
Using Complete Machine Simulation for Software Power Estimation: The
SoftWatt Approach

Sudhanva Gurumurthi Anand Sivasubramaniam Mary Jane Irwin N. Vijaykrishnan
Mahmut Kandemir

Dept. of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802

fgurumurt,anand,mji,vijay,kandemirg@cse.psu.edu

Tao Li Lizy Kurian John
Dept. of Electrical and Computer Engineering

University of Texas at Austin, Austin, TX 78712
ftli3,ljohng@ece.utexas.edu

Abstract

Power dissipation has become one of the most critical
factors for the continued development of both high-end and
low-end computer systems. The successful design and eval-
uation of power optimization techniques to address this vi-
tal issue is invariably tied to the availability of a broad and
accurate set of simulation tools. Existing power simula-
tors are mainly targeted for particular hardware compo-
nents such as CPU or memory systems and do not capture
the interaction between different system components. In
this work, we present a complete system power simulator,
called SoftWatt, that models the CPU, memory hierarchy
and a low-power disk subsystem and quantifies the power
behavior of both the application and operating system. This
tool, built on top of the SimOS infrastructure, uses validated
analytical energy models to identify the power hotspots in
the system components, capture relative contributions of the
user and kernel code to the system power profile, identify
the power-hungry operating system services and charac-
terize the variance in kernel power profile with respect to
workload. Our results using Spec JVM98 benchmark suite
emphasize the importance of complete system simulation to
understand the power impact of architecture and operating
system on application execution.

1 Introduction

Performance optimization has long been the goal of dif-
ferent architectural and systems software studies, driving
technological innovations to the limits for getting the most
out of every cycle. This quest for performance has made
it possible to incorporate millions of transistors on a very
small die, and to clock these transistors at very high speeds.
While these innovations and trends have helped provide
tremendous performance improvements over the years, they

have at the same time created new problems that demand
immediate consideration. An important and daunting prob-
lem is the power consumption of hardware components, and
the resulting thermal and reliability concerns that it raises.
As power dissipation increases, the cost of power delivery to
the increasing number of transistors and thermal packaging
for cooling the components goes up significantly [3, 33].
Cooling systems need to be designed to tackle the peak
power consumption of any component. These factors are
making power as important a criterion for optimization as
performance in commercial high end systems design.

Just as with performance, power optimization requires
careful design at several levels of the system architecture
[13]. At the circuit level, several techniques such as clock
gating, supply voltage scaling and supply voltage gating
have been proposed to reduce both dynamic and leakage
power [5]. Architectural level power saving techniques typ-
ically detect idleness of components not being used and
appropriately transition them to a lower power consuming
mode. Even the software - the operating system (OS), com-
piler and the application - has an important role to play
in power efficient systems design. The operating system,
which plays the role of hardware manager, can schedule
jobs [23], allocate and manage memory [19], and control
peripherals [20] to reduce overall system power. The com-
piler can generate code and data transformations to increase
idleness of hardware components so that they can be tran-
sitioned to low power modes more effectively [7] Finally,
algorithmic transformations in the application have been
shown to give significant power savings [30].

The successful design and evaluation of such optimiza-
tion techniques is invariably tied to a broad and accurate set
of rich tools that are available for conducting these stud-
ies. The crucial role of design and evaluation tools for per-
formance optimization has been well illustrated by several
studies over the years, and the community at large is cur-
rently expending a lot of effort in the development of sim-
ilar tools for power estimation and optimization. There are
tools to facilitate this at the circuit [1], gate [32], and ar-

chitectural [4, 35, 29] levels. However, power estimation
and optimization tools at the architectural and software lev-
els are still in their infancy. These tools are also not well-
integrated enough to study several issues all at one, or to
see how one optimization affects the complete system be-
havior and not just the target of the optimization. For in-
stance, with today’s tools, one could try out a compiler loop
transformation technique by using tools such as SUIF [11]
to conduct source-to-source transformations, run the out-
put through gcc to get binaries, and run them on a simulator
such as Wattch [4] to evaluate the power savings. This could
help us study the impact of the optimization on the datap-
ath, cache and memory power concurrently. However, this
still does not tell us how the TLB behavior changes, and
how the OS execution is affected as a result. Further, this
does not provide us with the complete picture since there
are still several other hardware components (e.g. the disk)
that could be affected.

A similar observation was made a few years back in
the context of performance, leading to a consideration
of the complete system in the evaluation. Instrumenta-
tion/measurement or hardware profiling using performance
counters on an actual platform is one way of complete sys-
tem performance evaluation [16, 15]. However, we do not
have access to all the relevant hardware events for accu-
rate power calculations in complete system power profiling
on today’s systems. This approach also makes it difficult
to perform detailed software and hardware profiling of sev-
eral components at the same time without significant intru-
sion. Instead, a simulation based strategy can do the same
without the intrusion, albeit at a high simulation cost. This
is the strategy adopted in the SimOS [28] tool, which per-
forms a complete system performance simulation of appli-
cations running on a multi-issue superscalar processor to-
gether with an actual commercial operating system (IRIX
5.3).

