
A gentle introduction to
formal verification of computer systems

by abstract interpretation

Patrick COUSOT a, Radhia COUSOT b

a École normale supérieure and New York University
b École normale supérieure and CNRS

Abstract. We introduce and illustrate basic notions of abstract interpretation theory
and its applications by relying on the readers general scientific culture and basic
knowledge of computer programming.

Keywords. Abstract interpretation, Formal methods, Verification, Static analysis.

1. Introduction

Software is in all mission-critical and safety-critical industrial infrastructures since it is,
in principle, the cheapest and most effective way to control complex systems in real time.
However, all computer scientists have experienced costly bugs in embedded software.
The failure of the Ariane 5.01 maiden flight [40] (due to an overflow), the failure of
the Patriot missile [57] during the Gulf war (due to an accumulated rounding error), the
loss of Mars orbiter [1] (due to a unit error), the crash of the twin-engined Chinook ZD
576 helicopter [8]1 are a few examples showing that mission-critical and safety-critical
software can be far from being safe.

Computer scientists agree on the fact that it is preferable to verify that mission-
critical or safety critical software (and nowadays hardware) programs do not go wrong
before running them. As an alternative to testing, which hardly scales up at reasonable
costs and with a satisfactory coverage, automated formal verification has emerged, this
last decade, as a promising useful complement, with interesting potential industrial ap-
plications.

Formal methods date back to the early days of computer science (the Floyd/Naur/
Hoare verification method [33,51,37] appeared in the sixties with antecedents going back
to Von Neumann and Turing [38]) and the power of present-day computers make them
applicable to large scale industrial projects. The idea is to make automatic proofs at
compile-time to verify program runtime properties.

1“In the summer of 1993 an independent defence IT contractor, EDS-SCICON, was instructed to review the
FADEC [Full Authority Digital Engine Control] software; after examining only 18 per cent of the code they
found 486 anomalies and stopped the review.” [8]

Beyond the difficulty of specifying which runtime properties are of interest, all for-
mal methods are faced with undecidability (the mathematical impossibility for a com-
puter, which is a finite device, to prove for sure non-trivial properties of the (infinite or
extremely large) runtime behaviors of computer programs) and complexity (the impos-
sibility for computers to solve decidable questions within a reasonable amount of time
and memory for large input data, such as program executions observed over very long
periods of time).

Besides testing which is not a formal method, three main approaches have been con-
sidered for formal verification, all of them being approximations of the program seman-
tics (formally defining the possible executions in all possible environments) formalized
by abstract interpretation theory:

• Deductive methods produce formal mathematical correctness proofs using theo-
rem provers or proof assistants and need human interaction to provide inductive
arguments (which hardly scales up for large programs which are modified over
long periods of times) and help in proofs (such as proof hints or strategies);

• Model-checking exhaustively explores finitary models of program executions,
which can be subject to combinatorial explosion, requires the human production
of models (or may not terminate in case of automatic refinement of the model).
An alternative is to explore partially the model but this is then debugging, not
verification;

• Static analysis, which automates the abstraction of the program execution, always
terminates but can be subject to false alarms (that is warnings that the specification
may not be satisfied although no actual execution of the program can violate this
specification).

In this paper, we explain informally and intuitively the underlying ideas of abstract
interpretation-based static analysis, which consists in abstracting the program semantics
(formalizing program executions) to provide a sound over-approximation of the potential
errors with respect to a specification.

Static analysis involves abstractions of the program semantics that must be coarse
enough to be effectively computable and precise enough to imply the properties required
by the specification. To show that such abstractions do exist for given families of appli-
cations and specifications, we report on the ASTRÉE analyzer (www.astree.ens.fr/),
which is a static analyzer for proving the absence of runtime-errors in synchronous, time-
triggered, real-time, safety critical, embedded software written or automatically gener-
ated in the C programming language. It has been successfully applied to prove the ab-
sence of runtime errors in the control-command part of the primary flight control soft-
ware of the fly-by-wire system of airplanes.

2. Software bugs

2.1. Numerical software bugs

Let us start by considering classical bugs in numerical computations.

2.1.1. Integer bugs

The following C program reads an integer n (typed at the keyboard) and prints the facto-
rial n! = fact(n) = 2× . . .× (n−1)×n.

#include <stdio.h>

int fact (int n) {
int r, i;
r = 1;
for (i = 2; i<=n; i++) {
r = r * i;
}
return r;
}

int main() {
int n;
scanf("%d",&n);
printf("fact(%d)=%d\n",n, fact(n));
}

Compiling and testing the program yields

ä gcc fact.c -o fact.exec
% ./fact.exec
3
fact(3)=6
% ./fact.exec
4
fact(4)=24
%

Bad surprises come when trying further inputs.

% ./fact.exec
100
fact(100)=0
% ./fact.exec
20
fact(20)=-2102132736
%

Computers having a finite memory cannot use mathematical integers but do use signed
modular arithmetic on N bits, typically N = 32 or N = 64. The N-bit two’s complement
case is illustrated below for the case N = 4. The integers are represented outside the
circle and their respective binary representations inside.

� �

�

�

�

�

�

	
�
	

�

�

�

�

�

�

����
����

����

����

����

����

����

����
����

����

����

����

����

����

����

����

A positive number is in binary form. A negative number is the binary representation
of the positive number obtained by adding this negative number to 2N (for example,
−7 has the binary representation of 24− 7 = 9 which is 1001). It follows that the first
bit on the left is the sign (0 for positive and 1 for negative). The two’s-complement
system has the advantage of not requiring that the addition and subtraction circuitry
examine the signs of the operands to determine whether to add or subtract. For example
3+(−4) is 0011+1100 = 1111 that is −1. This property makes the system both simpler
to implement and capable of easily handling higher precision arithmetic. Also, zero has
only one representation (i.e. +0 and −0 are 0000). The inconvenience is that machine
integers can no longer be understood as the mathematical integers. For example 7+2 =
−7 and 7 + 9 = 0. This modulo arithmetics is often misunderstood by programmers
which leads to numerous program bugs and explains the zero and negative results for the
factorial. So fact(n) is not n! = 2× 3× . . .× n and indeed they do coincide only for
1 6 n 6 12, as shown by the figure below.

