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Abstract
As we approach 100nm technology the interconnect issues are becom-
ing one of the main concerns in the testing of gigahertz system-on-
chips. Voltage distortion (noise) and delay violations (skew) contribute
to the signal integrity loss and ultimately functional error, performance
degradation and reliability problems. In this paper, we first define a
model for integrity faults on the high-speed interconnects. Then, we
present a BIST-based test methodology that includes two special cells
to detect and measure noise and skew occurring on the interconnects
of the gigahertz system-on-chips. Using an inexpensive test architec-
ture the integrity information accumulated by these special cells can
be scanned out for final test and reliability analysis.

1. INTRODUCTION
With fine miniaturization of VLSI circuits and rapid increase in the
working frequency (gigahertz range) of digital system-on-chips (SoC),
the signal integrity becomes a major concern for design and test engi-
neers. Although various parasitic factors for transistors can be well
controlled during fabrication, the parasitic capacitances, inductances
and their cross coupling effects on the interconnects play a significant
role in the proper functionality and performance of high-speed SoCs.

Signal integrity is the ability of a signal to generate correct responses
in a circuit. It generally includes all effects that cause a design to
malfunction due to the distortion of the signal waveform. According
to this informal definition, a signal with good integrity has: (i) voltage
values at required levels and (ii) level transitions at required times. For
example, an input signal to a flip-flop with good signal integrity arrives
early enough to guarantee the setup and hold time requirements and it
does not have spikes causing undesired logic transition.

1.1 Prior Work
Various signal integrity problems have been studied previously for ra-
dio frequency (RF) circuits and recently for high-speed deep-submicron
VLSI chips. The most important ones are: crosstalk (signal distortion
due to cross coupling effects between signals) [1] [2], overshoot (signal
rising momentarily above the power supply voltage) [3] [4], reflection
(echoing back a portion of a signal), electro-magnetic interference (re-
sulting from the antenna properties) [5], power supply noise [6] and
signal skew (delay in arrival time to different receivers) [7][8].

There is a long list of possible design and fabrication solutions to en-
hance signal integrity on the interconnect. None guarantees to resolve
the issue perfectly. These solutions include: 3-D layout modeling and
parasitic extraction [9], accurate RLC simulation of on-chip power grid
[7], using decoupling capacitors to limit the maximum dV � dt [10][6]
and to improve IR-drop [7][11], inserting buffers on the interconnects

[9] and shielding wires (e.g. grounding every other line) [12].

Noise and skew imposed by interconnects have emerged as main con-
cerns in the interconnect design of gigahertz SoCs. Buffer insertion
and transistor resizing methods [13] [14] are used as design techniques
to achieve better power-delay and area-delay tradeoffs. Self-test method-
ologies have been developed to test signal integrity in high-speed SoCs.
Testing crosstalk in chip interconnects [1][15] and a BIST (built-in
self-test) structure using D flip-flops that detects the propagation delay
deviation of operational amplifiers [16] are among such methods.

1.2 Contribution and Paper Organization
Our main contribution is an on-chip mechanism to detect noise and
skew violations occurring on the interconnects of high-speed SoCs.
We present special cells to monitor signals received from the system
interconnect and record the occurrence of signal entering the vulner-
able region over a period of operation. By resizing transistors within
these cells, they can be easily tuned to define the acceptable levels
of noise and skew. We also propose a BIST methodology that uses
pseudo-random patterns and accumulates the integrity test information
using the detector cells. The statistics will be eventually sent out for
final test analysis, reliability judgment and diagnosis.

The rest of this paper is organized as follows. The signal integrity
model and test strategy are discussed in Section 2. In Section 3 we
explain the issue of generating patterns that stimulate the maximal in-
tegrity loss on interconnects. Section 4 and 5 analyze CMOS circuits
that detect noise and skew violations occurring on the interconnects,
respectively. Section 6 explains the test architecture to store and read
out the information. The experimental results are discussed in Section
7. Finally, the concluding remarks are in Section 8.

2. INTEGRITY TEST METHODOLOGY
2.1 Interconnect Model
Signal integrity problems originate from the circuit interconnects [17].
A wire not only serves as a conductor of electrons but also includes
parasitic resistor (at low frequencies), capacitor (at mid-range frequen-
cies), inductor (at high frequencies) and antenna (at very high frequen-
cies), all of which can affect signal integrity. In low and mid-range fre-
quencies, common in the past, the RC delays have been the dominating
factors in the global interconnect delay and distortion. Inductance (L)
effects are becoming increasingly important as frequency of operation
increases.

There are many efficient distributed models in the literature [18][19]
[20]. Figure 1 shows an accurate equivalent RLC circuit for several
parallel interconnect lines [18][21]. This model comprises resistance
(R), partial self inductance (L) and capacitance (C) for each segment,
mutual inductances (M) and coupling capacitance (Cc) between all
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Figure 1: An interconnect model.

pairs of parallel components. The values of distributed R, L and C
depend on many factors including the operating frequency, length and
technology. The number of segments can be selected based on the
length of the interconnect and the operating frequency. All results re-
ported in this work are based on this distributed RLC model [18][21].

