A SIMPLE MESH GENERATOR IN MATLAB

PER-OLOF PERSSON AND GILBERT STRANG*

Abstract. Creating a mesh is the first step in a wide range of applications, including scientific
computing and computer graphics. An unstructured simplex mesh requires a choice of meshpoints
(vertex nodes) and a triangulation. We want to offer a short and simple MATLAB code, described in
more detail than usual, so the reader can experiment (and add to the code) knowing the underlying
principles. We find the node locations by solving for equilibrium in a truss structure (using piecewise
linear force-displacement relations) and we reset the topology by the Delaunay algorithm.

The geometry is described implicitly by its distance function. In addition to being much shorter
and simpler than other meshing techniques, our algorithm typically produces meshes of very high
quality. We discuss ways to improve the robustness and the performance, but our aim here is
simplicity. Readers can download (and edit) the codes from http://math.mit.edu/ persson/mesh.

Key words. mesh generation, distance functions, Delaunay triangulation

AMS subject classifications. 65M50, 656N50

1. Introduction. Mesh generators tend to be complex codes that are nearly
inaccessible. They are often just used as ”black boxes.” The meshing software is
difficult to integrate with other codes — so the user gives up control. We believe
that the ability to understand and adapt a mesh generation code (as one might do
with visualization, or a finite element or finite volume code, or geometry modeling in
computer graphics) is too valuable an option to lose.

Our goal is to develop a mesh generator that can be described in a few dozen lines
of MATLAB. We could offer faster implementations, and refinements of the algorithm,
but our chief hope is that users will take this code as a starting point for their own
work. It is understood that the software cannot be fully state-of-the-art, but it can
be simple and effective and public.

An essential decision is how to represent the geometry (the shape of the region).
Our code uses a signed distance function d(x,y), negative inside the region. We show
in detail how to write the distance to the boundary for simple shapes, and how to
combine those functions for more complex objects. We also show how to compute the
distance to boundaries that are given implicitly by equations f(x,y) = 0, or by values
of d(x,y) at a discrete set of meshpoints.

For the actual mesh generation, our iterative technique is based on the physical
analogy between a simplex mesh and a truss structure. Meshpoints are nodes of
the truss. Assuming an appropriate force-displacement function for the bars in the
truss at each iteration, we solve for equilibrium. The forces move the nodes, and
(iteratively) the Delaunay triangulation algorithm adjusts the topology (it decides
the edges). Those are the two essential steps. The resulting mesh is surprisingly
well-shaped, and Fig. 5.1 shows examples. Other codes use Laplacian smoothing [4]
for mesh enhancements, usually without retriangulations. This could be regarded
as a force-based method, and related mesh generators were investigated by Bossen
and Heckbert [1]. We mention Triangle [9] as a robust and freely available Delaunay
refinement code.

The combination of distance function representation and node movements from
forces turns out to be good. The distance function quickly determines if a node is

*Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge MA 02139 (persson@math.mit.edu and gs@math.mit.edu)

1

2 PER-OLOF PERSSON AND GILBERT STRANG

inside or outside the region (and if it has moved outside, it is easy to determine the
closest boundary point). Thus d(z,y) is used extensively in our implementation, to
find the distance to that closest point.

Apart from being simple, it turns out that our algorithm generates meshes of
high quality. The edge lengths should be close to the relative size h(x) specified by
the user (the lengths are nearly equal when the user chooses h(x) = 1). Compared
to typical Delaunay refinement algorithms, our force equilibrium tends to give much
higher values of the mesh quality ¢, at least for the cases we have studied.

We begin by describing the algorithm and the equilibrium equations for the truss.
Next, we present the complete MATLAB code for the two-dimensional case, and de-
scribe every line in detail. In §5, we create meshes for increasingly complex geometries.
Finally, we describe the n-dimensional generalization and show examples of 3-D and
4-D meshes.

2. The Algorithm. In the plane, our mesh generation algorithm is based on
a simple mechanical analogy between a triangular mesh and a 2-D truss structure,
or equivalently a structure of springs. Any set of points in the z,y-plane can be
triangulated by the Delaunay algorithm [3]. In the physical model, the edges of the
triangles (the connections between pairs of points) correspond to bars, and the points
correspond to joints of the truss. Each bar has a force-displacement relationship
f(¢,£y) depending on its current length ¢ and its unextended length /.

The external forces on the structure come at the boundaries. At every boundary
node, there is a reaction force acting normal to the boundary. The magnitude of this
force is just large enough to keep the node from moving outside. The positions of the
joints (these positions are our principal unknowns) are found by solving for a static
force equilibrium in the structure. The hope is that (when h(z,y) = 1) the lengths of
all the bars at equilibrium will be nearly equal, giving a well-shaped triangular mesh.

To solve for the force equilibrium, collect the x- and y-coordinates of all N mesh-
points into an N-by-2 array p:

p=[=z y] (2.1)
The force vector F'(p) has horizontal and vertical components at each meshpoint:
F(p) = [-F‘int,a?(p) -Fint,y(p)] + [cht,m(p) cht,y(p)] (22)

where Fj,; contains the internal forces from the bars, and Fey are the external forces
(reactions from the boundaries). The first column of F' contains the z-components of
the forces, and the second column contains the y-components.

Note that F'(p) depends on the topology of the bars connecting the joints. In the
algorithm, this structure is given by the Delaunay triangulation of the meshpoints.
The Delaunay algorithm determines non-overlapping triangles that fill the convex
hull of the input points, such that every edge is shared by at most two triangles, and
the circumcircle of every triangle contains no other input points. In the plane, this
triangulation is known to maximize the minimum angle of all the triangles. The force
vector F'(p) is not a continuous function of p, since the topology (the presence or
absence of connecting bars) is changed by Delaunay as the points move.

