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Abstract— Semantic similarity measures play an important role in 

the extraction of semantic relations. Semantic similarity measures 

are widely used in Natural Language Processing (NLP) and 

Information Retrieval (IR). The work proposed here uses web 

based metrics to compute the semantic similarity between words 

or terms and also compares with the state-of-the-art. For a 

computer to decide the semantic similarity, it should understand 

the semantics of the words. Computer being a syntactic machine, 

it cannot understand the semantics. So always an attempt is made 

to represent the semantics as syntax. There are various methods 

proposed to find the semantic similarity between words. Some of 

these methods have used the precompiled databases like WordNet, 

and Brown Corpus. Some are based on Web Search Engine. The 

approach presented here is altogether different from these 

methods. It makes use of snippets returned by the Wikipedia or 

any encyclopedia such as Britannica Encyclopedia. The snippets 

are preprocessed for stop word removal and stemming. For suffix 

removal an algorithm by M. F. Porter is referred. Luhn’s Idea is 

used for extraction of significant words from the preprocessed 

snippets. Similarity measures proposed here are based on the five 

different association measures in Information retrieval, namely 

simple matching, Dice, Jaccard, Overlap, Cosine coefficient. 

Performance of these methods is evaluated using Miller and 

Charle’s benchmark dataset. It gives higher correlation value of 

0.80 than some of the existing methods. 

 

Keywords – Semantic Similarity, Wikipedia, Web Search Engine, 

Natural Language Processing, Information Retrieval, Web 

Mining 

 

I. INTRODUCTION 

Semantic similarity is a central concept that finds great 

importance in various fields such as artificial intelligence, natural 

language processing, cognitive science and psychology. Accurate 

measurement of semantic similarity between words is essential for 

various tasks such as, document clustering, information retrieval, 

and synonym extraction. For a machine to be able to decide the 

semantic similarity, intelligence is needed. It should be able to 

understand the semantics or meaning of the words. But a computer 

being a syntactic machine, semantics associated with the words or 

terms is to be represented as syntax.  

For this various approaches are proposed till now. Word 

semantic similarity approaches or metrics can be categorized as: 

Pre-compiled database based metrics, i.e., metrics consulting only 

human-built knowledge resources, such as onto logies, 

Co-occurrence based metrics using WWW, i.e., metrics that assume 

that the semantic similarity between words or terms can be 

expressed by an association ratio which is a function of their 
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co-occurrence Context based metrics using WWW, i.e., metrics that 

are fully text-based and understand and utilize the context or 

proximity of words or terms to compute semantic similarity. Several 

Precompiled database based methods have been proposed in the 

literature that use, e.g., WordNet, for semantic similarity 

computation. WordNet is an on-line semantic dictionary—a lexical 

database, developed at Princeton by a group led by Miller. Edge 

counting methods consider the length of the paths that link the 

words, as well as the word positions in the taxonomic 

structure.Information content methods compute similarity between 

words by combining taxonomic features that exist in the used 

resource, e.g., number of subsumed words, with frequencies 

computed over textual corpora [3]. Semantic similarity between 

words changes over time as new words are constantly being created 

and new meaning is also being assigned to the existing words. Also 

there can be a problem with person name detection and alias 

detection. One person may have multiple names to identify. So there 

are some problems with the precompiled databases. The new senses 

of words can not be immediately listed in any precompiled database. 

Maintaining an up-to-date taxonomy of all the new words and new 

usages of existing words is difficult and costly. A solution to this 

problem is : ―The Web can be regarded as a large-scale, dynamic 

corpus of text‖. Danushka Bollegala has proposed similarity 

measures using page count returned by the search engine for the 

given word pair. These similarity measures are modified four 

popular co-occurrence measures; Jaccard, Overlap, Dice, and PMI 

(point-wise mutual information). Page-count-based metrics use 

association ratios between words that are computed using their 

co-occurrence frequency in documents. The basic assumption of 

this approach is that high co-occurrence frequencies indicate high 

association ratios and high association ratios indicate a semantic 

relation between words. Cilibrasi and Vitanyi proposed a 

page-count-based similarity measure, called the Normalized Google 

Distance. 