2.2 A Model for Signal Integrity
True characteristics of a signal is reflected in its waveform. Recent
interconnect simulation, design and optimization methods not only
consider peak voltage and delay, but also take into account the signal
waveform [22] [23]. In reality, electronic components can tolerate cer-
tain level of noise. For example, a CMOS gate interprets any voltage
in the

�
VHmin � Vdd � range as logic “1” and any voltage in the

�
Vss � VLmax �

range as logic “0”. Frequently, digital circuits are designed to tolerate
certain amount of skew delay, i.e. TSI R for rising delay and TSI F for
falling delay (see Figure 2).

In practice, circuits have noise-immune (NI) regions that tolerate cer-
tain level of voltage swing and skew-immune (SI) regions that tolerate
certain level of delay. Any portion of signal that exits the NI and SI re-
gions indicates the integrity loss. This concept has been shown graphi-
cally in Figure 2 in which the shaded and unshaded (white) strips show
the immune and vulnerable regions, respectively.

The focal point in this paper is the NI and SI regions, covering in-
tegrity faults on interconnects, and a mechanism to detect signals that
exit these regions. Leaving the NI-region not only causes error in func-
tionality (ringing), but also shortens system’s life time due to time-
dependent dielectric breakdown (TDDB) [24]. More importantly, re-
peated overshoots are known to inject high-energy electrons and holes
(also called hot-carriers) into the gate oxide that ultimately cause per-
manent degradation of MOS transistors’ performance and reliability
[3]. For example, in [3], the authors presented the life time analysis,
illustrated in Figure 3, showing that the performance of logic gates
under stress (e.g. repeated overshoots) degrades quickly which even-
tually causes failure in the system.

Leaving the SI-region means that the interconnect adds unacceptable
skew delay that may lead to functional error or serious performance
degradation. The range of immunity (TSI ) depends on the system
topology, speed, core interactions and the yield margin that designer
defines in the design phase. However, delay values of components as
well as interconnects may not eventually be kept within such bound
since the layout generation tools and the fabrication process each may
add additional delays.

2.3 BIST-Based Test Methodology
At-speed testing (testing system functionality at its nominal work-
ing frequency) is a necessity for manufacturing test and validation of
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Figure 2: Immune regions and the concept of integrity loss.
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Figure 3: The effect of overshoots on performance and life time.

system performance. However, the ATE (automatic test equipment)
speeds have always lagged behind the CUT (circuit under test) speed.
As a result of this speed difference, the high-speed circuits are tested
at clock rates that are much slower than their specification [25] [26].
Furthermore, the pin and probing limitations of ATEs restrict the accu-
rate observation of test results. Therefore, an on-chip test mechanism
such as BIST can fulfill requirements for at-speed testing of complex
high-speed SoCs.

In a BIST architecture, a TPG (test pattern generation) circuit gen-
erates the pseudorandom patterns to stimulate possible defects in the
CUT. The ORA (output response analyzer) circuit observes the out-
puts and analyzes their validity [27]. Figure 4 demonstrates our basic
BIST-based architecture to test the SoC’s interconnects for integrity.
The TPG and ORA circuits are located in two sides of the IUT (in-
terconnect under test). The IUTs could be long interconnects or those
suspicious of having noise/skew violations due to environmental fac-
tors (e.g. crosstalk, electromagnetic effects, etc.).

Our rationale in using pseudorandom patterns for integrity testing is
the fact that finding patterns that are guaranteed to create the worst case
scenarios for integrity loss (e.g. noise and skew) is impractical with
the current state of knowledge. This is mainly due to the complexity
of distributed RLC interconnect model, parasitic values and too many
influential factors. We elaborate on this in Section 3.
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Integrity loss cannot be captured using conventional ORAs due to the
complexity of interconnect behavior. Hence, a new ORA circuitry,
which includes ND (noise detector) and SD (skew detector) cells will
be used in this work. The ND and SD cells detect voltage and tim-
ing violations of the signal, respectively. We will elaborate on their
structures and behaviors in Sections 4 and 5.

3. TEST PATTERN GENERATION
Researchers have searched for test patterns causing the worst case of
signal integrity loss to enhance their test quality. In this section, we
first present an analytical (but expensive) methodology to find deter-
ministic patterns for maximal integrity loss. We then examine the in-
accuracy of the RC model to conclude that the conventional TPG could
be behaviorally effective and cost efficient.

3.1 Deterministic Pattern Generation
Coping with sophisticated RLC network leads to impractical simula-
tion time for long interconnects. For an analytical approach, we pro-
pose to utilize the model order reduction strategy as an alternative
for circuit simulators to improve the simulation run time significantly.
Model order reduction methods were developed to approximate the
behavior of long interconnect, power and clock networks. They have
been extensively used in the simulation and evaluation of high-speed
VLSI systems [32][33][35]. They comprise the key factors of the orig-
inal system with much lower complexity; therefore, they significantly
reduce the required computation and thereby simulation time, with
slight loss of accuracy.

