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Abstract

The Data Encryption Standard (DES) defines an indexed set of permutations acting on the message
space M = {0,1}%4. If this set of permutations were closed under functional composition, then DES would
be vulnerable to a known-plaintext attack that runs in 2%% steps, on the average. It is unknown in the
open literature whether or not DES has this weakness.

We describe two statistical tests for determining if an indexed set of permutations acting on a finite
message space forms a group under functional composition. The first test is a “meet-in-the-middle” al-
gorithm which uses O(+/K) time and space, where K is the size of the key space. The second test, a
novel cycling algorithm, uses the same amount of time but only a small constant amount of space. Each
test yields a known-plaintext attack against any finite, deterministic cryptosystem that generates a small
group.

The cycling test takes a pseudo-random walk in the message space until a cycle is detected. For each step
of the pseudo-random walk, the previous ciphertext is encrypted under a key chosen by a pseudo-random
function of the previous ciphertext. Results of the test are asymmetrical: long cycles are overwhelming
evidence that the set of permutations is not a group; short cycles are strong evidence that the set of
permutations has a structure different from that expected from a set of randomly chosen permutations.

Using a combination of software and special-purpose hardware, we applied the cycling test to DES.
Our experiments show, with a high degree of confidence, that DES is not a group.
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1 Introduction

On November 23, 1976, the United States National Bureau of Standards (NBS) adopted the Data Encryp-
tion Standard (DES) as a federal standard for the cryptographic protection of computer data (2] [28].3
Although a few studies on DES have been openly published [4] {30] [35] [38],* to date, numerous funda-
mental questions about the standard remain unanswered in the open literature. In this paper, we address
one such important question: “Is the set of DES transformations closed under functional composition?”

It is important to know whether or not DES is closed since, if DES were closed, it would have the
following two weaknesses. First, both sequential multiple encryption and Tuchman’s multiple encryption
scheme—the two most popular proposals for strengthening DES through using multiple encryption—would
be equivalent to single encryption.® Even worse, DES would be vulnerable to a known-plaintext attack that
runs in 228 steps, on the average. Each weakness follows from the fact that the set of cryptographic trans-
formations of any closed cipher forms a group under functional composition. Although most researchers
believe DES is not closed, no one has proven this conjecture in the open literature.

In this paper we present two statistical tests for determining if a finite, deterministic cryptosystem is a
closed under functional composition. The first test is based on a “meet-in-the-middle” strategy and takes
O(\/IT ) time and space, where K is the size of the key space. The second test follows a pseudo-random
walk in the message space until a cycle is detected, using O(v/K) time and constant space. Although we
focus on DES, the methods presented here are general in nature.

Using a combination of software and special-purpose hardware, we applied the cycling test to DES.
Our initial experiments revealed no algebraic weaknesses with DES.

The body of this paper is organized in six sections. Section 2 discusses the contrasting properties
of closed and random ciphers. Section 3 presents two statistical closure tests. Section 4 describes how
each test can be modified into a known-plaintext attack against closed ciphers. Section 5 lists our initial
experimental results and explains how to interpret them. Section 6 poses several open problems, and

section 7 summarizes our conclusions. An appendix, which briefly describes our implementation of the
cycling test, is also included.

1.1 Definitions and Notations

A (finite, deterministic) cryptosystem is an ordered 4-tuple (K, M,C,T), where K, M, and C are finite sets
called the key space, message space, and ciphertezt space, and T : K x M — C is a transformation such
that, for each k € K, the mapping Ty = T(k,-) is invertible. The order of a cryptosystem is the number of
distinct transformations; the degree of a cryptosystem is the size of the message space. A cryptosystem is
endomorphic iff the message space and ciphertext space are the same set.

Thus, for any cryptosystem (K, M,C,T), each key k € K represents a transformation T : M — (.
In an endomorphic cryptosystem, each key represents a permutation on M. A cryptosystem is faithful iff
every key represents a distinct transformation.

We shall use the following notations throughout the paper. For any cryptosystem IT = (K, M,C,T),
let TH = U{Tx : k € K} be the set of all encryption transformations, and let Gy = (Tn) be the group
generated by II. For any transformation T € Tp, let T} denote the inverse of T. In addition, let K = |K]|
be the size of the key space; let M = | M| be the degree of IT; and let m = | Ti1| be the order of 1. Whenever
the meaning is clear, we will omit the subscript II.

Let I be the identity permutation on M, and let Ay and Sy be, respectively, the alternating group
and aymmetric group on M {13]. For any permutations g,h we will denote the composition of ¢ and h by

*We expect the reader to be familiar with the fundamentals of cryptology (as presented in 3] or (1], for example), as well as
with the basics of DES (as described in (2] or 4], for example).