Notice that the recursive definition of the factorial in OCAML [39]

let rec fact n = if (n = 1) then 1 else n * fact(n-1);;

yields different results

fact(n) C OCAML

fact(1) 1 1

...

fact(12) 479001600 479001600

fact(13) 1932053504 -215430144

fact(14) 1278945280 -868538368

fact(15) 2004310016 -143173632

fact(16) 2004189184 -143294464

fact(17) -288522240 -288522240

fact(18) -898433024 -898433024

fact(19) 109641728 109641728

fact(20) -2102132736 45350912

fact(21) -1195114496 952369152

fact(22) -522715136 -522715136

fact(23) 862453760 862453760

fact(24) -775946240 -775946240

fact(25) 2076180480 -71303168

fact(26) -1853882368 293601280

fact(27) 1484783616 -662700032

fact(28) -1375731712 771751936

fact(29) -1241513984 905969664

fact(30) 1409286144 -738197504

fact(31) 738197504 738197504

fact(32) -2147483648 0

fact(33) -2147483648 0

fact(34) 0 0

This is because integers are represented on 31 bits instead of 32 (one bit is used for
garbage collection). Moreover, fact(-1) yields a stack overflow due to a looping re-
cursion (instead of fact(-1)=1 for the C program).

A correct version of the factorial program should avoid overflows and provide a
standard answer in case the function is undefined (such as an exception or returning 0 as
chosen below).

% cat -n fact_lim.c
1 int MAXINT = 2147483647;
2 int fact (int n) {
3 int r, i;
4 if (n < 1) || (n = MAXINT) {
5 r = 0;
6 } else {
7 r = 1;
8 for (i = 2; i<=n; i++) {
9 if (r <= (MAXINT / i)) {
10 r = r * i;
11 } else {
12 r = 0;
13 }
14 }
15 }
16 return r;
17 }
18
19 int main() {
20 int n, f;
21 f = fact(n);
22 }

The function computed by the program is now more intelligible.

Notice that i++ at line 8 does not overflow since i 6 n < MAXINT. At line 9,
MAXINT / i does not divide by zero since i> 2 in the loop. At line 10, r * i does
not overflow since r <= (MAXINT / i). Such a proof can be done automatically by
ASTRÉE (the absence of warning meaning that all arithmetic operations in the program
are well-defined in the mathematical integers).

% astree --exec-fn main --unroll 12 fact_lim.c |& grep WARN
%

2.1.2. Float bugs

The mathematical models designed by engineers (e.g. to control physical systems) are
built upon the mathematical reals R. The specification languages (such as SIMULINKTM

and SCADETM) use mathematical reals in R to describe program models. Because mathe-
matical reals are hard to represent in machines (π has infinitely many decimals), they are
replaced in programming languages by floating point numbers as defined by the IEEE
754 Standard [3] (or its variants on numerous machines). Floats do not behave at all like
reals R or even rationals Q [35,50] because they represent only a finite subset of Q. For
example, on six bits the 16 positive floats are distributed on a real segment as follows:

Observe that the density is small for large floats so the distance between two consecutive
floats is much larger than the distance between two consecutive small floats. The float
arithmetic operations are equivalent to taking the float arguments, performing the oper-
ation on the reals, and then converting the real result to a float by rounding (either to
the nearest, towards 0, +∞ or −∞ which can be chosen by the programmer). There can
be exceptions due to range violations, divisions by zero, and indeterminate or undefined
cases such as 0/0 or

√
x with x < 0 [36]. Otherwise the result may be a float but most of-

ten there is a rounding error which is too often neglected by programmers, and is a source
of surprises. For example the mathematical identity (x + a)− (x− a) = 2a is no longer
valid in the floats, as shown by the following program for which a naïve interpretation in
the reals R should definitely yield 2a = 2.0e21.

int main () {
float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);
}
% gcc float-error.c
% ./a.out
0.00000

The explanation of this phenomenon is that, by definition of the floating point com-
putation, x + 1.0e21 and x - 1.0e21 should be evaluated in the reals and then
rounded to the closest float which happens to be x = 1.000000019e+38 in both
cases so that their difference is zero.

If we now consider mixing floats (e.g. for sensors) with doubles (e.g. for precise program
computations), we can have a program like the following one where the expected result
is now surprisingly very large (although 2a = 2 in the reals R):

int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000

(1)

This is because of the rounding of the expressions x + 1 and x− 1 to the closest floats
which are very far from one another:

Although one can produce such an example for each double exactly located between any
two consecutive floats, this remains a rare event likely to be omitted by tests, since if the
double value is not exactly in the middle, the rounding will be towards the same float and
the result will be 0. For example, just changing the last digit in the above example, one
gets:

% cat double-error.c
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951487.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
0.000000

x is not exactly in the middle of two consecutive floats, so that the values of both x + 1
and x−1 are rounded to the same float.

Examples of famous bugs on floats include the Patriot missile bug due to a drift of a
software clock incremented by 1

10 th of the second, which is not exact in binary (since
(0.1)10 = (0. 0001100110011001100. . .)2) [57] and the Excel 2007 bug [41] where 77,1
× 850 which is 65.535 displays as 100.000 due to a rounding error during the translation
of IEEE 754 floats in 64 bits into a Unicode character string which yields to an erroneous

alignment in a conversion table for exactly six numbers between 65534.99999999995
and 65535 and six between 65535.99999999995 and 65536.

