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PREFACE

This dissertation was produced in accordance with guidelines that permit the inclusion as part of

the dissertation the text of an original paper or papers submitted for publication. The dissertation

must still conform to all other requirements explained in the “Guide for the Preparation of Master’s

Theses and Doctoral Dissertations at The University of Texas at Dallas.” It must include a compre-

hensive abstract, a full introduction and literature review and a final overall conclusion. Additional

material (procedural and design data as well as descriptions of equipment) must be provided in

sufficient detail to allow a clear and precise judgment to be made of the importance and originality

of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already pub-

lished, provided these meet type size, margin and legibility requirements. In such cases, connecting

texts that provide logical bridges between different manuscripts are mandatory. Where the student

is not the sole author of a manuscript, the student is required to make an explicit statement in the

introductory material to that manuscript describing the student’s contribution to the work and ac-

knowledging the contribution of the other author(s). The signatures of the Supervising Committee,

which precede all other material in the dissertation, attest to the accuracy of this statement.
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We extend prior work on laser pumped helium-4 magnetometers to include the effects of an arbi-

trary three-dimensional Jones vector for the laser light, general arrangement of the H1 coils, arbi-

trary orientation of the elements of the instrument, both ranks of the spin-1 state, the Bloch-Siegert

shift, and the virtual light shift. The theoretical equations are solved for several specific cases, as

well as the general steady-state case, and theoretical plots are shown in cases of practical interest

and for parameters that highlight unexpected or previously-unmodeled effects. A detailed exami-

nation of the consequences to the quality of the results is made for several of the approximations

used. An improved arrangement of the apparatus is suggested for the case of linearly-polarized

light. Comparisons are made between experimental data and theory for several modes of opera-

tion. The new model is useful for quickly identifying the appropriate parameters to use in order to

optimize the sensitivity of double-resonance helium-4 magnetometers.
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CHAPTER 1

INTRODUCTION1

Table 1.1. Symbols Introduced In Chapter 1

Symbol Units Description
H0 nT Total magnetic field of Earth and any sensed objects
H1 nT Half the peak magnetic field for 1-axis Helmholtz coils (AC)

The measurement of magnetic fields has a long history with diverse applications [31], and one of

the most precise types of magnetic sensors is the optically-pumped magnetometer, which typically

uses either an alkali vapor or helium [11]. Helium is often used in space and military applica-

tions [2, 17].

McGregor [34] presents a detailed overview of a magnetometer system, while presenting

significant detail on much of the relevant quantum mechanics of 4He. In this document, we describe

the details of the model of McGregor [34] for precision magnetometers and extend it to include

arbitrary orientation of all elements, arbitrary polarization of the light, the virtual light shift [27,

50], and the Bloch-Siegert shift [8] within the context of laser pumping of the 4He D0 line. We

also model orientation-dependence for one common multi-cell magnetometer system. The theory

presented here allows the optimization of a large number of parameter selections in the present

and next generation of magnetometer instruments and applications. Finally, we present qualitative

comparisons with observations and quantitative comparisons with experiments.

The state evolution, governed by the Hamiltonian H , is described by five contributions

H = H0 +HL +HR +HC +HM, given in [34]: the unperturbed helium Hamiltonian H0, which

describes the atoms to the level of fine structure; the spontaneous emission HR from the 23PJ

excited states m (see Figure 1.1) to the 23S1 metastable states µ with lifetime τ ≈ 10−7 s; the

1A significant portion of the text of this chapter is based on [43], c© 2010 American Physical Society.
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semiclassical loss HC of metastables through processes such as collisions with walls or with free

electrons; the influence HL of the pumping beam on the helium atoms; and the precession of the

polarization of the metastable atoms under the influence of both the oscillating field H1 and the

ambient magnetic field H0, described byHM. The resulting density matrix differential equation is

amenable to a steady state solution.

m=+1
m= 0
m=–1

m=+1
m=+2

m= 0
m=–1
m=–2

m=+1
m= 0
m=–1

m= 0

m= 0
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11S0

23P2

23P1

23P0

D2

D1

D0

276.732 1 THz

276.734 4 THz

276.764 0 THz
29.616 9 GHz

2.291 2 GHz

4 792.36 THz

10-4–10-3 s

~10-7 s

~10-7 s

~10-7 s

Helium-4
(Not to scale)

Figure 1.1. Relevant helium energy levels.
Fine structure deltas come from
[42, 29], and other frequencies
come from [47]. Radiative tran-
sitions between 23S1 and the
ground state are strictly for-
bidden. (from [43], c© 2010,
American Physical Society)
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The limited model presented by McGregor [34] assumed left-circularly polarized light

propagating parallel to H0, with the H1 coils perpendicular to this direction, and neglected the

rank two spherical tensors in the expansion of the density matrix. Driven by current advances

in instrument development, we have extended the evaluation of the Hamiltonian terms above to

include the dispersive lineshape components, both rank one and two spherical tensors, arbitrary

optical polarization and orientation of the pumping light with respect to H0, and arbitrary orien-

tation of the H1 field. Beyond the features described in [34], some of the additional effects that

can be modeled as a direct result of these extensions include a quantitative treatment of the Bloch-

Siegert shift and the virtual light shift, as well as a proper treatment of the magnetic resonance
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curve in the “dead zones” assumed by prior theory, which are known experimentally to typically

show non-zero signal amplitude.

This extended model is compared with the simpler model in [34] for laser pumping. Ex-

perimental results with linearly-polarized pumping light and experimental results with circularly-

polarized pumping light are compared with the model, basing the calculations on our best experi-

mental knowledge of the operating conditions. Subsequently, fits to the data for linearly-polarized

light are also presented.



CHAPTER 2

BACKGROUND2

2.1 Optical Pumping and Optically Pumped Magnetometers

One of the seminal works on magnetic resonance is that of Bloch [7], which gave phenomeno-

logical equations generally applicable to a variety of media. An outline of the methods involved

in the use of rotating coordinate systems was presented in [46]. The transformation to a rotating

coordinate system, while itself exact, is nearly always followed in theoretical magnetic resonance

work by the approximation of neglecting the counter-rotating components of the circular decompo-

sition of a linearly-oscillating field. This approximation results in an apparent shift in the magnetic

resonance. An estimate of this Bloch-Siegert shift incurred for a two-level system is given in [8].

While nothing prevents the experimental use of a rotating field, experiments nearly always use an

oscillating field in its place [48, 58], allowing the use of half as many coils. The Bloch-Siegert shift

is of practical concern in weak fields under 1 µT, as found in the fly-by calibration of the Cassini

spacecraft [62]. We note that 4He has traditionally been the medium of choice for optically pumped

magnetometers in space applications [11]. An accessible introduction to magnetic resonance and

many associated effects can be found in [58].

One of the earliest papers describing the changes in optical properties of a medium as a

function of ambient and rotating magnetic fields was [6], which describes alkali atoms, but ne-

glects the nuclear moment. Kastler credited3 this paper as the motivation for the development of

optical pumping, a technique used to substantially increase the typically small thermal popula-

tion difference in electron sublevels. Changes in the polarization or intensity of the scattered or

transmitted light leaving the sample may be used to monitor the ensemble atomic polarization.

2A significant portion of the text of this chapter is based on [43], c© 2010 American Physical Society.
3It was first proposed in a Comptes Rendus de l’Académie des sciences paper in 1949, which Kastler coauthored,

and was carried out experimentally in [10].

4
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The first experimental demonstration of simultaneous optical and magnetic4 excitation,

known as double-resonance optical pumping, used the mercury vapor 63P1 state [10]. A review

of experimental results for pumping mercury and alkali vapors is presented in [26], along with

an examination of two opposing effects of foreign gases on the orientation. Data was given for

contamination by 1H and 2H, and for intermodulation products observed when excited with two

H1 frequencies.

Optical pumping of metastable 4He was first reported in [16]. Relative sublevel population

as a function of the direction of pumping radiation was given, as were linewidths in inhomoge-

neous fields. Shortly thereafter, Franken and Colegrove also published a longer paper [13], giving

equations that allow calculation of 23S1 population distribution (assuming complete mixing, al-

though this also applies to selective D0 excitation, described in Section 3.2), and giving a table of

relative absorption probabilities and spontaneous emission probabilities. They proceeded to de-

rive an angular correction to their rate equation solution. The approach is a bit simplistic, though

perhaps justifiable when using unpolarized light. The lifetime of the metastables was measured

and loss of polarization due to impurities was addressed. Inversion of the resonance line was then

discussed, a matter of interest primarily when all 3 lines are pumped, as in a lamp. Finally, they

suggested the device can be used to build a magnetometer.

