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Abstract—Experience with lightweight formal methods sug-
gests that programmers are willing to write specification if it
brings tangible benefits to their usual development activities.
This paper considers stronger specifications and studies whether
they can be deployed as an incremental practice that brings
additional benefits without being unacceptably expensive. We
introduce a methodology that extends Design by Contract to
write strong specifications of functional properties in the form of
preconditions, postconditions, and invariants. The methodology
aims at being palatable to developers who are not fluent in formal
techniques but are comfortable with writing simple specifications.
We evaluate the cost and the benefits of using strong specifications
by applying the methodology to testing data structure implemen-
tations written in Eiffel and C#. In our extensive experiments,
testing against strong specifications detects twice as many bugs
as standard contracts, with a reasonable overhead in terms of
annotation burden and run-time performance while testing. In
the wide spectrum of formal techniques for software quality,
testing against strong specifications lies in a “sweet spot” with a
favorable benefit to effort ratio.

I. INTRODUCTION

Many years of progress in the theory and practice of formal

methods notwithstanding, writing software specifications1 still

seems to be “disliked by almost everyone” [1]. In many cases,

this disliking is a consequence of a high cost/benefit ratio—

perceived or real—of writing and maintaining accurate spec-

ifications on top of the code. After all, developers will write

specifications as long as they are simple, have a straightfor-

ward connection with the implementation, and help them write

and debug code better and faster. One example is Design by

Contract [2], [3] where simple executable specifications, writ-

ten in the same syntax as programming language expressions,

support design, incremental development, and testing and

debugging. Another one is test-driven development [4], where

rigorously defined test cases play the role of specifications

in defining correct and incorrect behavior. Experiences with

these techniques show that providing lightweight specifications

is an accepted practice when it brings tangible benefits and

integrates well with the overall development process.

But what about strong specifications, which attempt to cap-

ture the entire (functional) behavior of the software? Should

we dismiss them on the grounds that the effort required to

write them is not justified against the benefits they bring in

the majority of mundane software projects? This paper studies

the impact of deploying strong behavioral specifications, in

the form of contracts (pre- and postconditions and class

invariants), for detecting errors in software using automatic

testing.

1In this paper, we target formal specifications of functional properties.

Using strong contracts involves costs and possible benefits.

Among the former we have the programming effort necessary

to write such strong specifications and the runtime overhead

of checking them during execution. The benefits may include

finding more errors, finding more subtle errors, finding errors

more quickly, and exposing errors in ways that are easier

to understand and correct. Our contributions address the

cost factors—by measuring and trying to mitigate them—and

assess the benefits:

• Sect. III presents a methodology to write strong

specifications—extending our previous work [5]—that

does not require fluency in formal techniques because it

is an extension of such traditional practices as Design by

Contract. This is instrumental in reducing the program-

ming effort associated with strong specifications.

• The methodology comes with tool support and specifica-

tion libraries, so that strong specifications are usable with

standard debugging and testing tools.

• Sect. IV and V describe an extensive empirical study that

evaluates the use of strong contracts for real software

and measures their costs and benefits in terms of defect

detection.

The bulk of our empirical study targets EiffelBase, a library

of generic containers and data structures (such as lists, tables,

and trees), which has been in use in the Eiffel community

for more than 20 years. The production version of EiffelBase

includes simple contracts, a form of partial specification, that

are nonetheless quite effective at finding implementation bugs

automatically using contract-based random testing [6], where

executable contracts serve as oracles and enable a push-button

testing process. In the present paper, we augment the simple

contracts that come with EiffelBase using the methodology

discussed in Sect. III. The result is EiffelBase+: a version of

EiffelBase with identical implementation but strong (mostly

complete) specifications.

In an extensive set of experiments, we compare the effec-

tiveness of random testing on EiffelBase and EiffelBase+, with

the goal of assessing whether the additional effort invested

into the strong contracts pays off in terms of quantity and

complexity of the bugs found. Our experiments show that

these measures dramatically increase when deploying strong

specifications: random testing found twice as many bugs in

EiffelBase+, and the simple contracts of EiffelBase would

have uncovered none of the new bugs. The overhead size

of specifications, in contrast, remains moderate, with the

specification-to-code ratio going from 0.2 to 0.46.
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merge right (other: LINKED LIST [G])
require

not after

other 6=Void
other 6=Current

ensure
count = old count + old other.count

index = old index

end

Fig. 1. Standard specification of routine merge right in LINKED LIST.

Our approach to writing strong specifications that are ef-

fective for testing is not limited to Eiffel programs. In a

companion set of experiments, we applied the same technique

to writing strong specifications for the DSA C# library [7]. and

tested the result using Pex [8]; in this case too we discovered

new bugs with reasonable additional effort.

II. STRONG SPECIFICATIONS: AN EXAMPLE

The following example illustrates and justifies the use of strong

specifications. Consider the EiffelBase class LINKED LIST—

Eiffel’s standard implementation of linked lists. Like many

containers in EiffelBase, LINKED LIST includes an internal

cursor to iterate over elements of the list. The query2
index

gives the cursor’s position, which can be on any element of the

list in positions 1 through count, or take the special boundary

values 0 (“before” the list) and count + 1 (“after” the list). The

attribute count denotes the number of elements in the list.

Fig. 1 shows the EiffelBase specification of LINKED LIST’s

routine (method) merge right. The routine inserts another list

other passed as argument into the current list (denoted Current in

Eiffel, corresponding to this in Java and C#) immediately after

the cursor position. For example, if Current stores the sequence

of elements b·a·r·t with cursor positioned on the “r” (index = 3)

and other stores o·n·e, merge right changes Current to b·a·r·o·n·e·t.