2.1.3. Memory usage bugs

Besides numerical bugs, bugs due to bad memory usage (such as buffer overruns and
memory leaks) are also frequent. Here is a trivial example of infinite memory allocation
in C which looks so frequent that the runtime warning advices on how to debug the
program.

% cat leak.c
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

while (malloc(1000));
return 0;

}% gcc leak.c
% ./a.out
a.out(87070) malloc: *** mmap(size=16777216) failed (error code=12)

*** error: can’t allocate region

*** set a breakpoint in malloc_error_break to debug
%

Such bugs can be avoided, e.g. in safety critical software by disallowing dynamic mem-
ory allocation. But this programming practice rule does not prevent allocating memory
within arrays, thus paving the way for buffer overruns. The results of buffer overruns can
sometime be surprising such as shown by the following example.

#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);
}

which yields completely different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC

n = 2147483647, T[n] = -1208492044 Macintosh Intel Core Duo

n = 2147483647, T[n] = 0 Macintosh Intel Core 2 Duo

n = 2147483647, T[n] = -135294988 PC Intel 32 bits

Bus error PC Intel 64 bits

The software bugs that we have illustrated are common to all software and so can be
tracked without requiring a program-specific specification that often exists in an informal
form only, if any. Such bugs are therefore a choice morsel for formal methods since the
specification follows from the semantics of the programming language and so requires
no additional effort from end-users. We now introduce abstract interpretation, and its
application to static analysis, in particular for tracking such pervasive runtime errors.

3. An informal introduction to abstract interpretation

Abstract interpretation is a theory of sound approximation of the semantics of program-
ming languages [9,14,15,21] which main application is static analysis that is the au-
tomatic, compile-time determination of run-time properties of programs which can be
used, among others, for formal verification of computer systems. Abstraction, as formal-
ized by abstract interpretation, is tantamount to all formal methods (deductive methods
to derive predicate transformers or Hoare logic [12] from the program operational se-
mantics, software model-checking to get a model of the program to be checked [18], and
static analysis to get an abstract semantics of the program [14]).

We can imagine the behavior of a computer system (e.g. program executions/seman-
tics) as trajectories showing the evolution of the state x(t) of the system as a function of
the time t (which is discrete for computer-based controllers). The state can be e.g. values
of the program variables. The evolution is governed by the program depending upon its
execution environment (e.g. the evolution of volatile variables or periodic inputs). The
program execution can be finite (e.g. due to a runtime error) or infinite (in case of non-
termination).

x(t)

t

An example of trace for the factorial function call fact(4) is

int fact (int n) {
int r = 1, i;
for (i=2; i<=n; i++) {
r = r*i;

}
return r;

}

• n← 4; r← 1;

• i← 2; r← 1 × 2 = 1;

• i← 3; r← 2 × 3 = 6;

• i← 4; r← 6 × 4 = 24;

• i← 5;

• return 24;

The specification of the system safety can be given in the form of forbidden zones which
should not be crossed by any safe trajectory (e.g. the state might be bounded and the
island might represent the avoidance of isolated obstacles, such as a division by 0):

x(t)

t

A specification of absence of runtime errors for the factorial program could be

int fact (int n) {
int r, i;
r = 1;
for (i=2; i<=n; i++) { ← no overflow of i++

← no overflow of r*ir = r*i;
}
return r;

}

A formal proof of correctness consists in proving that the semantics implies the specifi-
cation that is none of the possible execution traces does reach the forbidden zone.

x(t)

t

Testing or debugging consists in exploring a few trajectories (or a prefix of the trajectories
for infinite ones). Therefore testing computes an under-approximation of the program

semantics, which is fundamentally unsafe since some erroneous trajectories might be
forgotten:

x(t)

t

The idea of abstraction for static analysis is to compute an over-approximation of the
possible trajectories that is both computer representable and effectively computable from
the program text (so without any program execution):

x(t)

t

The fundamental idea of abstract interpretation is to ensure soundness (no error can be
forgotten by the analysis) by a full coverage of all possible trajectories. The proof that
the program satisfies the specification follows from the fact that all trajectories are in the
abstraction and this abstraction does not intersect the bad states.

x(t)

t

The theory of abstract interpretation is sound and so systematically excludes the follow-
ing unsound abstraction where one erroneous execution is not covered:

x(t)

t

Another example of an unsound abstraction is provided by bounded model-checking [4]
where the model of the program is explored partially (maybe starting in the middle of
the program execution) but this does not exclude missing an error because the over-
approximation is partial:

x(t)

t

In static analysis, which is always sound, the abstraction may yield an over-approximation
which is too large and covers the forbidden zone:

x(t)

t

(2)

Since the static analysis provides the safe envelop but no other information on the trajec-
tories other than the coverage, it is impossible in that case to decide whether there is a
trajectory in the envelop going into the unsafe zone (actual error), as follows

x(t)

t

or none (false alarm) as in shown in figure (2).
So testing is an under-approximation which can miss errors (false negatives) while

static analysis is an over-approximation which cannot miss any potential error but may
yield false alarms (false positives), that is cases where the abstraction looks unsafe while
the actual executions are all safe. The objective is therefore to get precise enough ab-
stractions (since unsound ones are excluded, by principle).