     ------- 1 

As the semantic similarity between two words increases, the 

distance computed by decreases. This metric is considered to be a 

dissimilarity measure. The metric is also unbounded, ranging from 0 

to ∞. J. Gracia , proposed a variation of Normalized Google 

Distance that defines a similarity measurement. This variation is 

typically referred to as ―Google-based Semantic Relatedness: 

-------    2 

 
The next approach is using TF-IDF representation to represent 

semantics of a word. Here Term Frequency (TF) is the ratio of 

number of occurrences of the considered term (ti) in document dj, 

and the total number of occurrences of all terms in document dj. 

=           ------   3 

 
Elias Iosif [8] proposed text-based or context based similarity 

metrics. The basic assumption behind these metrics is that 

―similarity of context implies similarity of meaning”, i.e., words 

that appear in similar lexical environment (left and right contexts) 

have a close semantic relation. For each occurrence of a word w a 

left and right context of size K is considered. i.e. 
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[tK,L…..t2,Lt1,L]w[t1,R…..t2,RtK,R] where,  

  and represent the ith word to the left and to the right 

of w respectively.  

 

Each word is represented as a feature vector as Fw,k=(Vw,1, Vw,2,…. 

Vw,N).There are various feature weighting schemes for computing 

the value of Vw,i, some of 

them are : 

 
Scheme Acronym 

Binary B 

Term frequency TF 

Add-one TF TF1 

Log of TF LTF 

Add-one LTF LTF1 

TF-inverse Document Freq TFIDF 

Log of TFIDF LTFIDF 

Add-one LTFIDF LTFIDF1 

II. PROPOSED SEMANTIC SIMILARITY METHOD 

Given two words P and Q, we model the problem of measuring 

the semantic similarity between P and Q, as a one of constructing a 

function simðP;QÞ that returns a value in range [0,1] If P and Q are 

highly similar (e.g.,synonyms), we expect simðP;QÞ to be closer to 

1. On the other hand if P and Q are similar, then we expect 

simðP;QÞ to be closer to 0. We define numerous features that 

express the similarity between P and Q using  page counts and 

snippets retrieved from a web search engine for the two words. 

Using this feature representation of words, we train a two-class 

support vector machine to classify synonymous and 

nonsynonymous word pairs. The function simðP;QÞ is then 

approximated by the confidence score of the trained SVM. 

 
Fig.1. Outline of the proposed method 

 
Fig. 1 illustrates an example of using the proposed method to 

compute the semantic similarity between two words, gem and jewel. 

First, we query a web search engine and retrieve page counts for the 

two words and for their conjunctive (i.e., “gem,” “jewel,” and “gem 

AND jewel”). In Section 2.2, we define four similarity scores using 

page counts. Page counts-based similarity scores consider the global 

co-occurrences of two words on the web. However, they do not 

consider the local context in which two words co-occur. On the 

other hand, snippets returned by a search engine represent the local 

context in which two words co-occur on the web. Consequently, we 

find the frequency of numerous lexical syntactic patterns in snippets 

returned for the conjunctive query of the two words. The lexical 

patterns we utilize are extracted automatically using the method 

described in Section 2.3. However, it is noteworthy that a semantic 

relation can be expressed using more than one lexical pattern. 

Grouping the different lexical patterns that convey the same 

semantic relation, enables us to represent a semantic relation 

between two words accurately. For this purpose, we propose a 

sequential pattern clustering algorithm in Section 2.4. Both page 

counts-based similarity scores and lexical pattern clusters are used 

to define various features that represent the relation between two 

words. Using this feature representation of word pairs, we train a 

two-class support vector machine in Section 2.5. 

2.2 Page Count-Based Co-Occurrence Measures 

Page counts for the query P AND Q can be considered as an 

approximation of co-occurrence of two words (or multiword 

phrases) P and Q on the web. However, page counts for the query P 

AND Q alone do not accurately express semantic similarity. For 

example, Google returns 11,300,000 as the page count for “car” 

AND “automobile,” whereas the same is 49,000,000 for “car” AND 

“apple.” Although 

automobile is more semantically similar to car than apple is, page 

counts for the query “car” AND “apple” are more than four times 

greater than those for the query “car” AND “automobile.” One must 

consider the page counts not just for the query P AND Q, but also 

for the individual words P and Q to assess semantic similarity 

between P and Q. 

