
To appear, NPAR 2002, Annecy, France

Weighted Voronoi Stippling

Adrian Secord∗

Department of Computer Science
University of British Columbia, Vancouver, BC, Canada

Figure 1: Artist’s posable figures with approximately 1000 stipples each

Abstract

The traditional artistic technique ofstippling places small dots of
ink onto paper such that their density give the impression of tone.
The artist tightly controls the relative placement of the stipples on
the paper to produce even tones and avoid artifacts, leading to long
creation times for the drawings.

We present two non-interactive techniques for generating stipple
drawings from grayscale images using weighted centroidal Voronoi
diagrams. An iterative technique acts on input images directly
to produce high-quality stipple drawings and a real-time approach
uses precomputed dot distributions to stipple images quickly.

CR Categories: I.3.3 [Picture/Image Generation]: Display al-
gorithms I.3.4 [Graphics Utilities]: Paint systems I.3.5 [Compu-
tational Geometry and Object Modelling]: Geometric algorithms,
languages and systems

Keywords: Non-photorealistic rendering, stippling, Voronoi dia-
grams

1 Introduction

Stippling as a technique came into existence to give artists con-
trol over the half-toning processes used when printing images in
books was a new and difficult task [Jastrzebski 1985]. The tech-
nique consists of carefully placing many small dots of ink on paper
to approximate different tones. Stipples are placed closer together
to form dark regions and further apart to form lighter regions. The

∗ajsecord@cs.ubc.ca, http://www.cs.ubc.ca/˜ajsecord

stipples must be placed evenly yet randomly so that the human eye
does not see spurious patterns that are not a part of the intended
impression. The stipples may vary in size and occasionally shape
to convey subtle details.

The original advantage of stippling was its ease of reproduction.
The half-toning used to print images in books was of highly vari-
able quality and often drawings were drastically resized to meet
space requirements. While normal drawings suffered from such
treatment stipple drawings retained their attributes more faithfully.
In addition, printing a stippled drawing requires only the ability
to produce dots of a single colour, making it an inexpensive tech-
nique [Wood 1994].

However, stippling has significant artistic merit independent of
its utility. The stipples can represent fine detail and texture with
little cost in complexity. Stippling is particularly good at clearly
representing smooth, rounded objects without sharp edges and so is
often used in medical and archaeological texts.

We wish to generate stipple drawings from images with as lit-
tle user input as possible. The goal is to develop a tool which
can generate high-quality stipple drawings from any source whatso-
ever, which implies that we use images as input and not 3D models.
While this limits the amount of information we have to work with,
it allows us a greater variety of input sources. For example, a user
could start from a scanned pencil sketch, a photograph, the output
of a 3D interactive application, frames of an animation, etc.

One of the features of a good stipple drawing is that the stipples
arewell-spaced, that is, the stipples do not clump together, leave
uneven voids, or form unwanted patterns. The artist achieves this by
carefully placing each stipple onto the page, explaining why stipple
drawings often take weeks to create by hand.

Central to our approach is the use of centroidal Voronoi diagrams
to produce good distributions of points, as explained in Section 2.1.
These distributions can be pre-computed for various different con-
stant tonal values and accessed at run-time to generate stipple draw-
ings rapidly, as covered in Section 4. Alternatively, the input image
can be used directly as a weighting function to create a distribution
of points that approximate its tones. This method produces images
of higher quality but takes more processing time, as explained in
Section 3.

To appear, NPAR 2002, Annecy, France

1.1 Related Work

Our iterative method is a direct descendant of the one described
in Deussen et al. [2000]. Their method generates stipple drawings
by first placing stipples roughly using a dithering algorithm on the
input image and then relaxing them using Lloyd’s algorithm un-
til they are well-spaced. Lloyd’s algorithm was first introduced to
computer graphics by McCool and Fiume in [1992] for the gener-
ation of sampling point sets. Lloyd’s algorithm and the resulting
centroidal Voronoi diagrams are explained in section 2.2. However,
Deussen et al.’s relaxation step does not take into account the un-
derlying image, resulting in a blurring of image boundaries. The
blurring occurs because the relaxation process attempts to space
out closely-packed stipples and compress widely-spaced stipples.
Since their tool was designed for interactive use with an artist, they
solved this problem by having the user confine sets of stipples to
fixed regions, which are aligned to important image boundaries.
Since the stipples are not allowed to cross the region boundaries
during relaxation, the most important edges are preserved. We wish
to find an algorithm that will maintain image boundaries without
human interaction.

