

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

213



Abstract— Semantic similarity measures play an important role in

the extraction of semantic relations. Semantic similarity measures

are widely used in Natural Language Processing (NLP) and

Information Retrieval (IR). The work proposed here uses web

based metrics to compute the semantic similarity between words

or terms and also compares with the state-of-the-art. For a

computer to decide the semantic similarity, it should understand

the semantics of the words. Computer being a syntactic machine,

it cannot understand the semantics. So always an attempt is made

to represent the semantics as syntax. There are various methods

proposed to find the semantic similarity between words. Some of

these methods have used the precompiled databases like WordNet,

and Brown Corpus. Some are based on Web Search Engine. The

approach presented here is altogether different from these

methods. It makes use of snippets returned by the Wikipedia or

any encyclopedia such as Britannica Encyclopedia. The snippets

are preprocessed for stop word removal and stemming. For suffix

removal an algorithm by M. F. Porter is referred. Luhn’s Idea is

used for extraction of significant words from the preprocessed

snippets. Similarity measures proposed here are based on the five

different association measures in Information retrieval, namely

simple matching, Dice, Jaccard, Overlap, Cosine coefficient.

Performance of these methods is evaluated using Miller and

Charle’s benchmark dataset. It gives higher correlation value of

0.80 than some of the existing methods.

Keywords – Semantic Similarity, Wikipedia, Web Search Engine,

Natural Language Processing, Information Retrieval, Web

Mining

I. INTRODUCTION

Semantic similarity is a central concept that finds great

importance in various fields such as artificial intelligence, natural

language processing, cognitive science and psychology. Accurate

measurement of semantic similarity between words is essential for

various tasks such as, document clustering, information retrieval,

and synonym extraction. For a machine to be able to decide the

semantic similarity, intelligence is needed. It should be able to

understand the semantics or meaning of the words. But a computer

being a syntactic machine, semantics associated with the words or

terms is to be represented as syntax.

For this various approaches are proposed till now. Word

semantic similarity approaches or metrics can be categorized as:

Pre-compiled database based metrics, i.e., metrics consulting only

human-built knowledge resources, such as onto logies,

Co-occurrence based metrics using WWW, i.e., metrics that assume

that the semantic similarity between words or terms can be

expressed by an association ratio which is a function of their

Manuscript received on July, 2012.

T.Sujatha, Department of CSE, Kaushik College of Engineering,

Vishakhapattanam (A.P.), India

Prof. Ramesh Naidu G, Department of CSE, Kaushik College of Engg.,

Vishakhapattanam (A.P.), India

Prof. P.Suresh Babu, Department of CSE, Kaushik College of

Engineering, Vishakhapattanam (A.P.), India

co-occurrence Context based metrics using WWW, i.e., metrics that

are fully text-based and understand and utilize the context or

proximity of words or terms to compute semantic similarity. Several

Precompiled database based methods have been proposed in the

literature that use, e.g., WordNet, for semantic similarity

computation. WordNet is an on-line semantic dictionary—a lexical

database, developed at Princeton by a group led by Miller. Edge

counting methods consider the length of the paths that link the

words, as well as the word positions in the taxonomic

structure.Information content methods compute similarity between

words by combining taxonomic features that exist in the used

resource, e.g., number of subsumed words, with frequencies

computed over textual corpora [3]. Semantic similarity between

words changes over time as new words are constantly being created

and new meaning is also being assigned to the existing words. Also

there can be a problem with person name detection and alias

detection. One person may have multiple names to identify. So there

are some problems with the precompiled databases. The new senses

of words can not be immediately listed in any precompiled database.

Maintaining an up-to-date taxonomy of all the new words and new

usages of existing words is difficult and costly. A solution to this

problem is : ―The Web can be regarded as a large-scale, dynamic

corpus of text‖. Danushka Bollegala has proposed similarity

measures using page count returned by the search engine for the

given word pair. These similarity measures are modified four

popular co-occurrence measures; Jaccard, Overlap, Dice, and PMI

(point-wise mutual information). Page-count-based metrics use

association ratios between words that are computed using their

co-occurrence frequency in documents. The basic assumption of

this approach is that high co-occurrence frequencies indicate high

association ratios and high association ratios indicate a semantic

relation between words. Cilibrasi and Vitanyi proposed a

page-count-based similarity measure, called the Normalized Google

Distance.