“See bibliography for a list of additional technical works on DES.
5To encrypt a message z using sequential multiple encryption is to compute T.T;(z), where the keys ¢ and ; are chosen

independently. Similarly, to encrypt a message z under Tuchman's scheme is to compute T;T;‘T,‘(z), where the keys ¢, 7,
and k are independently chosen [44] [4] [42].
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gh=goh=g[h()]

An endomorphic cryptosystem is closed iff its set of encryption transformations is closed under func-
tional composition.5 Shannon’s notion of a pure cipher generalizes the idea of closure to non-endomorphic
cryptosystems [57]. A cryptosystem Il = (K, M,(,T) is pure iff, for every To € Tni, the set Ty T is
closed.” Every closed cryptosystem is pure, but not every endomorphic pure cryptosystem is closed (see
section 2.2). ’

To analyze the cycling test, it is useful to introduce the following standard terminology from permu-
tation group theory {13} [15] [16]. For any subgroup G C Sy, for any z € M, the G-orbit of z is the set
G-orbit(z) = {g(z) : ¢ € G} and the G-stabilizer of z is the set G-stabilizer(z) = {9 € G : g(z) = =}
If f is any function (not necessarily a permutation) and if z € Domain(f), the f-closure of z is the set
f-closure(z) = {f(z) : i > 0}. For any permutation g € Su, we will sometimes write g-orbit(z) to denote
the {g)-orbit of z. For any subgroup G C Sy, the order of G is the number of elements in G; for any
g € Sx, the order of g is the order of {(g).

Whenever T C Su, we say T acts trensitively on M iff, for every pair of messages z,y € M, there exists
some transformation T € T such that Ti(z) = y.

For any any string s € {0,1}", let 5 denote the bitwise complement of s.

The Data Encryption Standard defines a particular endomorphic cryptosystem with M = ¢ = {0,1}%
and K = {0,1}%¢. Because DES has degree 2%4, but order at most 2%%, DES is intransitive. It is unknown if
DES is faithful, closed, or pure. It is also unknown whether or not any DES transformation is the identity
permutation. See NBS FIPS publication 46 [28] or most any cryptography survey work (e.g. 2] or [4]) for
a detailed definition of the DES encryption function.

1.2 A Priori Beliefs

The question of whether or not DES is closed is a question about the order of the group generated by DES.
Grossman and Coppersmith observed that Gpgs C An [48], but no one has disproved the possibility that
Gpes = Tpes®

There are several reasons to suspect DES is not closed. First, Coppersmith and Grossman proved
“DES-like” permutations generate the alternating group [48].° Second, if even just two permutations are
chosen at random from S§y, then there is an overwhelming chance (greater than 1 — e‘\/“—") that these
permutations generate either Ay or $y [12] [14]. Third, no one has announced finding any three keys
1,3,k € K such that Ty = T;T;. Finally, according to a 1977 unclassified summary of a report of the Senate
Select Committee on Intelligence, the National Security Agency certified that “the final DES algorithm
was, to the best of their knowledge, free of any statistical or mathematical weaknesses” {58].

On the other hand, DES is not a set of randomly chosen permutations, and Coppersmith and Grossman
did not prove that DES generates Ay. Furthermore, DES is known to have the following three regularities
) 4] [30] [38].

1. Complementation Property. For every key k and every message z, T¢(%) = Tk(z).
2. Ezistence of Weak Keys. There exist at least four distinct keys k such that T7 = I.

3. Ezistence of Semni-Weak Keys. There exist at least six distinct pairs of keys k; # k2 such that
Tszk; =1

®Note that we are using the term closed cipher to refer to what Shannon calls an idempotent cipher [57]. Shannon defines a
closed cipher to be any cryptosystem with the property that each cryptographic transformation is surjective.

"Shannon defines purity in a different but essentially equivalent way. Shannon also requires each transformation of a pure
cipher to be equally likely.

*To see that Gpes C An, note that each round of DES is an even permutation.

°See Goldreich’s paper [37] for 2 minor extension of this result.
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The last two properties, however, apparently involve only a small fraction of the total number of DES
transformations. While many people may have a strong belief that DES is not closed, there is & need for
convincing objective evidence to answer this question.

1.3 Previous Cycling Studies on DES

To the best of our knowledge, only three other cycling experiments on DES have been reported in the open
literature. These experimenta were performed by Gait; Davies and Parkin; and Hellman and Reyneri.
Each of these experiments differs from our cycling closure test, and none of these previous experiments
answered the question, “Does DES generate a small group?”

The analysis of each of these previous experimenta depends heavily on the following two facts [8]
{10] ({20], exercise 3.1.12]). Let zp € M be any message. For a randomly selected function f on M, the
expected gize of f-closure(zo) is about VM. (This follows from the Birthday Paradox.) But for a randomly
selected permutation g on M, the expected size of g-orbit(zp) is about M/2. (This is true because, for any
1 <1< M, the probability that the cycle containing zq has length exactly ! is 1/M.)

Gait [36] investigated the statistical properties of pseudo-random key streams produced by DES in
output-feedback mode [29]. Provided the feedback width is exactly 64 bits, each such key stream describes
the orbit of a DES transformation on some initial message. In a series of software experiments, Gait
computed the key stream produced by DES in ocutput-feedback mode to at most 10% 2¢ 22° places. Gait
found no cycles for nonweak keys.!° Unfortunately, Gait did not state what feedback width he used. Gait
also proposed a new power-spectrum test for nonrandomness and applied it to each of the pseudo-sequences
he computed from non-weak keys. Gait observed that each of these sequences was considered random by
his test.