The system F(p) = 0 has to be solved for a set of equilibrium positions p.
This is a relatively hard problem, partly because of the discontinuity in the force
function (change of topology), and partly because of the external reaction forces at
the boundaries.

A SIMPLE MESH GENERATOR IN MATLAB 3

A simple approach to solve F'(p) = 0 is to introduce an artificial time-dependence.
For some p(0) = pp, we consider the system of ODEs (in non-physical units!)

dp
= = > 0. .
o =Fw®), t>0 (2.3)

If a stationary solution is found, it satisfies our system F(p) = 0. The system (2.3)
is approximated using the forward Euler method. At the discretized (artificial) time
t, = nAt, the approximate solution p,, ~ p(t,) is updated by

Pnt1 = Pn + AtF(py). (2.4)

When evaluating the force function, the positions p,, are known and therefore also the
truss topology (triangulation of the current point-set). The external reaction forces
enter in the following way: All points that go outside the region during the update
from p,, to p,+1 are moved back to the closest boundary point. This conforms to the
requirement that forces act normal to the boundary. The points can move along the
boundary, but not go outside.

There are many alternatives for the force function f(¢, ¢y) in each bar, and several
choices have been investigated [1], [11]. The function k({y — ¢) models ordinary linear
springs. Our implementation uses this linear response for the repulsive forces but it
allows no attractive forces:

Ft0) = {k(zo —0) if < b,

2.5
0 if 0> 4. (25)

Slightly nonlinear force-functions might generate better meshes (for example with
k= (€ + £y)/2lp), but the piecewise linear force turns out to give good results (k is
included to give correct units; we set k = 1). It is reasonable to require f = 0 for
{ = {y. The proposed treatment of the boundaries means that no points are forced
to stay at the boundary, they are just prevented from crossing it. It is therefore
important that most of the bars give repulsive forces f > 0, to help the points spread
out across the whole geometry. This means that f(¢, ¢y) should be positive when ¢ is
near the desired length, which can be achieved by choosing ¢; slightly larger than the
length we actually desire (a good default in 2-D is 20%, which yields Fscale=1.2).

For uniform meshes ¢ is constant. But there are many cases when it is ad-
vantageous to have different sizes in different regions. Where the geometry is more
complex, it needs to be resolved by small elements (geometrical adaptivity). The so-
lution method may require small elements close to a singularity to give good global
accuracy (adaptive solver). A uniform mesh with these small elements would require
too many nodes.

In our implementation, the desired edge length distribution is provided by the
user as an element size function h(x,y). Note that h(z,y) does not have to equal
the actual size; it gives the relative distribution over the domain. This avoids an
implicit connection with the number of nodes, which the user is not asked to specify.
For example, if h(z,y) = 1 + z in the unit square, the edge lengths close to the left
boundary (z = 0) will be about half the edge lengths close to the right boundary
(z = 1). This is true regardless of the number of points and the actual element sizes.
To find the scaling, we compute the ratio between the mesh area from the actual edge
lengths ¢; and the “desired size” (from h(z,y) at the midpoints (z;,y;) of the bars):

/2
‘ X
ling f == . 2.
Scaling factor (Z ERE (2.6)

4 PER-OLOF PERSSON AND GILBERT STRANG

We will assume here that h(z,y) is specified by the user. It could also be created
using adaptive logic to implement the local feature size, which is roughly the distance
between the boundaries of the region (see example 5 below). For highly curved bound-
aries, h(z,y) could be expressed in terms of the curvature computed from d(z,y). An
adaptive solver that estimates the error in each triangle can choose h(z,y) to refine
the mesh for good solutions.

The initial node positions py can be chosen in many ways. A random distribution
of the points usually works well. For meshes intended to have uniform element sizes
(and for simple geometries), good results are achieved by starting from equally spaced
points. When a non-uniform size distribution h(x,y) is desired, the convergence is
faster if the initial distribution is weighted by probabilities proportional to 1/h(z,y)?
(which is the density). Our rejection method starts with a uniform initial mesh inside
the domain, and discards points using this probability.

3. Implementation. The complete source code for the two-dimensional mesh
generator is in Fig. 3.1. Each line is explained in detail below.
The first line specifies the calling syntax for the function distmesh2d:

function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)

This meshing function produces the following outputs:

e The node positions p. This N-by-2 array contains the x,y coordinates for
each of the N nodes.

e The triangle indices t. The row associated with each triangle has 3 integer
entries to specify node numbers in that triangle.

The input arguments are as follows:

e The geometry is given as a distance function £d. This function returns the
signed distance from each node location p to the closest boundary.

e The (relative) desired edge length function h(z,y) is given as a function fh,
which returns A for all input points.

e The parameter hO is the distance between points in the initial distribution
po. For uniform meshes (h(z,y) = constant), the element size in the final
mesh will usually be a little larger than this input.

e The bounding box for the region is an array bbox=|[Zmin, Ymin; Tmax, Ymax)-

e The fixed node positions are given as an array pfix with two columns.

e Additional parameters to the functions £d and fh can be given in the last ar-
guments varargin (type help varargin in MATLAB for more information).

In the beginning of the code, six parameters are set. The default values seem
to work very generally, and they can for most purposes be left unmodified. The
algorithm will stop when all movements in an iteration (relative to the average bar
length) are smaller than dptol. Similarly, ttol controls how far the points can move
(relatively) before a retriangulation by Delaunay.