Elmore delay model [36], as the first reduced order model, is the most
common technique for approximating the delay of RC networks. Asymp-
totic Waveform Evaluation (AWE) [32] was introduced as another method
based on moment-matching allowing a linear circuit to be analyzed
for its dominant poles and corresponding residues. To overcome some
numerical limitations that AWE method suffers, researchers have de-
veloped reduction methods based on Bi-orthogonalization algorithms
such as Pade Via Lanczos (PVL) [35] or orthogonalized Krylov sub-
space methods [37], which are computationally convenient and nu-
merically better behaved. Their experimental results reveal the high
accuracy within less than 5% of SPICE simulator at the speed 1000
times faster.

For analytical computation, the reduced order model can be used in
generating test patterns for maximal integrity loss on long intercon-
nects deterministically. The details are beyond the scope of this paper
and can be found in [38]. Briefly, the input to an interconnect net-
work, i

�
t � , can be expressed as: i

�
t ��� aiu

�
t ��� bi, where u

�
t � is a step

function, ai ���
	 1 � 0 � 1 � and bi ��� 0 � 1 � (if 
 ai 
�� 1 then bi � 0).

An interconnect network can be represented by a set of transfer func-
tions in the S-domain. As shown in Figure 5, the interconnect network
with n inputs and m outputs is represented by H

�
S � , which contains

n � m transfer functions relating n inputs and m outputs. Note that in
general we have m � n for the possibility of fanout on some wires.
Using an order reduction method (e.g. PVL [35] or ENOR [33] meth-

11h    (s) 1mh     (s)

nmh      (s)
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n1h    (s)

Figure 5: Transfer function of an interconnect network

ods), the transfer function of a specific output fr (1 � r � m) becomes
of order q:

h fr

�
s ��� n

∑
i � 1

q

∑
j � 1

ki j�
s 	 pi j � (1)

where ki j and pi j are residues and poles of the output fr, respectively.
Note that h fr

�
s � is obtained based on the superposition of the effects

of all n inputs on fr. The output of system can be computed in the
frequency domain by multiplying the transfer function and an input
function. After transferring it to time domain to observe the timing
behavior of the output, fr

�
t � is calculated:

fr
�
t ��� n

∑
i � 1

�
ai

q

∑
j � 1

ki j

pi j � exp
�
pi jt � 	 1 ��� bi

q

∑
j � 1

ki j exp
�
pi jt ��� f or t � 0

(2)

By Equation 2, all the timing information of the output signal is avail-
able and the impact of inputs are considered within ai and bi coeffi-
cients. Therefore, theoretically we are able to analyze the output for
any possible indication of signal integrity loss such as delay, overshoot,
or undershoot. For example, maximal delay due to integrity loss can
be obtained by equating the Equation 2 to 0 � 5Vdd and using numerical
method to solve it for t. The reduced order model is much faster than
SPICE simulation but this solution is still too expensive with the cur-
rent state of knowledge of optimization, numerical methods and com-
puters. For proof of concept, we have selected a small example of two
parallel interconnects of five RLC segments each. We used the ENOR
algorithm [33] to obtain the residues and poles of the 5th order reduced
form of Equation 2. Two experimentations were done. First, we used
SPICE [39] to exhaustively check all patterns for maximal delay. Sec-
ond, ENOR was implemented using MATLAB [40]. After obtaining
the poles and residues of the reduced order model, the information is
used to solve the Equation 2 to calculate the delay and overshoot in the
MATLAB environment.

The maximum delay and peak overshoot (O.S.) are reported in Table
1 for three arbitrary transitions. As this table shows, our method iden-
tifies the same test patterns to stimulate the maximal integrity loss as
SPICE finds but runs much faster. The running time for each run for
SPICE and our order reduction method are 410 and 3 seconds (wall
clock time on SPARC ULTRA 10 with 64 MByte RAM), respectively.
While our analytical method is very accurate and is efficient for small
examples, we acknowledge that finding patterns for large set of inter-
connects is very computational intensive using this approach unless
more efficient numerical methods to solve Equation 2 is found. This
is the main reason that we used pseudorandom patterns, generated by
conventional TPG, in our approach.

3.2 Inaccuracy of Single-Victim (RC) Model
In [15] and [1], the worst case test patterns associated with a specific
fault model (MAFM) were presented. They used the RC intercon-
nect for test pattern generation. Techniques, such as the one reported
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Table 1: Comparing SPICE and our reduced method.
Test SPICE Order Reduction

Patterns Delay [ps] O.S. [Volt] Delay [ps] O.S. [Volt]

00 � 01 32.43 2.53 31.97 2.59
00 � 11 39.98 2.65 38.62 2.64
01 � 10 44.65 2.89 45.06 2.91
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Figure 6: Creating maximal integrity loss using RC model.

in [15], apply identical transitions to all wires except the victim net to
create maximal integrity loss in the victim wire. Six scenarios and typ-
ical test patterns used in such techniques (e.g. [15]) have been shown
in Figure 6. Although this set of test patterns can test interconnects
at lower frequencies where inductance is negligible, it is inadequate
for higher frequencies. Our empirical evidences show that in high fre-
quency they fail to show the true picture of integrity of a signal.