With the goal of conducting complete system power
profiling (from the hardware and software viewpoint), we
have extended SimOS to include power models for differ-
ent hardware components (the processor datapath, caches,
memory, and disk). Consequently, we have a powerful tool
that can give us detailed performance and power profiles
for different hardware and software components over the
course of execution of real applications running on a com-
mercial operating system. While there have been some pre-
vious endeavors in building complete system power estima-
tion tools [26, 6, 2, 18, 22], most of these are limited to
either specific environments/applications or have targeted
embedded platforms. SoftWatt, the tool that is discussed in
this paper, is the first one to target complete system power
profiles of high end systems, that can be used for design
and evaluation of power optimization techniques. Such a
tool can help us answer several important issues that are ex-
plored in this paper:

� How does the power consumption of the complete sys-
tem vary during the execution of a program? Does it
remain constant, or are there variations/spikes? Are
these variations, if any, due to user or kernel activity,
and what hardware components are being exercised at
those times? Even if the overall power consumption
does not vary too much, are there changes between
the relative proportions of user, kernel, and idle mode
power consumption over time?

� What is the major contributor for power consumption
from the software angle? Is it the kernel instructions,
user instructions or the idle process (idling in a lot
of commercial OS including IRIX is done by busy-
waiting and is not necessarily a low power consumer)?
What hardware components are the dominant power
consumers in the user and kernel modes?

� Within the kernel, what OS services are the dominant
power consumers? Why? Do performance and power
profiles go hand-in-hand for all these results?

� What is the variation in energy consumption for a ker-
nel service from one invocation to another? i.e., Is the
per-invocation energy consumption of a kernel service
very data dependent? If not, then from the simulation
angle, there can be reasonable simulation speedups to
be gained by not getting into the details of simulating
kernel services.

� From the detailed hardware and software power pro-
files, can we make suggestions where future work
needs to be directed for significant gains? What kind
of hardware/software optimizations are suggested by
the power profiles?

This paper examines several of these questions using
our tool, SoftWatt, by experimenting with different Spec
JVM98 benchmarks [31] together with the Java Virtual Ma-
chine (JVM) runtime system executing on IRIX 5.3. The
performance and power profiles are given for different hard-
ware components such as the processor datapath, L1 and L2
I/D caches, memory and disk.

The rest of this paper is organized as follows. Section 2
describes the simulation framework. Section 3 presents the
power characterization of the Spec JVM98 benchmark suite
Section 4 presents the impact of disk power-management to
the system power consumption and performance. Section
5 discusses the characterization results and concludes the
paper.

2 Simulator Design

The first step towards a comprehensive study of the
power consumption of a computer system is the develop-
ment of a suitable simulation infrastructure. SimOS, which
provides a very detailed simulation of the hardware so as
to be able to run the IRIX 5.3 operating system, is our
base simulator. SimOS also provides interfaces for event-
monitoring and statistics collection. The simulator has three
CPU models, namely,Embra, Mipsy, andMXS. Embra em-
ploys dynamic binary translationand provides a rough-
characterization of the workload. Mipsy provides emulation
of a MIPS R4000-like architecture. It consists of a sim-
ple pipeline with blocking caches. MXS emulates a MIPS
R10000-like [36] superscalar architecture. The overall de-
sign of the energy simulator is given in figure 1.

We modified MXS CPU and the memory-subsystem
simulators to instrument accesses to their different com-
ponents. This enables us to analyze our simulations us-
ing the Timing Trees [12] mechanism provided by SimOS.
The MXS CPU simulator does not report detailed statistics
about the memory subsystem behavior. Due to this limita-
tion in SimOS, we use Mipsy for obtaining this information.

�������
�������
�������
�������

�������
�������
�������
�������

TCL Annotations

Architectural
Configuration
Parameters

 MIPSY MXS

 SimOS

Warm File Caches
Take Checkpoint

Get Disk Statistics Simulation
Log Files

Get Processor Profile

Get Memory System Profile

Boot OS

 Analytical
 Power Models

 Workload Disk

 Performance Statistics Power Statistics

Applications to
be simulated

Figure 1. Simulator Design

MXS is used to obtain detailed information about the pro-
cessor.

We also incorporated a disk-power model into SimOS
for studying the overall system power consumption. SimOS
models a HP97560 disk. This disk is not state-of-the art
and does not support any low-power modes. We therefore
incorporated a layer on top of the existing disk model to
simulate the TOSHIBA MK3003MAN [34] disk, a more
representative modern disk that supports a variety of low-
power modes. The operating-modes state-machine imple-
mented for this disk is shown in figure 2. The disk transi-
tions from the IDLE state to the ACTIVE state on a seek
operation. The time taken for the seek operation is reported
by the disk simulator of SimOS. This timing information is
used to calculate the energy consumed when transitioning
from the IDLE to the ACTIVE state. In the IDLE state, the
disk keeps spinning. A transition from the IDLE state to
the STANDBY state involves spinning down the disk. This
operation incurs a performance penalty. In order to service
an I/O request when the disk is in the STANDBY state, the
disk has to be spun back up to the ACTIVE state. This op-
eration incurs both a performance and energy penalty. The
SLEEP state is the lowest-power state for this disk. The
disk transitions to this state via an explicit command.

We assume that the spin up and spin down operations
take the same amount of time, and that the spin down opera-
tion does not consume any power. Our model also assumes
that transition from the ACTIVE to the IDLE state takes
zero time and power, as in [20]. Currently, we do not utilize
the SLEEP state. We suitably modified the timing modules
of SimOS to accurately capture mode-transitions. While it
is clear that modeling a disk is important from the energy
perspective, the features of a low-power disk can also influ-
ence the operating system routines such as the idle process
running on the processor core. Hence, a disk model helps to
characterize the processor power more accurately. During
the I/O operations, energy is consumed in the disk. Further,
as the process requesting the I/O is blocked, the operating
system schedules the idle process to execute. Therefore, en-
ergy is also consumed in both the processor and the memory

STANDBY

OFF

IDLE

ACTIVE

SPINUP

SPINDOWN

SEEK

SPINUP

SLEEP

VIA COMMAND

 5 sec.