The precondition (require) specifies that the routine cannot be

called when the cursor is after: there is no valid position to the

right of it. It also demands that other be non-Void (null in Java

and C#) and not aliased with the Current list: otherwise, merg-

ing is not well defined. The postcondition (ensure) describes

some expected effects of executing merge right: the Current list

will contain as many elements as it contained before the call to

merge right (denoted by old count) plus the number of elements

of the other list; and the cursor’s position index will not change.

The contracts in Fig. 1 are a good example of the kind of

specification that Eiffel programmers normally write [9]: it is

correct and nontrivial, and it can help detect errors in the im-

plementation, such as performing partial merges or incorrectly

leaving the cursor at a different position. Unfortunately the

specification is also incomplete, because it does not precisely

describe the expected state of the list after merging. In fact,

the current implementation of merge right contains an error that

is undetectable against the specification of Fig. 1. The error

occurs in the special case of calling merge right with cursor

2A query is an attribute or a function [2].

merge right (other: LINKED LIST [G])
require
−− As in Fig. 1

modify sequence

ensure
sequence = old (sequence.front (index) +

other.sequence + sequence.tail (index + 1))
end

Fig. 2. Model-based specification of routine merge right in LINKED LIST.

before the list (index = 0): the implementation will insert other

at the second rather than at the first position. For example,

merging f·o·l·d and u·n when the cursor is before yields f·u·n·o·l·d

instead of the correct u·n·f·o·l·d.

Sect. III presents a methodology to write, with moderate ef-

fort, strong specifications that extend and, whenever possible,

complete this kind of partial specification. Fig. 2 shows the

strong specification obtained by applying the methodology to

merge right, the way it appears in EiffelBase+. As is common

in most Eiffel projects, the programmer who wrote merge right

did a good job with the precondition, which is sufficiently

detailed and need not be strengthened. The postcondition,

however, turns into a single assertion that defines the sequence

of elements stored in the list after calling merge right as the

concatenation (operator +) of three segments: Current’s original

sequence up until position index (written sequence.front (index)),

followed by other’s element sequence, followed by the original

sequence from position index + 1 (written sequence.tail (index + 1)).

This postcondition relies on an abstract model of the linked

list in the form of a mathematical sequence of elements,

which was already implicitly present above, in the informal

description of the semantics of merge right. Models blend well

with Eiffel’s standard specification constructs to help formalize

programmers’ intuitive understanding of data structures se-

mantics. Using the strong postcondition in Fig. 2, completely

automatic testing with the AutoTest tool [6] detected the error

that occurs in merge right when the cursor is before.

The postcondition in Fig. 2 describes how the sequence

changes, but it does not say what does not change. Including

the assertion index = old index from the original postcondition is

not sufficient, as it only mentions one piece of state that does

not change. Instead we include the assertion modify sequence,

which means that merge right may only modify the sequence

of elements in the Current list and nothing else. Together pre-,

postcondition, and modify clause give a complete specification

of merge right behavior, against which we can automatically test

any implementation for correctness.

III. HOW TO WRITE STRONG SPECIFICATIONS

Writing good specification is hard; at least this is the common

belief. Experience with Design by Contract suggests that

programmers can competently write simple specifications if

they can be expressed using familiar syntax. See for example

the specification in Fig. 1, which refers to regular class queries

such as count and index, also used in the implementation.
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Without further guidance and language support, however,

programmers tend to write only partial specifications, because

expressing complex properties is cumbersome. This section

describes model-based contracts (MBC): a methodology to

write strong specifications that structures and extends tradi-

tional Design by Contract. MBC includes simple guidelines

to define the abstract model of a class (Sect. III-A), and to

write pre- and postconditions of routines (Sect. III-B and III-C)

and other, more advanced, specification elements (Sect. III-D

and III-E).

The MBC approach supports writing strong specifications in

a number of ways: models facilitate choosing the right level

of abstraction and expressing complex behavioral properties

concisely, while the structured discipline for writing postcon-

ditions and invariants, together with the notion of complete-

ness (Sect. III-D), provides precise guidelines as to which

properties are worth documenting in a contract, and when a

contract is strong enough. While fostering rigor and accuracy

in specifications, MBC is still palatable to practitioners be-

cause its notation is part of the programming language. When

developing specifications for testing, as opposed to formal

verification, MBC can be exploited incrementally: developers

may skip writing the most advanced specification elements (for

example, complex class invariants) while still getting strong

specifications that are useful to detect subtle errors.

The following subsections present MBC using examples

from EiffelBase. The few additional constructs introduced

by MBC are highlighted in a different color and underlined

in the examples (e.g., modify). The current presentation of

MBC derives from previous work of ours [5], which focused

on using strong specifications when designing new software.

In this paper we adapt the principles introduced in [5] to

the goal of supplying existing software with flexible strong

specifications for runtime checking and automatic testing (see

Sect. III-F). We also extend the specification methodology with

new construct that handle framing (Sect. III-D) and complex

class invariants (Sect. III-E).

A. Abstract Class Models

Writing strong specifications becomes simpler if we can

readily express the abstract state space of classes and how

it changes. Therefore, the first step in specifying a class with

MBC is defining a model for the class: a set of mathematical

elements that capture the abstract state space.