We compute four popular co-occurrence measures; Jaccard, 

Overlap (Simpson), Dice, and Pointwise mutual information (PMI), 

to compute semantic similarity using page counts. For the remainder 

of this paper, we use the 

Notation H(P) to denote the page counts for the query P in a search 

engine. The WebJaccard coefficient between words (or multiword 

phrases) P and Q, WebJaccard (P: Q), is defined as  

WebJaccard (P: Q) 

 
Therein, P Q denotes the conjunction query P AND Q. Given the 

scale and noise in web data, it is possible that two words may appear 

on some pages even though they are not related. In order to reduce 

the adverse effects attributable to such co-occurrences,weset the 

WebJaccard coefficient to zero if the page count for the queryP  

Qis less than a threshold c.2 Similarly, we define WebOverlap, 

WebOverlap (P,Q) as 

WebOverlap (P,Q) 

 

 
WebOverlap is a natural modification to the Overlap (Simpson) 

coefficient. We define the WebDice coefficient as a variant of the 

Dice coefficient. WebDice(P:Q) is defined as 

WebDice(P:Q) 

 
 

Pointwise mutual information [20] is a measure that is motivated 

by information theory; it is intended to reflect the dependence 

between two probabilistic events. We define WebPMI as a variant 

form of point wise mutual information using page counts as 

WebPMI(P:Q) 

 

 
 

Here, N is the number of documents indexed by the search 

engine. Probabilities in (4) are estimated according to the maximum 

likelihood principle. To calculate PMI accurately using (4), we must 

know N, the number of documents indexed by the search engine. 

Although estimating the number of documents indexed by a search 

engine is an interesting task itself, it is beyond the scope of this 

work. In the present work, 
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Ostrich,a large,flightless bird that lives in the dry grasslands 

of africa 

 

 

 
Fig 2.. A snippet retrieved for the query “cricket” AND “sport.” 

 
we set N =1010according to the number of indexed pages reported by 

Google. As previously discussed, page counts are mere 

approximations to actual word co-occurrences in the web. However, 

it has been shown empirically that there exists a high correlation 

between word counts obtained from a web search engine (e.g., 

Google and Altavista) and that from a corpus (e.g., British National 

corpus) Moreover, the approximated page counts have been 

successfully used to improve a variety of language modeling tasks . 

2.3 Lexical Pattern Extraction 

Page counts-based co-occurrence measures described in Section 2.2 

do not consider the local context in which those words co-occur. 

This can be problematic if one or both words are polysemous, or 

when page counts are unreliable. 

On the other hand, the snippets returned by a search engine for the 

conjunctive query of two words provide useful clues related to the 

semantic relations that exist between two words. A snippet contains 

a window of text selected from a document that includes the queried 

words. Snippets are useful for search because, most of the time, a 

user can read the snippet and decide whether a particular search 

result is relevant, without even opening the url. Using snippets as 

contexts is also computationally efficient because it obviates the 

need to download the source documents from the web, which can be 

time consuming if a document is large. For example, consider the 

snippet in Fig. 2. Here, the phrase is a indicates a semantic    

relationship between cricket and sport. 

Many such phrases indicate semantic relationships. For example, 

also known as, is a, part of, is an example of all indicate semantic 

relations of different types. In the example given 

above, words indicating the semantic relation between cricket and 

sport appear between the query words. Replacing the query words 

by variables X and Y , we can form the pattern X is a Y from the 

example given above. Despite the efficiency of using snippets, they 

pose two main challenges: first, a snippet can be a fragmented 

sentence, second, a search engine might produce a snippet by 

selecting multiple text fragments from different portions in a 

document. Because most syntactic or dependency parsers assume 

complete sentences as the input, deep parsing of snippets produces 

incorrect results. Consequently, we propose a shallow lexical 

pattern extraction algorithm using web snippets, to recognize the 

semantic relations that exist between two words. Lexical syntactic 

patterns have been used in various natural language processing tasks 

such as extracting hypernyms or meronyms, question answering , 

and paraphrase extraction .  

Fig. 3. A snippet retrieved for the query “ostrich ….bird.” 

 
Although a search engine might produce a snippet by selecting 

multiple text fragments from different portions in a document, a 

predefined delimiter is used to separate the different fragments. For 

example, in Google, the delimiter “...” is used to separate different 

fragments in a snippet. 

  

We use such delimiters to split a snippet before we run the proposed 

lexical pattern extraction algorithm on each fragment. 

Given two words P and Q, we query a web search engine using the 

wildcard query “P …Q” and download snippets. The “.” operator 

matches one word or none in a webpage. Therefore, our wildcard 

query retrieves snippets in which P and Q appear within a window 

of seven words. 