 5 Sec.

5 Sec.

Mode Power (W)
Sleep 0.15
Idle 1.6

Standby 0.35
Active 3.2

Seeking 4.1
Spin up 4.2

Figure 2. MK3003MAN Operating Modes State
Machine and Power Values

subsystem.
SoftWatt uses analytical power models. A post-

processing approach is taken to calculate the power val-
ues. The simulation data is read from the log-files, pre-
processed, and is input to the power models. This approach
causes the loss of per-cycle information, as data is sampled
and dumped to the simulation log-file at a coarser granular-
ity. However, there is no slowdown in the simulation time
beyond that incurred by SimOS itself. This is particularly
critical due to the time-consuming nature of MXS simula-
tions. The only exception to this rule is the disk-energy
model, where energy-consumption is measured during sim-
ulation to accurately account for the mode-transitions. This
measurement incurs very little simulation overhead. Soft-
Watt models a simple conditional clocking model. It as-
sumes that full power is consumed if any of the ports of a
unit is accessed; otherwise no power is consumed.

The per-access costs of the cache-structures are calcu-
lated based on the model presented in [17, 4]. The clock
generation and distribution network is modeled using the
technique proposed in [9], which has an error-margin of
10%. The associative structures of the processor are mod-
eled as given in [25, 4]. In order to validate the entire CPU
model, we configured SoftWatt to calculate the maximum
CPU power of the R10000 processor. In comparison to
the maximum power dissipation of 30 W reported in the
R10000 data sheet [27], SoftWatt reports 25.3 W. As de-
tailed circuit-level information is not available at this level,

Parameter Value
Instruction Window Size 64
Register File 34 INT, 32 FP
Load/Store Queue 32
Fetch Width per Cycle 4
Decode Width per Cycle 4
Issue Width per Cycle 4
Commit Width per Cycle 4
Functional Units 2 Ints,2 FP
Branch History Table 1024
Branch Target Address Table 1024
Return Address Stack 32
Memory Size 128 MB
Cache Hierarchy 2-Level with L1 D- and I-Cache

and Unified L2 Cache
Instruction Cache Size 32KB
Instruction Cache Line Size 64B
Instruction Cache Associativity 2
Data Cache Size 32 KB
Data Cache Line Size 64B
Data Cache Associativity 2
L2 Cache Size 1MB
L2 Cache Line Size 128B
L2 Cache Associativity 2
Unified TLB (fully assoc) entries 64
Feature Size 0.35 um
Vdd 3.3 V
MHz 200

Table 1. System Model

generalizations made in the analytical power models result
in an estimation error.

3 Power Characterization of Spec JVM98
Benchmarks

3.1 System Configuration and Benchmarks

Table 1 gives the baseline configuration of SoftWatt that
was used for our experiments. We chose the Spec JVM98
benchmarks [31] for conducting our characterization study.
A description of these benchmarks is given in [10]. We
chose this benchmark suite for two reasons. First, Java is
becoming an increasingly popular language in many power-
critical applications. Second, Java applications are also
known to exercise the operating system more than tradi-
tional benchmark suites [21]. Thus, they form an interesting
suite to characterize for power using our complete system
power simulator, which includes the operating system as
well. We excluded thempegaudio benchmark from our
characterization study, as it failed to execute on the MXS
simulator. For all other Spec JVM98 benchmarks, the just-
in-time (JIT) compilation mode was employed, and the s10
dataset was used. This dataset exercises the Java garbage-
collector and the simulation also completes in a reasonable
amount of time. On the average, the s10 dataset took 30
hours per application to complete on a 400 MHz Sun Sparc.
All the benchmarks were initially run on the relatively fast
Mipsy simulator. The file-caches were warmed and a check-
point was taken before the program was loaded. Then, the
benchmarks were run on the Mipsy simulator to get statis-

tics about the memory system behavior, and then on MXS
to get processor statistics. For all the benchmarks, the pro-
filed period consists of all the phases of the Java application
execution until the program exits and returns to the shell-
prompt.

In our characterization of the benchmarks, we use two
metrics, namely,powerandenergy. We focus on theaver-
agepower consumption. In the presence of dynamic ther-
mal management techniques, a system can be designed ac-
counting for average power consumption instead of peak
power [3]. Our tool can also be used to obtain the peak
power consumption from the profiles. Energy consumption
is an important metric when considering battery life in high-
performance mobile systems such as laptop computers. We
also use an additional metric, namely, theEnergy-Delay
Product (EDP), which captures the tradeoffs in design deci-
sions for energy versus that for performance. Unless explic-
itly mentioned, the term ”power consumption” refers to the
power consumed in the processor datapath and the memory
subsystem only.

3.2 Characterization

Figures 3 and 4 give the performance and power profiles
of the jess benchmark, for four different phases (modes)
of execution: user mode, kernel mode, kernel synchroniza-
tion and idle. The profiles for the other benchmarks is given
[10]. The kernel execution is split into the portion where in-
structions are executed and the portion where synchroniza-
tion operations are performed. Idle refers to the idle times
during the workload’s execution. In Figure 3, the first two
profiles, from the left, were obtained by executing them on
Mipsy. The third profile was obtained by configuring MXS
to be a single-issue processor. It is clear that the average
power of the memory subsystem is more than twice that
of the processor datapath. Therefore optimizing the mem-
ory subsystem is very important to reduce the overall power
consumption in a single issue machine. The processor pro-
files in figure 4 were obtained on MXS. In the power pro-
files, the influence of clock-loading is not shown.