Syntactically, the annotation model (see Fig. 3) declares the

abstract model of a class as a list of attributes or functions

called model queries; each element listed after model is either

a query of basic type (Boolean, integer, or object reference)

already used in the implementation, or a specification query,

meaning a query introduced solely to define the model. As part

of our work on MBC, we developed the Mathematical Model

Library (MML), a collection of immutable Eiffel classes that

represent mathematical concepts useful for specification: sets,

bags, sequences, maps, and relations. Specification queries

make use of MML classes to represent complex components

of class models. For example, LINKED LIST’s model in Fig. 3

class LINKED LIST [G]

model sequence, index

sequence: MML SEQUENCE [G]
status specification

−− Specification query: sequence of elements in the list.

index: INTEGER

−− Internal cursor position.

off: BOOLEAN

−− Is the cursor not on a list element?
ensure

Result = not sequence.domain.has (index)
end

invariant
−− Model constraint
0≤ index and index≤ sequence.count + 1
−− Internal representation constraint
not sequence.is empty implies last cell.item = sequence.last

end

Fig. 3. Excerpt of LINKED LIST’s MBC specification in EiffelBase+.

has two components: a specification function sequence with

return type MML SEQUENCE that gives the abstract sequence

of elements stored in the list, and the ordinary class attribute

index of integer type.

Class models should be expressive enough to formalize the

class behavior as seen at the API level, without exposing

implementation-specific details. In practice, it is usually easy

to devise a model for a data structure using MML abstractions.

Even for classes representing complex real-world concepts,

such as an ATM or a flight scheduler, MML remains applicable

if used incrementally to define partial yet useful behavioral

properties.

B. Preconditions

The precondition of a routine defines when a call to the routine

is valid. In practice preconditions appear to be the most widely

and accurately used form of contract [9]. Therefore, MBC does

not introduce special guidelines for writing preconditions.

C. Postconditions

The postcondition of a routine r describes the intended effects

of executing r on the object state; it is a relation between the

state just before (denoted using the keyword old) and the state

just after executing r.

MBC postconditions express the intended effect of execut-

ing a routine on the model, that is in terms of the model

queries. Procedure merge right in Fig. 2, for example, declares

its effect on the model query sequence of the current object. For

functions, the postcondition also mentions the returned object

(and its model queries) using the keyword Result. For example,

function off in Fig. 3 defines Result in terms of sequence and index.
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D. Framing Specification

An accurate routine specification should limit the effects of

the routine execution to a certain part of the program state.

Such specification elements are called framing specifications.

In MBC, the keyword modify introduces a routine’s framing

specification: a list of all model queries whose value is allowed

to change after executing the routine. For example, routine

merge right in Fig. 2 may only change sequence, but not index and

not any component of the other list’s model. The modify clause

mechanism is taken from specification methodologies (e.g.,

Spec# [10]) targeted to formal correctness proofs; combined

with models, the mechanism is also useful for finding bugs

with testing.

This approach to framing also supports a simple definition

of specification completeness: a routine postcondition and

framing specification are complete if the relation between the

model’s pre- and poststate is a function.3 Completeness is not

an imperative in the MBC methodology: programmers can still

approach writing postconditions and framing incrementally. It

should rather be viewed as a safeguard against accidentally

missing an important property.

E. Class Invariants

The class invariant specifies properties of valid instances

of a class, which every operation must preserve. In MBC

invariants, like postconditions, are expressed in terms of

the model. For example, the first invariant clause in Fig. 3

constrains the values of the model queries sequence and index,

stating that index must never take values outside the interval

[0..sequence.count + 1].
Additionally, class invariants can express internal represen-

tation constraints, which relate the values of model queries

to the private attributes of the class. For example, the second

invariant clause in Fig. 3 says that the private attribute last cell

stores the same value as sequence’s last element (whenever the

sequence is not empty). Unlike other MBC specifications,

invariants of this type do not describe the public interface

of the class and usually cannot be made complete without

revealing unnecessary implementation details in the model.

However, even in this limited form, they turned out to be

very effective at revealing errors that corrupt object’s internal

representation (see Sect. V-A).

Class invariant semantics. Since the semantics of class

invariants can be subtle, MBC introduces additional dedi-

cated constructs for complex invariant properties. We borrow

some ideas from the existing techniques developed for formal

correctness proofs (e.g., [10], among many); unlike these

sophisticated techniques, MBC’s solution for class invariants

does not target comprehensiveness, but it is easy to deploy

and sufficient in practice for finding errors by testing, while

avoiding spurious invariant violations.

Eiffel checks class invariants at the beginning and at the end

of every qualified4 call on an object of the class. This rule pre-

vents checking the invariant whenever routines of a class call

3Such notion of completeness is of course relative to the model.
4A call t.r is qualified when the target t is an object other than Current.

one another within the boundaries of a single object, in order

to accomplish a common task, as the object will normally

be inconsistent (“open”) until all operations are completed.

However, when multiple objects in a complex object structure

collaborate on the same task, and their invariants depend on

the state of the whole object structure, this semantics may lead

to spurious invariant violations.

Consider an example derived from real code in EiffelBase:

a binary tree data structure, where each node has a link to its

parent and left and right children. An invariant states that the

Current node is its parent’s left or right child:

parent 6=Void implies (parent.left = Current or parent.right =
Current)

Routine prune left removes Current’s left child as follows:

old left := left

left := Void
if old left 6=Void then old left.set parent (Void) end

When old left.set parent (Void) is called to remove the back-link

from Current’s child, old left’s class invariant is violated: its

parent’s left is already set to Void. This invariant violation is

spurious because the consistency of the tree is going to be

restored before the end of the call to prune left; in fact, the very

reason for calling set parent is removing the inconsistency.