Hausner [2001] uses an approach similar to our iterative tech-
nique outlined in Section 3 for aligning the rectangular tiles of a
decorative mosaic. Their approach differs significantly from ours
in that they must align the tiles’ orientation in addition to their po-
sition. However, edges that are to be preserved by the algorithm
must be entered separately by the user. This makes the algorithm
less suitable for a non-interactive application.

2 Voronoi Diagrams

An ordinary Voronoi diagram is formed by a set of points in the
plane called thegeneratorsor generating points. Every point in the
plane is identified with the generator which is closest to it by some
metric. The common choice is to use the EuclideanL2 distance
metric

|x1−x2|=
√

(x1−x2)2 +(y1−y2)2

wherex1 = (x1,y1) and x2 = (x2,y2) are any two points in the
plane. The set of points in the plane identified with a particular gen-
erator form that generator’s Voronoi region, and the set of Voronoi
regions covers the entire plane. Figure 2(a) illustrates a set of gen-
erating points and their associated Voronoi regions.

We implemented the fast 3D graphics hardware-based algorithm
in Hoff [1999] and originally in [Woo et al. 1997] to compute our
Voronoi diagrams. The algorithm draws a set of right cones with
their apexes at each generator. The cones all have the same height
and are viewed from above the apexes with an orthogonal projec-
tion. In addition, each cone is given a unique colour which acts
as the generator’s identity. Since the cones must intersect if there
is more than one generator, the z-buffer determines for each pixel
which cone is closer to the viewer and assigns that pixel the appro-
priate colour value. We can then scan the resulting image and de-
termine which generator is closest to each pixel by using the unique
colours. This technique allows us to compute discrete Voronoi dia-
grams extremely quickly and perform computations on the resulting
regions.

2.1 Centroidal Voronoi Diagrams

A centroidalVoronoi diagram has the interesting property that each
generating point lies exactly on the centroid of its Voronoi region.
The centroid of a region is defined as

Ci =
∫
Axρ(x)dA∫
A ρ(x)dA

(1)

whereA is the region,x is the position andρ(x) is the density func-
tion. For a region of constant densityρ, the centroid can be con-
sidered as the centre of mass. Figure 2(a) has the centroids of each
region marked with small circles.

A centroidal Voronoi diagram is a minimum-energy configura-
tion in the sense that it minimizes

∫
A ρ(x)|Ci −x|2 [Du et al. 1999].

Practically speaking, a centroidal distribution of points is useful be-
cause the points arewell-spacedin a definite sense. Figure 2(b)
shows a centroidal Voronoi diagram.

2.2 Generating Centroidal Voronoi Diagrams

Lloyd’s method [Okabe et al. 1992] is an iterative algorithm to
generate a centroidal Voronoi diagram from any set of generating
points. The algorithm can simply be stated:

Algorithm 1 Lloyd’s method
while generating pointsxi not converged to centroidsdo

Compute the Voronoi diagram ofxi
Compute the centroidsCi using equation (1)
Move each generating pointxi to its centroidCi

end while

Figure 2(a) relaxes under Lloyd’s algorithm to become Figure
2(b). The convergence of Lloyd’s algorithm to a centroidal Voronoi
diagram has been proven for the one-dimensional case. The higher
dimensional cases seem to act similarly in practice, though no proof
is known [Du et al. 1999]. There are several different convergence
criteria which should be equivalent in the limiting case as the algo-
rithm runs forever. The obvious criterion to use would be that the
computed centroids are numerically equal to the generating points.
However, for most applications this criterion is far too stringent and
it would be perhaps better to look at the average distance moved by
all generating points. Since we are interested in generating well-
spaced sets of points, we look at the average change in inter-point
distance, or equivalently, the average change in Voronoi region area.

2.2.1 Efficient Computation of Centroids

Calculating the centroids requires efficiently evaluating the inte-
grals in equation (1). Since the integrals are over arbitrary Voronoi
regions, we convert to iterated integrals and integrate the region row
by row. In this manner we can precompute much of the integral.