At about the same time that Franken and Colegrove first demonstrated optical pumping of
4He, Skillman and Bender [57] used 85Rb and 87Rb to demonstrate one of the first optically-pumped

magnetometers. Shortly thereafter, Keyser, et al. [28] built the first helium magnetometer. This

magnetometer used transmission monitoring and yielded experimental recordings from “magnetic

storms.”

The Larmor frequency may be shifted as a function of light intensity, wavelength, meta-

stable density, and ambient field strength, and experimental measurements of these shifts have been

made in 23S1 metastable helium [50]. The shifts were measured by reversing the handedness of the

circular polarization of the pumping light. Often considered is the concept of a virtual light shift,

4Some of the non-4He literature confusingly refers to the magnetic H1 excitation as “RF.” However, we reserve
the term “RF” for the electrostatic stimulus used to generate and maintain the weak plasma discharge that replenishes
the metastable 4He 23S1 state. Atomic species pumped in the ground state do not suffer this confusion.
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which appears as an additive output on top of the desired magnetic field [27]. This virtual light

shift is proportional to the product of the intensity of the pumping beam and a dispersive function

of wavelength about each optical line center.

In [27], Kastler also demonstrated how to measure longitudinal (T1) and transverse (T2)

lifetimes, and broke 1/T2 into two real and two imaginary contributions, including the effects of

light broadening, real light shifts, and virtual light shifts. Kastler identified the energy shift of the

levels with a change in the velocity of the light, a dispersive effect. A general classification scheme

for light shifts is presented in [22], framing the situation as a Hamiltonian perturbed by a light shift

operator, one component of which corresponds to this virtual light shift.

Helium magnetometers had typically been pumped using a helium lamp as the light source.

A solid-state laser in the vicinity of 1050–1080 nm was then reported in [49], and several solid state

lasers around these wavelengths were discussed in [54]. More recently, following theoretical work

by McGregor [34], laser pumped helium magnetometers have used tunable diode lasers operating

at 1083 nm [12, 19, 61, 60].

An alternate approach to optical pumping, Optically-driven Spin-Precession (OSP), modu-

lates the light intensity at the Larmor frequency, instead of using H1 magnetic modulation [5], and

a recent review of applications in 4He is presented in [19]. While this document is concerned with
4He, it is important to point out that the optical pumping of 3He has also been observed in [59],

and a magnetometer was constructed using 3He.

The most important application of optically-pumped 4He magnetometers is MAD (mag-

netic anomaly detection), used to detect submarines, and primarily taking the form of a magne-

tometer towed behind a propeller plane. The heart of the instrument is one or more 4He cells,

although 3He is used in stationary applications, such as seafloor arrays. Other applications of the
4He system, or variations thereof, include detection of mines (land and sea) and measurement of

planetary magnetic fields [44].

There are quite a few papers on geomagnetic noise (noise associated with random currents

in the ionosphere, driven by Earth’s magnetic field) available, and, while geomagnetic noise is a

signal-processing problem and therefore outside the scope of this document, these papers are of
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some general interest, since geomagnetic noise is one of the more serious limitations of any actual

magnetometer system. One example of a paper describing a new method of rejecting this noise

using a long baseline gradiometer is [18], which also gives a qualitative description of the spatial

coherence of this noise.

Generally, literature that examines magnetic resonance theory uses an empirically-driven,

heuristic rate equation approach, with treatments and results directed to specific physical effects

prevalent in the apparatus. One exception is Happer [21], which thoroughly reviews optical pump-

ing and monitoring of various atoms, but does not discuss magnetometers and does not address

the use of lasers in optical pumping. While the various rate-equation based literature is useful and

elucidating, a comprehensive treatment of this instrument can also give a valuable perspective. The

other exception is that prior theory of a somewhat general nature for circularly-polarized pumping

beams with additional restrictions can be found in McGregor [34]. Reference [34] not only ad-

dresses the magnetic resonance control loop of a magnetometer, but also gives quantitative data on

expected sensitivities.

Some published effort has been devoted to alternative 4He configurations not considered

in [34], such as the use of OSP in [19], and the use of linearly-polarized pumping light in [20].

Very little literature on magnetometers seems to address noise sources, but [34] at least discusses

photodiode shot noise as a limiting factor. Reference [34] introduces a sufficient amount of mate-

rial from magnetometer-related topics to make extensions directly applicable to existing systems,

rather than simply applying to a one-off experiment designed to measure some particular physical

quantity. Reference [34] serves as one of many efforts that can benefit from comprehensive treat-

ment of arbitrary orientations and optical polarizations in simulation. With goals such as this in

mind, [34] henceforth serves as the guide for ab initio theoretical development, having provided

good experimental agreement within the assumptions of the time. In this document, we take the

same approach, but with fewer restrictions. The generalizations made here will become increas-

ingly useful in the next few generations of magnetometers.
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2.2 4He Magnetometer Concepts

Figure 2.1 is a block diagram of a generic double-resonance laser-pumped 4He magnetometer. The

sensing element, pictured in Figure 2.2, is a cylindrical cell containing 4He at a few Torr. Copper

bands around the cell introduce a weak electrodeless RF discharge that excites a small fraction

of the helium into the 23S1 metastable state, shown in Figure 1.1. This excitation introduces un-

polarized metastable atoms. Figure 1.2 shows that the D0 line is the best-resolved of the three.

Laser light in the near IR (1083 nm) is isolated, attenuated, polarized, collimated, and directed

into the cell, where it selectively excites the D0 transition, with a tendency to depopulate certain

Zeeman states, depending on the optical polarization. The excited 23P0 atoms spontaneously decay

unpreferentially to each Zeeman sublevel of the metastable 23S1 state. Thus the light establishes

a longitudinal magnetic polarization of the gas. The transmitted laser light is monitored with an

InGaAs or Si photodiode.

Laser
Polarizing

Optics

T.E.C.
Helium-4

Cell
Detector

RF Exciter

H1 Coil

H1 Coil

Coil

Control

Laser

Control

Freq

Out

Figure 2.1. Representative block diagram
of a double-resonance 4He
magnetometer. (from [43],
c© 2010, American Physical
Society)

Figure 2.2. Helium Cell in Operation.

A thermoelectric cooler (T.E.C.) either holds the temperature of the single-mode diode

laser in a mode-hop-free operating region, or else actively compensates low-frequency coarse laser

wavelength drift, depending on the system in question. Fine control of the laser wavelength is

obtained by adjusting the center point of the laser current modulation, seeking to null the observed

fundamental of the modulation on the photodiode.

In typical double-resonance, longitudinally-monitored magnetometers, small coils, absent

from the photo to allow an unobstructed view, establish a weak oscillating magnetic field H1
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across the cell, nominally directed perpendicularly to the ambient magnetic field H0. The fre-

quency ω of the magnetic resonance coils is swept across the Larmor frequency γH0, where

−γ ≈ −28.025 Hz/nT is the gyromagnetic ratio of metastable 4He. The true value of γ is known to

nine significant figures [56], allowing an accurate absolute measurement of a scalar magnetic field

H0.

The monitored light is synchronously detected at the fundamental frequency of the FM-

modulated H1 coils, and the center frequency of the modulation is adjusted until the fundamental

vanishes from the detected output light, at which point the center frequency of the input modula-

tion equals γH0, giving an absolute measurement of the ambient magnetic field. The frequency

modulation of the H1 coils is slow enough to allow the atoms to respond, but must be fast enough

to provide application-specific bandwidth. The use of modulation to operate away from baseband

also reduces most sources of low-frequency noise originating in the electronics themselves. A typ-

ical experimental approach to determining the metastable density is to measure the percentage of

light absorbed when either the magnetic resonance coils’ frequency ω is off-resonance or the coils

are deactivated.

An example of a commercial 4He magnetometer is the Polatomic P-2000, which has a

sensitivity of 200 fT/
√

Hz from DC–50 Hz, and this instrument is discussed, along with other

optically-pumped magnetometers, in [11, 61, 60].