Because a search engine snippet contains ca. 20 words on average, 

and includes two fragments of texts selected from a document, we 

assume that the seven word window is sufficient to cover most 

relations between two words in snippets. In fact, over 95 percent of 

the lexical patterns extracted by the proposed method contain less 

than five words. We attempt to approximate the local context of two 

words using wildcard queries. For example, Fig. 3 shows a snippet 

retrieved for the query “ostrich…. bird.” 

For a snippet δ, retrieved for a word pair (P:Q )first, we replace the 

two words P and Q, respectively, with two variables X and Y . We 

replace all numeric values by D, a marker for digits. Next, we 

generate all subsequences of 

words from δ that satisfy all of the following conditions: 

1. A subsequence must contain exactly one occurrence of each X 

and Y. 

2. The maximum length of a subsequence is L words. 

3. A subsequence is allowed to skip one or more 

Words. However, we do not skip more than g 

Number of words consecutively. Moreover, the total number of 

words skipped in a subsequence should not exceed G. 

4. We expand all negation contractions in a context. For example, 

didn’t is expanded to did not. We do not skip the word not when 

generating subsequences. For example, this condition ensures that 

from the snippet X is not a Y, we do not produce the subsequence X 

is a Y. Finally, we count the frequency of all generated 

subsequences and only use subsequences that occur more than T 

times as lexical patterns. 

The parameters L,g,G, and T are set experimentally, It is 

noteworthy that the Proposed pattern extraction algorithm considers 

all the words in a snippet, and is not limited to extracting patterns 

only from the mid fix (i.e., the portion of text in a snippet that 

appears between the queried words). Moreover, the Consideration 

of gaps enables us to capture relations between distant words in a 

snippet. We use a modified version of the prefix span algorithm to 

generate subsequences From a text snippet. Specifically, we use the 

Constraints (2-4) to prune the search space of candidate 

subsequences. For example, if a subsequence has reached the 

maximum length L, or the number of skipped words is G, then we 

will not extend it further. By pruning the search space, we can speed 

up the pattern generation process. 

However, none of these modifications affect the accuracy of the 

proposed semantic similarity measure because the modified version 

of the prefixspan algorithm still generates the exact set of patterns 

that we would obtain if we used the original prefixspan algorithm 

(i.e., without pruning) and subsequently remove patterns that violate 

the above mentioned constraints. For example, some patterns 

extracted from the snippet shown in Fig. 3 are: X, a large Y, X a 

flightless Y, and X, large Y lives. 

2.3 Snippets 

It is a brief window of text extracted by a search engine around 

the query term in a document.It provides useful information 

regarding the local context of the query term. Snippets, a brief 

window of text extracted by a search engine around the query term 

in a document, provide useful information regarding the local 

context of the query term. Semantic similarity measures defined 

over snippets, have been used in query expansion, personal name 

disambiguation ], and community mining . Processing snippets is 

also efficient because it obviates the trouble of downloading 

webpages, which might be time consuming depending on the size of 

the pages. However, a widely acknowledged drawback of using 

snippets is that, because of the huge scale of the web and the large 

number of documents in the result set, only those snippets for the 

topranking results for a query can be processed efficiently. Ranking 

of search results, hence snippets, is determined by a complex 

combination of various factors unique to the underlying search 

engine. Therefore, no guarantee exists that all the information we 

need to measure semantic similarity between a given pair of words is 

contained in the top-ranking snippets. . 

“Cricket is a sport played between two teams each with eleven players” 
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Drawback Because of the huge scale of the web and the large no. 

of documents in the results set, only those snippets for the top 

ranking results for a query can be processed efficiently. 

2.5 Lexical Pattern Clustering 

Typically, a semantic relation can be expressed using more than 

one pattern. For example, consider the two distinct patterns, X is a 

Y, and X is a large Y. Both these patterns indicate that there exists 

an is-a relation between X and Y. 

Identifying the different patterns that express the same semantic 

relation enables us to represent the relation between two words 

accurately. According to the distributional hypothesis, words that 

occur in the same context have similar meanings. The distributional 

hypothesis has been used in various related tasks, such as 

identifying related words , and extracting paraphrases . If we 

consider the word pairs that satisfy (i.e., co-occur with) a particular 

lexical pattern as the context of that lexical pair, then from the 

distributional hypothesis, it follows that the lexical patterns which 

are similarly distributed over word pairs must be semantically 

similar. 

We represent a pattern a by a vector a of word-pair frequencies. 