For accurate analysis, having the coupling capacitances between all
wires in a distributed model (e.g. Figure 1) is necessary but not suf-
ficient. The effect of capacitive coupling is considered local, in the
sense that the coupling effects of adjacent wires are quite dominant
compared to the capacitive coupling effects of far off wires [18][41].
However, the inductance has larger range effect and thus the effect of
mutual inductance could be significant. As discussed in [18], the effect
of coupling inductances and capacitances on a wire oppose each other.
When the signal on a wire switches in one direction, the noise due to
capacitive coupling affects other nearby signals in the same direction
as that of switching while the noise due to inductive coupling is in the
opposite direction. All of these make the patterns generated by RC
models inaccurate and inadequate.

In what follows, we present three other experiments to show the defi-
ciency of RC model and the corresponding uniform patterns. These ex-
amples clearly show that there are scenarios for test patterns that create
worse delay and/or noise on the signal and cause more integrity loss
compared to those commonly reported earlier [15][18]. Thus, RLC
model of interconnect needs to be consolidated for test pattern genera-
tion. We have used an RLC model of seven parallel interconnect lines
(indexed “7654321”) for our experimentation. The R, L and C values
are extracted using accurate extraction tools [28]. TISPICE has been
used to simulate the complete RLC model. Typical CMOS gates are
considered as driver and driven gates in two sides of the interconnect
and Vdd � 1 � 2 Volt. Note that in the waveforms of these examples
RC refers to the test pattern (similar to those in Figure 6) suggested
by approaches that use RC interconnect modeling. We call them RC-
patterns for short. Note that many random patterns stimulate integrity
loss (noise) more than limited RC-patterns. We will show some statis-
tics in Section 7.

� Example 1: Maximal Delay
Test pattern pair 1111011 � 0000100 is proposed for observing the
highest potential delay on line 3 based on RC model. As shown in
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Figure 7, test pattern pair 1100000 � 0011111 can generate 31% more
delay than the RC patterns.

� Example 2: Maximal Noise
In Figure 8, the difference between the worst case test pattern for RC
model and another test data is demonstrated. In this case, the glitch on
quiescent line 3 at 0 is investigated. This example shows that the worst
case patterns (in terms of peak and duration of noise) for RC model
are not necessarily the worst case for RLC model.

� Example 3: Mutual Effects
We believe categorizing lines as victim and aggressors is misleading
and unrealistic. Every line (including so-called aggressors) can be af-
fected by all other lines (including so-called victims). Although the
overall effect of aggressors on victims may be larger than effect of vic-
tims on aggressors, the change on the other lines cannot be ignored.
Such minor effects may cause different switching times for aggressors
which eventually results in longer settling delay up to 51% as reported
in [18]. Figure 9 shows an example in which line 5 is quiescent at 1
and lines 4, 6 and 7 make 1 � 0 transitions. As shown in the figure,
they affect each other due to the inductive and capacitive couplings.

In conclusion, due to the complexity of accurate RLC interconnect
model, parasitic values and too many influential factors, finding pat-
terns guaranteed to create the worst case scenarios for noise (integrity
loss) is very much difficult and almost impractical with the current
state of knowledge. Our empirical evidences indicate that random pat-
terns are more qualified than those conjectured (e.g. RC patterns in
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Figure 6) to create the worst case integrity loss. Thus, we propose to
use conventional TPGs to generate pseudorandom test patterns as an
efficient way to test the high-speed interconnects. We will elaborate
on this issue in Section 7.

4. DETECTING NOISE VIOLATION
A modified cross-coupled PMOS differential sense amplifier is de-
signed to detect integrity loss (noise) relative to voltage violations.
Figure 10 shows the noise detector (ND) cell, which sits physically
near the receiving core and samples the actual signal plus noise re-
ceived by Core j. NMOS transistor T5 is the current source (when
SE � 1) and PMOS transistors T3 and T4 are loads. The positive feed-
backs (drain-gate connection between T3 and T4) allow amplification
in this structure. SE is connected to test mode to create a permanent
current source in the test mode and input x is connected to Vdd to de-
fine the threshold level for sensing Vb, i.e. the voltage received in x.
The inverter, formed by T6 and T7, stabilizes the voltage levels in the
output of ND cell. By adjusting the size of the PMOS transistors (i.e.
W and L), the current through transistors T1 and T2 are set to different
values. Combining this with the feedbacks between PMOS transistors
creates threshold voltages to turn the transistors on or off. Various ar-
chitectures for sense amplifiers and in-depth details can be found in
[29][30].

Figure 11 shows signals on the input and output (points b and c) of the
cell to validate the behavior of our noise detector cell. Each time that
noise occurs (i.e. Vb � V� � VHthr), the ND cell generates a “0” signal
that remains unchanged until Vb drops below V � � VHmin. The wave-
forms in Figure 11 reflect that the ND cell shows a hysteresis (Schmitt-
trigger) property which implicitly indicates a (temporary) storage be-
havior. To confirm this we ran a DC analysis on the ND cell to get
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the hysteresis curve shown in Figure 12. This property helps to detect
the violation of two threshold voltages (i.e. VHthr and VHmin) with the
same ND cell. For example, the solid-line curve shows that the switch-
ing threshold voltages are V� � VHthr � 2 � 75 and V � � VHmin � 1 � 60
when Vdd � 2 � 5. A similar cell can be designed to detect crossing VLthr
and VLmax threshold voltages. Details can be found in [31].