2.3 4He Considerations

Depending on which second-order effects are included, solutions of hydrogen are available in

closed form. Since helium is the next-simplest atom, it has attracted significant theoretical at-

tention, beginning at least in 19295. For example, [40, 39] established variational wavefunctions

and expectation values of operators of interest, refining and bounding past calculations. Oscillator

strengths, which can be compared directly against the NIST spectral line database, were deter-

mined shortly thereafter in [55]. Many similar papers continue to appear to this day, including [15]

in 2004, which attempts to choose a more physically-meaningful set of basis functions.

5Reference [15] only cites back to Hylleraas 1929, which is in German.
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Reference [9] gives a qualitative description of relativistic emission routes for the met-

astable 23S1 state of helium. In [41], the lifetime of helium 23S1, as well as neon and argon

metastables, was measured over a range of pressures at two temperatures by observing the expo-

nential decay in absorption of light after a very brief spark. The lifetimes obtained are not directly

applicable here, since they were measured with the discharge off and disagree with more relevant

sources (presumably for that reason), but several fit parameters may be useful, such as diffusion

coefficients and collision cross sections. Much later, [14] used variational calculations to give two-

photon emission rates and a distribution of photon energies for the decay of metastable 21S0 and

23S1 helium, as well as some results on neon. He finds that the singlet level prefers to emit two

photons of equal energy, while the triplet level never does; this seems like it might be an inter-

esting way to determine the amount of the singlet level in the discharge, given a selective-enough

wavelength filter.

Hughes, et al. [25] determined the gJ factor, which is proportional to the gyromagnetic

ratio, for 4He in terms of that of 2S1/2 hydrogen. Schearer and Sinclair [53] determined the gyro-

magnetic ratio by comparing the frequency of a 4He gradiometer using unpolarized lamp light with

that of a proton free-precession magnetometer. Shifrin, et al. [56] determined the gyromagnetic ra-

tio by comparing the frequency of a free induction decay signal from a 3He cell with the frequency

of a cell containing a mixture of 4He and 133Cs, where the former is excited by spin-exchange with

the latter.

Because the gyromagnetic ratio of the pumped 23S1
4He metastable state is the highest of

any relevant state used in an optically-pumped magnetometer, 4He magnetometers are relatively

insensitive to the angular velocities experienced in field use. The lack of hyperfine structure in

helium makes the energy levels fairly simple, as shown in Figure 1.1. Additionally, because the

density of the metastable states to be pumped is a function of electronic RF excitation, rather

than ambient temperature, helium magnetometers function over wide temperature ranges without

the need for temperature stabilization of the atomic sample. Scalar 4He magnetometers operate

over a very wide dynamic range, with one typical case being 25 000–75 000 nT, which is bounded

primarily by electronics constraints, rather than the basic physics. The physical lower bound is on

the order of the magnetic resonance linewidth (about 100 nT). The Larmor frequency is linearly
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related to the ambient magnetic field strength by the well-known gyromagnetic ratio, providing a

simple absolute measurement.

An essential feature is the existence of a metastable 23S1 state in the helium atom that

cannot decay radiatively to the true ground state, but does eventually decay to the ground state

primarily by diffusion to the cell wall at pressures of interest, but atom-atom collisions dominate in

other regimes. The lifetime of the 23S1 state is given as 0.1–1 ms in [13], who assume the discharge

is on, in contrast to [41], who give 1–10 ms with the discharge off. Double-photon emission does

not contribute noticeably to the lifetime, having an Einstein A coefficient ∼ 10−9 sec−1, from [14].

The metastable state is populated by a weak electrodeless RF discharge [13], which leads to a

variety of discrete spectral lines, some of which are visible as a glow, shown in Figure 2.2.

Metastable 4He is particularly robust against loss of coherence in atom-atom collisions be-

cause the 23S1 state has no hyperfine structure and therefore only has one gyromagnetic ratio, while

the ground state 11S0 is a singlet and possesses neither Zeeman splitting nor hyperfine structure.

Collisions between 23P0 and other species do not matter, since the lack of any Zeeman splitting

causes no shifts, and collisions between any two 23PJ atoms or a 23PJ atom and a 23S1 atom are

infinitesimally unlikely. Thus no particular restrictions need be made on the magnetometer design

to accommodate collisions.

However, the light itself can still affect coherence, at least in a lamp-pumped system. Real

light shifts[21, 27], where coherence is maintained through a transition from 23S1 to 23P1 or 23P2

if a mixing collision does not occur, can be a concern when 4He is lamp-pumped. At higher

pressures, collisions occur more frequently, causing decoherence to dominate shifts. In this regard,

the high-pressure case resembles what one obtains by selectively pumping only the D0 line.

The collision-induced mixing cross section of the excited states of helium was determined

in [51] by measuring the relative intensities of the spectral lines as a function of pressure, and

fitting to a form predicted by some rate equations. A new estimate of this cross section, along with a

lifetime for the excited states, was determined in [52] by using a more granular rate equation model

including populations for all the Zeeman states to fit to the difference in polarization of scattered

light. Landman [30] obtained another estimate of the lifetimes of the excited states, along with

cross sections for collisions with ground state atoms. He showed that the alignment depolarization
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cross section for the excited states is approximately explained by ground state collisions, but lumps

J = 0, 1, 2 together (which may be justified). Only laser pumping is considered here, so the real

light shifts (and, by extension, collisional mixing) are not a concern.

Since the relaxation time τc of 4He is relatively short, the longitudinal polarization responds

quickly to magnetic field transients. This, combined with the very low sensitivity to rotations, has

led to applications on dynamic platforms, such as airplanes. It is therefore desirable to characterize

the operation of the magnetometer over all orientations.

Circularly-polarized light is commonly used to pump the helium, since the signal strength

falls off approximately as the square of the cosine of the angle between the light beam and the am-

bient H0 field [23]. Adding the signals from three orthogonal cells yields approximately isotropic

sensitivity, in spite of the highly-dynamic towed environment. However, this arrangement is ap-

proximate because the optical absorption changes with orientation, and because it is experimentally

known that there is a small resonance curve visible even in the theoretically-predicted dead zone.

The model we introduce remedies this theoretical gap by demonstrating the transition from the or-

dinary Lorentzian magnetic resonance lineshape to the double-trough curve more characteristic of

pumping with linearly polarized light. The rigorous evaluation of the effects of orientation enables

rapid evaluation of design ideas.

The laser wavelength is actively locked to a particular absorption line. However, use of

circularly polarized light introduces errors associated with the virtual light shift: any wavelength

detuning introduces a deviation in the measurement indistinguishable from a small change in the

ambient magnetic field. When the laser noise is close to either the FM rate applied to the H1 coils or

to DC, it appears in the low-frequency output band where magnetic signals are usually measured.

Therefore, the wavelength noise of the laser and any wavelength modulation used to actively lock

the laser to the center of the absorption line both contribute nontrivially to the noise floor of the

magnetometer.

We have extended the theory to include these virtual light shifts. One can reduce these

noises by the using two sets of cells, either adding the outputs of cells with opposite circular

polarization, or subtracting the outputs of cells with like polarization. The latter, a gradiometer
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[17], yields an asymptotically more rapid roll-off of signal, inversely proportional to the fourth

power of range instead of the third, but with the benefit of eliminating most geomagnetic noise.

Pumping with linearly polarized light avoids virtual light shifts, and greatly reduces the

magnetometer noise floor, but at the expense of more complicated arrangements of cells in order to

achieve isotropic sensitivity. This, together with analysis of the importance of imperfect polarizer

and waveplate alignment, motivates the extension of the theory to arbitrary optical polarization.

Moreover, it will be shown that a nonintuitive choice of orientation of the H1 coils in the case

of linearly-polarized pumping light reduces the overall variability of shot-noise sensitivity of the

magnetometer over orientation.

Finally, the broad dynamic range required in space applications includes low H0 fields,

where the Bloch-Siegert shift cannot be ignored. Therefore, we have accounted for this shift in the

theory developed herein.