Provided a feedback width of 64 bits is used, the cycling study considered by Gait can be viewed as a
closure test. If DES were closed, then each of the orbits considered by Gait would have at most X = 2%
messages (see lemma 2.2). Hence, observing an orbit of length greater than 25¢ would be direct proof that
DES is not closed. Although we will not do so in this preliminary abstract, it is also possible to interpret
Gait’s orbit test as a statistical closure test. Viewed as a statistical closure test, the orbit test can be
strengthened by combining the test with tests for other algebraic properties.

Davies and Parkin [31] {32] and Jueneman [40] studied mathematically the cycle structure of the key
stream produced in output-feedback mode. Each of these studies concluded that, if DES is used in output-
feedback mode with a feedback-width of less than 64 bits, then the resulting key stream will cycle in about
232 gteps, on the average (the exact expected cycle length depends slightly on the feedback width). If all
84 bits are fed back, then the expected cycle length is about 2%, The point is that the state transition
function in output-feedback mode is a permutation if and only if all 64 bits are fed back. Although Davies
and Parkin did not report performing any experiments on the full DES algorithm, Davies and Parkin
did run a series of experiments on DES substitutes consisting of random permutations on {0,1}®. Their
experimental results agreed with their theoretical predictions.

In an attempt to better understand how effectively the Hellman time-space tradeoff [53] could be
applied to DES, Hellman and Reyneri [39] examined the cycle structure of mappings induced by DES on
the keyspace. Specifically, they considered mappings F, : K — K defined by F:(k) = p(Ti(z)), where
p: M — K is a projection!! and z € M is some fixed message. Their studies detected no significant
statistical irregularities. Whether or not DES is closed, the expected cycle length of the Hellman/Reyneri
experiment is about /K = 2?8,

Each of these previous cycling projects studied the behavior of the powers of some indexed function
(i.e. Ti(zo) or Fi(ko) for i = 1,2,...) where the index of the function was held fixed throughout the
experiment: Gait and Davies and Parkin held the key fixed; Hellman and Reyneri held the message fixed.
By contrast, our cycling test computes the sequence z; = T; Tk, _, ... Tk, {z0o) for i = 1,2,... where at each

1%Since T2 = I for any weak key k, the key stream produced in output-feedback mode with feedback width 64 bits cycles
after 128 bits whenever a weak key is used.

!!'Hellman and Reyneri used the projection that removes each of the 8 parity bits.
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step ¢ the key k; is chosen as a pseudo-random function of the previous ciphertext z;_;.

2 Closed Ciphers versus Random Ciphers

In this section, we review several important differences between closed cryptosystems and cryptosystems

that consist of randomly chosen permutations. These differences will form the basis of the statistical closure
tests. 12

2.1 Algebraic Properties of Closed and Random Ciphers

Since every finite cancellation semigroup is a group [15], any endomorphic cryptosystem is closed iff its set
of encryption transformations forms a group under functional composition. Thus, closed ciphers have a
great deal of algebraic structure. By contrast, one expects a set of randomly chosen permutations to have
virtually no algebraic structure, as the following lemmas makes precise.

Properties of cryptosystems can be studied both by examining abstractly the set of encryption trans-
formations and by examining how the transformations act on the message space. Lemma 2.1 captures one
important difference between closed and random ciphers by focusing on a property of the set of encryption
transformations. This lemma says that if a cryptosystem is closed, then for every transformation Ty there
are many pairs T;, T; such that T = T;Ty; but, if a cryptosystem consists of randomly chosen permutations,
then for every transformation T} it is unlikely to find any pair T;,T; such that T, = T;T;. This lemma
provides the basis of the meet-in-the-middle closure test.

Lemma 2.1 Let IT = (K, M, M,T) be any endomorphic cryptosystem of order m, and let k € K be any
key. If IT is closed, then there are exactly m pairs of keys T;,T; € T such that T;T; = Ti. If T is selected
at random from Sy, then the expected number of pairs of transformations T;,T; € T such that I;T; =T}
is m?/M\.

Proof. Part 1: Assume II is closed. For every transformation T; € T, there is exactly one transformation
T; € T such that T;T; = Ty. Part 2: Assume Tjy is chosen at random. There are m?® pairs T}, T; € T and
each pair has a 1/|Sx| chance of corresponding to T}. Moreover, these probabilities are independent.

For unfaithful cryptosystems, it is important to distinguish between drawing a transformation from the
set of transformations and picking a representation of a transformation from the keyspace. Mathematically,
it is usually more convenient to think about selecting a transformation from a set of transformations, but
in practice, one must often select a transformation by choosing a key. Let T be the set of cryptographic
transformations in any cryptosystem with keyspace K. If T} is selected from T at random, then the
probability of picking any particular transformation in T is exactly 1/m, where m = |T|. However, if a
key k is selected at random from K, then the probability that k represents any particular transformation
in T is between 1/m and 1/K, where K = |K|. If the underlying cryptosystem is unfaithful, then m < X.

The next lemma describes the structure imposed on the message space by any closed cipher; specifically,
lemma 2.2 says that the orbits of any closed cipher partition the message space into transitive sets. This
lemma provides the basis of the cycling closure test. (See section 1.1 for a review of some basic definitions
from permutation group theory.)