The “internal pressure” is controlled by Fscale. The time step in Euler’s method
(2.4) is deltat, and geps is the tolerance in the geometry evaluations. The square
root deps of the machine tolerance is the Az in the numerical differentiation of the
distance function. This is optimal for one-sided first-differences. These numbers geps
and deps are scaled with the element size, in case someone were to mesh an atom or
a galaxy in meter units.

Now we describe steps 1 to 8 in the distmesh2d algorithm, as illustrated in
Fig. 3.2.

A SIMPLE MESH GENERATOR IN MATLAB 5

function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)
dptol=.001; ttol=.1; Fscale=1.2; deltat=.2; geps=.001*h0; deps=sqrt(eps)*h0;

% 1. Create initial distribution in bounding boz (equilateral triangles)
[x,y]l=meshgrid(bbox(1,1) :h0:bbox(2,1) ,bbox(1,2) :hO*sqrt(3)/2:bbox(2,2));

x(2:2:end, :)=x(2:2:end, :) +h0/2; % Shift even rows
p=[x(:),y()]; % List of node coordinates
% 2. Remove points outside the region, apply the rejection method
p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points
r0=1./feval(fh,p,varargin{:})."2; % Probability to keep point
p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method
N=size(p,1); % Number of points N
pold=inf; % For first iteration
while 1
% 3. Retriangulation by the Delaunay algorithm
if max(sqrt(sum((p-pold)."~2,2))/h0)>ttol % Any large movement?
pold=p; % Save current positions
t=delaunayn(p) ; % List of triangles
pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Compute centroids
t=t (feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles
% 4. Describe each bar by a unique pair of nodes
bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,31)]; % Interior bars duplicated
bars=unique(sort(bars,2),’rows’); % Bars as node pairs

% 5. Graphical output of the current mesh

trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2) ,axis equal,axis off,drawnow
end

% 6. Move mesh points based on bar lengths L and forces F

barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors

L=sqrt (sum(barvec."2,2)); % L = Bar lengths
hbars=feval (fh, (p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});
LO=hbars*Fscale*sqrt (sum(L."~2)/sum(hbars."2)); % LO = Desired lengths

F=max (LO-L,0); % Bar forces (scalars)
Fvec=F./L*[1,1].*barvec; % Bar forces (z,y components)
Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2], [Fvec,-Fvec],N,2));
Ftot(1:size(pfix,1),:)=0; % Force = 0 at fized points
p=p+deltat*Ftot; % Update node positions

% 7. Bring outside points back to the boundary

d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)
dgradx=(feval(fd, [p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps; % Numerical
dgrady=(feval(fd, [p(ix,1) ,p(ix,2)+deps],varargin{:})-d(ix))/deps; % gradient
p(ix, :)=p(ix,:)-[d(ix).*dgradx,d(ix) .*dgrady]; % Project back to boundary

% 8. Termination criterion: All interior nodes move less than dptol (scaled)
if max(sqrt(sum(deltat*Ftot(d<-geps,:)."2,2))/h0)<dptol, break; end
end

Fic. 3.1. The complete source code for the 2-D mesh generator distmesh2d.m. This code can
be downloaded from http://math.mit.edu/ persson/mesh.

6 PER-OLOF PERSSON AND GILBERT STRANG

1-2: Distribute points 3: Triangulate 4-7: Force equilibrium
S NAVAVAYAVAVVAvAVavip
Fe SN
SRS AT R
| . ‘ DS

/ A

A
DN
CRERES

: : B 5“47‘
L : R K
0ot % K Y
i e vyt
Ky NAVAVAVAVAV.A

- VAVAVAVAVAvLS

Fic. 3.2. The generation of a non-uniform triangular mesh.

1. The first step creates a uniform distribution of nodes within the bounding
box of the geometry, corresponding to equilateral triangles:

[x,y]=meshgrid(bbox(1,1) :h0:bbox(2,1) ,bbox(1,2) :hO*sqrt(3)/2:bbox(2,2));
x(2:2:end, :)=x(2:2:end, :)+h0/2; % Shift even rows
p=[x(:),y(:)]; % List of node coordinates

The meshgrid function generates a rectangular grid, given as two vectors x and y of
node coordinates. Initially the distances are v/3hg/2 in the y-direction. By shifting
every second row hg/2 to the right, all points will be a distance hy from their closest
neighbors. The coordinates are stored in the N-by-2 array p.

2. The next step removes all nodes outside the desired geometry:

p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points

feval calls the distance function fd, with the node positions p and the additional
arguments varargin as inputs. The result is a column vector of distances from the
nodes to the geometry boundary. Only the interior points with negative distances
(allowing a tolerance geps) are kept. Then we evaluate h(z,y) at each node and
reject points with a probability proportional to 1/h(z,y)?:

r0=1./feval(fh,p,varargin{:})."2; % Probability to keep point
p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method
N=size(p,1); % Number of points N

The user’s array of fixed nodes is placed in the first rows of p.

3. Now the code enters the main loop, where the location of the N points is
iteratively improved. Initialize the variable pold for the first iteration, and start the
loop (the termination criterion comes later):

pold=inf; % For first iteration
while 1
end

Before evaluating the force function, a Delaunay triangulation determines the topology
of the truss. Normally this is done for pg, and also every time the points move, in order
to maintain a correct topology. To save computing time, an approximate heuristic
calls for a retriangulation when the maximum displacement since the last triangulation
is larger than ttol (relative to the approximate element size £¢p):

A SIMPLE MESH GENERATOR IN MATLAB 7

if max(sqrt(sum((p-pold)."~2,2))/h0)>ttol % Any large movement?
pold=p; % Save current positions
t=delaunayn(p); % List of triangles
prid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Conpute centroids
t=t(feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles
end

The node locations after retriangulation are stored in pold, and every iteration com-
pares the current locations p with pold. The MATLAB delaunayn function generates
a triangulation t of the convex hull of the point set, and triangles outside the geom-
etry have to be removed. We use a simple solution here — if the centroid of a triangle
has d > 0, that triangle is removed. This technique is not entirely robust, but it works
fine in many cases, and it is very simple to implement.