CHAPTER 3

DERIVATIONS

Section 3.1 extends the first few equations of [34] to arbitrary quasistatic polarized light in an arbi-

trary direction. Sections 3.2, 3.3, 3.4, 3.5, and 3.6 fill in missing steps in [34]. Section 3.7 extends

[34] to include all quadrupole terms with all optical polarizations and orientations. Section 3.8

extends [34] to include the rank-two components of the density matrix, under the action of mag-

netic fields, and details the approximation required to make the equations tractable. Section 3.9

fills in details in [34], as well as some details from private communication regarding the Doppler-

broadened dispersive lineshape. Section 3.10 adds terms from all previous sections in a digestable

state-space form and completes the transformation to a rotating coordinate system, in preparation

for solution. Section 3.11 presents the details and some results of the cell slicing approach briefly

mentioned in [34] for handling longitudinal parameter variation.

3.1 Electric Field of Light

Table 3.1. Symbols Introduced In Section 3.1

Symbol Units Description
#–E(t) statvolt/cm time-varying electric field due to pumping/monitoring light

t sec time
E0 statvolt/cm amplitude of electric field of light
#–e — 3D Jones vector
ω′ rad/s frequency of light
ẑ — direction of light propagation
x̂ — azimuth of polarization (see text for circular case)
ŷ — completes RHS of x̂,ŷ,ẑ
Ẑ — direction of quasistatic magnetic field H0

X̂, Ŷ — arbitrary world directions ⊥ Ẑ, RHS
θ, φ rad see Figure 3.1
ε rad ellipticity angle of light polarization

14
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This section is intended to extend the first few equations of [34] to arbitrary quasistatic polarized

light in an arbitrary direction.

A time-varying field at a point can be represented by [34]:

#–E(t) =
1
2

E0
#–e e−iω′t +

1
2

E0
#–e ∗eiω′t (3.1)

See Appendix A for details on the electric dipole approximation, which allows us to neglect

the spatial dependence of the field. #–e is a Jones vector, e.g., 1
√

2

(
X̂ + iŶ

)
gives left circularly

polarized light, LCP, propagating in the Ẑ direction. In general, the polarization with respect to the

cell is fixed, but the orientation of the cell with respect to the world is not.

φ

θ

φ

X
^

y
(RHS)

^

z
(light)

^

Z
(H0)

^

z^

z^

x
(polz)

^

Y
^

Figure 3.1. Local and World Coordi-
nate Systems. (from [43],
c© 2010, American Phys-
ical Society)

θ

ε

Y
^

X
^

x^

y^

Figure 3.2. 2-D Polarization.

Now the Zeeman effect due to H0 splits energy levels having the same total angular momen-

tum and orbital angular momentum according to total magnetic quantum number, so degenerate

perturbation theory dictates that the coordinate system we work in must be oriented with the Ẑ axis

along H0 so that the Zeeman perturbation is diagonal in that basis. Therefore, there is an effective

rotation of the other components of the problem. It makes sense to define a local coordinate system
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by the light parameters (polarization and propagation directions), and a world coordinate system

by the direction of H0, and then work in the world system, as shown in Figure 3.1.

Note that the directions of X̂ and Ŷ must be chosen, but do not matter too much, provided

they form a right-handed set. In the case of circularly-polarized light, we have the same indetermi-

nacy with x̂ and ŷ, where it does not make sense to ask for the azimuth of polarization, but it will

be shown not to matter anyway.

Now if the Jones vector in the local system is given by
[
cos ε −i sin ε 0

]T
[4], it is shown

in Appendix B.1 that the 3D Jones vector in the world system is given by:

#–e =

 cos ε cos θ + i sin ε sin θ
cos ε sin θ cos φ− i sin ε cos θ cos φ
cos ε sin θ sin φ − i sin ε cos θ sin φ

 (3.2)

The ellipticity angle ε ∈
[
−π4 ,

π
4

]
identifies how linear or circular the light is, with, e.g.,

ε = 0 representing linearly-polarized light along the x̂ axis and ε = −π4 representing LCP light [4].

If we took φ = 0, left-elliptically polarized light would look like Figure 3.2, looking into the beam

(i.e., looking in the −ẑ direction). Figure 3.2 is based loosely on a figure in [4].

This can be rewritten in terms of the direction cosines, in order to eliminate the θ, φ nomen-

clature:

#–e =


(ŷ·Ẑ) cos ε+i(x̂·Ẑ) sin ε√

1−(ẑ·Ẑ)2

(ẑ·Ẑ) (x̂·Ẑ) cos ε−i(ŷ·Ẑ) sin ε√
1−(ẑ·Ẑ)2

(x̂·Ẑ) cos ε−i(ŷ·Ẑ) sin ε

 (3.3)
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3.2 Excitation and Deexcitation

Table 3.2. Symbols Introduced In Section 3.2

Symbol Units Description
H erg Total Hamiltonian of 4He during operation
H0 erg Unperturbed Hamiltonian of 4He , including fine structure
HL erg Perturbation due to pumping/monitoring light
HM erg Perturbation due to H0 and H1 fields
HR erg Phenomenological relaxation perturbation

#–D statcoulomb · cm Electric dipole operator
#–R cm Position operator in world coordinates, length R
µ — 23S1 metastable sublevel index, total Jz quantum number
m — 23PJ magnetic sublevel index, total Jz quantum number

Em,Eµ erg Energies of m and µ levels, respectively (averaged, if necessary)
ρ — Density operator

ω′0
rad/s

Mean transition frequency of any of the three
absorption lines at zero atomic velocity

τ sec Relaxation rate governing natural and collisional linewidths

This section merely fills in many missing steps in [34].

The helium atom’s dynamics can be described by [34]:

H = H0 + HL + HR + HM (3.4)

Note that [34] does not explicitly list HM. HL is derived in Appendix A, where
#–D ≡ q

#–R:

HL = −
#–E(t) ·

#–D (3.5)

The standard equation for time evolution of the density operator is [48]:

i}
dρ
dt

=
[
H , ρ

]
(3.6)

We can partition ρ according to total orbital angular momentum:

ρ �

[
〈µ|ρ|µ′〉 〈µ|ρ|m′〉
〈m|ρ|µ′〉 〈m|ρ|m′〉

]
≡

[
ρµµ′ ρµm′

ρmµ′ ρmm′

]
(3.7)
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where � denotes “is represented by,” when moving, for example, from an operator to a matrix in a

particular basis.

This allows us to represent just the portion of Equation (3.6) related to excitation and de-

excitation:

i}
dρmµ

dt
=

[
H , ρ

]
mµ = 〈m|H ρ|µ〉 − 〈m|ρH |µ〉

=
∑
m′

[
〈m|H |m′〉 ρm′µ −((((((((

ρmm′ 〈m
′|H |µ〉

]
+

∑
µ′

[
〈m|H |µ′〉 ρµ′µ − ρmµ′ 〈µ

′|H |µ〉
]

︸            ︷︷            ︸
A

︸            ︷︷            ︸
B

︸           ︷︷           ︸
C

︸           ︷︷           ︸
D

(3.8)

The on-diagonal terms of ρmm′ represent the population of 23PJ states, which is small, given the

short lifetime of about 100 ns [30]. For the 23P0 state (the highest state in Figure 1.1), correspond-

ing to the D0 line, the single on-diagonal term is the only component of ρmm′ , so ρmm′ (and therefore

term B) can be neglected whenever we only allow ω′ near D0. This is realistic with the current

systems, which are excited by lasers, rather than lamps. Keeping term B would have allowed us

to account for “repopulation pumping” and “real light shifts,” which are not an issue with the D0

line, as mentioned. This is not to be confused with “virtual light shifts” [27, 50, 53], which will be

accounted for.

Repopulation pumping arises when the some amount of the atoms’ polarization is main-

tained through a transition through 23PJ states. To occur, there must be more than one Zeeman

sublevel (i.e., for 2J + 1 of 3 or 5) and the atom must not undergo a “mixing collision.” When a

23PJ excited atom collides with a ground-state atom, the Zeeman sublevels, and, to a certain extent,

the different J fine-structure levels, get redistributed more or less evenly, particularly at higher gas

pressures, destroying any polarization [51]. Reference [13] indicates complete mixing is achieved

above a few torr, but many of the 4He cells are charged to about 1.5 torr.