What level of overshoot is acceptable, and what level of voltage should
be recognized as a logic “1” and “0” is debatable. Specific choice of
VHthr and VLthr (and also VHmin and VLmax) depends on the technology,
and on the desired level of reliability. A nice feature of our ND cell is
that for any Vdd , the two thresholds (i.e. V� and V � of hysteresis) can
be tuned by changing the layout size of the PMOS transistors (mainly
W’s of T3 and T4). This is also shown in Figure 12, in which different
sets of transistor widths (W 	 set 1 through W 	 set 4 for T3 and T4) and
two Vdd values (3.3 and 2.5 volts) have been used. There are analytical-
and simulation-based approaches that can be used for such tuning [29].
Empirically, however, for a given Vdd we found tuning of V� and V � to
be easy and flexible within a relatively large range as shown in Figure
12.

Note carefully that occurrence of an overshoot puts the ND cell in
state-0 (i.e. generating “0”) after which a 1-0-1 glitch that violates
VHmin can be detected. For detecting 1-0-1 glitches on a quiescent line,
even without occurrence of overshoot, we need to tune the cell such
that VHthr � Vdd . This forces the cell to go to state-0 for a quiescent
logic-1 line and therefore make it capable of detecting 1-0-1 glitches.
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The drawback, however, is that the ND cell won’t be able to have VHthr
larger than Vdd . If both features are desired we need two cells one to
detect overshoots with user-defined VHthr and one for any 1-0-1 glitch
that may occur.

5. DETECTING SKEW VIOLATION
As stated in Section 1, in addition to voltage distortion, timing viola-
tion (skew) is another important factor that contributes directly to the
integrity loss. Specifically, in deep sub-micron technology the inter-
connect delay is a detrimental factor. Figure 13, presented in the SIA
roadmap [25], shows the gate and interconnect delays versus technol-
ogy generations. The curves clearly show the dominance of intercon-
nect delay over gate delay as we approach 100nm technology. Using
copper (instead of aluminum) and low dielectric constant insulators
can reduce the delay of interconnects. However, it is certain that the
interconnect delay will remain the dominating factor [25]. This trend
justifies the efforts needed to detect the delay violation due to the in-
terconnect.

5.1 Skew Immunity Range
We defined the skew-immune (SI) region in Figure 2 as the delay range
that is considered “acceptable”. If signal skew goes beyond that range
we consider it as serious integrity loss. The range of immunity de-
pends on the system topology, speed, core interactions and the yield
margin that a designer defines to achieve the nominal performance
of the system. Such yield margin is often considered in the design
phase. However, the delay values of components as well as intercon-
nects may not eventually be kept within such bound since the layout
generation tools and the fabrication process each may add additional
delays. More importantly, as we have discussed in [31] signal integrity
factor in general and noise/skew in particular are data-dependent phe-
nomena that cannot be predicted accurately through analytical or sim-
ulation based approaches. Thus, similar to the noise detection only an
on-chip methodology can successfully test the delay violation.

In synchronous systems, maximum communication speed between two
interacting cores depends on the maximum storage-to-storage (s-to-
s) path delay [42]. Figure 14 shows this graphically. As long as
Tclock � Tinterconnect � Tcomb max � TCQ � Tsetup the functionality of sys-
tem will remain error-free. For simplicity, we did not differentiate be-
tween rising and falling skews. Thus, the skew immune range TSI can
be estimated based on the clock period, timing behavior of the storage
elements and storage-to-storage paths within the system:

The earliest time that
data is ready in the
output of Core i

T_CQ T_interconnect T_comb T_setup T_SI

T_clock

The earliest time that
data can be stored
in Core j

Storage Element:
Clock-Output Delay: T_CQ
Setup Time: T_Setup

T_comb

T_interconnect

IUT

Core i Core j

clock

Figure 14: The effect of interconnect skew (delay).
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To read-out
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Figure 15: Skew Detector circuitry (SD cell).

TSI
� max

s � to � s
� Tclock 	 �

Tcomb max � TCQ � Tsetup � �
5.2 Skew Detector (SD) Cell
In designing high speed cores, very firm delay budget has to be met.
Any minor violation of skew or unpredictable delay (e.g., the inter-
connect effect) may cause functional error or significant degradation
of performance. Numerous research endeavors have been dedicated to
the testing of logic gates for their timing behavior [43][44]. Since the
interconnect skew delay will be the dominant factor in determining the
clock period of future technologies, it is essential to detect the skew
violation on the interconnects.