4. The list of triangles t is an array with 3 columns. Each row represents a
triangle by three integer indices (in no particular order). In creating a list of edges,
each triangle contributes three node pairs. Since most pairs will appear twice (the
edges are in two triangles), duplicates have to be removed:

bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated
bars=unique(sort(bars,2),’rows’); % Bars as node pairs

5. The next two lines give graphical output after each retriangulation. (They
can be moved out of the if-statement to get more frequent output.) See the MATLAB
help texts for details about these functions:

trimesh(t,p(:,1),p(:,2),zeros(N,1))
view(2) ,axis equal,axis off,drawnow

6. Each bar is a two-component vector in barvec; its length is in L.

barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors
L=sqrt (sum(barvec.~2,2)); % L = Bar lengths

The desired lengths LO come from evaluating h(x,y) at the midpoint of each bar. We
multiply by the scaling factor in (2.6) and the fixed factor Fscale, to ensure that
most bars give repulsive forces f > 0 in F.

hbars=feval (fh, (p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:1});
LO=hbars*Fscale*sqrt (sum(L."2) /sum(hbars."2)); % L0 = Desired lengths
F=max (LO-L,0); % Bar forces (scalars)

The actual update of the node positions p is in the next block of code. The force
resultant Ftot is the sum of force vectors in Fvec, from all bars meeting at a node.
A stretching force has positive sign, and its direction is given by the two-component
vector in bars. The sparse command is used (even though Ftot is immediately
converted to a dense array!), because of the nice summation property for duplicated
indices.

Fvec=F./Lx[1,1] .*barvec; % Bar forces (z,y components)
Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2], [Fvec,-Fvec],N,2));
Ftot(1l:size(pfix,1),:)=0; % Force = 0 at fized points
p=ptdeltat*Ftot; % Update node positions

Note that Ftot for the fixed nodes is set to zero. Their coordinates are unchanged in
p-

8 PER-OLOF PERSSON AND GILBERT STRANG

7. If a point ends up outside the geometry after the update of p, it is moved back
to the closest point on the boundary (using the distance function). This corresponds
to a reaction force normal to the boundary. Points are allowed to move tangentially
along the boundary. The gradient of d(x,y) gives the (negative) direction to the
closest boundary point, and it comes from numerical differentiation:

d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)
dgradx=(feval(fd, [p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps; % Numerical
dgrady=(feval(£fd, [p(ix,1),p(ix,2)+deps],varargin{:})-d(ix))/deps; % gradient
p(ix, :)=p(ix,:)-[d(ix) .*dgradx,d(ix) .*dgrady]; % Project back to boundary

8. Finally, the termination criterion is based on the maximum node movement
in the current iteration (excluding the boundary points):

if max(sqrt(sum(deltat*Ftot(d<-geps,:).~2,2))/h0)<dptol, break; end

This criterion is sometimes too tight, and a high-quality mesh is often achieved long
before termination. In these cases, the program can be interrupted manually, or other
tests can be used. One simple but efficient test is to compute all the element qualities
(see below), and terminate if the smallest quality is large enough.

4. Special Distance Functions. The function distmesh2d is everything that
is needed to mesh a region specified by the distance d(z,y) to the boundary. While
it is easy to create distance functions for some simple geometries, it is convenient to
define some short help functions (Fig. 4.1) for more complex geometries.

The output from dcircle is the (signed) distance from p to the circle with center
xc,yc and radius r. For the rectangle, we take drectangle as the minimum distance
to the four boundary lines (each extended to infinity, and with the desired negative
sign inside the rectangle). This is not the correct distance to the four external regions
whose nearest points are corners of the rectangle. Our function avoids square roots
from distances to corner points, and no meshpoints end up in these four regions when
the corner points are fixed (by pfix).

The functions dunion, ddiff, and dintersect combine two geometries. They
use the simplification just mentioned for rectangles, a max or min that ignores “closest
corners”. We use separate projections to the regions A and B, at distances d(x,y)
and dp(z,y):

) (4.1)
Difference : da\g(z,y) = max(da(z,y), —dp(z,y)) (4.2)
4.3

)

Variants of these can be used to generate blending surfaces for smooth intersections
between two surfaces [13]. Finally, pshift and protate operate on the node array p,
to translate or rotate the coordinates.

The distance function may also be provided in a discretized form, for example by
values on a Cartesian grid. This is common in level set applications [8], where partial
differential equations efficiently model geometries with moving boundaries. Signed
distance functions are created from arbitrary implicit functions using the reinitializa-
tion method [12]. We can easily mesh these discretized domains by creating d(z,y)
from interpolation. The functions dmatrix and hmatrix in Fig. 4.1 use interp2 to
create d(z,y) and h(z,y), and huniform quickly implements the choice h(z,y) = 1.