 ------- 1

As the semantic similarity between two words increases, the

distance computed by decreases. This metric is considered to be a

dissimilarity measure. The metric is also unbounded, ranging from 0

to ∞. J. Gracia , proposed a variation of Normalized Google

Distance that defines a similarity measurement. This variation is

typically referred to as ―Google-based Semantic Relatedness:

------- 2

The next approach is using TF-IDF representation to represent

semantics of a word. Here Term Frequency (TF) is the ratio of

number of occurrences of the considered term (ti) in document dj,

and the total number of occurrences of all terms in document dj.

= ------ 3

Elias Iosif [8] proposed text-based or context based similarity

metrics. The basic assumption behind these metrics is that

―similarity of context implies similarity of meaning”, i.e., words

that appear in similar lexical environment (left and right contexts)

have a close semantic relation. For each occurrence of a word w a

left and right context of size K is considered. i.e.

Measuring Semantic Similarity between Words

Using Web Pages

T.Sujatha, Ramesh Naidu G, P.Suresh B

Measuring Semantic Similarity between Words Using Web Pages

214

[tK,L…..t2,Lt1,L]w[t1,R…..t2,RtK,R] where,

 and represent the ith word to the left and to the right

of w respectively.

Each word is represented as a feature vector as Fw,k=(Vw,1, Vw,2,….

Vw,N).There are various feature weighting schemes for computing

the value of Vw,i, some of

them are :

Scheme Acronym

Binary B

Term frequency TF

Add-one TF TF1

Log of TF LTF

Add-one LTF LTF1

TF-inverse Document Freq TFIDF

Log of TFIDF LTFIDF

Add-one LTFIDF LTFIDF1

II. PROPOSED SEMANTIC SIMILARITY METHOD

Given two words P and Q, we model the problem of measuring

the semantic similarity between P and Q, as a one of constructing a

function simðP;QÞ that returns a value in range [0,1] If P and Q are

highly similar (e.g.,synonyms), we expect simðP;QÞ to be closer to

1. On the other hand if P and Q are similar, then we expect

simðP;QÞ to be closer to 0. We define numerous features that

express the similarity between P and Q using page counts and

snippets retrieved from a web search engine for the two words.

Using this feature representation of words, we train a two-class

support vector machine to classify synonymous and

nonsynonymous word pairs. The function simðP;QÞ is then

approximated by the confidence score of the trained SVM.

Fig.1. Outline of the proposed method

Fig. 1 illustrates an example of using the proposed method to

compute the semantic similarity between two words, gem and jewel.

First, we query a web search engine and retrieve page counts for the

two words and for their conjunctive (i.e., “gem,” “jewel,” and “gem

AND jewel”). In Section 2.2, we define four similarity scores using

page counts. Page counts-based similarity scores consider the global

co-occurrences of two words on the web. However, they do not

consider the local context in which two words co-occur. On the

other hand, snippets returned by a search engine represent the local

context in which two words co-occur on the web. Consequently, we

find the frequency of numerous lexical syntactic patterns in snippets

returned for the conjunctive query of the two words. The lexical

patterns we utilize are extracted automatically using the method

described in Section 2.3. However, it is noteworthy that a semantic

relation can be expressed using more than one lexical pattern.

Grouping the different lexical patterns that convey the same

semantic relation, enables us to represent a semantic relation

between two words accurately. For this purpose, we propose a

sequential pattern clustering algorithm in Section 2.4. Both page

counts-based similarity scores and lexical pattern clusters are used

to define various features that represent the relation between two

words. Using this feature representation of word pairs, we train a

two-class support vector machine in Section 2.5.