The bulk of the time is spent executing user-instructions.
Also, the benchmarks show a greater percentage of oper-
ating system activity in the superscalar machine compared
to that of the single-issue configuration. On the average,
the percentage of kernel activity increases from 14.28% in
a single-issue processor to 21.02% in the superscalar pro-
cessor. This is because kernel code has a lower IPC (In-
structions Per Cycle) and worse branch-prediction accuracy
compared to the user code [21]. In all the power profiles, it
is observed that the idle-mode initially dominates the power
consumption, and then significantly decreases. The same
trend can be seen in the execution profile as well. The ini-
tial idle-periods are due to the loading of the Java class files
from the disk when executing the benchmarks. After this
period, the required data is found in the file-cache most of
the time. Further, it is observed that the memory subsystem
energy increases steeply at the beginning of the profiled pe-
riod. This is because of the cold-start misses in the caches,
which cause several memory accesses. As the L2 cache and
memory have a high per-access cost, the average power is
high at the beginning. After the initial period, both the pro-
files even out, with the subsystems consuming a more or
less constant amount of power.

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|20

|40

|60

|80

|100 | | | | | | |

|
|

|
|

|
|

 Time (seconds)

 P
e

rc
e

n
t
o

f
E

xe
cu

tio
n

 T
im

e

jess

0.0 2.0 4.0 6.0 8.0
Time (Secs.)

0.0

1.0

2.0

P
ow

er
 (

W
)

Jess
Memory Subsystem Power Profile

Idle
Kernel
Sync
User

0.0 2.0 4.0 6.0 8.0
Time (Secs.)

0.0

0.5

1.0

P
ow

er
 (

W
)

Jess
Processor Profile on Single−Issue Configuration

Idle
Kernel
Sync
User

Figure 3. Profile of Memory Subsystem Behavior

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

0.5
|

1.0
|

1.5
|

2.0
|

2.5
|

3.0

|0

|20

|40

|60

|80

|100 | | | | | | |

|
|

|
|

|
|

 Time (seconds)

 P
e

rc
e

n
t
o

f
E

xe
cu

tio
n

 T
im

e

jess

0.0 1.0 2.0 3.0 4.0
Time (Secs.)

0.0

1.0

2.0

P
ow

er
 (

W
)

Jess
Processor Power Profile

Idle
Kernel
Sync
User

Figure 4. Profile of Processor Behavior

Figure 5 presents the overall power budget of the system,
including the disk. Here, the breakdown is presented over
all the modes of execution combined, and is averaged over
all the benchmarks. The term “conventional” disk refers to a
disk without any mode transitions. We assume that the disk
can perform read/write, seek, or just keep spinning consum-
ing the power as if it were in the ACTIVE mode. This
model is the baseline disk configuration and gives an upper
bound of its power consumption. It can be observed that,
when no power-related optimizations are done, the disk is
the single largest consumer of power in the system. There-
fore, not considering this component when evaluating the
power-consumption of a system does not give us the com-
plete picture. However, the bulk of the power is still con-
sumed in the processor datapath and memory system com-
ponents. Therefore, these components are also an important
target for power optimizations.

Now, we investigate the power consumption in the pro-
cessor, caches, and memory. For the sake of clarity, the
load-store queue, issue-window, register renaming unit, re-
sultbus, register file, and ALUs have been clubbed together
as the ”datapath” in all the graphs. The graphs with the
breakdown of the datapath components is given in [10]. Ta-
ble 2 gives the breakdown of percentage of the cycles exe-
cuted and the energy consumed for all the benchmarks. The
largest fraction of the execution time is spent in the user-
mode. This holds from the energy angle as well. However,
the user-mode accounts for a larger proportion of the energy
consumption than the fraction of the cycles. Thus, the pro-
portion of the energy consumption for the kernel is lower
than that of its execution fraction. Similarily, the idle-times
consume a slightly lesser fraction of the energy than execu-
tion cycles. These variations can be explained by consider-

15%

6%

< 1%

22%

< 1%
22%

< 1%

34%

 Overall Average Power with Conventional Disk

 Disk
 Datapath

 Clock

 Datapath
 L1 D−Cache
 L2 D−Cache
 L1 I−Cache
 L2 I−Cache
 Clock
 Memory
 Disk

Figure 5. Overall Power Budget with A Con-
ventional Disk - The slices of the pie are in an
anti-clockwise order of the entries in the leg-
end. The disk contributes 34% to the average
power.

ing the average power (shown in figure 6). The user-mode
accounts for the highest average power. The main contribu-
tor to the user-mode power consumption is the L1 I-cache.
As observed from table 3, the user code has the highest
number of (L1) instruction cache references per cycle. This
is because, user-code exhibits higher instruction-level par-
allelism (ILP) compared to kernel code. Consequently, the
effective fetch-width of the user code is higher than that of
the kernel code. Power consumption of the data-caches is

the highest for user-code, again due to its higher ILP. Simi-
larily, the ALU-use per cycle is 0.76 for the user code which
is much larger than that of the other phases (0.42 for the ker-
nel, 0.59 for Synchronization and 0.26 for the Idle mode).

Focusing on the kernel synchronization mode, it is ob-
served that synchronization operations are expensive in
terms of power consumption. More specifically, they are
found to intensely exercise the L1 I-cache and the ALUs,
as compared to the other activities in the kernel mode [10].
This is because synchronization operations perform com-
parison and increment/decrement operations, within a tight
loop. However, synchronization operations constitute less
than 1% of the overall energy consumption of the bench-
marks. Overall we observe that, the main power-hungry
units are still the L1 caches and the clock, even when con-
sidering kernel code.