Finally, we describe how to generate a distance function (with |gradient| = 1)
when the boundary is the zero level set of a given f(z,y). The results are easily

Union : dAUB (1’7 y) = min(dA (Ia y)v dB (I, y)

Intersection : danp(x,y) = max(da(z,y),ds(x,y)) (

A SIMPLE MESH GENERATOR IN MATLAB 9

generalized to any dimension. For each node py = (z0, yo), we need the closest point
P on that zero level set — which means that f(P) =0 and P — pg is parallel to the
gradient (fg, fy) at P:

_ f(z,y) _
L) = [(= 0) fy — (4 — yo0) fo } =0 (44)

We solve (4.4) for the column vector P = (z,y) using the damped Newton’s method
with po = (0, yo) as initial guess. The Jacobian of L is

oL [foo Sy 4 (@ —20) fay — (Y = Y0) fou]T (4.5)

J(P):a?: fy _fx_(y_yo)fxy+(x_x0)fyy

(displayed as a transpose for typographical reasons), and we iterate

Pet1 = pr — oJ ' (py) L(px) (4.6)

until the residual L(py) is small. Then py is taken as P. The signed distance from
(z0,y0) to P = (x,y) on the zero level set of f(z,y) is

d(po) = sign (f(zo,¥0)) V(& — x0)? + (y — y0)>. (4.7)

The damping parameter o can be set to 1.0 as default, but might have to be reduced
adaptively for convergence.

5. Examples. Fig. 5.1 shows a number of examples, starting from a circle and
extending to relatively complicated meshes.

(1) Unit Circle. We will work directly with d = /22 + y2? — 1, which can be
specified as an inline function. For a uniform mesh, h(x,y) returns a vector of 1’s.
The circle has bounding box —1 <z <1, —1 < y < 1, with no fixed points. A mesh
with element size approximately hg = 0.2 is generated with two lines of code:

>> fd=inline(’sqrt(sum(p.~2,2))-1’,’p’);
>> [p,t]=distmesh2d(fd,@huniform,0.2, [-1,-1;1,1],[]1);

The plots (1a), (1b), and (1c) show the resulting meshes for hy = 0.4, hy = 0.2,
and hg = 0.1. Inline functions are defined without creating a separate file. The first
argument is the function itself, and the remaining arguments name the parameters to
the function (help inline brings more information). Please note the comment near
the end of the paper about the relatively slow performance of inline functions.

Another possibility is to discretize d(z,y) on a Cartesian grid, and interpolate at
other points using the dmatrix function:

>> [xx,yyl=meshgrid(-1.1:0.1:1.1,-1.1:0.1:1.1); % Generate grid
>> dd=sqrt(xx. 2+yy."2)-1; % d(z,y) at grid points
>> [p,t]=distmesh2d(@dmatrix,@huniform,0.2,[-1,-1;1,1],[],xx,yy,dd);

(2) Unit Circle with Hole. Removing a circle of radius 0.4 from the unit circle
gives the distance function d(z,y) = (0.7 — /22 + y2| — 0.3:

>> fd=inline(’-0.3+abs(0.7-sqrt(sum(p."2,2)))’);
>> [p,t]=distmesh2d(fd,@huniform,0.1,[-1,-1;1,11,[1);

Equivalently, d(x,y) is the distance to the difference of two circles:

10 PER-OLOF PERSSON AND GILBERT STRANG

function d=dcircle(p,xc,yc,r) % Circle
d=sqrt ((p(:,1)-xc). " 2+(p(:,2)-yc) . 2)-r;

function d=drectangle(p,x1,x2,y1,y2) % Rectangle
d=-min(min(min(-y1+p(:,2),y2-p(:,2)),
-x1+p(:,1)),x2-p(:,1));

function d=dunion(d1,d2) % Union
d=min(d1,d2);

function d=ddiff(d1,d2) % Difference
d=max(d1,-d2);

function d=dintersect(dl,d2) % Intersection
d=max(d1,d2);

function p=pshift(p,x0,y0) % Shift points
pC:,1)=p(:,1)-x0;
p(:,2)=p(:,2)-y0;

function p=protate(p,phi) % Rotate points around origin
A=[cos(phi),-sin(phi);sin(phi),cos(phi)];

p=p*A;

function d=dmatrix(p,xx,yy,dd,varargin) % Interpolate d(z,y) in meshgrid matriz

d=interp2(xx,yy,dd,p(:,1),p(:,2),’*linear’);

function h=hmatrix(p,xx,yy,dd,hh,varargin) % Interpolate h(z,y) in meshgrid matriz
h=interp2(xx,yy,hh,p(:,1),p(:,2),’*linear’);

function h=huniform(p,varargin) % Uniform h(z,y) distribution
h=ones(size(p,1),1);

F1G. 4.1. Short help functions for generation of distance functions and size functions.

>> fd=inline(’ddiff (dcircle(p,0,0,1),dcircle(p,0,0,0.4))°,°p’);

(8) Square with Hole. We can replace the outer circle with a square, keeping
the circular hole. Since our distance function drectangle is incorrect at the corners,
we fix those four nodes (or write a distance function involving square roots):

>> fd=inline(’ddiff (drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))7’,°p’);
>> pfix=[-1,-1;-1,1;1,-1;1,1];
>> [p,t]=distmesh2d(fd,Ghuniform,0.15,[-1,-1;1,1],pfix);

A non-uniform h(z,y) gives a finer resolution close to the circle (mesh (8b)):

>> fh=inline (’min(4*sqrt (sum(p.~2,2))-1,2)’,’p’);
>> [p,t]=distmesh2d(fd,fh,0.05,[-1,-1;1,1],pfix);

(4) Polygons. It is easy to create dpoly (not shown here) for the distance to a
given polygon, using MATLAB’s inpolygon to determine the sign. We mesh a regular
hexagon and fix its six corners:

>> phi=(0:6)’/6%2xpi;
>> pfix=[cos(phi),sin(phi)];
>> [p,t]=distmesh2d(@dpoly,@huniform,0.1,[-1,-1;1,1],pfix,pfix);

Note that pfix is passed twice, first to specify the fixed points, and next as a param-

