prototype, Juzi, is written in Java and works for repairing structures that a Java
program manipulates. There are three key inputs to Juzi: (1) the name of the class to
which the structure belongs; (2) the name of the method that represents the desired
structural constraints; and (3) the name of a method which represents the corrupted
structure. To systematically modify field values and to perform symbolic execution,
Juzi performs instrumentation of Java bytecode and implements a simple backtracking
algorithm. Juzi uses CVC Lite [2] to determine feasibility of path conditions that it
builds during symbolic execution.

5.1 Bytecode instrumentation

There are two basic functions that Juzi performs using bytecode instrumentation: (1)
systematic assignment of values to fields; (2) symbolic execution.

Recall that our repair algorithm uses a systematic assignment of values to fields,
where some values may be symbolic. How these assignments are made depends cru-
cially on the order in which fields are accessed. To record this order, Juzi transforms the
original code and replaces field accesses by invocations of methods that Juzi adds to the
given code4. The method invocations allow Juzi to record field accesses. For example,
for the doubly-linked list example (Section 2.2), the Java bytecode statement

6: getfield #18; //Field header:Ljuzi/examples/LinkedList$Entry;

which accesses theheader field, transforms to

6: invokevirtual #252; //Method _get_header:()Ljuzi/examples/LinkedList$Entry;

which invokes the methodget header —a method that Juzi adds to allow monitoring
repOk ’s executions.

To enable symbolic execution, Juzi replaces primitive types by library types that it
provides to represent expressions on symbolic (and concrete) values. Juzi performs a
conservative reachability analysis to see what types need to be transformed and gen-
erates appropriate bytecodes. Juzi also transforms operations on primitive values into
appropriate method invocations. For example, when a primitive integer constant forms
a sub-expression in an expression on symbols and concrete values, Juzi wraps the in-
teger constant in an object. As an illustration, consider the following sequence of Java
bytecodes:

3 We assume thatrepOk uses actual object identities only in comparison operations [4,22].
4 We used a similar approach in previous work that used source-code instrumentation to perform

test generation [4,18,22].



...
16: iconst_3
17: iadd
...

is transformed to

...
16: new #280; //class IntConstant
19: dup
20: iconst_3
21: invokespecial #283; //Method juzi/expr/literal/IntConstant."<init>":(I)V
24: invokevirtual #296; //Method juzi/expr/Expression.iadd:

// (Ljuzi/expr/Expression;)Ljuzi/expr/Expression;
...

which shows the wrapping of the integer constant 3 into an object of the library class
juzi.expr.literal.IntConstant , followed by an invocation of the library method
iadd , which is one of the methods Juzi implements to build expressions containing
symbols and concrete values.

To allow symbolic execution to explore different program paths, Juzi uses a non-
deterministic boolean choice whenever there’s a branch in bytecode that cannot be de-
terministically evaluated on-the-fly.

Juzi uses the Java Programming Assistant (Javaassist) [6] to perform bytecode in-
strumentation.

5.2 Backtracking
Juzi implements a simple backtracking algorithm to provide non-deterministic choice.
The classExplorer provides methodchoose which takes an integer input and repre-
sents a non-deterministic choice, for example the assignment

x = Explorer.choose(3);

non-deterministically assigns the values0, 1, 2, 3 to x . Such non-deterministic choice
operators are an essential feature of software model checkers [12,14,29].

The Juzi backtracking algorithm performs stateless depth-first search (i.e., stores
no states but remembers the values it uses when making non-deterministic assignments
with choose ). Non-deterministic code is thus re-executed from the beginning, and dur-
ing each execution one of the non-deterministic assignments is made differently from
that in the previous execution.

5.3 Satisfiability of path conditions
Juzi checks satisfiability of path conditions using the CVC Lite [2] automated theorem
prover. CVC Lite provides a C++ API for checking validity of formulas over several
interpreted theories including linear arithmetic on integers and reals, arrays and un-
interpreted functions. Since CVC Lite is implemented in C++, it can be expensive to
make calls to it from a Java program. Juzi, therefore, implements some on-the-fly sim-
plifications of path conditions as it builds them. The simplifications not only allow Juzi
to generate smaller path conditions but also, in some cases, let it decide satisfiability
without having to call CVC Lite routines. Juzi’s simplifications include transforming
constraints in a path condition to a canonical form, performing subsumption checking
for simple cases, and propagating constants.



size: 0

3

9

11

1 5

4 6

13

7
root size: IL

3

1 5 13

7
root

11

4 6

9

constraint: IL == 9

(a) (b)

Fig. 3. Repairing a red-black tree. (Solid arrows representleft fields; dashed arrows represent
right fields; dotted arrows representparent pointers;root field is labeled;key is written
inside the entry; entries drawn with thick circles are black and the others are red.) (a) A corrupted
red-black tree structure: has cycles; has variable number of black entries along different paths
from root; has a red entry with a red child; has incorrect size. (b) Tree resulting after repair has
been performed: field values have been modified to satisfy the structural constraints; thesize
field is correctly constrained to be exactly 9.