The design of a static analyzer can start with classical abstractions. An example is
the interval abstraction that overestimates the lower and upper bounds of states. This
can exclude some types of errors (e.g. overflows) but certainly not all, as shown in the
following example:

x(t)

t

By analyzing the origin of the false alarms, the designers of the static analyzer can design
refinements of the abstraction2. In our example, one can consider an interval abstrac-
tion as a function of the time, which is certainly more precise than a time-independent
overestimation:

2The most abstract abstraction which is precise enough to make the proof can be defined formally but is
neither automatically computable [11,34] nor computer representable for complex infinite systems.

x(t)

t

However this is not precise enough. Observe that if the trajectories do avoid the islands,
there must be an appropriate detection mechanism in the code, such as a conditional. It
follows that the state space of the program can be partitioned according to such condi-
tionals so as to distinguish between true and false alternatives:

x(t)

t

Notice that at the end of the conditional the blocks of the partition are merged in order
to avoid combinatorial explosion e.g. if such a conditional appears in the loop. One can
then apply the interval idea within each block of the partition to get:

x(t)

t

Now the safety proof is finished. However, using an interval as a function of time is a bit
costly, so the performances of the static analysis can certainly be improved by using a
time independent abstraction within each block of the partition:

x(t)

t

Similarly loops must be folded to ensure termination. The design of a static analyzer
requires a subtle equilibrium between the precision and the cost of the abstraction, more
precise abstraction avoiding more false alarms while, generally, coarser abstractions re-
duce computation costs.

Many reasonings on programs and more generally systems can be formalized by
abstract interpretation such as

• typing and type inference [10],
• abstract model-checking [18],
• parsing [20,22],
• program transformation [19],
• the definition of semantics and logics at various levels of abstraction [12,17,23],
• static analysis to check for the absence of bugs [7],
• the verification of security protocols [5]
• abstract modelling of live systems [28],
• etc.

4. Application of abstract interpretation to static analysis

4.1. Equations

In order to illustrate the application of abstract interpretation to static analysis, let us con-
sider the following program assumed, for simplicity, to compute with the mathematical
integers Z.

{y > 0} ← pre-condition hypothesis

x = y

{I(x,y)} ← loop invariant

while (x > 0) {

x = x - 1;
}

The problem is to compute the invariant which characterizes the reachable states upon
loop entrance, just before the iteration test. The Floyd-Hoare-Naur verification condi-
tions are the following:

(y > 0∧ x = y) =⇒ I(x,y) initialization condition

(I(x,y)∧ x > 0∧ x′ = x−1) =⇒ I(x′,y) iteration condition

The initialization condition states that the invariant should hold upon loop entry (hence
is a consequence of the pre-condition hypothesis propagated through the assignment of
y to x). The iteration condition states that if the loop invariant holds after any number
of iterates and one more iteration of the loop is performed (so that the iteration test does
hold) then the invariant must remain true after this iteration (that is after the decrement
of x).

This can be rewritten in an equivalent fixpoint equation I = F(I) of the form

I(x,y) = x > 0∧ (x = y∨ I(x+1,y))

which expresses that the invariant holds at the current iterate if it is the first iterate or did
hold at the previous iterate (and so because x is decremented in the loop body did hold
for the previous value of x which is the current one incremented by one). We look for
the strongest invariant, the one that implies all others. Consequently, we are interested in
the least solution to the equation for logical implication (where A is “less than or equal
to” B whenever A =⇒ B) that is I = F(I) and I′ = F(I′) implies that I =⇒ I′.

4.2. Iteration with convergence acceleration

This least solution can be computed as the limit I = limn→∞ Fn(false) of the following
iterates (presented together with their geometric interpretation in the plane). The iterates
start with false, that is the empty set, meaning that no state is reachable.

I0(x,y) = false

y

x
The first iterate describes the states that are reachable the first time the loop entry is
reached, that is x= y> 0 that is the bisecting half-line of the first quarter of plane.

I1(x,y) = x > 0∧ (x = y∨ I0(x+1,y))

= 0 6 x = y
0

y

x

The second iterate describes the states that are reachable the first time the loop entry is
reached, or after one loop iterate, which is a strip of height 1 over the bisecting.

I2(x,y) = x > 0∧ (x = y∨ I1(x+1,y))

= 0 6 x 6 y 6 x+1 1

y

x

The third iterate describes the states that are reachable the first time the loop entry is
reached, or after one or two loop iterates, which is a strip of height 2 over the bisecting.

I3(x,y) = x > 0∧ (x = y∨ I2(x+1,y))

= 0 6 x 6 y 6 x+2

2

y

x

We can go forever like this. A mathematician would make an inductive reasoning by
guessing that after n iterates, we have a description of the states that are reachable the first
time the loop entry is reached, or after at most n−1 loop iterates, which is a strip of height
n− 1 over the bisecting. Replacing in the fixpoint equation, one would prove that this
remains true for n+1 hence is true for all n > 0 and passing to the limit, would conclude
that the reachable states are exactly described by 0 6 x 6 y. However, we must automate
this formal reasoning knowing that computers are not good at guessing automatically
inductive hypotheses and not much better at proofs by recurrence. The idea in abstract
interpretation is to use a simple operation known as widening [13,14] which in our case,
will consist in observing two consecutive iterates I2(x,y) and I3(x,y) and forgetting about
the constraints which are not stable between these iterates (that is in the above example
y 6 x+1 and y 6 x+2).

I4(x,y) = I2(x,y)5 I3(x,y)← widening

= 0 6 x 6 y

One more iteration shows that we have reached a fixpoint (which may not be the desired
least one, but is implied by this least fixpoint, and so is a valid loop invariant, albeit not
necessarily the strongest one).

I5(x,y) = x > 0∧ (x = y∨ I4(x+1,y))

= I4(x,y) fixpoint!

In the above iterates we used logical formulae (or their geometric interpretations). Such
formulae can grow exponentially large (although their growth can be limited by widen-
ings). In abstract interpretation-based static analysis, one restricts the form of such for-
mulae in a way that allows for efficient machine representations.