We designate a, the word-pair frequency vector of pattern a. It is 

analogous to the document frequency vector of a word, as used in 

information retrieval. The value of the element corresponding to a 

word pair (P:Q )in a, is the frequency, f(PiQi,a), that the pattern a 

occurs with the word pair(Pi:Qi). As demonstrated later, the 

proposed pattern extraction algorithm typically extracts a large 

number of lexical patterns. Clustering algorithms based on pairwise 

comparisons among all patterns are prohibitively time consuming 

when the patterns are numerous. Next, we present a sequential 

clustering algorithm to efficiently cluster the extracted patterns.  

Given a set A of patterns and a clustering similarity Threshold θ, 

Algorithm 1 returns clusters (of patterns) that express similar 

semantic relations. First, in Algorithm 1, the function SORT sorts 

the patterns into descending order of their total occurrences in all 

word pairs. The total occurrence µ(a) of a pattern a is the sum of 

frequencies over all word pairs, and is given by µ(a)=f(Pi,Qi,a). 

After sorting, the most common patterns appear at the beginning 

in Λ, whereas rare patterns (i.e., patterns that occur with only few 

word pairs) get shifted to the end. Next, in line 2, we initialize the set 

of clusters, C, to the empty set. The outer for loop (starting at line 3), 

repeatedly takes a pattern ai from the ordered set Λ, and in the inner 

for loop (starting at line 6), finds the cluster, C*(Є C) that is most 

similar to ai. First, we represent a cluster by the centroid of all 

word-pair frequency vectors corresponding to the patterns in that 

cluster to compute the similarity between a pattern and a cluster. 

Next, we compute the cosine similarity between the cluster centroid 

(Cj), and the word-pair frequency vector of the pattern (aj). If the 

similarity between a pattern ai, and its most similar cluster, C*, is 

greater than the threshold θ, we append ai to C*(line14). We use the 

operator   to denote the vector addition between C* and ai. Then, 

we form a new cluster {ai} and append it to the set of clusters, C, if 

ai is not similar to any of the existing clusters beyond the threshold 

θ. 

By sorting the lexical patterns in the descending order of their 

frequency and clustering the most frequent patterns first, we form 

clusters for more common relations first. This enables us to separate 

rare patterns which are likely to be outliers from attaching to 

otherwise clean clusters. The greedy sequential nature of the 

algorithm avoids pairwise comparisons between all lexical patterns. 

This is particularly important because when the number of lexical 

patterns is large as in our experiments (e.g., over 100,000), pairwise 

comparisons between all patterns are computationally prohibitive. 

The proposed clustering algorithm attempts to identify the lexical 

patterns that are similar to each other more than a given threshold 

value. By adjusting the threshold, we can obtain clusters with 

different granularity. 

 

Algorithm 1: Sequential pattern clustering algorithm 

Input: patterns ={a1,….an},threshold θ 

Output: clusters C 

1: SORT (Λ) 

2: C  {} 

3: for pattern ai  Λ do 

4: max   -  

5:  c*  null 

6: for cluster cj  do 

7:   sim  cosine(ai,cj) 

8:  if sim>max then 

9:  max  sim 

10: c*  cj 

11: end if 

12: end for 

13: if max > θ then 

14:  c*  c*  {ai} 

15:  else 

16:  C←C  {ai} 

17:  end if 

18:  end for 

19: return C 

 

The only parameter in Algorithm 1, the similarity threshold, θ 

ranges in [0,1]. It decides the purity of the formed clusters. Setting θ 

to a high value ensures that the patterns in each cluster are highly 

similar. However, high θ values also yield numerous clusters 

(increased model complexity). the effect of θ on the overall 

performance of the proposed relational similarity measure. 

 The initial sort operation in Algorithm 1 can be carried out in 

time complexity of O(nlogn) where n is the number of patterns to be 

clustered. Next, the sequential assignment of lexical patterns to the 

clusters requires complexity ofO(n|c|), where |C| is the number of 

clusters. Typically, n is much larger than |c|. Therefore, the overall 

time complexity of Algorithm 1 is dominated by the sort operation, 

hence O(nlogn). The sequential nature of the algorithm avoids 

pairwise comparisons among all patterns. 

Moreover, sorting the patterns by their total word-pair frequency 

prior to clustering ensures that the final set of clusters contains the 

most common relations in the data set. 