Lemma 2.2 Let I1 = (K, M, M,T) be any endomorphic cryptosystem of order m. If I is closed, then, for
some 1 < r < m, the T-orbits of M partition M into r mutually disjoint sets M = By U--- U B, such that,
for each 1 < ¢ < r, the following two statements hold:

1. T acts transitively on B;.

2. |B;| divides m; in fact, for any z € B;, |Bi| = m/ |H,|, where H is the T-stabilizer of z.
Proof. {Sketch) For each z € M, consider the left cosets of H, in T [15]. |

12This section draws heavily from basic results in permutation group theory and from Shannon’s classic paper {57] {55].
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Corollary 2.3 If DES is closed, then DES partitions its message space into at least 2® mutually disjoint
transitive sets, each of size at most 256,

Proof. DES has degree 2%, but order at most 256, [I

To implement the cycling test, it is especially convenient that order(DES) < degree(DES). Note,
however, that for any cryptosystem one can create a similar situation by considering the action of the set
of transformations on the Cartesian product M', for a sufficiently large integer { > 1.

The next lemma calculates the expected number of spurious decipherments of closed and random
ciphers; this lemma is useful in the analysis of the tests.

Lemma 2.4 Let II = (K, M, M,T) be any endomorphic cryptosystem of order m, let p € M be any
message, let k € K be any key, and let ¢ = T}(p). If IT is closed, then the number of transformations that
map p to ¢ is m/|Bp| = | H,|, where B, is the T-orbit of p, and H, is the T -stabilizer of p. If Tny is chosen
at random, then the expected number of transformations that map p to ¢ is m/M.

Proof. Part 1: (Sketch) By lemma 2.2 and the fact that, for any z,y € By, {Ti € Tn : Ti(z) = y}| =

{T; € Th : Ti(p) = c}|- Note that |H,| = |H,|. Part 2: Each transformation in T other than T, maps p to
¢ with probability 1/M. |

2.2 Closed Ciphers: Two Examples

One interesting example of a closed cipher is a single-key variation of the RSA cryptosystem [56] in which
the same modulus is used for every key. Only the encryption exponent varies. In this cryptosystem, the
modulus n is chosen to be the product of two large primes p,gq. The message space is the multiplicative
group modulo n, and the key space is the set of all integers 1 < e < ¢(n) such that e has a multiplicative
inverse moduio ¢(n), where ¢(n) = (p~1)(g—1) is the totient function. The encryption function is defined
by T, n(z) = z* mod n. It is easy to verify that this cryptosystem is closed.

Although this variation of RSA is vulnerable to the known-plaintext attacks described in this paper,
these attacks are less efficient at breaking the cryptosystem than are known factoring techniques [23]. We
view this example as evidence that, provided the key space is large enough to withstand an O(\/I_( ) time
and space attack, closed ciphers are not necessarily insecure. Of course, the security of this variation of
RSA remains to be further evaluated [49].

Simple subatitution [50] is also a closed cipher. Note that the restriction of simple substitution where
the letter ‘A’ is always mapped to ‘B’ is an endomorphic system that is pure but not closed.

3 Statistical Closure Tests

In this section we describe two statistical tests for determining if an indexed set of permutations T generates
a small group. Each test tries to distinguish between the two competing hypotheses: “T is closed” and
“T was selected at random.” Both tests are based heavily on the Birthday Paradox.

3.1 The Birthday Paradax

The Birthday Paradox [6] involves the question, “If r people are selected at random, what is the chance
that no two people will have the same birthday?” If birthdays are independently and uniformly distributed
between 1 and m, then the answer to this question is about p, =1 - % (5), since there are (5) pairs of
people and each pair has a 1/m chance of having the same birthday. This approximate analysis, however,
ignores the possibility that more than two people might have the same birthday. The “paradox” is that
many students are surprised to learn that the probability p, is so low: with only » = \/m people, the
chance is about .5 that at least two people will have the same birthday.
More exactly,
(m), m!

p'=—m7=m'(m—r)‘. M
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where (m), = m(m —~ 1)-.-(m — r + 1). Using Stirling’s formula [6] [24], it can be shown that, for any
constant ¢ > 0, if r = ¢\/m then for sufficiently large m

Py sy /2, @

Thus, by choosing r = ¢y/m with ¢ sufficiently large, p, can be made as small as desired.

The meet-in-the-middle test uses a variation of the Birthday Paradox in which two samples X and Y,
each of size r, are drawn at random from a universe of m elements. If X and Y each are drawn without
replacement, and if each element is drawn independently with probability 1/m then, the chance that X
and Y do not intersect is exactly (m)z,/ ((m),)?. If r = c\/m, then this chance is about ¢™3".

3.2 Meet-in-the-Middle Closure Test

The meet-in-the-middle closure test is based on lemma 2.1 and the Birthday Paradox: given any endomor-
phic cryptosystem IT = (K, M, M, T), pick any key k € K and search for keys a,b € K such that T = T} T,.
If IT is closed, then such a pair of keys a,b can be efficiently found, on the average. If T were selected at
random, then it is unlikely to find any such pair.