A SIMPLE MESH GENERATOR IN MATLAB 11

(1)

AVAVAVEVAVavy
SRITOSERNERT
SR

YAV VAVAVAVAVAVAY AVAN
AV AVAYAVAVAVAV. v ruVAVAVAVAVAYAY

ININONCNIN
ZAVAVAVAVAVAVANIN I -l
= s o
DOOOOE Rl
< NV UQGIRORL
VAAWA"AY NAVAVAVAVAVAVAVAVAVAVAVAVA"AS
O RS
AN LR

2 (3a) (3b)

PAVAVAVAV v 8 ANANNNNNNNNNNN VAVAVAVAVAVAVAVAN
(TR, P4YaVAVAVAVAVAVAVAVAV(N)N VAVAVATAVAVAYAR
TR IRIIRARATD ORI SERERLORK

AVav,Y)
JAVAVAVAY)YAY.
AVAVAvAvAyAév

EAAVAVAVAVAVAVAVAY. g
R PAVAVAVAY, V4 KRR
Qvg‘vge?g%gv‘u 'NAVAV%"NAV%éhgb Q ‘5§ <>

<X
CRERRAR
% X

N/
&

\N
5

F
i
TR

’%}'&?’eﬂ 5‘??}"

KA D R SR, SR
QR ITIIAHOAN) KRRt dOC K

\VAVAVAVAV S Y472 % NAVAVAVAY, ISR RS VAVAN
\VAVAY,vAVAVAVAVAV v VAVAVAYY SKISKINAARPOON NS
R N VAVATAVAVAVAYAVAVAS
QRS N NAVAVAVAVAVAVAVAVAVAVAYA

INAVAVAVAVAVAY,
CRREReees
SRR

\/

%%

&

AVAN
vvirl»"

Ve
%

v
P
\VAV/

A

VAV

AN
VAVAYATA
AVl
VAVAV)

\/

e
%%

NS
N

Y
O
CEEERK
avay
A
KX
VAVAVA

N

WAVA %
VAVAVAeA‘ h} < 3
\VaAVAVAV4 Y. AVa0) WAVAVAVAV/
avAvAY, av VavaVavaY
NAYAVAVAYAVAVAVAVAVAVAY
\VAVAVAVAVAVAVAVAVAVAV

>
X
%

WAVAVAVAV/

/\

A A
A ROEBPROCES
POSERIARIE
avavatavavivis

A

) (8)

<
D 3
JRD D a
RIS e
AT vl ATy SR
A,y vavavs AATONS AR
O AAVAV, WAVAYAY QAZDSRS
CRRRKRRAIY XERoRs

Fic. 5.1. Ezample meshes, numbered as in the text. The color shows the distance function
d(z,y), from blue at the boundary to red inside the region. Ezamples (3b), (5), (6), and (8) have
varying size functions h(xz,y). Examples (6) and (7) use Newton’s method (4.6) to construct the
distance function.

12 PER-OLOF PERSSON AND GILBERT STRANG

eter to dpoly to specify the polygon. In plot (4), we also removed a smaller rotated
hexagon by using ddiff.

(5) Geometric Adaptivity. Here we show how the distance function can be
used in the definition of h(x,y), to use the local feature size for geometric adaptivity.
The half-plane y > 0 has d(z,y) = —y, and our d(x,y) is created by an intersection
and a difference:

dy =72 +y% -1 (5.1)
do =+/(x+0.4)%2 +y% —0.55 (5.2)
d = max(dy, —da, —y).

Next, we create two element size functions to represent the finer resolutions near the
circles. The element sizes h; and ho increase with the distances from the boundaries
(the factor 0.3 gives a ratio 1.3 between neighboring elements):

hi(z,y) =0.15-0.2 - dy(z,y), (5.4)
ha(z,y) = 0.06 + 0.2 - do(x, y). (5.5)

These are made proportional to the two radii to get equal angular resolutions. Note
the minus sign for d; since it is negative inside the region. The local feature size is
the distance between boundaries, and we resolve this with at least three elements:

hs(z,y) = (d2(z,y) — di(z,9))/3. (5.6)
Finally, the three size functions are combined to yield the mesh in plot (5):
h = min(hl,hg,hg). (57)

The initial distribution had size hy = 0.05/3 and four fixed corner points.

(6), (7) Implicit Expressions. We now show how distance to level sets can
be used to mesh non-standard geometries. In (6), we mesh the region between the
level sets 0.5 and 1.0 of the superellipse f(z,y) = (z* 4+ y*). The example in (7) is
the intersection of the following two regions:

9\ 4
y<cos(z) and y=>5 (;) -5, (5.8)

™
with —57/2 < z < 57/2 and —5 < y < 1. The boundaries of these geometries
are not approximated by simpler curves, they are represented exactly by the given
expressions. As the element size hg gets smaller, the mesh automatically fits to the
exact boundary, without any need to refine the representation.

(8) More complex geometry. This example shows a somewhat more compli-
cated construction, involving set operations on circles and rectangles, and element
sizes increasing away from two vertices and the circular hole.

6. Mesh Generation in Higher Dimensions. Many scientific and engineer-
ing simulations require 3-D modeling. The boundaries become surfaces (possibly
curved), and the interior becomes a volume instead of an area. A simplex mesh uses
tetrahedra.

Our mesh generator extends to any dimension n. The code distmeshnd.m is given
in http://math.mit.edu/ persson/mesh. The truss lies in the higher-dimensional

A SIMPLE MESH GENERATOR IN MATLAB 13
space, and each simplex has ("3") edges (compared to three for triangles). The initial
distribution uses a regular grid. The input p to Delaunay is N-by-n. The ratio
Fscale between the unstretched and the average actual bar lengths is an important
parameter, and we employ an empirical dependence on n. The post-processing of a
tetrahedral mesh is somewhat different, but the MATLAB visualization routines make
this relatively easy as well. For more than three dimensions, the visualization is not
used at all.