4.3. Abstractions

Assume for example that we have to abstract the following set of traces (more generally
an infinite set of finite or infinite sequences of states).

y

x

By collecting the set of all states appearing along any of these states, we get a global
invariant that is a set of reachable states during execution (which can be equivalently
decomposed into a set of local invariants on memory states attached to each program
point, meaning that the local invariant does hold whenever the program point is reached
during execution, if ever). So we get a generally infinite set of points {(xi,yi) : i ∈ ∆},
which formalizes Floyd/Naur proof method and Hoare logic [12].

y

x

A simple abstraction is by quarters of plane covering all the states. This provides a sign
analysis [15] that is local invariants of the form x > 0,y > 0.

y

x

A more refined abstraction is that of intervals [13,14] recording only the minimum and
maximum value of variables and thus ignoring their mutual relationships. This provides
invariants of the form a 6 x 6 b, c 6 y 6 d where a,b,c,d are numerical constants auto-
matically discovered by the analysis.

y

x

This abstraction is too coarse to prove the invariant 0 6 x 6 y in the above Section 4.2.
A more refined abstraction is that of octagons [47]

y

x

The octagonal abstraction discovers invariants of the form x 6 a, x− y 6 b or x + y 6 c
and their inverses where a,b,c are numerical constants automatically discovered by the
analysis.

This abstraction is now precise enough to prove the invariant 0 6 x 6 y in the above
Section 4.2. Moreover each term considered in the iterates is exactly representable geo-
metrically as an octagon (although the internal computer representation is a matrix, not
symbolic as above). Observe that the equation I = F(I) is an octagon transformer map-
ping an octagon to another octagon. It follows that the iterates with widening exactly
represent the computation which would be performed by such an octagonal analysis.

A more precise abstraction is given by considering convex polyhedra [27].

y

x

This yields linear inequalities such as a.x+b.y 6 c where a,b,c are numerical constants
automatically discovered by the analysis.

A typical example of non-linear abstraction is provided by ellipsoïds [32].

y

x

The ellipsoïdal abstraction is able to discover invariants of the form (x−a)2 +(y−b)2 6
c where a,b,c are numerical constants automatically discovered by the analysis.

Another non-linear abstraction is the exponential [31]

y

x

where invariants have the form ax ≤ y.
The various abstractions can be combined efficiently in static analyzers such as AS-

TRÉE to get very precise abstractions of the set of all possible execution traces.

5. The ASTRÉE analyzer

5.1. The considered programming language an its operational semantics

Designed according to the principles of abstract interpretation very roughly sketched
above, the ASTRÉE analyzer (www.astree.ens.fr/) [6,7,24,25,26,30,31,42,43,44,45,

46,48,49,53,54,55] can formally verify the absence of runtime errors in C programs with
Boolean, integer and floating point computations; structures and arrays; pointers (in-
cluding on functions); conditionals, loops and function calls; limited branching (forward
goto, break, continue), pointer arithmetics and unions without dynamic memory alloca-
tion, recursive function calls, unstructured backward branching, conflicting side effects
(the ASTRÉE analyzer checks the absence of ambiguous side effects since otherwise the
semantics of the C program would not be well-defined), C libraries and system calls (but
for the synchronization on a clock tick or the use of stubs).

This subset of C corresponds to the specific application domain of large safety-
critical embedded real-time synchronous software for non-linear control of very complex
control/command systems.

The operational semantics of the language, defining all possible computations at ex-
ecution is defined by the international norm of C (ISO/IEC 9899:1999), restricted by
implementation-specific behaviors depending upon the machine and compiler (such as
the representation and size of integers, the IEEE 754-1985 norm for floats and doubles,
etc), restricted by user-defined programming guidelines (such as no modular arithmetic
for signed integers, even though this might be the hardware choice), restricted by pro-
gram specific user requirements (such as assert commands, static variables cannot be
assumed to be initialized to 0 or execution stops after the first runtime error since the
semantics of C is not clearly defined in case of runtime error and this is equivalent if the
absence of such errors can be formally proved) finally restricted by a volatile environ-
ment as specified by a trusted configuration file (e.g. providing bounds on the possible
values of some sensors).

5.2. Implicit Specification: Absence of Runtime Errors

The specification formally verified by ASTRÉE is that of absence of runtime error in a
broad sense (including potential memory corruptions and memory leaks). It is therefore
implicit and requires no user intervention except maybe to design the configuration file.
ASTRÉE checks that no program execution violates the norm of C (e.g. array index out of
bounds, division by zero), the absence of implementation-specific undefined behaviors
(e.g. maximum short integer is 32767, floating point exceptions, NaN and Inf results),
the absence of violation of the programming guidelines (e.g. Booleans are all 0 or 1)
and that there is no violation of the programmer assertions (which must all be statically
verified).

5.3. Characteristics of ASTRÉE

ASTRÉE computes an abstraction of the feasible traces hence the reachable/attainable
states as defined by the program operational semantics. The analysis is static (i.e. at
compile time analysis) as opposed to run time analysis (during program execution).

ASTRÉE is a program analyzer whence analyses the semantics of programs as com-
piled and executed (not user-provided models of the program behavior).

ASTRÉE is automatic (and requires no end-user intervention or external tool such as
theorem provers).

The analysis is sound whence covers the whole state space. It never omits potential
errors or sort out the most probable ones.

ASTRÉE is multi-abstractions that is uses many different numerical/symbolic ab-
stract domains (as opposed to e.g. symbolic constraints of a given form or a canonical
abstraction).

ASTRÉE is infinitary (all abstractions use infinite abstract domains with widen-
ing/narrowing [9,14,15,21] as opposed to analyzers which use finitary abstractions which
are provably less powerful [16]).

ASTRÉE is efficient in that it always terminates (as opposed e.g. to counterexample-
driven analyzers with automatic abstraction refinement which termination is not guaran-
teed).

ASTRÉE is specializable. It can easily incorporate new abstractions (and reduction
with already existing abstract domains [15,26]), as opposed to general-purpose analyzers.