Detecting the skew violations of interconnects can unlikely be fulfilled
off-chip due to the speed limitations of ATEs. Nevertheless, the fea-
tures of an on-chip test mechanism such as BIST can be utilized to
observe the skew violations accurately. Figure 15 depicts the proposed
on-chip test circuitry (SD cell). A delay generator cell is used to create
the desired delay value (i.e. acceptable skew-immune range TSI ) as it
is defined by a designer based on the delay budget of the interconnect.
This cell is essentially made of odd number of cascaded CMOS in-
verters that receives the system clock and outputs the delayed inverted
clock. The delayed clock is compared with the interconnect output.
If the skew of the signal on the interconnect output is not within the
acceptable range, the SD cell issues a pulse. The duration of this pulse
depends on the interconnect delay. From testing point of view, the
pulse generated by the SD cell can be used as the indication of skew
violation. For example, it can trigger a D flip-flop to store a “1” as
indication of such occurrence.
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Figure 17: The SPICE simulation of SD cell connected to an inter-
connect.

The SPICE [39] simulation of the SD cell has been illustrated in Figure
16 for two signals. The first signal (SIGNAL1) does not violate the
skew limit (TSI ) and thus the output of the cell remains zero. The
second signal (SIGNAL2), however, exceeds the acceptable skew and
the SD cell generates a pulse. As shown in the figure, this pulse appears
in the output of the SD cell after delay associated with the NOR gate.
Notice that possible clock skew does not have significant effect on the
behavior of the SD cell. There are many approaches such as [13][45]
to minimize the clock skew in a large chip. However, in the presence of
clock skew TSI changes to TSI � Tclock skew where the Tclock skew is the
skew on the clock wire attached to the SD cell. This change increases
the acceptable skew range to which the cell reacts but the functionality
of the cell remains intact.

To illustrate the true behavior of the SD cell in test mode, while con-
nected to an interconnect, we ran the SPICE simulation on the inte-
grated interconnect and test circuitry. The results are shown in Figure
17. If the output of interconnect does meet the skew requirements (less
than TSI � 100ps as happens for SIGNAL1), the output of the SD cell
stays at zero. However, a marginally late signal (SIGNAL2) causes a
pulse at the output of the SD cell.

5.3 Delay Generator Circuit
As discussed before the accuracy of the SD cell depends on accurate
implementation of delay generator block. This circuit generates a spe-
cific delay value (e.g. TSI), predefined by the designer. The implemen-
tation of such accurate delay circuitry is a challenging issue. We have

Table 2: Statistics for four delay generator circuits.

Design # of Inverters Area [µm2] Delay [ps]
#1 1 6 42
#2 1 2 87
#3 3 10.5 250
#4 3 15 410

employed the classic driver design [46] [47] to implement the delay
generator circuit. Many researchers have extensively investigated how
to achieve the optimal driver for long VLSI interconnects considering
different objectives such as minimum delay, area or power consump-
tion [45] [47]. For instance, several design parameters, such as the
number of drivers and their aspect ratio, are adjusted using optimiza-
tion techniques to obtain an optimal driver configuration. Similarly,
obtaining a specific delay value for a driver, while minimizing the over-
all area can be another objective in driver design problem. This can be
the goal in optimizing the delay generator circuit. Such optimization
technique, although important in our application, is beyond the scope
of this paper. We simply comment that optimizing delay generator cir-
cuit can be done systematically using optimal driver design concept
[13] [47].

As for experimentation, we designed few delay generator circuits to
show typical values for TSI . Table 2 shows the specifications of four
different delay generators. We used cascaded inverters with different
size transistors to design and tune them. As seen in this table, the
variety of delay values (i.e. TSI) can be created using the inverters with
reasonable area.

As Figure 17 shows, the SD cell detects the skew violations by cre-
ating a pulse in its output momentarily. One efficient way to capture
such violation is to use this pulse to trigger a flip-flop as shown in Fig-
ure 18(a). This circuit stores a “clock=1” in the flip-flop when delay
violations (in range of TSI

� delay � T � 2) occur. Note that this is a
sufficient range in our application. Here our concern is small but un-
acceptable delays due to integrity loss. Large delays can be always
captured using functional or delay testing.

The clock signal (instead of a permanent “1”) is intentionally con-
nected to the input of D flip-flop to filter out pulses on c for some
undesired scenarios. One such scenario, e.g. having a pulse when
skew is in the immune (acceptable) range, is shown in Figure 18(d).
Depending on the application, accuracy and test patterns one SD cell
to detect skew violations on rising signals (Figure 18(a)) is often suf-
ficient. However, if distinction between skew violations of rising and
falling signals is needed, e.g. for diagnosis purposes, we need addi-
tional hardware. The reader can easily verify that the additional cell is
the same as Figure 18(a) but uses b � d instead of b � d and can detect
skew violations on falling signals.

6. TEST ARCHITECTURE
Detecting signals that leave the noise-immune (NI) and skew-immune
(SI) regions is a crucial step. This is performed by the ND and SD
cells explained in the previous sections. These cells are not expensive
– seven and six transistors per ND and SD cells, respectively. Overall
two cells are needed per interconnect to detect noise (crossing VHthr
and VHmin) and skew violations. The test architecture to read out the
information stored in these cells is a DFT decision which depends on
the overall SoC test methodology, testing objective and cost consider-
ation.