 User Kernel Sync Idle
0

1

2

3

4

5

6

7

8

 P
ow

er
 (

W
)

 Average Power

 Datapath
 L1 D−Cache
 L2 D−Cache
 L1 I−Cache
 L2 I−Cache
 Clock
 Memory

Figure 6. Average Power (averaged over all
the benchmarks)

By including the IDLE state in the disk configuration, the
dominance of the disk in the power budget decreases from
34% to 23%. This is shown in figure 7. This optimization
provides significant power-savings, and also alters the over-
all picture. Now the L1 I-cache and the clock dominate the
power profile.

3.3 Kernel Behavior

In this section, we give a detailed power/energy char-
acterization of the operating system. We breakdown
the kernel activity into services and compare the energy
behavior of key kernel services with their performance in
an attempt to answer the following questions:

� Do the services that account for the bulk of the kernel
cycles also constitute the bulk of the energy consump-
tion?

� Is their per-invocation energy consumption data-
dependent? If so, how can this information be used
to accelerate the simulation process?

As observed in the previous subsection, the operating
system itself can be a significant consumer of energy (up to

17%

8%

< 1%

26%

< 1%

26%

< 1%

23%

 Overall Average Power with Low Power Disk

 Disk
 Datapath

 Clock

 Datapath
 L1 D−Cache
 L2 D−Cache
 L1 I−Cache
 L2 I−Cache
 Clock
 Memory
 Disk

Figure 7. Percentage Contribution of the Disk
with the IDLE state to the Power Consump-
tion - The disk contributes 23% to the average
power

17% in jack , for kernel instructions and synchronization
operations combined). Table 4 gives the results for the ser-
vices that account for the bulk of the kernel execution-time
and compares the the execution cycles to their relative en-
ergy consumption contributions for each of the benchmarks.
MIPS architectures have a software-managed TLB. The op-
erating system handles the misses by doing the required
address translation, reloads the TLB, and then restarts the
user process. These operations are done by theutlb ser-
vice. demandzerozeroes out a newly allocated page and
thecacheflushroutine flushes the I-/D-caches.vfault is the
validity-fault handler.

From the table, it is clear that those services that account
for the bulk of the kernel execution time also account for
the bulk of the energy consumption. However, the percent-
age of energy consumed forutlb is proportionately smaller
compared to its execution time. Asutlb accounts for the
bulk of the operating system activity in these benchmarks,
its behavior reflects on the kernel as a whole. Again, this
trend can be explained by considering the average power of
the services. Figure 8 shows the average power of four key
kernel services. The power numbers presented have been
averaged over all the invocations of the service over the en-
tire profiled period, and then averaged over all the bench-
marks.

Clearly, utlb has a much lower average power than the
other services considered. The handler is not data-intensive,
and therefore, does not exercise the data caches and the
load/store queue. As these units are not accessed, the clock
power is lower as well, leading to a smaller average power.

Table 5 shows how much variation there actually exists
between the invocations of the services across the bench-
marks. The variation is measured using the coefficient
of deviation and is expressed as a percentage. The ser-
vices presented can be roughly categorized as those be-
ing completely internal to the kernel (utlb, demandzero,
cacheflush) and those that are invoked by an user-program
(read, write, open). The internal OS services show very
small deviation in their energy behavior per invocation. On
the other hand, the other externally-invoked services, which

User Kernel Inst. Kernel Sync. Idle
Benchmark Cycles Energy Cycles Energy Cycles Energy Cycles Energy

compress 88.24 93.74 7.95 4.18 0.2 0.14 3.61 1.94
jess 63.69 77.15 24.57 15.12 0.86 0.68 10.88 7.05
db 66.1 81.19 24.28 13.22 0.75 0.54 8.87 5.05

javac 64.2 78.47 27.54 15.98 0.55 0.44 7.71 5.11
mtrt 80.62 90.07 14.8 7.44 0.26 0.17 4.32 2.32
jack 69.02 81.36 27.91 16.43 0.63 0.51 2.44 1.7

Table 2. Percentage Breakdown of Energy and Cycles

User Kernel Inst. Kernel Sync. Idle
Benchmark iL1Ref dL1Ref iL1Ref dL1Ref iL1Ref dL1Ref iL1Ref dL1Ref

compress 2.0088 0.6833 1.1203 0.2080 1.5560 0.1745 0.7612 0.3546
jess 1.9861 0.6217 1.1143 0.2164 1.5956 0.1775 0.8267 0.3851
db 2.0911 0.6699 1.0602 0.1892 1.5240 0.1832 0.7244 0.3375

javac 1.9685 0.5604 1.0346 0.1835 1.5355 0.1720 0.8110 0.3778
mtrt 2.1105 0.6473 1.085 0.1908 1.5177 0.1697 0.7524 0.3505
jack 1.8465 0.5869 1.041 0.1931 1.5585 0.1708 0.8718 0.4061

Table 3. Cache References Per Cycle

 utlb read demand_zero cacheflush
0

1

2

3

4

5

6

 P
ow

er
 (

W
)

 Average Power of Kernel Services

 Datapath
 L1 D−Cache
 L2 D−Cache
 L1 I−Cache
 L2 I−Cache
 Clock
 Memory

Figure 8. Average Power of Operating System
Services

are I/O system calls, show a greater coefficient of deviation.
This is because the energy consumed per invocation de-
pends on factors such as the data transfer-size, whether the
data is available in the file-cache etc. This result suggests
that, given a trace of the number of invocations of the var-
ious kernel-services for a given workload, it is possible to
get a rough estimate, with an error margin of about 10%, of
the kernel energy consumption, without actually perform-
ing a detailed simulation. Such traces can be obtained us-
ing tools such asprof andtruss , which are common in
many Unix-based systems. Further, we found that, the per-
cycle processor and memory-system access-behavior of the
idle-process can be accurately predicted and is independent
of the workload. We used this property in our disk model,
where spin ups/spin downs could be simulated by just fast-
forwarding the simulation by the requisite number of cycles
rather than actually simulating it. This eliminates any ad-
ditional cycles incurred in the simulation (and thus longer
simulation time) due to the full use of the disk model.