ASTRÉE is domain-aware since it knows about control/command (e.g. digital filters,
feedback loops) (as opposed to specialization to a mere programming style).

ASTRÉE is parametric in that the precision/cost of the analysis can be tailored to
the user needs by options and directives in the code. ASTRÉE incorporates an automatic
parametrization (so that by default end-users can use ASTRÉE without requiring a de-
tailled understanding of the tool). This means that the generation of parametric directives
in the code can be programmed (to be specialized for a specific application domain).

The design of ASTRÉE is modular in that it can have different instances built by
selection of modules from a collection each implementing an abstract domain suitable
for analyzing various aspects of programs.

Thanks to these unique characteristics, ASTRÉE can be made precise, producing
very few or no false alarm when conveniently adapted to an application domain. It can
then performs static proofs of absence of runtime error without any false alarm, whence
becomes a formal verifier.

5.4. General-purpose abstract domains

ASTRÉE is built upon general-purpose abstract domains such as intervals [9,13,14]
(a 6 x 6 b where x is the value of a variable at a program location and a, b are constants
determined by the analysis) which is the minimum information required to be able to
check the implicit specification) and octagons [44,45,48] (x±y≤ c where x, y are values
of program variables and c is a constant automatically determined by the analysis) which
is more precise but too costly but when used locally. The difficulty is to be sound with
floating-point computations [44,45]. ASTRÉE is able to analyze such programs with nu-
merous floating point computations in a sound way, which is beyond the state of the art
of many other formal methods. For example, the analysis of program (1) yields

% astree --exec-fn main --print-float-digits 10 arrondi3.c \
|& grep "r in "

direct = <float-interval: r in [-134217728, 134217728]} >

This is because, in absence of knowledge of the rounding mode, ASTRÉE considers the
worst of all possible roundings (either to +∞, −∞, 0, or to the closest) on each float
operation, as follows

hence the possibility to obtain -134217728.

5.5. Domain-aware abstract domains

ASTRÉE is precise because it incorporates and applies abstractions which are tailored to

its application domain, that of synchronous feedback control/command software. Such

programs are often produced according to a strictly disciplined programming methodol-

ogy where over 75% of the code is automatically generated from a high-level specifica-

tion language describing block diagrams as illustrated below in SIMULINKTM:

After discretization, the corresponding program is the following:

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT;
float P, X;

void filter () {
static float E[2], S[2];
if (INIT) {

S[0] = X;
P = X;
E[0] = X;

} else {
P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4)) +

(S[0] * 1.5)) - (S[1] * 0.7));
}
E[1] = E[0];
E[0] = X;
S[1] = S[0];
S[0] = P;

}

This program computes a second order filter of the form Xn = In in case of reinitialization

and Xn = αXn−1 +βXn−2 +Yn otherwise where Yn can be bounded by other abstractions.

For the purpose of illustration, we can add some context and call the filter function

as follows

void main () {
X = 0.2 * X + 5;
INIT = TRUE;
while (1) {
X = 0.9 * X + 35;
filter ();
INIT = FALSE;

}
}

An example of execution is shown below (Xn+1 as a function of Xn, with a segment from

a point at time n to the next one at time n+1)

An attempt to compute a convex hull U of the possible execution at time n (in the form of
intervals, octagons, polyhedra, etc) will result at time n+1 in a convex hull F(U) which
is a little turned and shrunk. Because the corners of F(U) are outside the original hull
U , the union of U and F(U) has to be expanded into a larger hull, which is unstable and
ultimately covers all the plane. On the contrary an ellipsoid provides an ultimately stable
over-approximation of digital filters (see [30] for details going beyond this simplified
explanation):

Thanks to this abstraction ASTRÉE will determine that S[0], S[1] are all in [-1327.02698354,
1327.02698354] which is beyond the scope of static analyzers using polyhedral abstrac-
tions or automatic refinements (an infinite series of counter examples will be produced
as illustrated by the above execution trace).

5.6. Formal verification of embedded software

Thanks to a careful adaptation of the abstraction to control-command programs ASTRÉE
was able to prove the absence of runtime errors in two large and critical synchronous
avionic software developed by an European civil plane manufacturer. The design of the
analyzer started with general-purpose abstract domains and went on first by refinement
with application dependent abstractions (such as partitioning [43,55]) and then by ap-
plication dependent abstractions [30,31] until all false alarms were solved. Because the
software is generated automatically, the analyzer will perform well (in precision and per-
formance i.e. a few hours and hundred of megabytes for hundreds of thousands of lines
of code) on all programs in the family. This is essential since such programs are main-
tained over very long periods of time and the formal verification must be able to follow
this evolution at extremely low costs. More recently, the scope of application of AS-

TRÉE was extended by considering more general memory models (with union) as found
e.g. in communication of untyped data [46]. It is now commercially available from Ab-
sInt Angewandte Informatik (www.absint.de/astree/) which has produced so far a
professional user interface. Further improvements are pending.

5.7. Conclusion

To understand the numerical world, that is properties of computerized systems, several
levels of abstraction are necessary. Abstract interpretation theory ensures the coherence
between these abstractions and offers effective approximation techniques. By choosing
abstractions that are coarse enough to be effectively computable and precise enough to
avoid false alarms, one can fight undecidability and complexity in the analysis and ver-
ification of models and programs. Moreover abstract interpretation applies not only to
computerized systems but also to evolving systems which discrete or continuous com-
plex behavior can be formally described as a function of time (image processing [56],
quantum computing [52], live systems [28], etc).

Many classical applications of abstract interpretation in computer science tolerate
a small rate (typically 5 to 15%) of false alarms. For example an optimizing compiler
will not perform a program transformation in case of uncertainty of its applicability;
typing will reject some correct programs; worst-case execution time analysis (WCET)
[29] will slightly overestimate the maximal execution time because e.g. of an imprecise
cache analysis [2]. On the contrary recent applications of abstract interpretation such as
automatic formal verification are more demanding since they require no false alarm. This
was shown to be theoretically possible [11] and ASTRÉE shows that this is practically
feasible for well-defined families of similar programs.