The denominator of the centroid is transformed as follows:∫
A

ρ(x)dA =
∫ y2

y1

∫ x2(y)

x1(y)
ρ(x,y)dxdy

=
∫ y2

y1

[P]x2
x1

dy

whereP≡P(x,y)≡
∫ x
0 ρ(s,y)dscan be precomputed from the den-

sity function1. Note that we cannot precompute the entire integral
because we do not know the boundaries of the Voronoi regions be-
forehand.

The numerator of the y-coordinate of the centroid is transformed
similarly: ∫

A
yρ(x,y)dA =

∫ y2

y1

∫ x2(y)

x1(y)
yρ(x,y)dxdy

=
∫ y2

y1

y[P]x2
x1

dy

1Recall that[
∫ x

0 f (s)ds]ba =
∫ b

0 f (s)ds−
∫ a

0 f (s)ds=
∫ b

a f (s)ds

To appear, NPAR 2002, Annecy, France

(a) Voronoi diagram generated by the set of generators (large
dots). Centroids of each Voronoi region are marked by the small
dots.

(b) Centroidal Voronoi diagram

Figure 2: General and centroidal Voronoi diagrams.

The numerator of the x-coordinate of the centroid involves inte-
gration by parts:∫

A
xρ(x,y)dA =

∫ y2

y1

∫ x2(y)

x1(y)
xρ(x,y)dxdy

=
∫ y2

y1

{
[xP]x2

x1
−
∫ x2

x1

Pdx

}
dy

=
∫ y2

y1

[xP−Q]x2
x1

dy

whereQ≡Q(x,y)≡
∫ x
0 P(s,y)dscan also be precomputed from the

density function.
Note that the final expressions require numerical integration only

in the y-direction and otherwise involve expressions only at the re-
gion boundariesx1 andx2. P andQ are precomputed once from the
density function and then evaluated at the horizontal end pointsx1
andx2 as needed. This allows us to compute the integrands only at
region boundaries and not at every pixel. Otherwise we would have
to compute the integrandsxρ andyρ for every span of pixels across
a region and numerically integrated. The above integrand compu-
tation is particularly simple – at worst two look-ups forP andQ,
a multiplication and a subtraction. In addition, if the Voronoi re-
gion is non-convex for numerical reasons, the scan conversion ef-
fectively decomposes the region into convex sub-regions, that is,
single spans of pixels.

2.3 Resolution of Voronoi Calculation

One disadvantage of using a discrete calculation of the Voronoi re-
gions is the calculation of the centroids is affected by the resolution
of the diagram. The relative error of the calculated centroid location
will increase as the number of pixels per Voronoi region decreases.
A related problem is that if the resolution is low enough, two gen-
erating points can effectively overlap and one of the regions will

disappear. The solution, as described in [Hoff III et al. 1999], is
to split the diagram into tiles and compute each tile at the full res-
olution available and then stitch the full diagram back together at
a higher virtual resolution. The virtual resolution can be increased
arbitrarily to meet a lower bound on Voronoi region pixel area.

3 Stippling with Weighted CVDs

The centroidal Voronoi diagrams in Section 2.1 incorporate the idea
of a density functionρ(x,y) which weights the centroid calcula-
tion. Regions with higher values ofρ will pack generating points
closer than regions with lower values. During the iteration of Al-
gorithm 1, the darker regions of the image appear to “attract” more
points. We can use Algorithm 1 directly to generate high-quality
stippling images by treating a grayscale image as a discrete two-
dimensional functionf (x,y) wherex,y∈ [0,1] and 0≤ f (x,y)≤ 1
is the range from a black pixel to a white pixel. Define a density
function ρ(x,y) = 1− f (x,y). We can then stipple a given image
by first distributingn points in the image and using algorithm (1).
Although any distribution of initial points will eventually converge,
it is useful to start with a distribution that approximates the final
form. Deussen et al. [2000] use a dithering algorithm and we use
simple rejection sampling to generate an initial distribution.