Since the excited 23PJ states have nonzero orbital angular momentum, they have a lower gy-

romagnetic ratio, and the expectation value of the polarization precesses more slowly than the 23S1

state would in the same H0 field, giving what is called a “real light shift.” Therefore, when those

states return to the 23S1 level, assuming they have not collided in the meantime, the metastable

atoms’ polarizations are now “out of step,” and, on average, they have precessed less [53]. As

expected from a calculation of the Landé g-factor, 23P1 and 23P2 have roughly equal gyromagnetic

ratios [30].
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Since the 23P0 state has only one Zeeman sublevel, it does not maintain any polarization

information, and it does not precess (the excited density “matrix” is scalar). Even if the 23P0 states

are mixed into 23P1 or 23P2 by collisions, polarization information has already been lost before

the collision, so mixing collisions do not change the fact that real light shifts and repopulation

pumping do not occur for selective D0 pumping. Since the spontaneous emission from a particular

ensemble-unpolarized level (e.g., 23P1) does not preferentially populate any particular 23S1 state,

a mixing collision makes little difference6 in the relaxation effect on selective pumping of D0.

Now H0 is completely diagonal, so only terms A and D survive on the RHS when it is

applied:(
i}

dρmµ

dt

)
0

= 〈m|H0|m〉 ρmµ − ρmµ 〈µ|H0|µ〉 = ρmµ

(
Em − Eµ

)
= }ω′0ρmµ

HL is induced by the very rapid oscillation of the light’s electric field, and therefore only

acts between the widely-spaced levels m and µ. This means that only terms B and C survive, and

we’ve already discarded B:(
i}

dρmµ

dt

)
L

=
∑
µ′

〈m|HL|µ
′〉 ρµ′µ = −

∑
µ′

〈
m
∣∣∣ #–E(t) ·

#–D
∣∣∣µ′〉 ρµ′µ

On the other hand, HM is induced by the slower H1 field, and therefore only mixes the

Zeeman sublevels with one another. It can be argued that ρmµ represents transitions between the m

and µ states, and so cannot be affected by HM. HM does affect ρµµ′ , a fact we will make use of in

Section 3.4.

Finally, we consider HR, the phenomenological relaxation term intended to give the natural

linewidth. It is a common trick in quantum mechanics to take an imaginary (i.e., skew-Hermitian)

Hamiltonian when nonconservation of probability is desired. In this case, the desired result is loss

of electrons from the 23PJ states, since the time constant for loss from the 23S1 metastable state is

so much longer, and therefore negligible. Therefore, HR has the 23PJ states as eigenvalues:

HR |m〉 =
−i}
τ
|m〉

6It is thought that reabsorption of light may be affected by mixing at higher pressures, but that will not be examined
here.



20

where constants are inserted in order to make the linewidth come out correctly (recall this term is

phenomenological).

In LS coupling, transitions of type E1, M1, and E2 obey the selection rule ∆S = 0, which

prohibits 23S1 and 23PJ levels from decaying to the 11S0 ground state [32]. One could also intro-

duce a term of the opposite sign for the eigenvalue with respect to |µ〉, to account for the corre-

sponding gain in the 23S1 state, but, again, this would just adjust the value of τ, and we are already

planning on adjusting it. Note that [9] qualitatively states that M1 radiation from the 23S1 level

is possible, but [14] states that its probability is negligible compared to two-photon emission. As

mentioned previously, radiative decay from 23S1 does not contribute significantly. Reference [14]

also states that no other single-photon emission processes contribute at all, aside from M1. The

existence of M1 radiation from the 23S1 level implies that LS coupling does not strictly hold, but

M1’s relative unlikelihood clearly implies that LS coupling is still a very good approximation.

Doppler broadening, to be incorporated later (Section 3.9), dominates the resulting line-

width, so we needn’t dwell too long on the details of τ. Choosing to only keep the A term, or to

keep both A and D, will not make a practical difference in the result, so the former is chosen:(
i}

dρmµ

dt

)
R

= 〈m|HR|m〉 ρmµ =
−i}
τ
ρmµ

Combining, and using Equation (3.1), we obtain:

i}
dρmµ

dt
= }ω′0ρmµ −

E0

2

∑
µ′

[〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 ρµ′µe−iω′t +
〈
m
∣∣∣ #–e ∗ · #–D

∣∣∣µ′〉 ρµ′µeiω′t
]
−

i}
τ
ρmµ (3.9)

Now ρµ′µ represents either populations of the 23S1 metastable states, or oscillations within

that state. The populations are quasistatic values under steady-state operation, and populations are

quite generally nonnegative. Oscillations within the state can only be induced by the appropriate

frequency, namely, the frequency of the H1 coils. ρmµ is clearly driven by an e−iω′0t from the first

term (H0), and by e±iω′t from the bracketed terms (HL). Both ω′0 and ω′ are over eight orders of

magnitude larger than the oscillation frequency of the H1 coils on Earth7. As such, ρµ′µ can be

treated as a constant while solving this differential equation.

7Even using JPL estimates for ambient magnetic field for a proposed mission to Jupiter, the ratio is thought to be
almost seven orders of magnitude, so this approximation is valid over all reasonable applications of the magnetometer
system.
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The solution must be of the form:

ρmµ(t) = ae−iω′0t + be−iω′t + ceiω′t (3.10)

where the choice of ω′0 depends on which values of m we are considering, and so can be considered

a single value for the purposes of solution.

Substituting and simplifying, we obtain a = 0 and:

b =
τ

−i + τ
(
ω′0 − ω

′
) E0

2}

∑
µ′

〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 ρµ′µ
c =

τ

−i + τ
(
ω′0 + ω′

) E0

2}

∑
µ′

〈
m
∣∣∣ #–e ∗ · #–D

∣∣∣µ′〉 ρµ′µ
Let’s just examine the first fraction in those results. The ratio of the magnitude-squared of the first

to the magnitude-squared of the second is:

1 + τ2
(
ω′0 + ω′

)2

1 + τ2
(
ω′0 − ω

′
)2

The numerator is always very large (probably about 1017 if τ ∼ 10−7 s). The worst-case

scenario in practical operation is for the laser to be tuned approximately to D0, while finding the

effect of D2. This makes the worst case of (ω′−ω′0)/2π approximately 32 GHz, which gives about 108

for the denominator. The ratio is largely independent of τ. Therefore, at worst, |b| ∼ 104 |c|, and |b|
|c|

will usually be even larger than that, since we’re usually not even interested in the other lines. As

far as the guess for τ goes, any τ longer than about 1 ps will round to a ratio of 104 for our choice

of 32 GHz. We neglect c and write the approximate solution:

ρmµ(t) =
iτ
2}

E0

∑
µ′

〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 ρµ′µe−iω′t f
(
ω′

)
, f

(
ω′

)
≡

1

1 − iτ
(
ω′ − ω′0

) (3.11)

as shown in Equations (6)-(7) in [34].

3.3 Metastable Evolution With Light

This section also serves only to fill in missing steps in [34].
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Much like we did with Equation (3.8), we can write:

i}
dρµµ′

dt
=

[
H , ρ

]
µµ′ = 〈µ|H ρ|µ′〉 − 〈µ|ρH |µ′〉

=
∑

m

[
〈µ|H |m〉 ρmµ′ − ρµm 〈m|H |µ

′〉
]

+
∑
µ′′

[
〈µ|H |µ′′〉 ρµ′′µ′ − ρµµ′′ 〈µ

′′|H |µ′〉
]

︸           ︷︷           ︸
A

︸           ︷︷           ︸
B

︸             ︷︷             ︸
C

︸             ︷︷             ︸
D

(3.12)

Now H0 only acts between µ and µ′ here, since it’s diagonal, so we keep terms C and

D. However, terms C and D cancel one another, and so we get no contribution from H0 at all.

Because HR behaves the same way, it also fails to contribute. We will treat HM’s contributions in

Section 3.4.