Figure 19 demonstrates a scan flip-flop chain architecture, which is
able to record the occurrence of noise/skew violation and transfer it to
the output. In the test-mode, first the flag signal is transferred, through
MUX, to the test controller. If noise or skew violation (low integrity
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signal) occurs ( f lag � 1), the content of flip-flops (ND-FFs and SD-
FFs) are scanned out through Sout for further reliability and diagnosis
analysis. Suppose an n-bit interconnect is under test for m cycles (i.e.
m pseudorandom test patterns). The very pessimistic worst case sce-
nario in terms of test time is a case in which all lines are subject to
noise in all m test cycles. This situation requires overall m and m � n
cycles for response capture and readout, respectively. In practice, a
much shorter time (e.g. k � n, where k � � m) is sufficient since the pres-
ence of defects or environmental factors causing unacceptable level of
noise/skew (integrity loss) is quite limited. In terms of test overhead,
n ND cells, n SD cells and 2n scan flip-flops are needed.

Two other alternatives for the test architectures using compressor/adder
and dedicated counters are introduced in [31] and analyzed for their
cost and test time. Briefly, these alternatives are more expensive but
can supply data of integrity loss occurrences more accurately for appli-
cations such as interconnect diagnosis, re-wiring and pad re-distribution.

7. SIMULATION RESULTS
The number of cores in the SoC and the number of input ports of cores
do not influence the low-integrity (noise/skew) detection process since
the ND and SD cells independently function near core input ports.
They do, however, influence the cost of test overhead (e.g. cells and
FFs) and test time (e.g. scan-out time).

The experimental results here are reported using OEA [28] and SPICE
[39] simulators. We analyzed five main buses (data, address, control
and two internal) of the famous 8051 microprocessor [48]. In our im-
plementation the 7 cores communicate through these buses and are
potentially subject to noise in high frequency. For experimentation
purpose, we used the interconnect architecture of 8051 assuming that

Table 3: Integrity test results for 8051 bus structure.
Buses Bitwidth Length [mm] Noise [%] Skew [%]
Data 8 20 43.38 31.32

Address 16 5 23.28 15.78
Control 10 10 28.50 25.53

Internal 1 10 10 34.40 21.20
Internal 2 8 10 32.62 18.47
Average 10.40 11.00 32.44 22.46

Table 4: Test overhead for 8051 bus structure.
Overhead Data Address Control Int. 1 Int. 2

Cost [NANDs] 158 254 194 194 158
Time [Cycle] 1600 3200 2000 2000 1600

it runs in 1 GHz. Typical global interconnect lengths in large SoC sys-
tems are chosen as the wire lengths in our experiments. Then, we have
applied random patterns to the interconnects assuming that they run
under 1 GHz frequency. The statistics are summarized in Table 3. As
shown in Table 3, the average occurrence of unacceptable noise and
skew (low integrity signals) in a presumed 1 GHz 8051 system will be
32.44% and 22.46% that may create functional error or cause severe
damages (e.g. reliability, lifetime) on chip over time.

Table 4 summarizes the test overhead for the buses in 8051 reported by
SYNOPSYS design compiler toolset [49] when 100 random patterns
are applied. We assumed that all interconnect lines need to be tested
for integrity. All costs are expressed in terms of 2-input NAND gates.
The readout time overhead results are also included in this table.

Table 5 compares the quantity and quality of random test patterns ver-
sus the RC patterns for a 7-wire parallel interconnect line. The over-
all number of patterns used in this experiment are 42 (6 patterns per
wire as shown in Figure 6) and 100 for RC and random cases, re-
spectively. The second and third columns show the number of pat-
terns that show significant integrity loss (i.e. overshoot or delay at
least 15% larger than their nominal values) from different perspec-
tives. Although in general, the number of the RC patterns is smaller
than the random patterns, the latter significantly improves the quality
of interconnect testing by stimulating larger integrity loss (the worst
case scenarios). For example, when we average the results of apply-
ing all patterns (first row), the random patterns cause larger integrity
loss (in terms of peak noise and settle time) than the RC patterns. As
for maximal delay on the interconnects, 43 (out of 100) and 14 (out
of 42) patterns were counted for random and RC cases, respectively,
causing significant delay. The average delay caused by these patterns
are 122ps versus 102ps. Similar trend exists for patterns that stimulate
maximal peak/duration of noise.

7.1 The Effect of Process Variation
Variation of different factors in the fabrication process may cause con-
siderable deviation from the nominal or expected behavior of the cir-
cuit. This may affect the integrity of signals traveling on the intercon-
nect and also the functionality of the ND/SD cells. For example, due
to the limited resolution of the photolitographic process, the transis-

Table 5: Random test patterns versus RC test patterns.
Integrity Quantity Quality
Factor RC Random Metric RC Random
Mutual 42 100 Settle[ps] 61 117
Effects Peak[V] 0 � 15Vdd 0 � 28Vdd

Maximal 14 43 Delay[ps] 102 122
Delay

Maximal 14 51 Settle[ps] 211 328
Noise Peak[V] 0 � 26Vdd 0 � 34Vdd
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Table 6: The Effect of process variations on the interconnect.
Parameters Nominal [µ] E[%]

Peak Overshoot
�
volt � 1.62 24.7

Peak Undershoot
�
volt � 0.95 6.7

Skew Delay
�
ns � 0.4 4.7

tor dimensions (W , L), on die may be different from the ideal dimen-
sions expected. Other process parameters include transconductance
(κ), threshold voltage (Vth), impurity concentration on densities, oxide
thicknesses and diffusion depths [29]. In this section we only show
our simulation results on the sensitivity of the interconnect and cells
with respect to different process variation factors. In-depth analysis of
process variation is beyond the scope of this paper.