6 Case study: red-black trees

To illustrate the variety of constraints that our repair algorithm can handle, we next
present a case study on repairing red-black trees [8], which implement balanced binary
search trees. Red-black trees are structurally among the most complex of the commonly
used data structures and therefore present a challenging study for repair. The experi-
ments show that Juzi can efficiently repair red-black trees of moderately large sizes,
e.g., repairing a tree with over a hundred nodes—almost all of which had at least one
field with a corrupted value5—in less than a second. It is worth pointing out that prior
work [9] on repair has not addressed repair of structures as complex as red-black trees.

All experiments reported in this paper were performed on a 1.6 GHz Pentium M
processor with 1 GB of RAM.

The following code declares a red-black tree in a fashion similar to the implemen-
tation in java.util.TreeMap :

class TreeMap {
Entry root;
int size;

static class Entry {
int key;
Entry left;
Entry right;;
Entry parent;
boolean color;

}

boolean repOk() { ... }
}

5 Less corrupt structures are repaired even more efficiently.



A tree has aroot entry and stores the number of entries in thesize field. An entry
stores a data element in the fieldkey , has aleft and aright child, and also has a
parent pointer. Furthermore, an entry has a color, which is eitherRED(false) orBLACK

(true).
Red-black trees are binary search trees. In addition to acyclicity and correct search

order on keys, there are two fundamental constraints that define red-black trees:

– red entries have black children;
– the number of black entries on any path from the root to a leaf is the same.

Of course, the value of thesize field needs to correctly reflect the number of entries.
Consider the corrupted structure shown in Figure 3 (a). Not only is it not acyclic,

but it also violates both the constraints on the coloring of entries, has an incorrect value
for thesize field, and has all theparent pointers set incorrectly tonull .

Given this structure andrepOk for TreeMap (which we do not present here due to
brevity), Juzi produces the structure shown in Figure 3 (b). Notice that all fields now
have correct values; the value ofsize field is correctly constrained to equal 9. Juzi
completed the repair in a tenth of a second.

7 Discussion

We next discuss some characteristics and limitations of our approach and present some
promising future directions.

7.1 Structure repair versus structure generation
We view structure repair as being closely related to structure generation and therefore
closely related to test input generation from input constraints [17, 22]. Generation ad-
dresses the problem of generating structures that satisfy given structural constraints,
while repair addresses the problem of generating a structure that not only satisfies the
constraints but is also heuristically close to a given corrupt structure. Interestingly, on
the one hand, generation can aid repair since any structure that satisfies the constraints
is indeed a candidate for being the repaired structure, while on the other hand, repair can
aid generation since an arbitrarily selected corrupt structure may be repaired to generate
a desired structure.

7.2 On-demand symbolic execution
Our use of symbolic execution is non-conventional not only in the sense of our appli-
cation to data structure repair, but also in the sense of how we perform it. Symbolic
execution is usually performed either by treating all program inputs as symbolic [19] or
by a priori determining which inputs to treat as symbolic and which to treat as concrete
(e.g., symbolic primitives and concrete references [18]).

Our repair algorithm takes a different approach. It starts by executingrepOk (class
invariant) on a structure, all of whose fields have concrete values. During subsequent ex-
ecutions ofrepOk , the algorithm makes values of certain fields symbolic. However, the
values of these fields do not have to stay symbolic during all subsequent executions—a
field may regain a concrete value (since backtracking re-initializes field values). The al-
gorithm, thus, performs symbolic execution on an as-needed basis and whether it treats



a field as symbolic or concrete depends on the particular execution being considered.
This hybrid approach enables the algorithm to explore structures in a “neighborhood”
of the original structure and generate a new structure that is heuristically similar to the
original one.