To search for a pair of keys a,b € K such that T, = T),T,, we use a standard “meet-in-the-middle”
attack similar to that described in [42], for example. To wit, choose 2r keys a;,4a3,...,a, and by, b2,...,b, at
random'® and look for a pair of keys a;, b; for some 1 < 4,5 < r such that Ty = T}, T,;. To find such a match,
represent the cryptographic transformations by their images or preimages of some particular message.
Specifically, pick any message p € M, calculate ¢ = T} (p), and compute z; = Ty, (p) and ; = Tbjl(c),
for 1 € ¢ < r. Then, look for matches z; = y; by sorting the triples (z;,a;, “A™) and (y;,bj, “B”) for
1 <4,7 £ r on their first components. Screen out false matches by testing if Ty(p;)} = Ty, Ts;(pi), for all
1 £ 1 £ I, for a small number of additional messages py,ps,...,p1 € M. (A false match is a pair of keys
o', b € K such that Te(p) = Ty Ty (p) even though T} # Ty Ty )

If 1 is closed, this procedure will find a match T, = T,T, with probability ¢, > 1 — SrK, K The
situation is a variation of the Birthday Paradox in which we are drawing two samples X and Y, each of
size r, from an urn containing m elements. We are interested in the probability that the samples overlap.
If 11 is faithful, each element is drawn with probability exactly 1/ K; otherwise, each element is drawn with
probability at least 1/K. If T was chosen at random, then, for any T} € T, we would expect T to contain
a pair T,,Ts € T such that T, = T,T, with probability at most K2/M! = 0. By choosing r = cy/m with ¢
sufficiently large, we can make the probability ¢, = 1 — ¢3¢ of finding a match as large as desired.

The expected number of false matches is very small, as shown by lemma 2.4. If II is closed, then at
most (K — 1)/ |Bp| keys other than k map p to c, where B, is the T-orbit of p. Conversely, if T was chosen
at random, then we would expect at most (m — 1)/M < 28 keys other than & to map p to c.

This statistical test requires O(r) steps and O(r) words of memory. The two most time consuming
operations are generating and sorting the lists z;,22,...,2, and y1,¥2,-..,¥. The required number of
encryptions is 2r plus the number of additional evaluations used to screen out false matches. If sorting is
performed in main memory using radix sort, then sorting will take O(r) machine operations; otherwise,
O(rlogr) external memory operations would be needed. The main problem with carrying out this test on
DES is the high space requirement, but even today using 2?% words of external tape storage is not totally
unreasonable. Most steps of this test can be performed in parallel.

3.3 Cycling Closure-Test

Given any endomorphic cryptosystem I = (K, M, M,T), the cycling test takes a pseudo-random walk in
G, the group generated by II. By the Birthday Paradox, the expected cycle length of such a walk is about
V', where sh = |Gp|. If II is closed, then % = m, where m = order(I1). But if Ty is chosen at random,
then with extremely high probability T = Ax or Ty = Su and hence /i > (M!)/2.

13 Actually, it suffices to choose b; = a;, for 1 < <.
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The walk §1, 32, .. . in G is computed from a pseudo-random sequence of transformations go, 91,-.. € Tn
by letting go = I and §i = ¢:gi—1, for ¢ > 1. Each g, is chosen by selecting a key k; and letting g; = T%,.

To implement this cycling test efficiently, represent the walk §1,§2,... in G by an induced walk
£1,%3,... in M}, for some I. Specifically, select some message sequence £o € M! at random and represent
each §; by its image Z; = §;(%0). To prevent the induced walk in M! from cycling before the main walk in
Gn cycles, the integer | must be chosen sufficiently large. For DES, ! = 1 suffices, since DES has many
more messages than keys.

To enable the cycle length of the walk to be computed efficiently and exactly, take a deterministic
pseudo-random walk rather than a truly random walk. In particular, for i = 1,2,..., choose the key k;
as a pseudo-random function of #;_y. For ¢ = 1,2,... , let £ = Ty (%), where k; = p(%i_1) for some
deterministic pseudo-random function p : M — K. Finally, to detect cycles and to compute the lengths
of cycles and their leaders, use the efficient algorithms described by Sedgewick and Szymanski [27] that
generalize the well-known “two-finger” algorithm due to Floyd {20].

The validity of the cycling test depends in part on the extent to which the pseudo-rand>m walk behaves
like a truly random walk. To increase one’s confidence that the pseudo-random function does not interact
with the cryptosystem in a way that would invalidate the statistical analysis, we recommend that each trial
of the experiment be repeated with several different types of pseudo-random functions.!* (See section 5.2
and Appendix A for a description of the particular pseudo-random functions used in our experiments.)

In other words, the cycling closure test picks an initial message zo at random and computes the
tp-closure of zo, where the function ¢, : M — M is defined by v,(z) = T,(;)(z) whenever z € M, and
#: M — K is a deterministic pseudo-random function. If p is “random,” then y, acts like a random function
on the (T)-orbit of zo. The expected length of the y,-closure computed by the test is about the square
root of the length of the (T')-orbit of zg. f DES acts like a set of randomly chosen permutations, then we
would expect {T)-orbit(zg) = M, in which case we would expect |,~closure(zo)| = /M = 232. However, if
DES were closed, then |{T) -orbit(zo)| < K, in which case we would expect |y,-closure(zo)] < VK = 2%8.