2.2 Page Count-Based Co-Occurrence Measures

Page counts for the query P AND Q can be considered as an

approximation of co-occurrence of two words (or multiword

phrases) P and Q on the web. However, page counts for the query P

AND Q alone do not accurately express semantic similarity. For

example, Google returns 11,300,000 as the page count for “car”

AND “automobile,” whereas the same is 49,000,000 for “car” AND

“apple.” Although

automobile is more semantically similar to car than apple is, page

counts for the query “car” AND “apple” are more than four times

greater than those for the query “car” AND “automobile.” One must

consider the page counts not just for the query P AND Q, but also

for the individual words P and Q to assess semantic similarity

between P and Q.

We compute four popular co-occurrence measures; Jaccard,

Overlap (Simpson), Dice, and Pointwise mutual information (PMI),

to compute semantic similarity using page counts. For the remainder

of this paper, we use the

Notation H(P) to denote the page counts for the query P in a search

engine. The WebJaccard coefficient between words (or multiword

phrases) P and Q, WebJaccard (P: Q), is defined as

WebJaccard (P: Q)

Therein, P Q denotes the conjunction query P AND Q. Given the

scale and noise in web data, it is possible that two words may appear

on some pages even though they are not related. In order to reduce

the adverse effects attributable to such co-occurrences,weset the

WebJaccard coefficient to zero if the page count for the queryP

Qis less than a threshold c.2 Similarly, we define WebOverlap,

WebOverlap (P,Q) as

WebOverlap (P,Q)

WebOverlap is a natural modification to the Overlap (Simpson)

coefficient. We define the WebDice coefficient as a variant of the

Dice coefficient. WebDice(P:Q) is defined as

WebDice(P:Q)

Pointwise mutual information [20] is a measure that is motivated

by information theory; it is intended to reflect the dependence

between two probabilistic events. We define WebPMI as a variant

form of point wise mutual information using page counts as

WebPMI(P:Q)

Here, N is the number of documents indexed by the search

engine. Probabilities in (4) are estimated according to the maximum

likelihood principle. To calculate PMI accurately using (4), we must

know N, the number of documents indexed by the search engine.

Although estimating the number of documents indexed by a search

engine is an interesting task itself, it is beyond the scope of this

work. In the present work,

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

215

Ostrich,a large,flightless bird that lives in the dry grasslands

of africa

Fig 2.. A snippet retrieved for the query “cricket” AND “sport.”

we set N =1010according to the number of indexed pages reported by

Google. As previously discussed, page counts are mere

approximations to actual word co-occurrences in the web. However,

it has been shown empirically that there exists a high correlation

between word counts obtained from a web search engine (e.g.,

Google and Altavista) and that from a corpus (e.g., British National

corpus) Moreover, the approximated page counts have been

successfully used to improve a variety of language modeling tasks .

2.3 Lexical Pattern Extraction

Page counts-based co-occurrence measures described in Section 2.2

do not consider the local context in which those words co-occur.

This can be problematic if one or both words are polysemous, or

when page counts are unreliable.

On the other hand, the snippets returned by a search engine for the

conjunctive query of two words provide useful clues related to the

semantic relations that exist between two words. A snippet contains

a window of text selected from a document that includes the queried

words. Snippets are useful for search because, most of the time, a

user can read the snippet and decide whether a particular search

result is relevant, without even opening the url. Using snippets as

contexts is also computationally efficient because it obviates the

need to download the source documents from the web, which can be

time consuming if a document is large. For example, consider the

snippet in Fig. 2. Here, the phrase is a indicates a semantic

relationship between cricket and sport.

Many such phrases indicate semantic relationships. For example,

also known as, is a, part of, is an example of all indicate semantic

relations of different types. In the example given

above, words indicating the semantic relation between cricket and

sport appear between the query words. Replacing the query words

by variables X and Y , we can form the pattern X is a Y from the

example given above. Despite the efficiency of using snippets, they

pose two main challenges: first, a snippet can be a fragmented

sentence, second, a search engine might produce a snippet by

selecting multiple text fragments from different portions in a

document. Because most syntactic or dependency parsers assume

complete sentences as the input, deep parsing of snippets produces

incorrect results. Consequently, we propose a shallow lexical

pattern extraction algorithm using web snippets, to recognize the

semantic relations that exist between two words. Lexical syntactic

patterns have been used in various natural language processing tasks

such as extracting hypernyms or meronyms, question answering ,

and paraphrase extraction .