4 Disk Power Management

As seen in section 3, the disk is the single most
power-hungry unit in the computer system. The power
consumption of the disk becomes paramount for large
server machines, such as web-servers and file-servers,
which perform a large amount of I/O [14]. This problem is
tackled by using disk power management schemes [8, 24].
Modern-day disks are designed to support a variety of
low-power modes. The disk transitions to one of these
modes during inactive periods. We investigated the benefit
of employing such a disk using the Toshiba disk model. We
considered four different disk configurations for our study,
namely:

1. The baseline disk used in section 3.

2. A disk that supports the IDLE low-power mode but no
STANDBY mode.

3. A disk that supports the STANDBY mode with a spin
down threshold of 2 seconds, in addition to the IDLE
mode.

4. A disk that supports the STANDBY mode with a spin
down threshold of 4 seconds, in addition to the IDLE
mode.

Disk configuration 2 models a disk where there is a tran-
sition to the IDLE mode immediately after a read/write op-
eration completes. The disk keeps spinning while in the
IDLE mode and transitions back to the ACTIVE state when
a seek operation is to be performed. In disk configurations
3 and 4, the disk spins down to the STANDBY mode after
a fixed period of inactivity (with respect to the disk), called
the Spin down Threshold. We chose a spin down threshold
of 2 seconds for configuration 3 based on the results given
in [20]. Figure 9 gives the results of our study for all the
benchmarks.

For this study, we use energy as the metric instead of
power, as we wish to evaluate designs which depend on pe-
riods of activity rather than a single processor cycle. The

compress jess db javac mtrt jack
0

10

20

30

40

50

60
 Energy Consumption of the Disk

 E
ne

rg
y

(J
)

 Baseline
 Without Spindowns
 With 2 Sec. Spindown
 With 4 Sec. Spindown

compress jess db javac mtrt jack
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9 Total Idle Cycles for the Disk Configurations

 C
yc

le
s

 Without Spindowns
 With 2 Sec. Spindown
 With 4 Sec. Spindown

Figure 9. Energy-Performance Tradeoffs for the Disk Configurations

bar graphs in Figure 9 give the energy consumption of just
the disk for the four configurations and the variation in the
number of idle-cycles. As mentioned in section 2, the cy-
cles due to disk activity are accounted for as idle-cycles in
the execution profile.

Transitioning to the IDLE mode after a read or write
provides significant energy benefit for all the benchmarks.
Further, since transitions to the IDLE mode take zero time,
there is no performance degradation, and an energy-benefit
is always obtained. Therefore, the baseline disk configura-
tion is not considered when comparing the configurations
for their performance.jess anddb are unaffected by us-
ing configuration 3 because of their short running times.
For compress , javac , mtrt , and jack , there is se-
vere energy and performance degradation. Their execution
time and energy consumed (in the absence of spindowns)
is a much smaller fraction to that of the spin-operations,
and a large amount of energy and time is consumed to spin
the disk back up. During the execution ofcompress and
jack , the disk spins up and down multiple times, leading to
a large increase in the number of idle-cycles and the overall
energy consumption. This is reflected clearly in the per-
formance graph. When we go from a spin down time of
2 seconds to 4 seconds, we see that the overall energy and
performance behavior ofcompress , andjavac becomes
that of configuration 2. Forjack , there is a33% improve-
ment in the energy-efficiency and there is also a significant
reduction in the number of idle-cycles. This is because the
longer spin down timeout value eliminates a pair of spin
down and spin-up. However, it is interesting to observe
that the energy consumption actuallyincreasesfor mtrt ,
though the number of idle-cycles remains unaffected. That
is because, for both configurations 3 and 4, two spindowns
and spin-ups are performed. In configuration 3, the disk
spins down to the STANDBY mode earlier than in config-
uration 4. As the STANDBY mode has a lesser power-cost
than the IDLE mode, configuration 3 consumes lesser en-
ergy. From the above results, we make the following im-
portant observation: Disk spindowns should be done only if
the time between consecutive disk accesses is much larger
than the spin down and spin-up time.

5 Discussion and Conclusion

SoftWatt provides a simulation infrastructure for carry-
ing out detailed studies about the power and performance
behavior of applications. The detailed architecture and op-
erating system simulation of SimOS coupled with the an-
alytical power models make SoftWatt an ideal vehicle for
conducting research in power-efficient design at several lev-
els of the system. We summarize the results of our charac-
terization study as follows:

� From a system perspective, the disk is the single largest
consumer of power accounting for 34% of the system
power. The adoption of the disk with low-power fea-
tures shifts this power hotspot to the clock distribu-
tion and generation network and the on-chip first level
instruction cache. The setting of the disk spin down
threshold is critical in the shifting of this hotspot. Fur-
ther, for single-issue processor configurations, we find
that the memory subsystem has a higher average power
than the processor core.