The second test is similar in spirit to Pollard’s p-factoring method [22] [18]. It is also similar to but
different from the algorithm discovered by Sattler and Schnorr for determining the order of any element in
any finite group that has an efficient multiplication procedure [25]. The cycling test differs from the cycling
experiments performed by Gait [36] and Hellman and Reyneri [39], who held either the key or message
fixed (see section 1.3).

If Tn is chosen at random, then the walk in G induces a pseudo-random walk in M!. If r = cM?
for 2s/ozme constant ¢ > 0, then the chance that the induced walk in M! cycles within r steps is only about
e~ /4,

For the case that II is closed, it helpful to model the pseudo-random walk §1, 2, ... in Gy as a discrete
finite Markov Process with a K x K transition matrix A. For each 1 < 1,7 £ K, the (i, 5)th entry a;; of
A denotes the probability of selecting §; next, given that §; was the last selected transformation. Each
pseudo-random selection depends only on the immediately preceding state. If II is faithful, then each
entry of A is exactly 1/K; otherwise, each entry of A is at least 1/K. In either case, the probability of a
pseudo-random walk not cycling within r steps is at most {K),/K".

The second test computes a statistic w = A + p, where A and u are respectively the leader length and
cycle length of a particular pseudo-random walk in M!, starting at some randomly selected point Zp. The
value of this statistic depends on the size of the Gr-orbit of zg. If IT is closed, then by lemma 2.2 this
orbit contains at most K messages. However, if Ty is chosen at random, then with very high confidence
the Gry-orbit of zo is M!. Therefore, if II is closed, the expected value of w is at most approximately VvEK;
but, if Ty is chosen at random, then the expected value of w is approximately M /2 For DES with I =1,
the expected value of w is about 228 if DES is closed and about 232 if Tpgs is chosen at random.

It is possible for the random walk to cycle prematurely if certain special keys are chosen during the
walk. For example, the cycle will close if a pair of semi-weak keys are chosen one after the other, or, if

“For example, the pseudo-random function might be table look-up into a table of randomly generated values, modification

of table look-up in which each input into the table is first XOR’d with the previous output from the table, or DES under a
randomly chosen fixed key.
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the identity permutation is selected. Such events would be interesting, but are unlikely to happen. In any
case, such events would not contradict any of our analysis, since short cycles are evidence that T is not a
random set of permutations.

This test requires O{w) time and a constant amount of space, where w is the statistic computed by the
test. The cycle detection and cycle length computations use a small constant amount of space and require
about w encryptions [27].

By picking any Ty € T and by applying the test to Ty ' T, the cycling test can be used to test for
purity as well.

4 Known-Plaintext Attacks against Closed Ciphers

Each of the closure tests can be used with only slight modifications as a known-plaintext attack against
any closed cipher. The input to each attack is a short sequence (py,c1),(p2,¢2),. .-, (p1,c1) of matched
plaintext/ciphertext pairs derived from the same secret key k. With high probability each attack finds a
. representation of T as a product of two or more transformations. The cryptanalyst can use this represen-

tation of T to decrypt additional ciphertexts also encrypted under the same key k. This attack does not
find k.

4.1 Meet-in-the-Middle Known-Plaintext Attack

The meet-in-the-middle test first picks any message p and any key k at random and then computes the
ciphertext ¢ = Ti(p). Next, the test searches for a pair of keys a,b such that T = T3T,. Alternately, a
cryptanalyst could begin with any matched plaintext/ciphertext pair (p,¢) that was encrypted using some
unknown key k, and then search for a representation of the secret transformation T as a product T3T,.
This attack requires O(v/K) time and space on the average.

4.2 Cycling Known-Plaintext Attack

The cycling test also yields a known-plaintext attack. Given a matched plaintext/ciphertext pair (p,e¢)
that was encrypted under some secret key k, the cryptanalyst computes two pseudo-random walks of the
type used in the cycling test, starting from messages p and ¢. The same pseudo-random function is used
for each of the walks. If the attacked cryptosystem is closed, then, since p and ¢ lie in the same orbit,
with very high probability the two pseudo-random walks will intersect within about /K steps. Since the
same deterministic pseudo-random function is used for each of the walks, once the two walks intersect,
they will forever follow exactly the same path and will therefore drain into the same cycle. By running the
Sedgewick/Szymanski [27] cycle-detection algorithm for each of the pseudo-random walks, and by sharing
the same memory for both algorithms, it is easy to find a specific point at which the walks intersect,
provided the walks intersect. The two walks can be computed sequentially or simultaneously.

Thus, the cycling test gives a way to generate two sequences of keys a;,a3,...,a; and by,bs,...,b; such
that g(p) = h(c) = hTe(p), where g = T, Ty;_,+*Ta, and h = Ty Ty, ---Tp,. With high probability,
T, = h™g, which can be statistically verified by applymg h g to addmonal matched plaintext/ciphertext
pairs. If T} # h~1g, then the entire procedure can be repeated on the next plaintext/ciphertext pair.