HL only keeps terms A and B, so we obtain:(
i}

dρµµ′
dt

)
L

=
∑

m

[
〈µ|HL|m〉 ρmµ′ − ρµm 〈m|HL|µ

′〉
]

(3.13)

Substituting our solution from Equation (3.11), we obtain four terms:

−4}2

τE2
0

(dρµµ′
dt

)
L

=
∑
m,µ′′

〈
µ
∣∣∣ #–e · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′′〉 ρµ′′µ′ f (ω′) e−2iω′t

+
∑
m,µ′′

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′′〉 ρµ′′µ′ f (ω′)
+

∑
m,µ′′
ρµµ′′

〈
µ′′

∣∣∣ #–e ∗ · #–D
∣∣∣m〉 〈

m
∣∣∣ #–e · #–D

∣∣∣µ′〉 f ∗
(
ω′

)
+

∑
m,µ′′
ρµµ′′

〈
µ′′

∣∣∣ #–e ∗ · #–D
∣∣∣m〉 〈

m
∣∣∣ #–e ∗ · #–D

∣∣∣µ′〉 f ∗
(
ω′

)
e2iω′t

(3.14)

Now it should be obvious that the metastable densities are not changing at the second

harmonic of 277 THz (or the fundamental, for that matter). It should also be apparent that light

cannot cause the transition rates between the metastable sublevels to vary that fast, either. Indeed,

this sort of assumption was already made, so not making it again here may lead to strange results.

Therefore, the solution is as given in [34]:(dρµµ′
dt

)
L

= −
τE2

0

4}2

∑
m,µ′′

[〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′′〉 ρµ′′µ′ f (ω′) + ρµµ′′
〈
µ′′

∣∣∣ #–e ∗ · #–D
∣∣∣m〉 〈

m
∣∣∣ #–e · #–D

∣∣∣µ′〉 f ∗
(
ω′

)]
(3.15)
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3.4 Metastable Evolution With Magnetic Field

Table 3.3. Symbols Introduced In Section 3.4

Symbol Units Description
#–H(t) nT Vector total magnetic field, including H0 and H1, in world coordinates.
γ rad/s·nT −2π× the 23S1 gyromagnetic ratio (physical constant)
ω rad/s Frequency of Helmholtz coils, ∼ γH0

J erg · s Angular momentum operator
ρ — Shorthand for ρµµ′ in subsequent sections.

Similarly, this section fills in details of [34].

We know that [58]:

HM = γ
#–H · #–J , (3.16)

where −γ/2π is the gyromagnetic ratio of metastable 23S1 helium-4. We have chosen the value

γ/2π ≈ 28.025 Hz/nT, which is exact for a free electron. Some authors show a slightly modified

value of −γ/2π of about 28.0235–28.0238 Hz/nT [53, 56]. The corresponding value of the g-factor

is found in [25].

Beginning from Equation (3.12), we now work with HM. Since
#–J only mixes within the

Zeeman sublevels, we can only keep terms C and D. The result is straightforward:(dρµµ′
dt

)
M

=
iγ
}

∑
µ′′

[
ρµµ′′

〈
µ′′

∣∣∣ #–H · #–J
∣∣∣µ′〉 − 〈

µ
∣∣∣ #–H · #–J

∣∣∣µ′′〉 ρµ′′µ′] (3.17)

Notice that there are no longer any references to m. This equation, along with Equation (3.15), are

the only density matrix equations we need [34], and neither references m in the subscript of the

density matrix. Therefore, we will stop subscripting ρ. Of course, if we had kept ρmm′ , we would

not have that notational convenience.



24

3.5 Dipole Matrix Elements

Table 3.4. Symbols Introduced In Section 3.5

Symbol Units Description
î±1, î0 — unit vectors in world coordinates

D0 statcoulomb · cm physical constant, related to dipole moment
S ik statcoulomb · cm line strengths, as defined by [47]
R̂ — Normalized position operator in world coordinates

X,Y,Z cm Position operators in world coordinates
T(k) a.u.† Spherical tensor of rank k
T(k)
ξ a.u.† Spherical tensor of rank k and magnetic quantum number ξ

†units are the same as those of D0 in this section, but are angular momentum units in later
sections

This section fills in the origins of Table I of [34].

In this section alone, we will write |m〉 and |µ〉 more explicitly as | jm,mm〉 and
∣∣∣1,mµ

〉
. In

other sections, we will continue to use the former notation, and, without the ket, we let m and µ

stand for the magnetic quantum number.

We wish to apply the Wigner-Eckart theorem, so it is desirable to expand the electric dipole

(see Appendix A) operator
#–D ≡ q

#–R in terms of spherical tensors of rank one, given in [48] as:

T(1)
0 =

√
3

4π
Vz ≡ q

Z
R

T(1)
±1 = ∓

√
3

4π
Vx ± iVy
√

2
≡ ∓q

X
R ± iY

R
√

2

where we’ve substituted a normalized form of the dipole operator for the generic vector operator
#–V.

It is easily verified that

qR̂ ≡ q
#–R∥∥∥ #–R
∥∥∥ = î0T(1)

0 − î−1T(1)
1 + î1T(1)

−1 (3.18)

where we’ve defined [34]:

î0 = Ẑ î±1 =
X̂ ± iŶ
√

2
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The Wigner-Eckart theorem is given by:

〈
αm; jm,mm

∣∣∣∣T(1)
ξ

∣∣∣∣αµ; 1,mµ

〉
=

〈
1, 1; mµ, ξ

∣∣∣1, 1; jm,mm

〉 〈
αm, jm

∥∥∥T(1)
∥∥∥αµ, 1〉

√
3

(3.19)

where ξ is defined by its use in T(1)
ξ , and the m and µ subscripts denote the 23PJ and 23S1 quantum

numbers. α includes any non-angular quantum numbers, but our states are completely specified

without it, so we will omit it. The double-bar matrix element will be determined by spectroscopic

data in [47]. A table of Clebsch-Gordan coefficients can be found in [3]. Note that for the D1 line,

the choice of
〈
1, 1; mµ, ξ

∣∣∣ over
〈
1, 1; ξ,mµ

∣∣∣ will cause a sign flip, but, quite generally, an absolute

phase on all factors will be irrelevant to our later calculations for any given spectral line, as they

will all eventually be multiplied by a complex conjugate, though possibly of a different state (i.e.,

different Zeeman m component) in the line.

In order to see how normalization will fit in, let us rearrange the Clebsch-Gordan tables.

Note that the header rows/columns are not part of the matrices:

D0 :
〈
1, 1; mµ,−mµ

∣∣∣1, 1; 0, 0
〉

=
1
√

3

[
(mµ = 1) (mµ = 0) (mµ = −1)

(mm = 0) 1 −1 1

]

D1 :
〈
1, 1; mµ,mm − mµ

∣∣∣1, 1; 1,mm

〉
=

1
√

2


(mµ = 1) (mµ = 0) (mµ = −1)

(mm = 1) 1 −1 0
(mm = 0) 1 0 −1

(mm = −1) 0 1 −1



D2 :
〈
1, 1; mµ,mm − mµ

∣∣∣1, 1; 2,mm

〉
=

1
√

6



(mµ = 1) (mµ = 0) (mµ = −1)
(mm = 2)

√
6 0 0

(mm = 1)
√

3
√

3 0
(mm = 0) 1 2 1

(mm = −1) 0
√

3
√

3
(mm = −2) 0 0

√
6


The spectroscopic data [47] is written in terms of line strengths S ik, as a sum over all 27

transitions, and S ik is equal to the sum of the magnitude squared of Equation (3.19), so we now

examine the sum of the squares of all the Clebsch-Gordan coefficients. Note that each of the nine

rows has a sum-of-squares equal to unity. Because the multiplicity of the metastable states is 3

for all cases, we will not split that off. Reference [47] gives
∑

i,k S ik = 57.66q2a2
B. Reference [47]

also gives numbers for the multiplets (e.g., D1), and, to one unit in the last place, the numbers are
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consistent with a simple division by the multiplicity (2mm + 1 = 1,3,5). Therefore, dividing evenly

among the 9 23PJ states, we find that

(2.5311qaB)2 =
∑
mµ

∣∣∣∣〈 jm,mm

∣∣∣∣T(1)
ξ

∣∣∣∣1,mµ

〉∣∣∣∣2 =

∣∣∣∣〈 jm

∥∥∥T(1)
∥∥∥1

〉∣∣∣∣2
3

∑
mµ

∣∣∣∣〈1, 1; mµ, ξ
∣∣∣1, 1; jm,mm

〉∣∣∣∣2

=

∣∣∣∣〈 jm

∥∥∥T(1)
∥∥∥1

〉∣∣∣∣2
3

in close agreement with the definition of D0 = 2.5312qaB in [34]. For the sake of consistency, we

will assume the two definitions are equal. Note that, as assumed, this constant is independent of

which multiplet jm we examine.