� Among the four different software modes, the user
mode consumes the maximum power. Among the
other modes, the kernel synchronization operations are
expensive in terms of their power consumption. How-
ever, their contribution to overall system energy is
small due to the infrequent synchronization operations
when executing the Spec JVM98 benchmarks. Though
the kernel mode has the least power consumption over-
all, due to the frequent use of kernel services, it ac-
counts for 15% of the energy consumed in the pro-
cessor and memory hierarchy. Thus, accounting for
the energy consumption of the kernel code is critical
for estimating the overall energy budget. This estimate
is particularly important for high-performance mobile
environments such as laptops.

� Among the kernel services, theutlb andreadservices
are the major contributers to system energy. However,
the frequently usedutlb routine has a smaller power
consumption as compared toreadas it exercises fewer
components. Further, the per-invocation of the kernel
services is fairly constant across different applications.
Thus, it is possible to estimate the energy consumed by

Benchmark Service Num % Cycles % Energy
compress

utlb 7132786 76.2862 64.2989
read 5863 9.46498 13.7241

demandzero 3080 4.46058 6.91512
cacheflush 1558 1.33649 1.39134

open 192 1.04054 1.18379
vfault 972 0.84626 1.12367
write 71 0.82243 0.0.74204

tlb miss 12209 0.716817 0.917478
jess

utlb 8351936 64.8216 53.7089
read 14902 16.5106 20.7921
BSD 18066 4.15149 5.53606

demandzero 2585 3.20818 4.19697
tlb miss 92554 2.93511 4.329

open 327 1.4382 1.63077
cacheflush 2371 1.42624 1.52855

vfault 1017 0.638494 0.826016
db

utlb 9311336 75.6565 66.6431
read 6289 7.04481 10.1373
write 698 5.12059 5.22395

demandzero 2172 2.57247 3.86259
tlb miss 53764 1.75243 2.82191
du poll 4066 1.08423 1.22557

cacheflush 1540 0.981458 1.10068
open 188 0.76878 0.913507

javac
utlb 12815956 78.782 71.6722
read 6205 5.47241 7.96247

demandzero 3402 3.70849 4.86183
tlb miss 134265 3.33207 5.51917

open 434 1.58547 2.09804
cacheflush 2802 1.33713 1.65195

xstat 142 0.627263 0.879387
vfault 1054 0.517107 0.739405

mtrt
utlb 11871047 81.3054 72.199
read 6400 6.35944 8.87615

demandzero 2868 3.23787 4.40053
tlb miss 84966 2.43972 3.65625

cacheflush 1681 0.929139 1.03098
open 210 0.739026 0.880839
write 88 0.623178 0.582169
vfault 1039 0.57036 0.792793

jack
utlb 30131127 71.0119 64.0483
read 40079 16.7512 18.9097
BSD 68612 6.6143 7.36693

tlb miss 204529 1.8767 3.03969
demandzero 3484 1.43321 1.88598
cacheflush 2039 0.386741 0.44586

open 239 0.292891 0.35692
clock 963 0.265881 0.235892

Table 4. Breakdown of Kernel Computation by
Service - Cycles vs. Energy

Energy Per Invocation
Service Mean Coefficient of Deviation (%)

utlb 2:1276� 10
�07 0.13971

demandzero 5:408 � 10
�05 1.4927

cacheflush 2:1606� 10�05 2.4698
read 4:8894� 10

�05 6.615
write 0.00025351 10.6632
open 0.00015586 10.0714

Table 5. Variation in Behavior of Operating
System Services

kernel code with an error margin of about 10% without
detailed energy simulation.

� Whenever the operating system does not have any pro-
cess to run, it schedules the idle-process. Though this
has no performance implications, over 5% of the sys-
tem energy is consumed during this period. This en-
ergy consumption can be reduced by transitioning the
CPU and the memory-subsystem to a low-power mode
or by even halting the processor, instead of executing
the idle-process.

While the simulation results in this work were presented
using the Spec JVM98 benchmarks, this tool will be invalu-
able in analyzing other workloads such as database work-
loads. The characterization and energy optimization of such
workloads is becoming a major issue as power-hungry web
hosters can consume as much as 10 to 30 Megawatts. We
also plan to investigate acceleration of energy simulation
using fast forward techniques without significant loss in ac-
curacy.

Acknowledgements

This research has been supported in part by several NSF
grants: 0073419, 0093082, 0093085, 0103583, 0097998,
9701475, 9988164, Sun Microsystems, Gigascale Silicon
Research Center, and equipment grant EIA-9818327.

References

[1] Avant! Star-Hspice. http://www.avanticorp.com/products.
[2] K. Baynes, C. Collins, E. Fiterman, C. Smit, T. Zhang, and

B. Jacob. The performance and Energy Consumption of
Embedded Real-Time Operating Systems. Technical Report
UMD-SCA-TR-2000-04, University of Maryland, Novem-
ber 2000.

[3] D. Brooks and M. Martonosi. Dynamic thermal man-
agement for high-performance microprocessors. InPro-
ceedings of the Seventh International Symposium on High-
Performance Computer Architecture (HPCA-7), January
2001.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. InProceedings of the 27th International Symposium
on Computer Architecture, June 2000.

[5] A. Chandrakasan, W. J. Bowhill, and F. Fox.Design of
High-Performance Microprocessor Circuits. IEEE Press,
2001.

[6] T. L. Cignetti, K. Komarov, and C. S. Ellis. Energy Esti-
mation Tools for the Palm. InProceedings of ACM MSWiM
2000: Modeling, Analysis and Simulation of Wireless and
Mobile Systems, August 2000.