3.1 Results

We expect that at the limit of large numbers of very small stipples,
the stipple drawing will approximate the grayscale image. Cen-
troidal Voronoi diagrams produce distributions of points that ap-
proximate a blue noise distribution, that is, a random distribution
with a constraint on the minimum distance between points. Blue
noise distributions are useful because they do not introduce spu-
rious patterns such as lines or grids. They can also approximate
a constant tone because of the minimum distance constraint. Blue

To appear, NPAR 2002, Annecy, France

Figure 3: Close-up of large Peperomia leaves with 20000 stipples
of radius 2×10−3

Figure 4: Small Peperomia plant, lit brightly from the right, with
20000 stipples of radius 1.0×10−3

noise distributions have been used to create very high-quality dither
patterns for colour reduction [Ulichney 1988]. Figure 3 shows a
grey-scale close-up image of some Peperomia leaves with a draw-
ing of 20000 stipples. The fine stippling approximates the tones of
the image very well, including the textures inside the leaves.

Figure 4 shows a different small Peperomia plant, lit from the
side, with 20000 stipples. Although the number of stipples per
square inch is less than in Figure 3, the large number of stipples
still renders a faithful image. In particular, note the hard edges
maintained by the stipple drawing. Figure 5 shows the full Pepero-
mia plant from Figure 3 with 20000 stipples. Observe the coloura-
tion of the centre of the leaf facing the viewer. While the method
of Deussen et al. can easily produce sharp edges through user in-
teraction, producing the gradual change in tone visible on the leaf
would be difficult. The even spacing of points along the edges of
the leaves is the result of the interaction of the centroidal Voronoi
diagram, which attempts to space all points evenly, and the density
functionρ, which restricts points to the essentially one-dimensional
edge.

However, a more interesting test is to apply the method with low
stipple counts. Smaller numbers of stipples mean that we cannot
rely upon the eye to fuse the tiny size and spacing of the dots into a
continuous tone. Figure 6 shows an image of an artist’s mannequin

Figure 5: Large Peperomia plant with 20000 stipples of radius 2×
10−3

Figure 6: Figure with 1000 stipples of radius 5×10−3

and the stippled version with 1000 stipples. Figure 7 shows a climb-
ing shoe in the same format. Note that both the stipple drawings are
quite recognizable, especially in comparison to Figure 8, where the
source images have been reduced in resolution until they contain
approximately 1000 pixels each2.

2This comparison is not quite fair, as the 1000 pixels are forced to be
equally spread across the image whereas the stipples are free to move. The
point is that the stippling maintains edges and silhouettes even at very low
resolutions.

Figure 7: Climbing shoe with 1000 stipples of radius 5×10−3

To appear, NPAR 2002, Annecy, France

Figure 8: Source images of Figures 6 and 7 rendered with approxi-
mately 1000 pixels instead of stipples

Figure 9: Climbing shoe with 5000 stipples of radius 3×10−3

Finally, we note that the most striking drawings come from
neither very-high nor very-low numbers of stipples, but medium
ranges. Figure 9 shows the climbing shoe of Figure 7 rendered with
5000 stipples. This drawing seems to both reproduce the range of
tones from the original and have the “feel” of a real stipple draw-
ing. Figure 10 shows a corn plant rendered with 20000 stipples and
displaying both colouration on the leaves and sharp boundaries on
the edges. We feel that this image begins to live up to the quote
by Hodges in [1989], page 111, in which he attests to the vibrancy
of stippled images: “Like a pointallist painting, the drawing will
appear to vibrate slightly.”

3.2 Parameters and Timings

We computed all the stipple drawings of Section 3 on an Intel Pen-
tium III 1000 MHz machine with 256 Mb of RAM and a NVIDIA
GeForce2 MX graphics accelerator. As discussed in Section 2.3,
we require the Voronoi regions to have an average area of at least
500 pixels, which forces a virtual resolution of up to 3600 by 3600
pixels for the 20000 stipple drawings. Since we precompute the
integralsP andQ from Section 2.2.1 at full virtual resolution, this
requires upwards of 100 Mb of memory. The memory requirement
could be reduced by an order of magnitude by computing the inte-
grals in tiles in the same way that the Voronoi diagrams are com-

Figure 10: Corn plant with 20000 stipples of radius 1.5×10−3

puted, but this did not seem necessary.
The iterations were stopped and the stipple drawing output when

the difference in the standard deviation of the area of the Voronoi
regions was less than 1× 10−4. Because the background of the
input images was not always pure white, stipples were only output
if the input image value at that location was greater than 99% of
pure white.