Fig. 3. A snippet retrieved for the query “ostrich ….bird.”

Although a search engine might produce a snippet by selecting

multiple text fragments from different portions in a document, a

predefined delimiter is used to separate the different fragments. For

example, in Google, the delimiter “...” is used to separate different

fragments in a snippet.

We use such delimiters to split a snippet before we run the proposed

lexical pattern extraction algorithm on each fragment.

Given two words P and Q, we query a web search engine using the

wildcard query “P …Q” and download snippets. The “.” operator

matches one word or none in a webpage. Therefore, our wildcard

query retrieves snippets in which P and Q appear within a window

of seven words.

Because a search engine snippet contains ca. 20 words on average,

and includes two fragments of texts selected from a document, we

assume that the seven word window is sufficient to cover most

relations between two words in snippets. In fact, over 95 percent of

the lexical patterns extracted by the proposed method contain less

than five words. We attempt to approximate the local context of two

words using wildcard queries. For example, Fig. 3 shows a snippet

retrieved for the query “ostrich…. bird.”

For a snippet δ, retrieved for a word pair (P:Q)first, we replace the

two words P and Q, respectively, with two variables X and Y . We

replace all numeric values by D, a marker for digits. Next, we

generate all subsequences of

words from δ that satisfy all of the following conditions:

1. A subsequence must contain exactly one occurrence of each X

and Y.

2. The maximum length of a subsequence is L words.

3. A subsequence is allowed to skip one or more

Words. However, we do not skip more than g

Number of words consecutively. Moreover, the total number of

words skipped in a subsequence should not exceed G.

4. We expand all negation contractions in a context. For example,

didn’t is expanded to did not. We do not skip the word not when

generating subsequences. For example, this condition ensures that

from the snippet X is not a Y, we do not produce the subsequence X

is a Y. Finally, we count the frequency of all generated

subsequences and only use subsequences that occur more than T

times as lexical patterns.

The parameters L,g,G, and T are set experimentally, It is

noteworthy that the Proposed pattern extraction algorithm considers

all the words in a snippet, and is not limited to extracting patterns

only from the mid fix (i.e., the portion of text in a snippet that

appears between the queried words). Moreover, the Consideration

of gaps enables us to capture relations between distant words in a

snippet. We use a modified version of the prefix span algorithm to

generate subsequences From a text snippet. Specifically, we use the

Constraints (2-4) to prune the search space of candidate

subsequences. For example, if a subsequence has reached the

maximum length L, or the number of skipped words is G, then we

will not extend it further. By pruning the search space, we can speed

up the pattern generation process.

However, none of these modifications affect the accuracy of the

proposed semantic similarity measure because the modified version

of the prefixspan algorithm still generates the exact set of patterns

that we would obtain if we used the original prefixspan algorithm

(i.e., without pruning) and subsequently remove patterns that violate

the above mentioned constraints. For example, some patterns

extracted from the snippet shown in Fig. 3 are: X, a large Y, X a

flightless Y, and X, large Y lives.

2.3 Snippets

It is a brief window of text extracted by a search engine around

the query term in a document.It provides useful information

regarding the local context of the query term. Snippets, a brief

window of text extracted by a search engine around the query term

in a document, provide useful information regarding the local

context of the query term. Semantic similarity measures defined

over snippets, have been used in query expansion, personal name

disambiguation], and community mining . Processing snippets is

also efficient because it obviates the trouble of downloading

webpages, which might be time consuming depending on the size of

the pages. However, a widely acknowledged drawback of using

snippets is that, because of the huge scale of the web and the large

number of documents in the result set, only those snippets for the

topranking results for a query can be processed efficiently. Ranking

of search results, hence snippets, is determined by a complex

combination of various factors unique to the underlying search

engine. Therefore, no guarantee exists that all the information we

need to measure semantic similarity between a given pair of words is

contained in the top-ranking snippets. .