For each element of the matrices, Equation (3.18) contributes at most one term, governed by

the angular momentum addition rule that mµ + ξ = mm. Substituting this constant, Equation (3.18),

and the Clebsch-Gordan coefficient tables into Equation (3.19), we obtain the final tables, matching

Reference [34], where the argument of
#–D is redundant and could be dropped:

D0 :
〈
0, 0

∣∣∣∣ #–D
(
−mµ

)∣∣∣∣1,mµ

〉
=

D0
√

3

[
(mµ = 1) (mµ = 0) (mµ = −1)

(mm = 0) i1 −i0 −i−1

]

D1 :
〈
1,mm

∣∣∣∣ #–D
(
mm − mµ

)∣∣∣∣1,mµ

〉
=

D0
√

2


(mµ = 1) (mµ = 0) (mµ = −1)

(mm = 1) i0 i−1 0
(mm = 0) i1 0 i−1

(mm = −1) 0 i1 −i0



D2 :
〈
2,mm

∣∣∣∣ #–D
(
mm − mµ

)∣∣∣∣1,mµ

〉
=

D0
√

6



(mµ = 1) (mµ = 0) (mµ = −1)
(mm = 2) −

√
6i−1 0 0

(mm = 1)
√

3i0 −
√

3i−1 0
(mm = 0) i1 2i0 −i−1

(mm = −1) 0
√

3i1
√

3i0

(mm = −2) 0 0
√

6i1


(3.20)

3.6 Spherical Basis For Spin 1

This section fills in details omitted from [34].

Reference [48] gives the defining relations for spherical tensors as:[
Jz,T

(2)
ξ

]
= }ξT(2)

ξ

[
J±,T

(2)
ξ

]
= }

√
(2 ∓ ξ) (3 ± ξ)T(2)

ξ±1
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[
Jz,T

(1)
ξ

]
= }ξT(1)

ξ

[
J±,T

(1)
ξ

]
= }

√
(1 ∓ ξ) (2 ± ξ)T(1)

ξ±1

where |ξ| ≤ k in T(k)
ξ . One can show that the following definitions are consistent with the given

commutation relations, where the rows and columns are numbered in decreasing order of µ:

T(1)
1 =

−J+

2
�
}
√

2

 0 −1 0
0 0 −1
0 0 0

 T(1)
0 =

Jz
√

2
�
}
√

2

 1 0 0
0 0 0
0 0 −1


T(1)
−1 =

J−
2

�
}
√

2

 0 0 0
1 0 0
0 1 0

 T(2)
2 =

J2
+

2}
� }

 0 0 1
0 0 0
0 0 0


T(2)

1 = −
J+Jz

}
−

J+

2
�
}
√

2

 0 −1 0
0 0 1
0 0 0

 T(2)
0 = −}I

√
2
3

+
J2

z

}

√
3
2
�
}
√

6

 1 0 0
0 −2 0
0 0 1


T(2)
−1 =

J−Jz

}
−

J−
2

�
}
√

2

 0 0 0
1 0 0
0 −1 0

 T(2)
−2 =

J2
−

2}
� }

 0 0 0
0 0 0
1 0 0


(3.21)

The matrix representations are specific to a spin-1 space, but the rest of the equation is

general. An overall constant factor was chosen such that the trace of the product of an operator

with its own transpose was }2, which leaves only two overall minus signs—one in each rank—to

be chosen arbitrarily. It can also be shown that, together with the identity matrix, these form a

complete linearly-independent set over the set of 3 × 3 matrices. Thus, we can use them as a basis

for the density matrix:

ρ =
I
3

+
1
}2

[
〈Jz〉 Jz

2
+
〈J−〉 J+

4
+
〈J+〉 J−

4
+

〈
T(2)

0

〉
T(2)

0 +
〈
T(2)

2

〉
T(2)
−2 +

〈
T(2)
−2

〉
T(2)

2 −
〈
T(2)

1

〉
T(2)
−1 −

〈
T(2)
−1

〉
T(2)

1

]
(3.22)

Recall that ρ ≡ ρµµ′ here. However, the above expansion would also apply to the 23P1 form

of ρmm′ , if we needed it. The 23P2 form would need rank 3 and rank 4 tensors, while the 23P0 form

is just a scalar.

Also, J+ = J†−, T(2)
1 = −

(
T(2)
−1

)†
, T(2)

2 =
(
T(2)
−2

)†
.
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3.7 Light With Spherical Tensors

Table 3.5. Symbols Introduced In Section 3.7

Symbol Units Description
F(ω′) — Lorentzian lineshape factor
F′(ω′) — Dispersive counterpart to F(ω′)
Φ(z) cm−2s−1 Photon flux density; argument will usually be omitted

z cm Length along cell in local system
Wi a.u. Arbitrary operators
K1 none or erg−2s−2 Selected coefficient in expansion of ρ, as in Equation (3.22)
α(z) cm−3s−1 Photons gained (negative) per unit volume per unit time
nS cm−3 23S1 metastable density
Q∗ erg2cm3s “Reduced” cross sections, to shorten later expressions
A1 erg2cm3s Symmetrical transition matrix, function of polarization
A2 erg2cm3s Dispersive transition matrix, function of polarization
#–a p erg2cm3s Optical forcing vector, inhomogeneous term
C1 erg2cm3s Output matrix, function of polarization
Cp erg2cm3s Output scalar, inhomogeneous term, function of polarization
#–v erg · s Vector of ensemble expectations

Note that the entries listed as being in erg2cm3s may, in fact, only be proportional to those units.

That is, factors such as π or 103 are not examined in assigning these units.

This section extends [34] to include all quadrupole terms with all optical polarizations and

orientations.

3.7.1 General Concerns

When we use Equation (3.15), we will find it more useful to rewrite all references to the lineshape

factor f (ω′) defined in Equation (3.11) as [34]:

F
(
ω′

)
≡ f

(
ω′

)
+ f ∗

(
ω′

)
=

2

1 + τ2
(
ω′ − ω′0

)2 F′
(
ω′

)
≡ f

(
ω′

)
− f ∗

(
ω′

)
=

2iτ
(
ω′ − ω′0

)
1 + τ2

(
ω′ − ω′0

)2

(3.23)

The first of these is Lorentzian with half-width at half-maximum τ−1, while the second is its dis-

persive counterpart.
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Note that the photon flux density Φ =
cE2

0
8π}ω′ [34] and substitute it into Equation (3.15):(dρµµ′

dt

)
L

=
−2πω′τ
}c

Φ
∑
m,µ′′

[〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′′〉 ρµ′′µ′ f (ω′) + ρµµ′′
〈
µ′′

∣∣∣ #–e ∗ · #–D
∣∣∣m〉 〈

m
∣∣∣ #–e · #–D

∣∣∣µ′〉 f ∗
(
ω′

)]
(3.24)

We’d like to find out how the density operator ρ evolves in time, but, given the expansion

in Equation (3.22), we instead choose to find, equivalently, how the expectation values of the

operators used therein evolve in time. It is a basic property of the density operator (e.g., [48])

that the ensemble expectation of an operator is equal to the trace of the product of the density

operator with the operator in question. Given the properties of the trace operator, it is clear that,

for time-invariant operators (such as the angular momentum operators), the evolution of the various

expectation values are, e.g.:

d 〈Jz〉

dt
= Tr

[
dρ
dt

Jz

]
,

d 〈J+〉

dt
= Tr

[
dρ
dt

J+

]
, etc... (3.25)

The time evolution of each of these expectations is linear in dρ
dt , Equation (3.24) shows dρ

dt

is linear in ρ, and Equation (3.22) shows ρ is linear in each of its terms. Consequently, provided

we repeat for every term in Equation (3.22), each equation of the form of Equations (3.25) can be

expressed instead as a sum of terms, each due to a different term of Equation (3.22), and, more

to the point, these terms can be obtained quite simply by temporarily ignoring all other terms of

Equation (3.22).