On the system used, the stipple drawings with up to 5000 stipples
completed in under a minute and the drawings with 40000 stipples
complete in about 20 minutes on an otherwise unloaded machine.
The 1× 10−4 stopping limit was arbitrarily chosen and different
values will lead to different runtimes.

4 Precomputing Stipple Levels

The method presented in Section 3 can produce excellent stipple
drawings given enough time for algorithm (1) to converge. Clearly
a faster algorithm is needed to compute stipple drawings at inter-
active rates. We can accomplish this, albeit at a cost in quality, by
precomputing sets of stipples and stitching them together at run-
time.

4.1 Stipple Levels

We will call the result of stippling an image of constant tonet the
t stipple level, 0≤ t ≤ 1. To generate thet stipple level, we simply
use the method of Section 3 withρ = 1 and N

1−t stipples, whereN

is the number of stipples required in a pure black image3,4. Figure
11 shows nine stipple levels from black to white of a distribution of
1000 stipples, each differing by 125 stipples. Typically we would

3We can actually setρ to any constant value at all, since equation (1) is
insensitive to scalings ofρ.

4The number of stipples required for a pure black image can be com-
puted by considering the optimal hexagonal packing of discs in the plane
and expanding their radii until they completely overlap.

To appear, NPAR 2002, Annecy, France

Figure 11: Nine discrete stipple levels with a maximum stipple
count of 1000, differing by 125 stipples. The radii of the centre
stipple level has been calibrated to represent a 50% gray.

generate a greater number of levels, say 256. We discretise the nor-
mally continuous range of tones achievable into a limited number
of fixed stipple distributions.

4.2 Fast Stipplings

Using the precomputed stipple levels, we can quickly stipple an
image using the following algorithm:

Algorithm 2 Discrete Stippling

for all pixel positions(x,y) ∈ [0,1]× [0,1] do
Map image value at(x,y) to stipple levell
Copy stipples on levell inside(x− 1

2 ,y−
1
2)× (x+ 1

2 ,y+ 1
2)

to output
end for

Algorithm 2 examines the value of each pixel, determines which
stipple level is appropriate, and copies all the stipples that fall inside
the area covered by the pixel to the output. Since the input image is
processed in scan-line order, we sort the stipples in a particular level
into bins that cover a single row of pixels, and then sort the stipples
in each bin from lowx values to high. Given a particular pixel
and a particular level this allows us to quickly find the appropriate
stipples.

Conceptually, we split the image into a number of regions to be
represented by a single stipple level, then stipple each region indi-
vidually and recompose the stippled regions into a final drawing.
The algorithm is quite fast, but is limited by the amount of mem-
ory which must be scanned to produce a stipple drawing. Table 1
shows approximate timings on the system described in Section 3.2
for a simple animation loop. The animation in this case was ren-
dered by OpenGL and read back from its buffers, illustrating the
flexibility of using images as input. While increasing the numbers
of stipples rendered does have a negative effect on the speed, the
greatest factor is the image resolution.

Figure 12 compares the results of the fast algorithm to the high-
quality algorithm. On the left are the fast stipple drawings of a

5000 10000 20000 40000
100×100 350 fps 300 200 150
300×300 150 fps 120 100 80
600×600 60 fps 45 40 35
900×900 20 fps 20 20 18

Table 1: Frames per second at various numbers of stipples and res-
olutions

Figure 12: A black-to-white ramp and a lit sphere stippled with
the fast algorithm of Section 4.2 on the left and the high-quality
algorithm of Section 3 on the right.

black-to-white ramp and a lit sphere and on the right are the high-
quality versions. Note on the left the many voids and overlapping
stipples on the left that introduce spurious detail. They are the result
of two regions of the image being stippled with two different stipple
levels. The stipple levels cannot merge smoothly since they have
different densities of stipples. The result is a pattern that is not as
smooth as it should be.

In addition, what can not be seen from Figure 12 is the tempo-
ral discontinuities that arise when the method is used to stipple an
animation. In areas of the image where the tonal value is changing
quickly, the pixels get stippled by many different stipple levels in a
short time. Even if great care is taken to minimize the differences
between one stipple level and the next, the rate at which the pixels
change cause them to “shimmer.” These problems are minimized
by using greater numbers of smaller stipples in the animation.