In 2-D we usually fix all the corner points, when the distance functions are not
accurate close to corners. In 3-D, we would have to fix points along intersections
of surfaces. A choice of edge length along those curves might be difficult for non-
uniform meshes. An alternative is to generate “correct” distance functions, without
the simplified assumptions in drectangle, dunion, ddiff, and dintersect. This
handles all convex intersections, and the technique is used in the cylinder example
below.

The extended code gives 3-D meshes with very satisfactory edge lengths. There is,
however, a new problem in 3-D. The Delaunay algorithm generates slivers, which are
tetrahedra with reasonable edge lengths but almost zero volume. These slivers could
cause trouble in finite element computations, since interpolation of the derivatives
becomes inaccurate when the Jacobian is close to singular.

All Delaunay mesh generators suffer from this problem in 3-D. The good news is
that techniques have been developed to remove the bad elements, for example face
swapping, edge flipping, and Laplacian smoothing [6]. A promising method for sliver
removal is presented in [2]. Recent results [7] show that slivers are not a big problem
in the Finite Volume Method, which uses the dual mesh (the Voronoi graph). It
is not clear how much damage comes from isolated bad elements in finite element
computations [10]. The slivery meshes shown here give nearly the same accuracy for
the Poisson equation as meshes with higher minimum quality.

Allowing slivers, we generate the tetrahedral meshes in Fig. 6.1.

(9) Unit Ball. The ball in 3-D uses nearly the same code as the circle:

>> fd=inline(’sqrt(sum(p."~2,2))-1’,’p’);
>> [p,t]=distmeshnd(fd,@huniform,0.15,[-1,-1,-1;1,1,11,[1);

This distance function £d automatically sums over three dimensions, and the bound-
ing box has two more components. The resulting mesh has 1,295 nodes and 6,349
tetrahedra.

(10) Cylinder with Spherical Hole. For a cylinder with radius 1 and height
2, we create dq, ds, d3 for the curved surface and the top and bottom:

dy(z,y,2) =22 +9y2 —1 (6.1)
(6.2

do(z,y,2) =2—1
ds(z,y,2) = —z— 1. (6.3)

An approximate distance function is then formed by intersection:
dz = max(dh dz, d3) (64)

This would be sufficient if the “corner points” along the curves 22 +y%> =1,z = +1
were fixed by an initial node placement. Better results can be achieved by correcting

14 PER-OLOF PERSSON AND GILBERT STRANG

)

/)ﬂﬂg_%gm»
YA
£

>
L

(10)

FiG. 6.1. Tetrahedral meshes of a ball and a cylinder with a spherical hole. The left plots show
the surface meshes, and the right plots show cross-sections.

our distance function using distances to the two curves:

d4(l’,y,2’) = \/dl(l',y,Z)2 +d2($,y,2)2 (65)
ds(z,y,2) = \/dl(as,y, 2)? +ds(z,y, 2)2. (6.6)

These functions should be used where the intersections of dy,ds and dy,ds overlap,
that is, when they both are positive:

dy, if dy >0and dy >0
d= d5, ifd; >0and d3 >0 (67)
d~, otherwise.

Fig. 6.1 shows a mesh for the difference between this cylinder and a ball of radius 0.5.
We use a finer resolution close to this ball, h(z,y, 2) = min(4\/22 + y? + 22 — 1, 2),
and hg = 0.1. The resulting mesh has 1,057 nodes and 4,539 tetrahedra.

(11) 4-D Hypersphere. To illustrate higher dimensional mesh generation, we
create a simplex mesh of the unit ball in 4-D. The nodes now have four coordinates
and each simplex element has five nodes. We also fix the center point p = (0, 0,0, 0).

>> fd=inline(’sqrt(sum(p.~2,2))-1’,’p’);
>> [p,t]=distmeshnd(fd,Ohuniform,0.2, [-ones(1,4) ;ones(1,4)],zeros(1,4));

With hg = 0.2 we obtain a mesh with 3,458 nodes and 60, 107 elements.

A SIMPLE MESH GENERATOR IN MATLAB 15

It is hard to visualize a mesh in four dimensions! We can compute the total mesh
volume Vj = 4.74, which is close to the expected value of 72/2 ~ 4.93. By extracting
all tetrahedra on the surface, we can compare the hyper-surface area Sy = 19.2 to the
surface area 2m2 =~ 19.7 of a 4-D ball. The deviations are because of the simplicial
approximation of the curved surface.

The correctness of the mesh can also be tested by solving Poisson’s equation
—V?2u = 1 in the four-dimensional domain. With v = 0 on the boundary, the solution
is u = (1—72)/8, and the largest error with linear finite elements is ||e]|oc = 5.8-107%.
This result is remarkably good, considering that many of the elements probably have
very low quality (some elements were bad in 3-D before postprocessing, and the
situation is likely to be much worse in 4-D).

7. Mesh Quality. The plots of our 2-D meshes show that the algorithm pro-
duces triangles that are almost equilateral. This is a desirable property when solving
PDEs with the finite element method. Upper bounds on the errors depend only on
the smallest angle in the mesh, and if all angles are close to 60°, good numerical
results are achieved. The survey paper [5] discusses many measures of the “element
quality”. One commonly used quality measure is the ratio between the radius of the
largest inscribed circle (times two) and the smallest circumscribed circle:

q:2rin :(b+c—a)(c+a—b)(a+b—c) (7.1)

Tout abc

where a, b, ¢ are the side lengths. An equilateral triangle has ¢ = 1, and a degenerate
triangle (zero area) has ¢ = 0. As a rule of thumb, if all triangles have ¢ > 0.5 the
results are good.