“Cricket is a sport played between two teams each with eleven players”

Measuring Semantic Similarity between Words Using Web Pages

216

Drawback Because of the huge scale of the web and the large no.

of documents in the results set, only those snippets for the top

ranking results for a query can be processed efficiently.

2.5 Lexical Pattern Clustering

Typically, a semantic relation can be expressed using more than

one pattern. For example, consider the two distinct patterns, X is a

Y, and X is a large Y. Both these patterns indicate that there exists

an is-a relation between X and Y.

Identifying the different patterns that express the same semantic

relation enables us to represent the relation between two words

accurately. According to the distributional hypothesis, words that

occur in the same context have similar meanings. The distributional

hypothesis has been used in various related tasks, such as

identifying related words , and extracting paraphrases . If we

consider the word pairs that satisfy (i.e., co-occur with) a particular

lexical pattern as the context of that lexical pair, then from the

distributional hypothesis, it follows that the lexical patterns which

are similarly distributed over word pairs must be semantically

similar.

We represent a pattern a by a vector a of word-pair frequencies.

We designate a, the word-pair frequency vector of pattern a. It is

analogous to the document frequency vector of a word, as used in

information retrieval. The value of the element corresponding to a

word pair (P:Q)in a, is the frequency, f(PiQi,a), that the pattern a

occurs with the word pair(Pi:Qi). As demonstrated later, the

proposed pattern extraction algorithm typically extracts a large

number of lexical patterns. Clustering algorithms based on pairwise

comparisons among all patterns are prohibitively time consuming

when the patterns are numerous. Next, we present a sequential

clustering algorithm to efficiently cluster the extracted patterns.

Given a set A of patterns and a clustering similarity Threshold θ,

Algorithm 1 returns clusters (of patterns) that express similar

semantic relations. First, in Algorithm 1, the function SORT sorts

the patterns into descending order of their total occurrences in all

word pairs. The total occurrence µ(a) of a pattern a is the sum of

frequencies over all word pairs, and is given by µ(a)=f(Pi,Qi,a).

After sorting, the most common patterns appear at the beginning

in Λ, whereas rare patterns (i.e., patterns that occur with only few

word pairs) get shifted to the end. Next, in line 2, we initialize the set

of clusters, C, to the empty set. The outer for loop (starting at line 3),

repeatedly takes a pattern ai from the ordered set Λ, and in the inner

for loop (starting at line 6), finds the cluster, C*(Є C) that is most

similar to ai. First, we represent a cluster by the centroid of all

word-pair frequency vectors corresponding to the patterns in that

cluster to compute the similarity between a pattern and a cluster.

Next, we compute the cosine similarity between the cluster centroid

(Cj), and the word-pair frequency vector of the pattern (aj). If the

similarity between a pattern ai, and its most similar cluster, C*, is

greater than the threshold θ, we append ai to C*(line14). We use the

operator to denote the vector addition between C* and ai. Then,

we form a new cluster {ai} and append it to the set of clusters, C, if

ai is not similar to any of the existing clusters beyond the threshold

θ.

By sorting the lexical patterns in the descending order of their

frequency and clustering the most frequent patterns first, we form

clusters for more common relations first. This enables us to separate

rare patterns which are likely to be outliers from attaching to

otherwise clean clusters. The greedy sequential nature of the

algorithm avoids pairwise comparisons between all lexical patterns.

This is particularly important because when the number of lexical

patterns is large as in our experiments (e.g., over 100,000), pairwise

comparisons between all patterns are computationally prohibitive.

The proposed clustering algorithm attempts to identify the lexical

patterns that are similar to each other more than a given threshold

value. By adjusting the threshold, we can obtain clusters with

different granularity.