In MBC objects are implicitly equipped with a Boolean

attribute is open that is set to true at the entry to every public

routine call on the object and restored to its previous value

when the routine terminates; class invariants are checked only

if is open is false. In addition MBC provides the keyword depend

to declare that an invariant clause depends on the state of an

attribute, and hence it should be checked only if the object

attached to the attribute is closed. Annotating the invariant in

the example with depend parent removes the spurious invariant

violation (old left.parent is Current, which is open).

In the few cases when fine-grained control over the opening

of objects is necessary, MBC provides the open clause to

specify which arguments of a routine, in addition to the target,

should be explicitly opened when the routine begins execution

and closed again when the routine terminates.

As we discuss in Sect. IV, in EiffelBase+ we had to deploy

explicit depend and open annotations only in a very few cases,

limited to doubly-linked list nodes, and binary and n-ary trees.

F. Runtime Support for Strong Specifications

Model-based postconditions and invariants can be checked at

runtime and used in testing out of the box: with the same

tools and user experience as standard Eiffel contracts. Model

queries introduced for specification purposes are implemented

as regular functions that compute the abstract model value

from the concrete object state, and thus do not require explicit

initialization or updates. The specification classes we provide

in MML are also regular Eiffel classes, implemented in a

functional style. Even though this approach to implementation

of model queries and model classes potentially incurs a high

runtime overhead, the experiment results in Sect. V confirm

that using MBC for contract-based testing is feasible.
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Newly introduced specification constructs, such as modify,

depend and open, do not have any effect in the standard

Eiffel semantics: they are specified using note meta-annotations

(similar to Javadoc or C#’s meta-data). We have developed a

simple tool that rewrites these annotations into plain Eiffel; for

example, modify clauses become explicit postconditions such

as item = old item. The MBC methodology is conservative, in

that the class semantics is still sound if we ignore the spe-

cial annotations; ignoring modify clauses, for instance, yields

weaker, yet correct, postconditions.

IV. USING STRONG SPECIFICATIONS: EXPERIMENTS

We performed an extensive experimental evaluation to assess

the benefits of using strong specifications for finding errors in

software.

A. Research Questions

The overall goal of this evaluation is assessing and comparing

the advantages and the cost of deploying strong specifications

in the form of model-based contracts (MBC, described in

Sect. III) when applied to automatic contract-based testing of

real software.

This materializes into the following research questions:

1) Are strong specifications effective for finding faults in

software?

2) Do strong specifications find subtle and complex faults?

3) Do strong specifications find faults in little testing time?

4) What is the performance overhead of checking strong

specifications at runtime?

5) What is the development effort required to provide

strong specifications for existing software?

To answer these questions, we conducted two sets of experi-

ments, targeting software written in Eiffel (Sect. IV-B) and C#

(Sect. IV-C). In both cases, we selected an open-source library,

specified it following the MBC methodology, and extensively

tested it with a standard automatic testing tool. The rest of this

section discusses the experiments; Sect. V presents the results.

B. Eiffel Experiments

The main experiments target EiffelBase (rev. 506)—Eiffel’s

standard base library—from which we selected 21 classes of

varying size and complexity. Using the facilities of the Eiffel-

Studio IDE, we built the flat version of each class, which is a

self-contained implementation including all inherited members

explicitly in the class text. This simplified the task of writing

specifications without being distracted by EiffelBase’s deep

multiple inheritance hierarchy. For each of the 21 classes in

their flat version, Tab. I lists the size (in LOC) and the number

of public routines (PR), possibly also including helper classes

directly used in the class implementation. Since different

classes may share some parent or helper classes, the totals

at the bottom of the table are in general less than the sum of

the elements in each column.

Like most Eiffel software, EiffelBase comes with partial

specification in the form of contracts: the 21 classes include

561 precondition clauses, 985 postcondition clauses, and 250

class invariant clauses. In EiffelBase+ we completely replaced

EiffelBase’s original postconditions and class invariants with

model-based annotations, but we kept EiffelBase’s precondi-

tions (with a few exceptions discussed below)5. EiffelBase+’s

strong specification includes 589 precondition clauses, 1066

postcondition clauses and 164 class invariant clauses, as well

as 278 modify, 4 depend and 7 open clauses. Tab. I shows the

size (in LOC and PR) of EiffelBase+, which also includes

model definitions and implementations of the model queries

necessary to write MBC.

Preconditions. In all but two EiffelBase+ classes we kept

the same preconditions as in EiffelBase. Within the specific

setup of our experiments, where we compare traditional con-

tracts and strong contracts, it is important to have the same

preconditions in the two artifacts under comparison. Precondi-

tions define the valid calling contexts of routines (in particular,

contract-based testing tools use them to select valid test cases).

Changing preconditions would change the semantics of classes

in a way similar to changing implementation: strengthening

a precondition may reduce the number of faults detectable

for the routine, since it would move obligations from the

routine to its clients; weakening a precondition may increase

the number of faults, since it would impose a heavier burden

on its implementation. We treat preconditions as developers’

design decisions, which we normally take at face value. This

policy makes the experiments with EiffelBase and EiffelBase+

fully comparable.

The only exception occurred with four routines of class

BINARY TREE and eight routines of class TWO WAY TREE that

insert new nodes into a tree. In these twelve cases, we strength-

ened the preconditions to disallow creating cycles among

nodes in the tree. Without the strengthening, tree instances can

be driven into inconsistent states with cycles where the whole

specification of trees would be inapplicable. These changes in

preconditions are conservative: the EiffelBase+ experiments

using these stronger preconditions miss a few faults that are

detected in EiffelBase, because the new preconditions rule out

some previously valid failing test cases. Since these changes

affect only a small fraction of all the experiments, the results

with EiffelBase and EiffelBase+ remain comparable.