7.3 Sensitivity of repair to repOk

Repair actions performed by our algorithm intrinsically depend on howrepOk is formu-
lated. Recall that the algorithm backtracks on thelastfield accessed byrepOk and mod-
ifies this field. This means that for the same corrupted structure, two differentrepOk

implementations that access fields in different orders may cause our repair algorithm
to produce different structures. Even though this sensitivity to the way constraints are
written may be considered an inherent limitation of the algorithm, in fact, it allows the
user to control how the structure may be repaired. By ordering constraints appropriately
the user can ensure that the algorithm will not perturb the values of certain fields (that
the user’s deems unlikely to be corrupted) unless absolutely necessary.

7.4 Repairing primitive data values in a structure

The question of how to repair primitive data values in a structure is rather important
for any repair algorithm. For example, consider repairing a binary search tree whose
elements are not in the correct search order. One way to repair this structure is to replace
the elements with new elements that appear in the correct search order. However, this is
unlikely to be a good repair choice, e.g., consider the case when the tree is implementing
a set—it is the elements that define the set and are therefore of crucial significance.

Our approach is to allow the user to specify ranges of data values for primitive
fields and to use these ranges to constrain the repaired values of these fields. Juzi reads
these ranges from a configuration file. The user can choose not to provide any range, in
which case Juzi (by default) tries to preserve as many of the original values as possible.
We plan to allow the user to state specific relations between (values of) a corrupted
structure and a repaired structure akin to specifying post-conditions that relate pre-
state with post-state. A more sophisticated approach could define metrics of similarity
between corrupted and repaired structures; these metrics could then be used as a basis
of new algorithms that produce repaired structures that are maximally similar to the
given corrupted structures.

7.5 Converting symbolic values to concrete values

Our repair algorithm uses a decision procedure for evaluating feasibility of path con-
ditions. A caveat of using an automated theorem prover for this purpose is that such
tools typically report only the feasibility of constraints and not actual valuations of the
variables in feasible constraints. This implies that when we repair the value of a prim-
itive data field, we need to perform an additional step of selecting a concrete value. In
the benchmarks we have shown, selection of such values has just been a trivial step.
However, in other cases when constraints are more complex, it is non-trivial to select
these values.



7.6 Multi-threaded programs
Corrupted data in multi-threaded programs can be repaired by suspending processes
that manipulate this data, repairing the data using the repair routine, and resuming the
processes. This requires, however, control over thread scheduling, which cannot easily
be achieved for arbitrary programs running under a standard virtual machine. Programs
where it is crucial to maintain essential structural integrity constraints can, however, be
run under environments that provide such suspend/resume mechanisms.

7.7 Structure repair and program debugging
Repair of a structure can lend useful information about error localization in a faulty
program to aid its debugging. For example, if repair actions only set values of the fields
previous andsize (as in Section 2.2), the user can start debugging by first looking at
those parts of the code that modify these fields.

7.8 Repairing large structures
Our repair examples so far have involved small structures. Repair can, however, be
performed feasibly for modestly large structures. For example, for doubly-linked list
and binary tree (Section 2), Juzi can repair structures with over 1000 nodes—of which
over a 100 have some field that needs repair—in under a minute. Structures with over
100 nodes—of which over 50 have some field that needs repair—are repaired in about a
second, even in the case of red-black trees (Section 6). These results are encouraging as
they point out that repair routines can efficiently be included in code where it is essential
to enforce structural integrity constraints at key control points. Whether a generic repair
approach can scale to repairing structures with millions of nodes—of which thousands
have some field that needs repair—well, that remains to be seen.

8 Conclusions
We have presented a novel algorithm for repairing structurally complex data. Given
an assertion that represents desired structural integrity constraints and a structure that
violates them, the algorithm performs repair actions that mutate the given structure to
generate a new structure that satisfies the constraints. Assertions are written as impera-
tive predicates that can express rich structural properties. Since these properties can be
arbitrarily complex, our algorithm is sound but not complete.

Experimental results with our prototype, Juzi, show that it is feasible to efficiently
repair a variety of complex data structures that are used routinely in library code. Juzi
can often repair structures with over a hundred objects (where majority of the objects
have at least one field that has been corrupted) in less than one second.

Our algorithm is based on systematic backtracking but does not require storing
states and can easily be implemented in a variety of software model checkers, such
as the Java PathFinder, SPIN, and VeriSoft.

Acknowledgments
We would like to thank the anonymous reviewers and Darko Marinov for detailed com-
ments on a previous draft. This work was funded in part by NSF ITR-SoD award
#0438967 and in part by the GEM fellowship.



References

1. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. InProc. 17th ACM Symposium on
Operating Systems Principles (SOSP), Kiawah Island, December 1999.

2. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating
validity checker. InProceedings of the 16th International Conference On Computer Aided
Verification, Boston, MA, July 2004.

3. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and Yunshan Zhu.
Symbolic model checking using SAT procedures instead of BDDs. InProc. 36thConference
on Design Automation (DAC), New Orleans, LA, 1999.

4. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated testing
based on Java predicates. InProc. International Symposium on Software Testing and Analysis
(ISSTA), pages 123–133, July 2002.

5. Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit testing:
The JML and JUnit way. InProc. European Conference on Object-Oriented Programming
(ECOOP), June 2002.

6. Shigeru Chiba. Javassist—a reflection-based programming wizard for Java. InProceedings
of the ACM OOPSLA’98 Workshop on Reflective Programming in C++ and Java, October
1998.

7. James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach,
and Hongjun Zheng. Bandera: Extracting finite-state models from Java source code. InProc.
22nd International Conference on Software Engineering (ICSE), June 2000.

8. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

9. Brian Demsky and Martin Rinard. Automatic detection and repair of errors in data structures.
In Proc. ACM SIGPLAN 2003 Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 78–95, 2003.

10. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. InProc. ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 234–245, 2002.

11. Iván Garćıa. Enabling symbolic execution of Java programs using bytecode instrumenta-
tion. Master’s thesis, Department of Electrical and Computer Engineering, The University
of Texas at Austin, May 2005.

12. Patrice Godefroid. Model checking for programming languages using VeriSoft. InProc.
24th Annual ACM Symposium on the Principles of Programming Languages (POPL), pages
174–186, Paris, France, January 1997.

13. G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM) switching system: Maintenance
capabilities.AT&T Technical Journal, 64(6 part 2):1385–1416, 1985.

14. Gerald Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,
23(5), May 1997.

15. Daniel Jackson. Micromodels of software: Modelling and analysis with Alloy, 2001.http:
//sdg.lcs.mit.edu/alloy/book.pdf .

16. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. InProc. Inter-
national Symposium on Software Testing and Analysis (ISSTA), Portland, OR, August 2000.

17. Sarfraz Khurshid.Generating Structurally Complex Tests from Declarative Constraints. PhD
thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, December 2003.

18. Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. Generalized symbolic execution for
model checking and testing. InProc. 9th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), Warsaw, Poland, April 2003.



19. James C. King. Symbolic execution and program testing.Communications of the ACM,
19(7):385–394, 1976.

20. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java. Technical Report TR 98-06i, Department of
Computer Science, Iowa State University, June 1998.

21. Barbara Liskov and John Guttag.Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley, 2000.

22. Darko Marinov. Automatic Testing of Software with Structurally Complex Inputs. PhD
thesis, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, 2004.

23. Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated testing
of Java programs. InProc. 16th IEEE International Conference on Automated Software
Engineering (ASE), San Diego, CA, November 2001.

24. Samiha Mourad and Dorothy Andrews. On the reliability of the IBM MVS/XA operating
system.IEEE Transactions on Software Engineering, 13(10):1135–1139, 1987.

25. Martin Rinard. Resilient computing. Technical report, MIT Computer Science and Artificial
Intelligence Laboratory, 2003. (Research Abstract).

26. Alexey Smirnov and Tzi cker Chiueh. DIRA: Automatic detection, identification, and repair
of control-hijacking attacks. InThe 12th Annual Network and Distributed System Security
Symposium, San Diego, CA, February 2005.

27. Yuk Lai Suen. Automatically repairing structurally complex data. Master’s thesis, Depart-
ment of Electrical and Computer Engineering, The University of Texas at Austin, May 2005.

28. United States Nuclear Regulatory Commission.Fault Tree Handbook, 1981. NUREG-0492.
29. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model checking

programs. InProc. 15th IEEE International Conference on Automated Software Engineering
(ASE), Grenoble, France, 2000.

A Structural invariants for binary tree

The following code gives therepOk method forBinaryTree (Section 2.1) [4,22]:
boolean repOk() {

if (root == null) // check that empty tree has size zero
return size == 0;

Set visited = new HashSet();
visited.add(root);
java.util.LinkedList workList = new java.util.LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that tree has no cycle
if (!visited.add(current.left))

return false;
workList.add(current.left);

}
if (current.right != null) {

// checks that tree has no cycle
if (!visited.add(current.right))

return false;
workList.add(current.right);

}
}
if (visited.size != size) // check that size is consistent

return false;
return true;

}