Algorithm 1: Sequential pattern clustering algorithm

Input: patterns ={a1,….an},threshold θ

Output: clusters C

1: SORT (Λ)

2: C {}

3: for pattern ai Λ do

4: max -

5: c* null

6: for cluster cj do

7: sim cosine(ai,cj)

8: if sim>max then

9: max sim

10: c* cj

11: end if

12: end for

13: if max > θ then

14: c* c* {ai}

15: else

16: C←C {ai}

17: end if

18: end for

19: return C

The only parameter in Algorithm 1, the similarity threshold, θ

ranges in [0,1]. It decides the purity of the formed clusters. Setting θ

to a high value ensures that the patterns in each cluster are highly

similar. However, high θ values also yield numerous clusters

(increased model complexity). the effect of θ on the overall

performance of the proposed relational similarity measure.

 The initial sort operation in Algorithm 1 can be carried out in

time complexity of O(nlogn) where n is the number of patterns to be

clustered. Next, the sequential assignment of lexical patterns to the

clusters requires complexity ofO(n|c|), where |C| is the number of

clusters. Typically, n is much larger than |c|. Therefore, the overall

time complexity of Algorithm 1 is dominated by the sort operation,

hence O(nlogn). The sequential nature of the algorithm avoids

pairwise comparisons among all patterns.

Moreover, sorting the patterns by their total word-pair frequency

prior to clustering ensures that the final set of clusters contains the

most common relations in the data set.

 2.6 SVM (Support Vector Machine)

 SVMs are currently among the best performers for a number of

classification tasks ranging from text to genomic data SVMs can be

applied to complex data types beyond feature vectors (e.g. graphs,

sequences, and relational data) by designing kernel functions for

such data.SVM was trained using page count co-occurrence

measures, lexical pattern clustering & snippets to extract the

synonymous & non-synonymous word pairs which give semantic

similarity.

To train the two-class SVM. We require both synonymous and

nonsynonymous word pairs. We use WordNet, a manually created

English dictionary, to generate the training data required by the

proposed method. For each sense of a word, a set of synonymous

words is listed in WordNet synsets. We randomly select 3,000

nouns from WordNet, and extract a pair of synonymous words from

a synset of each selected noun. If a selected noun is polysemous,

then we consider the synset for the dominant sense. Obtaining a set

of nonsynonymous word pairs (negative training instances) is

difficult, because there does not exist a large collection of manually

created nonsynonymous word pairs. Consequently, to create a set of

nonsynonymous word pairs, we adopt a random shuffling technique.

Specifically, we first rand omly select two synonymous word pairs

from the set of synonymous word pairs created above, and exchange

two words between word pairs to create two new word pairs. For

example, from two synonymous word pairs A;B and C;D, we

generate two new pairs A;C and B;D. If the newly created word

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

217

pairs do not appear in any of the word net synsets, we select them as

nonsynonymous word pairs. We repeat this process until we create

3,000 nonsynonymous word pairs. Our final training data set

contains 6,000 word pairs (i.e., 3,000 synonymous word pairs and

3,000 nonsynonymous word pairs). Next, we use the lexical pattern

extraction algorithm to extract numerous lexical patterns for the

word pairs in our training data set. We experimentally set the

parameters in the pattern extraction algorithm to L ¼ 5, g ¼ 2, G ¼

4, and T ¼ 5. the number of patterns extracted for synonymous and

nonsynonymous word pairs in the training data set. As can be seen

from Table 1, the proposed pattern extraction algorithm typically

extracts a large number of lexical patterns.Because of the noise in

web snippets such as, ill-formed snippets and misspells, most

patterns occur only a few times in the list of extracted patterns.

Consequently, we ignore any patterns that occur less than five times.

Finally, we deduplicate the patterns that appear for both

synonymous and nonsynonymous word pairs to create a final set of

3,02,286 lexical patterns. The remainder of the experiments

described in the paper use this set of lexical patterns

3.Results

Testing:

Measuring Semantic Similarity between Words Using Web Pages

218

Overview:

The process of executing a system with the intent of finding errors

Testing is defined as the process in which defects are identified,

isolated, subjected for rectification and ensured that product is

defect free in order to produce the quality product and hence

customer satisfaction.