Specification correctness. To write correct strong contracts

with MBC, we analyzed the original implementation, con-

tracts, and comments in EiffelBase, and relied on our informal

knowledge of the semantics of data structures and their imple-

mentation. To increase our confidence in the correctness of the

new specification, we ran a series of short preliminary testing

sessions with the goal of detecting inconsistencies and inaccu-

racies. All our changes were conservative, in that whenever a

new contract forbade a behavior that was not clearly forbidden

by the comments, standard contracts, or informal knowledge,

we weakened the specification to allow the behavior. In all,

we reached a high confidence that EiffelBase+’s specification

5All the code developed as part of the study, as well as descriptions of
found faults are publicly available online [11].
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TABLE I
EIFFEL CLASSES UNDER TEST AND RESULTS.

EIFFELBASE EIFFELBASE+
CLASS LOC PR TC SPEC INC REAL NEW LOC PR TC INC REAL NEW

ARRAY 831 53 2.8 2 0 2 1 986 59 1.2 0 3 2
ARRAYED LIST 1840 86 3.5 0 0 0 0 2037 92 1.7 0 1 1
ARRAYED QUEUE 537 32 1.8 0 0 2 0 648 37 3.8 0 2 0
ARRAYED SET 1960 49 5.8 3 1 8 0 2053 58 5.4 0 16 8
BINARY TREE 1122 64 1.0 2 5 6 0 1366 70 1.1 0 16 10
BOUNDED QUEUE 558 32 1.4 0 0 2 0 659 37 3.8 0 2 0
HASH TABLE 1345 51 0.9 1 0 1 0 1626 63 0.9 0 2 1
HASH TABLE ITERATOR 217 15 0.4 0 0 0 0 248 15 0.5 0 0 0
INDEXABLE ITERATOR 186 14 1.0 2 0 0 0 228 15 2.7 0 0 0
INTEGER INTERVAL 519 42 4.3 1 1 0 0 637 45 0.9 0 3 3
LINKED LIST 1759 69 2.0 0 0 2 0 1942 77 2.5 0 5 3
LINKED LIST ITERATOR 311 15 0.7 0 0 0 0 357 16 0.7 0 0 0
LINKED SET 2128 83 5.4 5 2 7 0 2410 94 4.8 0 24 17
LINKED SET ITERATOR 311 15 0.7 0 0 0 0 357 16 0.7 0 0 0
LINKED STACK 1077 27 1.0 0 0 3 1 1078 32 3.2 0 6 4
TWO WAY LIST 2007 71 0.8 0 0 3 0 2184 79 2.2 0 6 3
TWO WAY LIST ITERATOR 412 15 0.7 0 0 0 0 462 16 0.7 0 0 0
TWO WAY SORTED SET 2706 91 5.3 5 2 9 0 2983 102 4.8 1 34 25
TWO WAY SORTED SET ITERATOR 412 15 0.7 0 0 0 0 462 16 0.7 0 0 0
TWO WAY TREE 2548 90 1.4 4 4 22 5 2865 101 1.3 0 29 12
TWO WAY TREE ITERATOR 412 15 0.7 0 0 0 0 462 16 0.7 0 0 0

Total 17841 1033 42.5 15 12 48 7 19400 1164 44.4 1 103 62

LOC: Lines of code, PR: Public routines, TC: Test cases drawn (million)
SPEC: Specification errors found, INC: Inconsistency errors found, REAL: Real faults found, NEW: Faults found only in this experiment

is correct and strong enough. The results of the main testing

sessions (Sect. V) corroborate this informal assessment.

Testing experiments. We ran a large number of random

testing sessions with the AutoTest framework [6] on a com-

puting cluster of the Swiss National Supercomputing Centre,

configured to allocate a standard 1.6 GHz core and 4 GB

memory to each parallel AutoTest session. The experiments

totalled 1680 hours of testing time that generated nearly 87

millions of test cases; the TC columns in Tab. I list the million

of test cases drawn when testing each class in EiffelBase

and in EiffelBase+. The testing of every class was split into

30 sessions of 80 minutes, each with a new seed for the

random number generator, such that corresponding sessions in

EiffelBase and EiffelBase+ use the same seeds. This thorough

testing protocol guaranteed statistically significant results [12].

C. C# Experiment

A smaller set of experiments targets 9 classes from DSA

(v. 0.6)—an open-source data structure and algorithm library

written in C# [7]. Support for contracts in C# appeared

only recently, through the Code Contracts framework [13];

therefore, most C# projects (including DSA) do not have

any formal specification. This was a chance to extend the

validation of the MBC methodology to other languages and to

projects without pre-existing specification.

We instructed one of our bachelor’s students to follow

the methodology of Sect. III and create DSA+: a variant

of DSA with the same implementation but equipped with

strong model-based contracts. DSA+’s specification includes

6 precondition clauses, 143 postcondition clauses and 23 class

invariant clauses. For each of the 9 classes, Tab. II shows the

size (in LOC and PR) of both DSA and DSA+, inclusive of

TABLE II
C# CLASSES UNDER TEST AND RESULTS.