To decrypt each additional ciphertext co, the cryptanalyst computes T, ! (co) = g=*A({co). To compute
h in constant space is easy—simply generate the sequence of keys by,bz,...,b; by retracing the pseudo-
random walk starting from ¢. The difficulty is to compute g~} in a time- and space-efficient manner. The
problem is that each pseudo-random walk is a “one-way walk” in the sense that reversing any step of the
walk requires inverting the encryption function.

One could save each of the keys a;, a3, ...,q;, but that would require O(s) space, where { is the length
of the walk starting at p. If the attacked cryptosystem is closed, then § will be about VK, on the average.
On the other hand, one could reverse any step of the walk in constant space by retracing the the walk from
the beginning, but this procedure would yield an O(#?) time algorithm for computing g~!. Chandra shows
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that a range of time-space tradeoffs can be used to solve this type of problem. In particular, for any € > 0,
it is possible to compute g~! in constant space and time i1+ [19]. Therefore, if the attacked cryptosystem
is closed, then, for any ¢ > 0, the cycling known-plaintext attack can be carried out in constant space and
time O (K {t+e)/ 2) , on the average.

4.3 Application of Attacks to DES

Each of the known-plaintext attacks can be applied to any finite, deterministic cryptosystem by launching
the attack against the group generated by the cryptosystem. For this reason, it is very important to know
the order of the group generated by DES.

Since DES’s relatively small key space of 25¢ keys allows no margin of safety even for 1977 technology
[35], these attacks would be a devastating weakness for DES, if DES generated a small group. In particular,
if DES were closed, a personal computer equipped with special-purpose hardware could decrypt DES
ciphertexts under a known-plaintext attack in less than two hours, on the average (See appendix A).

5 Experimental Results

This section explains how to interpret the results of the statistical closure tests and summarizes the initial
results we obtained by applying the cycling test to DES.

5.1 Interpreting the Experimental Results

Each statistical test gives a method for collecting evidence that can be used to compute a measure of our
relative degree of belief in the following two competing hypotheses:

e Hg = “DES is a group.”

e Hp = “Each DES transformation was chosen independently with uniform probability from the sym-
metric group on M.”

To compute this measure, we will apply the theory of the weight of evidence, as explained by Good {9] {7].

Each test is asymmetrical in the sense that it allows us to compute the conditional probabilities
P(E | Hg) and P(E | Hg), but not P(E | Hg) nor P(E | Hg), where E is experimental evidence and
He and Hp are the complements of Hg and Hpy respectively. This means that, on the basis of experi-
mental evidence, we would be able to conclude only that DES is rot closed or that DES has a structure
different from that expected from a set of randomly chosen permutations; we would not be able to conclude
that DES is closed. In the worst case, DES could be closed, except for some isolated pair of keys a,b such
that 73T, is not in T, even though there exists some key k and some message zg such that T, T, (z) = Ti(z)
for all messages z € M, z # zo.

Initially, each person may have some (subjective} degrees of belief P(Hg) and P(Hpg) in hypotheses
Hg and Hp respectively. From these initial degrees of belief, each person can compute O(Hg/Hg) =
P(Hz)/P(HR) as his or her initial odds in favor of Hg over Hg. After seeing any experimental evidence
E, however, each rational person should update his or her own odds in favor of Hg over Hp.

Given any evidence E, each believer in the theory of the weight of evidence should update his or her
odds in favor of Hg over Hg as follows:

P(E | Hg)

OlHo/Hr | B) — Fig s

O(Hg/Hpg). (3)
where O(Hg/Hp | E) is the odds in favor of Hg as opposed to Hg given E.

In light of the our experimental evidence, we encourage each reader to update his or her own odds in
favor of Hg over Hp.
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5.2 Summary of Experimental Results

On April 4, 1985, we completed the first trial of the cycling test, detecting a cycle of length nearly
233 For this test, we chose the pseudo-random function to be the “identity” projection.!® Starting with
the initial message zo = 0123 4567 83AB CDEF (in hexadecimal notation), we found a cycle of length
exactly p = 7,985,051,916 with a leader of length A = 34,293,589, As one test of the correctness of our
computations, we ran a software implementation of the cycling test for 30,000 steps. The software and
hardware implementations of the cycling test agreed on all values. As a second test of correctness, we
repeated the initial experiment and obtained identical results.

This single experiment gives strong evidence that DES is not closed. Let E denote the evidence from our
experiment. Since p+ A w23 = 2v/M = 32K, it follows that P(E | Hg)/P(E | Hp) m e=3°/3]e~ %/ =
¢~510, Therefore, each reader should decrease his or her odds in faver of Hg over Hp by a factor of about
510
During May through August 1985, we performed additional trials of the cycling closure test as well as
other cycling experiments on DES. Results of these experiments were described at the Crypto 85 conference
{41]. All additional trials of the cycling closure test supported our initial findings.

6 Open Problems

Although our experiments give strong statistical evidence that DES is not closed, numerous interesting
questions remain unanswered. We begin with several questions about the algebraic structure of DES.

e Does DES generate Ax? What is the order of the group generated by DES? What is the group
generated by DES? For how many keys ¢, 5,k is it true that T} = T;T;7

e Is DES faithful? What is the order of DES?

e What subsets of DES transformations generate small groups? (Note that each weak key represents
a transformation that generates the cyclic group of order 2.)

e Is DES homogencous in the sense that for every k € K it is true that T:l € T? For how many k € K
is it true that Ty ' € T?

elsfeT?