For a single measure of uniformity, we use the standard deviation of the ratio of
actual sizes (circumradii of triangles) to desired sizes given by h(x,y). That number
is normalized by the mean value of the ratio since h only gives relative sizes.

The meshes produced by our algorithm tend to have exceptionally good element
quality and uniformity. All 2-D examples except (8) with a sharp corner have every
g > 0.7, and average quality greater than 0.96. This is significantly better than
a typical Delaunay refinement mesh with Laplacian smoothing. The average size
deviations are less than 4%, compared to 10 — 20% for Delaunay refinement.

A comparison with the Delaunay refinement algorithm is shown in Fig. 7.1. The
top mesh is generated with the mesh generator in the PDE Toolbox, and the bottom
with our generator. Our force equilibrium improves both the quality and the unifor-
mity. This remains true in 3-D, where quality improvement methods such as those in
[6] must be applied to both mesh generators.

8. Future Improvements. Our code is short and simple, and it appears to pro-
duce high quality meshes. In this version, its main disadvantages are slow execution
and the possibility of non-termination. Our experiments show that it can be made
more robust with additional control logic. The termination criterion should include a
quality estimate to avoid iterating too often. Our method to remove elements outside
the region (evaluation of d(x) at the centroid) can be improved upon, and the cases
when the mesh does not respect the boundaries should be detected. A better scaling
between h and the actual edge lengths could give more stable behavior for highly
non-uniform meshes. We decided not to include this extra complexity here.

We have vectorized the MATLAB code to avoid for-loops, but a pure C-code is
still between one and two magnitudes faster. One reason is the slow execution of the

16 PER-OLOF PERSSON AND GILBERT STRANG

Delaunay Refinement with Laplacian Smoothing

150
£ 100
T
£
<
i)
50
0
07 08 09 1
Force Equilibrium by distmesh2d
150 .
NS
N £ 100
SRIRND, 8
avve INAVAN -
S NAYAVAVAS k5
gsA”AVAhﬁva w
SRR\ % 50
KSTS
s vava A R I
07 08 09 1

Element Quality

Fic. 7.1. Histogram comparison with the Delaunay refinement algorithm. The element qualities
are higher with our force equilibrium, and the element sizes are more uniform.

inline functions (a standard file-based MATLAB function is more than twice as fast).
An implicit method could solve (2.3), instead of forward Euler.

We think that the algorithm can be useful in other areas than pure mesh genera-
tion. The distance function representation is effective for moving boundary problems,
where the mesh generator is linked to the numerical solvers. The simplicity of our
method should make it an attractive choice.

We hope readers will use this code and adapt it. The second author emphasizes
that the key ideas and the advanced MATLAB programming were contributed by the
first author. Please tell us about significant improvements.

REFERENCES

[1] F. J. BOosSEN AND P. S. HECKBERT, A pliant method for anisotropic mesh generation, in
Proceedings of the 5th International Meshing Roundtable, 1996, pp. 63-74.

[2] S.-W. CHENG, T. K. DEY, H. EDELSBRUNNER, M. A. FACELLO, AND S.-H. TENG, Sliver ezu-
dation, in Symposium on Computational Geometry, 1999, pp. 1-13.

[3] H. EDELSBRUNNER, Geometry and Topology for Mesh Generation, Cambridge University Press,
2001.

[4] D. FiELD, Laplacian smoothing and delaunay triangulations, Comm. in Applied Numerical
Methods, 4 (1988), pp. 709-712.

[6] ———, Qualitative measures for initial meshes, International Journal for Numerical Methods
in Engineering, 47 (2000), pp. 887-906.

[6] L. FrREITAG AND C. OLLIVIER-GOOCH, Tetrahedral mesh improvement using swapping and
smoothing, International Journal for Numerical Methods in Engineering, 40 (1997),
pp- 3979-4002.

A SIMPLE MESH GENERATOR IN MATLAB 17

[7] G. L. MILLER, D. TALMOR, S.-H. TENG, AND N. WALKINGTON, On the radius-edge condition
in the control volume method, STAM J. Numerical Analysis, 36 (1999), pp. 1690-1708.

[8] S. OSHER AND J. A. SETHIAN, Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations, J. of Computational Physics, 79 (1988), pp. 12—49.

[9] J. R. SHEWCHUK, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Trian-
gulator, in Applied Computational Geometry: Towards Geometric Engineering, M. C. Lin
and D. Manocha, eds., vol. 1148 of Lecture Notes in Computer Science, Springer-Verlag,
1996, pp. 203—222. From the First ACM Workshop on Applied Computational Geometry.

, What is a good linear element? Interpolation, conditioning, and quality measures, in
Proceedings of the 11th International Meshing Roundtable, 2002, pp. 115-126.

[11] K. SHIMADA AND D. C. GOSSARD, Bubble mesh: automated triangular meshing of non-manifold
geometry by sphere packing, in SMA ’95: Proceedings of the Third Symposium on Solid
Modeling and Applications, 1995, pp. 409—419.

[12] M. SussMAN, P. SMEREKA, AND S. OSHER, A levelset approach for computing solutions to
incompressible two-phase flow, J. of Computational Physics, 114 (1994), pp. 146-159.

[13] B. WyviLL, C. MCPHEETERS, AND G. WYVILL, Data structure for soft objects, The Visual
Computer, 2 (1986), pp. 227-234.

(10]