DSA DSA+ TESTING

CLASS LOC PR LOC PR T F

AvlTree 345 6 391 7 23 1
BinarySearchTree 205 5 213 5 21 1
CommonBinaryTree 419 13 536 18 83 0
Deque 201 14 231 15 145 0
DoublyLinkedList 408 17 458 19 171 3
Heap 371 11 390 12 61 1
OrderedSet 136 9 158 11 10 0
PriorityQueue 186 13 216 14 65 0
SinglyLinkedList 439 20 492 22 148 3

Total 3043 133 3486 149 727 9

LOC: Lines of code, PR: Public routines
T: Testing time (minutes), F: Faults found

all specification elements and model query implementations.

As in Tab. I, the count also includes (possibly shared) helper

classes. Flattening was not necessary in this case because the

inheritance hierarchy is shallow.

Specification correctness. We manually inspected the

DSA+ specification written by our student, and assessed its

quality to be comparable to that of EiffelBase+ in terms of

correctness and completeness. Since DSA was not designed

with contracts in mind, it makes recurrent usage of defensive

programming, throwing exceptions to signal invalid arguments.

The experiment setup is consistent with this programming

style: we do not consider such exceptions to be faults.

Testing experiments. We performed automatic testing with

the Pex concolic testing framework [8] running on a Windows

box equipped with a 2.16 GHz Intel Core2 processor and 3 GB

of memory. The experiments ran for about 12 hours; column

T in Tab. II reports the breakdown per class in minutes. The
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testing time is different from class to class because Pex testing

sessions by default are limited by coverage criteria rather than

duration. We only tested DSA+ since DSA has no formal

specification elements usable as automated testing oracles.

V. USING STRONG SPECIFICATIONS: RESULTS

This section discusses the result of the experiments, focusing

on the larger EiffelBase experiments, with V-A through V-E

targeting the research questions 1–5 of Sect. IV-A. Then, V-F

briefly discusses the experiments with C#, and V-G presents

possible threats to validity of the results.

A. Faults Found

AutoTest found 75 faults in EiffelBase and 104 in EiffelBase+;

these are unique, that is they identify distinct and independent

errors. We classified them in three categories.

Specification faults correspond to violations of wrong con-

tracts (meaning that in our judgement they specify the ex-

pected behavior of the program incorrectly). We found 15

specification faults in EiffelBase (column SPEC in Tab. I)

and none in EiffelBase+, which increased our confidence

that the preliminary testing sessions mentioned in Sect. IV-B

were sufficient to achieve correct specifications. We consider

specification faults spurious in our study, because we are not

comparing the correctness of the specification in EiffelBase

and EiffelBase+ but rather their effectiveness at finding real

errors in the implementation.

Inconsistency faults correspond to failures triggered by calls

on objects in inconsistent states, which are not captured by a

partial class invariant. For example, LINKED SET may be driven

into a state where the container stores duplicate elements;

calling remove (x) in such a state triggers a failure (only one

occurrence of x is removed), but remove is not to blame for

it, since it is due to previous erroneous behavior that went

undetected. While inconsistency faults are genuine errors, we

classify them separately because understanding and locating

the ultimate source of an inconsistency is normally harder.

Additionally, a single inconsistency fault often results in many

failing test cases (potentially in all routines of the class that

rely on the broken invariant), requiring additional effort from

the developer when analyzing the testing results.

We found 12 inconsistency faults in EiffelBase and 1 in

EiffelBase+ (columns INC in Tab. I); the ultimate source of

the latter fault is a class invariant not including all internal

representation constraints (see Sect. III-E), which would have

required exposing implementation details in the model. The

other inconsistency faults of EiffelBase are not detected in

EiffelBase+, because, due to stronger class invariants, their

real source is detected instead. In the LINKED SET example

above, instead of the inconsistency fault in remove, MBC report

a fault in routine replace, which does not check if the new value

is already present in the set, thereby introducing duplicates.

The results in this category indicate that strong specifications

report faults in a way that is easier to understand and debug.

All other errors are real faults which correspond to genuine

errors directly traceable to the code. We found 48 real faults in

40 50 60 70 80 90

Total number of faults found

40 50 60 70 80 9040 50 60 70 80 90

EiffelBase EiffelBase+

Fig. 4. Unique real faults found in all classes over 80-minute testing sessions.

EiffelBase and 103 in EiffelBase+ (columns REAL in Tab. I);

41 of them are found in both sets of experiments, 7 only in

EiffelBase, and 62 only in EiffelBase+. We submitted bug

reports for all the 110 faults found in our experiments. The

Eiffel Software developers in charge confirmed 107 (97%) of

them as real bugs to be fixed. This is evidence that we are

dealing with genuine faults in our evaluation. The remaining

three faults not taken on by the developers also arguably

highlight real problems in the implementation, but they are

probably not so likely to occur during “normal” runs. The rest

of the discussion focuses on real faults unless stated otherwise.

Only seven faults are found in EiffelBase but not in Eiffel-

Base+ (columns NEW in Tab. I). Four of them are prevented by

the strengthened preconditions in the tree classes (Sect. IV-B);

two are shadowed by new failures occurring earlier; and one

disappears with MBC due to an unintentional side-effect of a

model query that amends an invariant violation. None of these

faults found only in EiffelBase show inherent deficiencies of

strong specifications or of the MBC method. In contrast, the 62

faults found only in EiffelBase+ are undetectable in EiffelBase.