[7] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubra-
maniam, and M. J. Irwin. DRAM Energy Management Us-
ing Software and Hardware Directed Power Mode Control.
In Proceedings of the 7th International Conference on High
Performance Computer Architecture, January 2001.

[8] F. Douglis and P. Krishnan. Adaptive disk spin-down poli-
cies for mobile computers.Computing Systems, 8(4):381–
413, 1995.

[9] D. Duarte, N. Vijaykrishnan, M. J. Irwin, and M. Kandemir.
Formulation and Validation of an Energy Dissipation Model
for the Clock Generation Circuitry and Distribution Net-
works. InProceedings of the 2001 VLSI Design Conference,
2001.

[10] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vi-
jaykrishnan, M. Kandemir, T. Li, and L. K. John. Using
Complete Machine Simulation for Software Power Estima-
tion: The SoftWatt Approach. Technical Report CSE-01-
029, The Pennsylvania State University, November 2001.

[11] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the SUIF compiler.IEEE
Computer, 29(12):84–89, 1996.

[12] S. A. Herrod. Using Complete Machine Simulation to Un-
derstand Computer System Behavior. PhD thesis, Stanford
University, February 1998.

[13] M. Irwin, M. Kandemir, N. Vijaykrishnan, and A. Sivasub-
ramaniam. A Holistic Approach to System Level Energy
Optimization. InProceedings of the International Workshop
on Power and Timing Modeling, Optimization, and Simula-
tion, September 2000.

[14] J. Jones and B. Fonseca. Energy Crisis Pinches Hosting Ven-
dors. http://iwsun4.infoworld.com/articles/
hn/xml/01/01/08/010108hnpower.xml.

[15] R. Joseph, D. Brooks, and M. Martonosi. Runtime
Power Measurements as a Foundation for Evaluating
Power/Performance Tradeoffs. InProceedings of the Work-
shop on Complexity Effectice Design, June 2001.

[16] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan,
M. J. Irwin, and A. Sivasubramaniam. vEC: Virtual Energy
Counters. InProceedings of the ACM SIGPLAN/SIGSOFT
Workshop on Program Analysis for Software Tools and En-
gineering (PASTE’01), June 2001.

[17] M. B. Kamble and K. Ghose. Analytical Energy Dissipa-
tion Models for Low Power Caches. InProceedings of the
International Symposium on Low-Power Electronic Design,
pages 143–148, August 1997.

[18] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and
A. Sangiovanni-Vincentelli. Efficient Power Estimation
Techniques for HW/SW Systems. InProceedings of IEEE
Volta, 1999.

[19] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power Aware
Page Allocation. InProceedings of the 9th International

Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS IX), November
2000.

[20] K. Li, R. Kumpf, P. Horton, and T. E. Anderson. Quantita-
tive Analysis of Disk Drive Power Management in Portable
Computers. Technical Report CSD-93-779, University of
California, Berkeley, 1994.

[21] T. Li, L. K. John, N. Vijaykrishnan, A. Sivasubramaniam,
J. Sabarinathan, and A. Murthy. Using Complete System
Simulation to Characterize SPECjvm98 Benchmarks. In
Proceedings of the International Conference on Supercom-
puting (ICS) 2000, May 2000.

[22] J. R. Lorch. A complete picture of the energy consumption
of a portable computer. Master’s thesis, University of Cali-
fornia, Berkeley, December 1995.

[23] J. R. Lorch and A. J. Smith. Scheduling Techniques for Re-
ducing Processor Energy Use in MacOS.Wireless Networks,
3(5):311–324, October 1997.

[24] Y.-H. Lu and G. D. Micheli. Adaptive hard disk power man-
agement on personal computers. InProceedings of the IEEE
Great Lakes Symposium, March 1999.

[25] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. InProceedings of the 24th
International Symposium on Computer Architecture, 1997.

[26] R. P.Dick, G. Lakshminarayana, A. Raghunathan, and N. K.
Jha. Power Analysis of Embedded Operating Systems. In
Proceedings of the 37th Conference on Design Automation,
pages 312–315, 2000.

[27] R10000 Microprocessor User’s Manual.
http://www.sgi.com/processors/r10k/manual/
t5.ver.2.0.book4.html.

[28] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete Computer System Simulation: The SimOS Ap-
proach.IEEE Parallel and Distributed Technology: Systems
and Applications, 3(4):34–43, 1995.

[29] T. Simunic, L. Benini, and G. D. Micheli. Cycle-Accurate
Simulation of Energy Consumption in Embedded Systems.
In Proceedings of the Design Automation Conference, June
1999.

[30] A. Sinha, A. Wang, and A. Chandrakasan. Algorithmic
Transforms for Efficient Energy Scalable Computation. In
Proceedings of the IEEE International Symposium on Low-
Power Electronic Design (ISLPED’ 00), August 2000.

[31] Spec JVM98 Benchmark Suite.
http://www.spec.org/osg/jvm98/.

[32] Synopsys Power Compiler.
http://www.synopsis.com/products/power/power.html.

[33] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and
F. Baez. Reducing Power in High-Performance Micropro-
cessors. InProceedings of the Design Automation Confer-
ence, June 1998.

[34] Toshiba Storage Devices Division.
http://www.toshiba.com/.

[35] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin. The
Design and Use of SimplePower: A Cycle-Accurate Energy
Estimation Tool. InProceedings of the Design Automation
Conference (DAC), June 2000.

[36] K. C. Yeager. The MIPS R10000 Superscalar Microproces-
sor. IEEE Micro, 16(2):28–40, April 1996.