5 Conclusions and Future Work

We have extended the work on stippling algorithms by introduc-
ing a scheme based on weighted centroidal Voronoi diagrams. The
presented algorithm has very few user-specified parameters and re-
quires no user interaction. In addition, the input data are grayscale
images which can be produced by a wide variety of sources. Apart
from simply requiring less work to generate a given stipple draw-
ing, this independence allows cheap stippling to be used in a wider
variety of situations than before.

The extension to precomputed stipple levels and thus real-time
performance exacted a heavy cost in terms of visual quality, both
in still images and in terms of inter-frame coherence of animations.
The stipple levels are similar in concept to Praun et al.’s Tonal Art
Maps (TAMs) used to hatch 3D objects in [2001]. It should be

To appear, NPAR 2002, Annecy, France

straight-forward to generate high-quality stippling TAMs and use
their approach to investigate frame-coherent animation. However,
this would require abandoning our general image-based approach
for 3D models.

The tone generated by a set of stipples is problematic and should
be investigated further. All the results in this paper use a rational yet
ad-hoc method to set the constant radii of the stipples in a particular
image. A better understanding of the relationship between stipple
radius, spacing and perhaps colour and the resulting perceived tone
is required.

In addition, several interesting extensions to the current algo-
rithm could be investigated, including varying the size of the stip-
ples in a single drawing, and the use of colour stipples. Partially
transparent blended stipples could be used to alleviate some of the
problems with stippling animations.

6 Acknowledgements

The author would like to acknowledge the extremely helpful nature
of the reviewers’ comments.

References

DEUSSEN, O., HILLER , S., VAN OVERVELD, C., AND
STROTHOTTE, T. 2000. Floating Points: A Method for Com-
puting Stipple Drawings.Computer Graphics Forum 19, 3 (Au-
gust).

DU, Q., FABER, V., AND GUNZBURGER, M. 1999. Centroidal
Voronoi Tessellations: Applications and Algorithms.SIAM Re-
view 41, 4 (Dec.), 637–676.

HAUSNER, A. 2001. Simulating Decorative Mosaics. InProceed-
ings of SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, New
York, E. Fiume, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM, 573–578.

HODGES, E., Ed. 1989.The Guild Handbook of Scientific Illustra-
tion. Van Nostrand Reinhold.

HOFF III, K., C ULVER, T., KEYSER, J., LIN , M., AND
MANOCHA, D. 1999. Fast Computation of Generalized
Voronoi Diagrams Using Graphics Hardware. InProceedings
of SIGGRAPH 99, ACM Press / ACM SIGGRAPH, New York,
A. Rockwood, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM, 277–286.

JASTRZEBSKI, Z. 1985.Scientific Illustration. Prentice-Hall.

MCCOOL, M., AND FIUME , E. 1992. Hierarchical poisson disk
sampling distributions. InProc. of the Graphics Interface ’92,
94–105.

OKABE , A., BOOTS, B., AND SUGIHARA , K. 1992. Spatial Tes-
sellations: Concepts and Applications of Voronoi Diagrams. Wi-
ley & Sons.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-Time Hatching. InProceedings of SIGGRAPH
2001, ACM Press / ACM SIGGRAPH, New York, E. Fiume,
Ed., Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 579–584.

ULICHNEY, R. A. 1988. Dithering with blue noise.Proceedings
of the IEEE 76, 1, 56–79.

WOO, M., NEIDER, J., AND DAVIS , T. 1997.
OpenGLR©Programming Guide, second ed. Addison-Wesley.

WOOD, P. 1994.Scientific Illustration, second ed. Van Nostrand
Reinhold.

	Introduction
	Related Work

	Voronoi Diagrams
	Centroidal Voronoi Diagrams
	Generating Centroidal Voronoi Diagrams
	Efficient Computation of Centroids

	Resolution of Voronoi Calculation

	Stippling with Weighted CVDs
	Results
	Parameters and Timings

	Precomputing Stipple Levels
	Stipple Levels
	Fast Stipplings

	Conclusions and Future Work
	Acknowledgements