Except for the two ITERATOR classes (no faults in both

cases) and the two QUEUE classes (the same two faults in

both cases), the number of faults found is consistently higher

in EiffelBase+ in each class. As evident from the boxplot in

Fig. 4, the difference is highly significant: the Mann-Whitney

U test gives U = 0 (testing EiffelBase+ outperforms testing

EiffelBase in all sessions), and p = 2 · 10−11 overall and

p ≤ 2.1 · 10−11 for every class (except the ITERATORs and

QUEUEs). The difference remains highly statistically significant

even if we aggregate the experiments in sessions of different

length.

Testing with strong specifications detected 55 more

(twice as many) unique real faults than testing with

standard, partial contracts. 62 (56%) of the faults are

detected only with strong specifications.

B. Fault Complexity

Although it is to some extent subjective whether a fault is

“deep” or “subtle”, faults violating postconditions or class

invariants are arguably more complex because so are the

violated properties. While there is no significant difference in

the percentage of class invariant violations between EiffelBase

and EiffelBase+ (33% in both cases), postconditions trigger

42% of violations in EiffelBase+ but only 11% in EiffelBase:
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Fig. 5. Median number of faults, aggregated from all classes, in time. Dotted
lines show minimum and maximum for each case.

the Wilcoxon signed-rank test among all classes gives W = 0
and p = 6 · 10−3 both for postconditions alone and for

postconditions and class invariants counted together, which

demonstrates that strong specifications systematically detect

more complex errors. 76% of faults in EiffelBase+ are detected

thanks to postconditions or invariants—a direct consequence

of the effectiveness of the MBC methodology for writing them.

We do not have enough space to present even a sample

of the faults found only in EiffelBase+ and demonstrate that

they are indeed subtle yet understandable (see the extended

version of this report [14] and the online materials for details).

It is revealing, however, that 11 faults in EiffelBase+ are due

to violations of contracts generated automatically by our tool

that processes MBC annotations (Sect. III-F) such as modify

and depend. These faults are practically out of the scope of

regular contracts, as specifying the corresponding properties

explicitly is extremely onerous.

C. Usage of Testing Time

Fig. 5 plots the number of faults detected in EiffelBase and

EiffelBase+ over a median 80-minute session; it is clear

that the behavior with strong specifications dominates over

standard contracts after only a few minutes. Dominance is

observed consistently in all classes (with the usual exception of

ITERATORs and QUEUEs): a median session with strong contracts

finds more faults than a median session with standard contracts

after a time between two seconds and five minutes depending

on the class under test; after a time between 13 seconds and 20

minutes, testing with strong contracts finds more faults than

testing with standard contracts will find in the whole session.

TABLE III
SPECIFICATION OVERHEAD

# TOKENS EIFFELBASE EIFFELBASE+ OVERHEAD

Preconditions 1514 1696 1.12
Postconditions 5410 11837 2.19
Invariants 1508 1587 1.05
MBC annotations 1893
Model queries 2268

Total 8432 19281 2.29
Spec/code 0.20 0.46

Testing with standard contracts also seems to exhaust earlier

its fault-finding potential: given any time from 20 minutes on,

there are more EiffelBase sessions than EiffelBase+ sessions

that have found all the faults they ever will by this time. This

may indicate that standard contracts are good to find “quick

to detect” faults, but they also soon run out of steam.

We considered other differences between experiments with

EiffelBase and with EiffelBase+ in the usage of testing time:

repeatability of testing session history, and the presence of rare

faults triggered only in a small number of cases. Our exper-

iments with strong specifications are slightly less repeatable

and include a few more rare faults, but the differences with

standard contracts are not statistically significant.

D. Runtime Performance Overhead

Runtime checking of strong specifications based on models

often requires traversing the whole data structure to construct

an object of a model class, whenever a contract element is

exercised. As a rule, this demands more computational re-

sources than executing the simple checks involved in standard

contracts. To measure the runtime overhead of checking MBC

specifications in automated testing, we compared the number

of test cases generated by AutoTest in the same amount of

time when testing EiffelBase and EiffelBase+. Contrary to

our expectations, the overhead is small in many cases and

not significant overall (see column TC of Tab. I). A possible

interpretation of this data is that the overhead of strong

specifications grows as larger data structures are instantiated;

because random testing most of the time only exercises small

data structures, this overhead does not show.

We did not find a significant correlation between the vari-

ation of overhead for different classes and any source code

metrics we considered. On the other hand, some AutoTest

heuristics that decide to discard previously created objects are

activated more often for classes where strong specifications

are faster to check.

E. Specification Writing Overhead

Applying MBC to create EiffelBase+ required roughly one

person-month, plus one person-week of preliminary testing

for fine-tuning the specification, which puts the overall ratio

benefit/effort at about four defects detected per person-day.

Tab. III measures the amount of work produced in this time:

for each specification item, including preconditions, postcon-

ditions, class invariants, MBC annotations such as modify,

and model query implementations, we compare the number
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of tokens in EiffelBase+ against those in EiffelBase (when

applicable) and give the OVERHEAD of strong specifications

as the ratio of the two values. The last line also shows the

overall specification to code ratios.

Reflecting the importance MBC gives to strong postcondi-

tions and the more restricted role of class invariants, 67% of all

new specification in EiffelBase+ are postconditions, whereas

only 9% are class invariants. MBC-specific annotations are

11%, mostly modify clauses that are however straightforward

to write and dispense for more intricate explicit framing

specifications. Model query implementations account for the

remaining 13%.

These numbers suggest that the specification overhead of

MBC is moderate and abundantly paid off by the advantages

in terms of errors found and quality of documentation. The

specification to code ratio also compares favorably to other ap-

proaches to improving software quality. Detailed quantitative

data about industrial experiences with test-driven development

is scarce, but few references indicate [4], [15], [16] that it is

common to have between 0.4 and 1.0 lines of tests per line of

application code for projects of size comparable to EiffelBase.