Quality is defined as justification of the requirements

Defect is nothing but deviation from the requirements.

Defect is nothing but bug.

Testing----the presence of bugs

Testing can demonstrate the presence of bugs, but not their

absence

Debugging and Testing are not the same thing!

Testing is systematic attempt to break a program or the AUT

Debugging is the art or method of uncovering why the

script/program did not execute properly.

Testing Methodologies:

Black box Testing: is the testing process in which tester can

perform testing on an application without having any internal

structural knowledge of application.

Usually Test Engineers are involved in the black box testing.

White box Testing: is the testing process in which tester can

perform testing on an application with having internal structural

knowledge.

Usually the Developers are involved in white box testing.

Gray box Testing: is the process in which the combination of

black box and white box tonics’ are used.

4. Conclusion

We proposed a semantic similarity measure using both page

counts and snippets retrieved from a web search engine for two

words. Four word co-occurrence measures were computed using

page counts. We proposed a lexical pattern extraction algorithm to

extract numerous semantic relations that exist between two words.

Moreover, a sequential pattern clustering algorithm was proposed to

identify different lexical patterns that describe the same semantic

relation. Both page counts-based co-occurrence measures and

lexical pattern clusters were used to define features for a word pair.

A two-class SVM was trained using those features extracted for

synonymous and nonsynonymous word pairs selected from

WordNet synsets. xperimental results on three benchmark data sets

showed that the proposed method outperforms various baselines as

well as previously proposed web-based semantic similarity

measures, achieving a high correlation with human ratings.

REFERENCES

[1] A. Kilgarriff, “Googleology Is Bad Science,” Computational

Linguistics, vol. 33, pp. 147-151, 2007.

[2] M. Sahami and T. Heilman, “A Web-Based Kernel Function

for Measuring the Similarity of Short Text Snippets,” Proc.

15th Int’l World Wide Web Conf., 2006.

[3] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Disambiguating

Personal Names on the Web Using Automatically Extracted

Key Phrases,” Proc. 17th European Conf. Artificial

Intelligence, pp. 553- 557, 2006.

[4] H. Chen, M. Lin, and Y. Wei, “Novel Association Measures

Using Web Search with Double Checking,” Proc. 21st Int’l

Conf. Computational Linguistics and 44th Ann. Meeting of

the Assoc. for Computational Linguistics (COLING/ACL

’06), pp. 1009-1016, 2006.

[5] M. Hearst, “Automatic Acquisition of Hyponyms from Large

Text Corpora,” Proc. 14th Conf. Computational Linguistics

(COLING), pp. 539-545, 1992.

[6]. E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca, and

A. Soroa, “A Study on Similarity and Relatedness Using

Distributional and Wordnet-Based Approaches,” Proc.

Human Language Technologies: The 2009 Ann. Conf. North

Am. Chapter of the Assoc. for Computational Linguistics

(NAACL-HLT ’09), 2009.

[7] G. Hirst and D. St-Onge, “Lexical Chains as Representations

of Context for the Detection and Correction of

Malapropisms,” WordNet: An Electronic Lexical Database,

pp. 305-332, MIT Press, 1998.

[8] T. Hughes and D. Ramage, “Lexical Semantic Relatedness

with Random Graph Walks,” Proc. Joint Conf. Empirical

Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL ’07), pp.

581-589, 2007.

[9] E. Gabrilovich and S. Markovitch, “Computing Semantic

Relatedness Using Wikipedia-Based Explicit Semantic

Analysis,” Proc. Int’l Joint Conf. Artificial Intelligence

(IJCAI ’07), pp. 1606-1611, 2007.

[10] Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida, T. Nishimura, H.

Takeda, K. Hasida, and M. Ishizuka, “Polyphonet: An

Advanced Social Network Extraction System,” Proc. 15th

Int’l World Wide Web Conf., 2006.