To go beyond the actual state of the art, one must be able to consider asynchronous
concurrency (with additional potential runtime errors such as data races, deadlocks, live-
locks, etc.), functional properties (such as reactivity), the verification of systems (quasi-
synchrony, distribution), the grand challenge being to be able to perform formal verifica-
tion from system specifications or models to the machine code.

The ultimate objective is to change the way programs are designed and validated.
Present day control of the design process and testing should evolve to include a formal
verification of the final product.

Acknowledgements

The development of the ASTRÉE Static Analyzer (Nov. 2001 – Nov. 2009) by Bruno
Blanchet (Nov. 2001 – Nov. 2003), Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux (Nov. 2001 – Aug. 2007), and Xavier Rival
was supported in part by the École normale supérieure, the CNRS, the French exploratory
project ASTRÉE of the Réseau National de recherche et d’innovation en Technologies
Logicielles (RNTL), and, since 2007, by INRIA .

References

[1] A.G. Stephenson Et Al. Mars Climate Orbiter mishap investigation boord phase I report. Technical
report, George C. Marshall Space Flight Center, 10 Nov. 1999. ftp://ftp.hq.nasa.gov/pub/
pao/reports/1999/MCO_report.pdf.

[2] M. Alt, Ferdinand C., F. Martin, and R. Wilhelm. Cache behavior prediction by abstract interpretation.
In R. Cousot and D.A. Schmidt, editors, Proc. 3rd Int. Symp. SAS’96, Aachen, 24–26 Sep. 1996, LNCS
1145, pages 52–66. Springer, 1996.

[3] American National Standards Institute, Inc. IEEE 754: Standard for binary floating-point arithmetic.
Technical Report 754-1985, 754-2008, ANSI/IEEE, 1985, revised 2008. http://grouper.ieee.
org/groups/754/.

[4] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. Advances in
Computers, 58:118–149, 2003.

[5] B. Blanchet. Security protocols: From linear to classical logic by abstract interpretation. Inf. Process.
Lett., 95(5):473–479, Sep. 2005.

[6] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software, invited chapter. In T. Mogensen, D.A. Schmidt, and I.H. Sudborough, editors, The Essence of
Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, LNCS 2566,
pages 85–108. Springer, 2002.

[7] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. In Proc. ACM SIGPLAN’2003 Conf. PLDI, pages 196–207,
San Diego, 7–14 June 2003. ACM Press.

[8] Committee to review Chinook ZD 576 crash. Report from the Select Committee on Chinook ZD
576. Technical report, House of Lords, London, Feb. 2002. http://www.publications.
parliament.uk/pa/ld200102/ldselect/ldchin/25/2504.htm.

[9] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monoto-
nes sur un treillis, analyse sémantique de programmes (in French). Thèse d’État ès sciences mathéma-
tiques, Université scientifique et médicale de Grenoble, Grenoble, 21 Mar. 1978.

[10] P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL, pages 316–331, Paris, Jan.
1997. ACM Press.

[11] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In B.Y. Choueiry and T.
Walsh, editors, Proc. 4th Int. Symp. SARA’2000, Horseshoe Bay, LNAI 1864, pages 1–25. Springer,
26–29 Jul. 2000.

[12] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpreta-
tion. Theoret. Comput. Sci., 277(1—2):47–103, 2002.

[13] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc. 2nd Int.
Symp. on Programming, pages 106–130, Paris, 1976. Dunod.

[14] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In 4th POPL, pages 238–252, Los Angeles, 1977. ACM
Press.

[15] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages
269–282, San Antonio, 1979. ACM Press.

[16] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches to
abstract interpretation, invited paper. In M. Bruynooghe and M. Wirsing, editors, Proc. 4th Int. Symp.
on PLILP’92, Leuven, 26–28 Aug. 1992, LNCS 631, pages 269–295. Springer, 1992.

[17] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In 19th POPL,
pages 83–94, Albuquerque, 1992. ACM Press.

[18] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th POPL, pages 12–25, Boston, Jan.
2000. ACM Press.

[19] P. Cousot and R. Cousot. Systematic design of program transformation frameworks by abstract inter-
pretation. In 29th POPL, pages 178–190, Portland, Jan. 2002. ACM Press.

[20] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theoret. Comput.
Sci., 290(1):531–544, Jan. 2003.

[21] P. Cousot and R. Cousot. Basic concepts of abstract interpretation, invited chapter. In P. Jacquart, editor,
Building the Information Society, chapter 4, pages 359–366. Kluwer Acad. Pub., 2004.

[22] P. Cousot and R. Cousot. Grammar analysis and parsing by abstract interpretation, invited chapter. In T.
Reps, M. Sagiv, and J. Bauer, editors, Program Analysis and Compilation, Theory and Practice: Essays
dedicated to Reinhard Wilhelm, LNCS 4444, pages 178–203. Springer, 2006.

[23] P. Cousot and R. Cousot. Bi-inductive structural semantics. Inform. and Comput., 207(2):258–283, Feb.
2009.

[24] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE

analyser. In M. Sagiv, editor, Proc. 14th ESOP’2005, Edinburg, volume 3444 of LNCS, pages 21–30.
Springer, 2–10 Apr. 2005.

[25] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Varieties of static
analyzers: A comparison with ASTRÉE, invited paper. In M. Hinchey, He Jifeng, and J. Sanders, editors,
Proc. 1st TASE’07, pages 3–17, Shanghai, 6–8 June 2007. IEEE Comp. Soc. Press.