Correctness proofs are normally much more demanding, as

they require between 1.5 and 9 specification elements per

implementation element [17], [18], [19].

F. C# Experiments

Pex found 9 unique faults in DSA+ violating the model-

based specification (column F in Tab. II). Unfortunately, we

could not get an evaluation of these faults by the original

code developers. We have confidence, however, that the faults

uncover some obvious errors and, even in the most benign

interpretation, some instances of bad object-oriented design.

The fault rates (faults per line of executable code) are com-

parable in the Eiffel and C# experiments, being respectively

6 ·10−3 and 3 ·10−3. The fault complexity is also qualitatively

similar for the two languages. The testing time (column T

in Tab. II) is instead incomparable, as Pex and AutoTest

implement very different testing algorithms.

Applying MBC to create DSA+ required roughly 50 person-

hours, plus another 8 person-hours used by the student to

learn the MBC methodology on small examples. The spec-

ification/code ratio is perceptibly higher in DSA+ compared

to EiffelBase+ (0.9); this is largely due to the verbose syntax

of Code Contracts which are a library, as opposed to Eiffel’s

native language support for contracts.

G. Threats to Validity

Threats to internal validity of our findings come from the usage

of randomized testing tools, whose behavior may change in

different sessions. We designed the experimental protocol [12]

to reduce this threat to a minimum: we ran a large number

of repeated experiments and we performed suitable non-

parametric statistical tests of significance for all differences

we observed.

Threats to external validity refer to the generalizability of

our findings. While MBC leads to very good results in our

experiments, applying it to programs in application domain

other than data structures might be more difficult or require

an extension of the technique. Our results remain significant,

however, if compared to the state of the art in deploying

strong specifications. The generalizability to other languages

and analysis tools is partially addressed by our experiments

targeting two languages (Eiffel and C#) and two automatic

testing technologies (random and concolic). Future work will

experiment with even more approaches and notations.

VI. RELATED WORK

This section discusses the most significant related work in

three areas: using formal specifications for testing; using

inferred specifications to improve testing; and model-based

specification methods.

Formal specifications for testing. The idea of using formal

specifications for testing has a history that stretches back

more than three decades; see [20] for a comprehensive survey.

Various proposals targeted different specification formalisms

including algebraic datatypes [21], [22], logic-based nota-

tions [23], UML Statecharts [24] and other state machines, and

contracts and similar forms of embedded assertions [25], [26],

[27], [6]. In these applications, formal specifications provide

reliable—often automated—testing oracles [28] and can also

guide test planning and test case generation.

This extensive experience is evidence that formal speci-

fications can improve the testing process. From a software

engineering viewpoint, however, an outstanding open issue

is finding optimal trade-offs between the effort required to

provide formal specifications and the improvements (in ef-

ficiency and effectiveness) they bring to the testing of real

software. The evidence—empirical [29] or anecdotal [1]—

is scarce in this area: most successful experiences do not

explicitly take into account the effort required to produce

reliable specifications against the benefits gained for testing

(e.g., [30]); or they only target partial specifications, which

have the advantage of being easy to write (e.g., [27], [6]).

In contrast, this paper targeted the high-hanging fruit of

deploying strong specifications, explicitly addressing the dif-

ficulties of writing and using such specifications for existing

software. Our results that strong specifications reveal complex

(design) errors corroborate Hoare’s view that the real value

of tests is that “they detect inadequacy in the [development]

methods” [31].

Inferred specifications for testing. When specifications can

be inferred automatically from the code, the deployment effort

is negligible compared to the benefits they bring. Therefore,

a number of recent works (e.g., [32], [33], [34], [35]) devel-

oped sophisticated techniques for inferring specifications from

program executions with the intent of using them to improve

testing. The experiments reported in these papers show that

inferred specifications can boost automated testing [36]; on

the other hand, even the most accurate inferred specifications

only express the code from a different angle, and hence cannot

take the developer’s intent fully into account and are nec-

essarily limited to detecting certain types of inconsistencies.
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Combining inferred and manually written specifications is an

interesting endeavor that belongs to future work (see [9], [37]

for some preliminary studies).

Model-based specification methods. The methodology

described in Sect. III extends our previous work [5] with

the specific goal of developing executable specifications for

automated testing. The same goal has also motivated the

techniques to improve the runtime checking of strong spec-

ifications described in Sect. III-F. The related work section

of [5] compares the foundations of our model-based method

against other similar approaches such as JML [38].

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a methodology to write strong specifi-

cations that extends the traditional Design by Contract, and

applied it to specifying data structure classes in Eiffel and C#.

We carried out an extensive empirical evaluation to determine

the benefits of using such strong specifications in testing with

automatic tools. We found twice as many bugs in the software

with strong specifications as in the same software specified

with standard partial contracts. We also demonstrated that the

effort required to write the strong specifications was moderate

thanks to the methodology that is practical and palatable to

professionals not fluent in formal techniques.

The benefits brought by strong specifications are not limited

to finding errors through testing. While the present paper

focused on adding strong specifications to existing code a pos-

teriori, our related work [5] shows that model-based contracts

help achieve consistent designs and higher-quality code by

construction.

As future work, we plan to extend the MBC methodology

and supporting tools to work on more complicated application

domains with a higher degree of automation, and to support

other software analysis techniques such as correctness proofs

and static analysis. We will also expand the experimental

evaluation to more projects and programming languages.
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