 2.6  SVM (Support Vector Machine) 

 SVMs are currently among the best performers for a number of 

classification tasks ranging from text to genomic data SVMs can be 

applied to complex data types beyond feature vectors (e.g. graphs, 

sequences, and relational data) by designing kernel functions for 

such data.SVM was trained using page count co-occurrence 

measures, lexical pattern clustering & snippets to extract the 

synonymous & non-synonymous word pairs which give semantic 

similarity. 

To train the two-class SVM. We require both synonymous and 

nonsynonymous word pairs. We use WordNet, a manually created 

English dictionary, to generate the training data required by the 

proposed method. For each sense of a word, a set of synonymous 

words is listed in WordNet synsets. We randomly select 3,000 

nouns from WordNet, and extract a pair of synonymous words from 

a synset of each selected noun. If a selected noun is polysemous, 

then we consider the synset for the dominant sense. Obtaining a set 

of nonsynonymous word pairs (negative training instances) is 

difficult, because there does not exist a large collection of manually 

created nonsynonymous word pairs. Consequently, to create a set of 

nonsynonymous word pairs, we adopt a random shuffling technique. 

Specifically, we first rand omly select two synonymous word pairs 

from the set of synonymous word pairs created above, and exchange 

two words between word pairs to create two new word pairs. For 

example, from two synonymous word pairs A;B and C;D, we 

generate two new pairs A;C and B;D. If the newly created word 
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pairs do not appear in any of the word net synsets, we select them as 

nonsynonymous word pairs. We repeat this process until we create 

3,000 nonsynonymous word pairs. Our final training data set 

contains 6,000 word pairs (i.e., 3,000 synonymous word pairs and 

3,000 nonsynonymous word pairs). Next, we use the lexical pattern 

extraction algorithm to extract numerous lexical patterns for the 

word pairs in our training data set. We experimentally set the 

parameters in the pattern extraction algorithm to L ¼ 5, g ¼ 2, G ¼ 

4, and T ¼ 5. the number of patterns extracted for synonymous and 

nonsynonymous word pairs in the training data set. As can be seen 

from Table 1, the proposed pattern extraction algorithm typically 

extracts a large number of lexical patterns.Because of the noise in 

web snippets such as, ill-formed snippets and misspells, most 

patterns occur only a few times in the list of extracted patterns. 

Consequently, we ignore any patterns that occur less than five times. 

Finally, we deduplicate the patterns that appear for both 

synonymous and nonsynonymous word pairs to create a final set of 

3,02,286 lexical patterns. The remainder of the experiments 

described in the paper use this set of lexical patterns 

 

3.Results 
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Overview: 

The process of executing a system with the intent of finding errors 

Testing is defined as the process in which defects are  identified, 

isolated, subjected for rectification and ensured that product is 

defect free in order to produce the quality product and hence 

customer satisfaction. 

Quality is defined as justification of the requirements 

Defect is nothing but deviation from the requirements. 

Defect is nothing but bug. 

Testing----the presence of bugs 

Testing can demonstrate the presence of bugs, but not their 

absence 

Debugging and Testing are not the same thing! 

Testing is systematic attempt to break a program or the AUT 

Debugging is the art or method of uncovering why the 

script/program did not execute properly. 

Testing Methodologies: 

Black box Testing: is the testing process in which tester can 

perform testing on an application without having any internal 

structural knowledge of application. 

Usually Test Engineers are involved in the black box testing. 

White box Testing: is the testing process in which tester can 

perform testing on an application with having internal structural 

knowledge. 

Usually the Developers are involved in white box testing. 

Gray box Testing: is the process in which the combination of 

black box and white box tonics’ are used. 

 

4. Conclusion 

We proposed a semantic similarity measure using both page 

counts and snippets retrieved from a web search engine for two 

words. Four word co-occurrence measures were computed using 

page counts. We proposed a lexical pattern extraction algorithm to 

extract numerous semantic relations that exist between two words. 

Moreover, a sequential pattern clustering algorithm was proposed to 

identify different lexical patterns that describe the same semantic 

relation. Both page counts-based co-occurrence measures and 

lexical pattern clusters were used to define features for a word pair. 

A two-class SVM was trained using those features extracted for 

synonymous and nonsynonymous word pairs selected from 

WordNet synsets. xperimental results on three benchmark data sets 

showed that the proposed method outperforms various baselines as 

well as previously proposed web-based semantic similarity 

measures, achieving a high correlation with human ratings. 
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