[26] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combination of
abstractions in the ASTRÉE static analyzer. In M. Okada and I. Satoh, editors, 11th ASIAN06, pages
272–300, Tokyo, 6–8 Dec. 2006, 2008. LNCS 4435, Springer.

[27] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In
5th POPL, pages 84–97, Tucson, 1978. ACM Press.

[28] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpretation of cellular signalling networks.
In F. Loggozzo, D. Peled, and L.D. Zuck, editors, Proc. 9th Int. Conf. VMCAI 2008, pages 83–97, San
Francisco, 7–9 Jan. 2008. LNCS 4905, Springer.

[29] C. Ferdinand, R. Heckmann, and R. Wilhelm. Analyzing the worst-case execution time by abstract
interpretation of executable code. In M. Broy, I.H. Krüger, and M. Meisinger, editors, Automotive
Software – Connected Services in Mobile Networks, First Automotive Software Workshop, ASWSD 2004,
volume 4147 of LNCS, pages 1–14. Springer, 10–12 Jan. 2004.

[30] J. Feret. Static analysis of digital filters. In D. Schmidt, editor, Proc. 30th ESOP’2004, Barcelona,
volume 2986 of LNCS, pages 33–48. Springer, Mar. 27 – Apr. 4, 2004.

[31] J. Feret. The arithmetic-geometric progression abstract domain. In R. Cousot, editor, Proc. 6th Int. Conf.
VMCAI 2005, pages 42–58, Paris, 17–19 Jan. 2005. LNCS 3385, Springer.

[32] J. Feret. Numerical abstract domains for digital filters. In 1st Int. Work. on Numerical & Symbolic
Abstract Domains, NSAD”05, Maison Des Polytechniciens, Paris, 21 Jan. 2005.

[33] R.W. Floyd. Assigning meaning to programs. In J.T. Schwartz, editor, Proc. Symposium in Applied
Mathematics, volume 19, pages 19–32. AMS, 1967.

[34] R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: A domain perspective. In
M. Johnson, editor, Proc. 6th Int. Conf. AMAST’97, Sydney, volume 1349 of LNCS, pages 231–245.
Springer, 13–18 Dec. 1997.

[35] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput.
Surv., 23(1):5–48, Mar. 1991.

[36] J.R. Hauser. Handling floating-point exceptions in numeric programs. TOPLAS, 18(2):139–174, Mar.
1996.

[37] C.A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12(10):576–580, Oct.
1969.

[38] C.B. Jones. The early search for tractable ways of reasoning about programs. IEEE Annals of the History
of Computing, 25(2):26–49, Apr. 2003.

[39] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, documentation

and user’s manual (release 3.06). Technical report, INRIA, Rocquencourt, 19 Aug. 2002. http:
//caml.inria.fr/ocaml/.

[40] J.L. Lions. ARIANE 5 flight 501 failure, report by the inquiry board. http://www.esrin.esa.
it/htdocs/tidc/Press/Press96/ariane5rep.html, 19 Jul. 1999.

[41] C. Lomont. An analysis of the excel 2007 “65535” bug, version 1.21. Technical report, www.lomont.
org, Nov. 2007. .

[42] L. Mauborgne. ASTRÉE: Verification of absence of run-time error. In P. Jacquart, editor, Building the
Information Society, chapter 4, pages 385–392. Kluwer Acad. Pub., 2004.

[43] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static analyzer. In M.
Sagiv, editor, Proc. 14th ESOP’2005, Edinburg, volume 3444 of LNCS, pages 5–20. Springer, Apr. 4–8,
2005.

[44] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In D. Schmidt,
editor, Proc. 30th ESOP’2004, Barcelona, volume 2986 of LNCS, pages 3–17. Springer, Mar. 27 – Apr.
4, 2004.

[45] A. Miné. Weakly Relational Numerical Abstract Domains. Thèse de doctorat en informatique, École
polytechnique, Palaiseau, 6 Dec. 2004.

[46] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arith-
metics. In Proc. LCTES’2006, pages 54–63. ACM Press, June 2006.

[47] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19:31–100, 2006.
[48] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In E.A. Emerson

and K.S. Namjoshi, editors, Proc. 7th Int. Conf. VMCAI 2006, pages 348–363, Charleston, 8–10, Jan.
2006. LNCS 3855, Springer.

[49] D. Monniaux. The parallel implementation of the ASTRÉE static analyzer. In Proc. 3rd APLAS’2005,
pages 86–96, Tsukuba, 3–5 Nov. 2005. LNCS 3780, Springer.

[50] D. Monniaux. The pitfalls of verifying floating-point computations. TOPLAS, 30(3):Article No. 12,
may 2008.

[51] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[52] S. Perdrix. Quantum entanglement analysis based on abstract interpretation. In M. Alpuente and G.

Vidal, editors, Proc. 15th Int. Symp. SAS’08, Valencia, 16–18 Jul. 2008, LNCS 5079, pages 270–282.
Springer, 2008.

[53] X. Rival. Abstract dependences for alarm diagnosis. In Proc. 3rd APLAS’2005, pages 347–363,
Tsukuba, 3–5 Nov. 2005. LNCS 3780, Springer.

[54] X. Rival. Understanding the origin of alarms in ASTRÉE. In C. Hankin and I. Siveroni, editors, Proc.
12th Int. Symp. SAS’05, pages 303–319, London, LNCS 3672, 7–9 Sep. 2005.

[55] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS, 29(5), Aug. 2007.
[56] J. Serra. Morphological filtering: An overview. Signal Processing, 38:3–11, 1994.
[57] H. Wolpe, M. Blair, S. Obenski, and P. Bridickas. Gao/imtec-92-26 patriot missile software problem.

Technical report, Information Management and Technology Division, Washington, D.C., 14 Feb. 1992.
http://www.fas.org/spp/starwars/gao/im92026.htm.