In all simulation results reported here, a normal distribution with σ �
0 � 06µ is used to generate variation on such factors. This means that
the change of the nominal value will remain in

�
µ 	 3σ � µ � 3σ � range

[50]. The average value (µ) is the result of simulation without any
variation of parameters. The value for variance (σ) is selected to keep
the random parameter values between a lower and upper bound. In
practice, such bounds depend on the statistical data extracted for each
fabrication plant [51]. The CODAC [52] and TISPICE [39] tools are
used in a Monte-Carlo simulation environment to model and simulate
the repercussion of process variations on the interconnects or cells. In
each iteration the interconnect or cells is simulated using a randomly-
chosen value for that specific process factor.

7.1.1 The Effect on the Interconnect
To examine the effects of process variations on the long interconnects
parameters such as thickness, width, interlayer dielectric thickness,
and contact resistance in fabrication process are taken into account
as variances on the distributed R, L, and C values of the interconnect
model.

Table 6 shows the adverse effects of process variation on long on-chip
interconnects when R � L � C values are varied randomly using normal
distribution. E obtained in the simulation expresses the percentage
of violations (overshoot, undershoot or skew that are 20% larger than
their nominal values) occurred on the interconnects. For example,
24.7% of the inputs cause significant overshoots, which reduces chip
reliability.

Many researchers showed the importance of detecting skew and volt-
age violations of long interconnects on chips [53] [54]. Our simulation
results also confirm this fact. Due to its probabilistic and environment-
dependent nature, the process variation cannot be considered or mod-
eled in the design phase. Thus, after fabrication a significant percent-
age of overshoots, violation of noise margin or settling time may ap-
pear on long interconnects. These situations can be only tested using
an on-chip approach such as ours.

7.1.2 The Effect on the ND cell
To show the sensitivity of the ND cell with respect to the process vari-
ation, we have simulated the ND cell with variations of the different
parameters. Using CODAC and SPICE, we trace the effect of variation
of width (W ), length (L), transconductance (κ), and threshold voltage
(Vth) on the behavior of ND cell. Table 7 demonstrates the results.
The last column in this table (E) shows the percentage of unacceptable
outputs compared to the output of ND cell under no process variations
for different parameters. As reflected in the table, the ND cell can
quite adequately tolerate the variations on κ and length of transistors.
However, the adverse effects of deviations of the threshold voltage and
transistor width are larger.

7.1.3 The Effect on the SD cell

Table 7: The Effect of process variations on the ND cell.
Parameters Nominal [µ] E[%]

Width (WT 1 � � � � � WT 7)
�
µm � 4,4,8,7,4,1.2,4 6.2

Length
�
µm � 0.5 11.0

κ (NMOS, PMOS) (0.161,9.366) 2.1
Vth (NMOS, PMOS)

�
volt � (0.6684, 	 0.9352) 15.1

Table 8: The Effect of process variations on the SD cell.
Parameters Nominal [µ] E[%]

Width (W1 � W2 � � � � � W6)
�
µm � 1.5,1,2,2,1,1 5.0

Length
�
µm � 0.5 17.5

κ (NMOS, PMOS) (0.161,9.366) 0.6
Vth (NMOS, PMOS)

�
volt � (0.6684, 	 0.9352) 2.6

In analyzing the effects of process variation on the SD cell, the delay
generator cell (Figure 15)) is the key element that affects the overall
accuracy of the cell. Monte-Carlo simulations were also carried out
for the SD cell. Table 8 demonstrates the sensitivity of the SD cell in
general, and its delay generator cell in particular, due to the process
variations. As tabulated, the SD cell can adequately tolerate variations
on width, κ, and threshold voltage. The percentage of unacceptable
skewed signals is less than 5% for above factors. However, the varia-
tions on the length of SD cell seem to be larger.

8. CONCLUSION
The rising level of complexity and frequency of chips makes it increas-
ingly difficult to achieve an adequate interconnect test using the ad-hoc
techniques currently practiced in industry. Signal integrity is often de-
graded as signal travels through the interconnect. Such integrity loss
may lead to functional error and reliability loss. We proposed a sys-
tematic BIST-based methodology to model and test signal integrity
in deep-submicron high-speed interconnects. On the test generation
side, while deterministic patterns can be determined analytically, con-
ventional cost-efficient pseudorandom pattern generator can stimulate
the maximal integrity loss reasonably well. Using inexpensive built-in
noise and skew detection cells we offered an efficient architecture to
capture and scan out the occurrences of noise and skew violations.
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