Knowing whether or not I € Tpgs is interesting—not because this property would necessarily be a
weakness in DES—but because this question would answer several other questions about DES. By the
complementation property, for any key k, Tx = I implies T;=I. Hence, if I € Tpgs, then DES is not
faithful. In particular, if DES is closed, then DES is not faithful. Conversely, if I ¢ Tpgrs, then DES is
not closed.

Each of the known-plaintext attacks finds a representation of the secret transformation T} as a product
of two or more transformations. In practice, it would suffice to find an approximate representation of T.
To this end, we could say that two permutations T),T; € T are g-spprozimately equal on X C M iff, for
all z € X, T1(z) and Ty(z) always agree on at least g bits.

e For each 1 < g < 64, for how many keys 1, 7,k is it true that T} is g-approzimately equal to T;T; on
M?

e What other notions of “approximately equal” transformations would be useful in finding approximate
representations?

Since the closure tests do not depend on the detailed definition of DES, it is natural to ask:

*More specifically, we used the projection that removes each of the eight parity bits.
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e What can be proven from the detailed definition of DES about the order of the group generated by
DES?

e Are there more powerful statistical closure tests than the two tests presented in this paper that are
based on the detailed definition of DES?

Our research also raises questions invelving the design of cryptosystems.

e Isit possible to build a secure, practical cryptosystem for which it can be proven that the cryptosystem
generates either Ay or Sy7 (See [48] for one suggestion.)

e Is it possible to hide a trapdoor in a cryptosystem by concealing a secret set of generators for a small
group? (Note that it does not work simply to have a large subset of the transformations generate a
small group, since the enemy could guess a small number of transformations in the subset and apply
the cycling closure test to the guessed transformations.)

We presented two known-plaintext attacks against closed ciphers, but other attacks may also exist.
e What attacks are possible against closed ciphers? How can knowledge of the specific group help?

Finally, it would be interesting to apply the closure tests to variations of DES that exaggerate certain
types of possible weaknesses in the standard.

e What is the order of “crippled” DES transformations formed by reducing the number of rounds or
by replacing one or more of the S-boxes with linear mappings?

7 Summary

We have presented two statistical tests for determining whether or not any finite, deterministic cryptosys-
tem generates a small group. Each test yields a known-plaintext attack against closed cryptosystems.

Using a combination of software and special-purpose hardware, we applied the cycling test to DES.
Our experiments show, with a high degree of confidence, that DES does not generate a small group. These
results should increase our confidence in the security of using DES with multiple encryption. However,
since cryptosystems that generate large groups are not necessarily secure, our experiments say only that
DES does not fail in one extreme way.

This work leaves open the possibility of proving that DES is not closed directly from the detailed
definition of DES.
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A A Fast Implementation of the Cycling Closure Test

To test the DES for closure, we designed and built special-purpose hardware for an IBM PC. Our exper-
iment required special-purpose hardware for two reasons: we needed to compute about 2% encryptions!®
and we needed to change the key at each step.l”

The special-purpose hardware is a custom wire-wrap board for an IBM personal computer,'® containing
a microprogrammed finite-state controller and an AMD AmZ8068 DES chip [52]. Data paths connect the
DES chip, a 16-byte ciphertext buffer, a PROM computing the next-key function, and the host computer
(see figure 1). The next-key function is computed byte-by-byte. A read-write counter indicates the number
of consecutive messages to compute. To increase the board’s flexibility, the microprogram is stored in
RAM accessible to the host computer. The PROM can be easily replaced to implement different next-key
functions.

We perform cycle detection in two passes: data acquisition and analysis. During data acquisition, the
host computer stores every 2?0th message on a floppy disk. During analvsis, these messages are loaded into
main memory, and up to 220 consecutive messages are computed and compared to those already present.
In effect, we perform the Sedgewick-Szymanski [26] algorithm with a fixed estimate of the cycle length. We
use an open-addressing, double-hashing scheme for stores and lookups {21]. We wrote all data acquisition
and analysis routines in C.

Including all overhead for computing and loading a new key for each encryption, our board performs
about 45K encryptions/second, or almost 252 per day. This enables us to carry out each trial of the
experiment within a few days. Our board also supports all approved modes of operation for DES.

“._ Host Computer -
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Figure 1: Block diagram of special-purpose hardware

1%Software implementations of the DES for the IBM PC run at abount 200-300 encryptions/second. According to Davio, by
using an efficient space-intensive implementation of the DES, it is possible to perform about 2.5K encryptions/second on
the VAX 11/780 {33|. Thus, it would take the IBM PC about 10 to 16 days to compute 23* DES encryptions; a VAX 11/780
would require about a day and a half. Running the teat for 2°2 staps would take at lsast 16 times longer.

"Commercially available DES boards are not suited for our purposes. To compute and load a new key for each encryption
would require interaction by the host computer, introducing tremendous overhead.

'*We chose to uss an IBM PC because an IBM PC was available to us, and because it is easy to attach special-purpose
hardware to an IBM PC [54].
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