The procedure is to substitute one term of Equation (3.22) — identified as K1 〈W1〉W2 —

into Equation (3.24). For each form of Equations (3.25), we can find the time evolution of the

expectation 〈W3〉 due to the aforementioned term by simple substitution. For the identity term of

Equation (3.22), simply take W1 = W2 = I.
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Following the procedure described above, we obtain:

d 〈W3〉

dt

∣∣∣∣∣
W1,W2

=
−2πω′τK1

}c
Φ

[〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′′〉 〈µ′′|W2|µ
′〉 〈µ′|W3|µ〉 f

(
ω′

)
+ 〈µ|W2|µ

′′〉
〈
µ′′

∣∣∣ #–e ∗ · #–D
∣∣∣m〉 〈

m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|W3|µ〉 f ∗
(
ω′

)]
〈W1〉

=
−πω′τK1

}c
Φ

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 [
〈µ′|{W2,W3}|µ〉 F

(
ω′

)
+ 〈µ′|[W2,W3]|µ〉 F′

(
ω′

)]
〈W1〉

(3.26)

Summation over m, µ, µ′, and µ′′ is assumed in this equation.

Not only do we need to compute the time evolution of the density matrix (or the expectation

values), but we also need to know how much light is absorbed in the cell. Similarly to [34], we

define the photon gain (always negative) per unit volume per unit time as:

α(z) = nS Tr
(
dρ
dt

)
, (3.27)

where we’ve called attention to the fact that this value, like others, tends to change over the length

of the cell; we will return to this fact in Section 3.11.

The relation equivalent to Equation (3.26) is:

− Tr
(
dρ
dt

)∣∣∣∣∣∣
W1,W2

=
2πω′τK1

}c
Φ

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|W2|µ〉 F
(
ω′

)
〈W1〉

We can cut the work involved in evaluating Equations (3.25) down by a third by noting:

(〈
α
∣∣∣W4

∣∣∣β〉)∗ =
〈
β
∣∣∣W†

4

∣∣∣α〉 (
#–e · #–D

)†
= #–e ∗ · #–D

where |α〉 and |β〉 are arbitrary kets in a compatible space. This can be used to deduce that:[〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|W4|µ〉 F
(
ω′

)]∗
=

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣W†

4

∣∣∣µ〉 F
(
ω′

)[〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|W4|µ〉 F′
(
ω′

)]∗
= −

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣W†

4

∣∣∣µ〉 F′
(
ω′

)
W4 is, of course, one of the [anti-]commutators in Equation (3.26). This means we do not

need to evaluate with W3 = J
−
, T(2)
−1, or T(2)

−2.
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3.7.2 Building Blocks for Expressing Traces

Knowing that a number of traces will show up repeatedly, we assign shorter names:

}Qzz =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣J2
z

∣∣∣µ〉 Qz =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|Jz|µ〉

}Q+− =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|J−J+ + J+J−|µ〉 Q+ =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|J+|µ〉

QI =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ〉 } Q− =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈µ′|J−|µ〉
Q−2 =

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
−2

∣∣∣µ〉 Q2 =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
2

∣∣∣µ〉
Q−1 =

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
−1

∣∣∣µ〉 Q1 =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
1

∣∣∣µ〉
}Q00 =

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣∣(T(2)
0

)2∣∣∣∣µ〉 Q0 =
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
0

∣∣∣µ〉
}Q11 =

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
−1T(2)

1 + T(2)
1 T(2)

−1

∣∣∣µ〉
}Q22 =

〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 〈
µ′

∣∣∣T(2)
−2T(2)

2 + T(2)
2 T(2)

−2

∣∣∣µ〉
Many of these can be expressed in terms of each other:

Qzz =
2
3
QI +

√
2
3
Q0 Q+− =

8
3
QI −

√
8
3
Q0

Q00 =
1
3
QI −

√
1
6
Q0 Q11 = −

2
3
QI +

√
1
6
Q0 Q22 =

2
3
QI +

√
2
3
Q0

3.7.3 Traces With Arbitrary Polarization

All of the traces of the preceding subsection can be evaluated in the coordinate system described

in Section 3.1, with the values of #–e given by Equation (3.3). The results, from Appendix C, are:

Qz =
D2

0} sin 2ε
6

(
ẑ · Ẑ

) [
2 3 −5

]
Q+ =

iD2
0} sin 2ε

6

√
1 −

(
ẑ · Ẑ

)2 [
−2 −3 5

]
QI =

D2
0}

3

[
1 3 5

]
Q2 =

D2
0}

12

[(
ŷ · Ẑ

)
+ i

(
x̂ · Ẑ

) (
ẑ · Ẑ

)]2
cos2 ε +

[(
x̂ · Ẑ

)
− i

(
ŷ · Ẑ

) (
ẑ · Ẑ

)]2
sin2 ε(

ẑ · Ẑ
)2
− 1

[
2 −3 1

]
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Q1 =
D2

0}

12

i
(
ẑ · Ẑ

) [
1 −

(
ẑ · Ẑ

)2
]

+ cos 2ε
[
i
(
x̂ · Ẑ

)2 (
ẑ · Ẑ

)
− i

(
ŷ · Ẑ

)2 (
ẑ · Ẑ

)
+ 2

(
x̂ · Ẑ

) (
ŷ · Ẑ

)]
√

1 −
(
ẑ · Ẑ

)2

×
[

2 −3 1
]

Q0 =
D2

0}

12
√

6

{
3
(
ẑ · Ẑ

)2
− 1 − 3

[(
x̂ · Ẑ

)2
−

(
ŷ · Ẑ

)2
]

cos 2ε
} [

2 −3 1
]

Q− = Q∗+ Q−2 = Q∗2 Q−1 = −Q∗1

3.7.4 Summary Plots

The color in these plots is a continuously-varying function of phase, with key points being:

cyan blue red green
+real +imag −real −imag

0 90 180 270

The axes serve as both dependent and independent variables. The magnitude of the distance from

the origin is the dependent variable, and is equal to the reduced cross section in question, times

1068 (since the reduced cross sections are very tiny). The direction represents the two independent

variables, and gives the direction of light propagation in the world system. Each figure contains,

from left to right, the D0, D1, and D2 components, respectively. Due to the apparent likeness, it

should be emphasized that these are not constant-probability contours of any sort. These are plots

of selected reduced cross sections from Section 3.7.2. Most of the possible plots were significantly

less “interesting.”

Figure 3.3 illustrates that QI is isotropic for all polarizations. This is to be expected, as it

indicates absorption regardless of the atomic polarization, and, for that matter, optical polarization.
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Figure 3.3. QI for all polarizations ε. The radial units are 10−61 cm2.

Figure 3.4 illustrates, for LCP light, the very frequently-occurring reduced cross sectionQz.

The dependence is a simple cosine of the angle between the light and H0, and also flips sign when

the handedness of the polarization changes. This cross section appears, among other places, in

monitoring the rank-one portion of the density matrix, in increasing the longitudinal polarization

of metastables (pumping), and in introducing virtual light shifts. Clearly, the reversal of sign is

very important in the latter case for the ability to operate in magnetometer mode, as described in

Section 2.3.

Figure 3.4. Qz for LCP light, ε = −π/4. The radial units are 10−61 cm2.

Figures 3.5 and 3.6 illustrate that Q+ changes sign between left- and right-handed circu-

larly polarized light, but does not change sign when light propagates in the opposite direction.

Figures 3.7 and 3.10 illustrate the opposite: a parity flip changes the sign of the cross section,

but the handedness of the polarization does not. Figures 3.8 and 3.9 illustrate intermediate polar-

izations. 90% left-circular was chosen to illustrate misalignments, and because it was difficult to

visuall discern 99%, e.g., from 100%.



34

Figure 3.5. Q+ for LCP light, ε = −π/4. The radial units are 10−61 cm2.

Figure 3.6. Q+ for RCP light, ε = π/4. The radial units are 10−61 cm2.

The failure to observe an equivalency between a flip in polarization of the light and flip in

the direction of propagation on Q+ (Q+ was selected because it, along with its conjugate, was the

only difficult one) is likely related to the choice of coordinate system affecting the definitions of

Q±. A simple thought experiment associated with the electric dipole approximation should lead

one to believe that the overall signal on the photodetector must observe this equivalency [50]. But

the plots show that, for −2ε = θ = ∓π/2 and φ = π/2, Q+ =
±iD2

0}

6

[
−2 −3 5

]
. Correspondingly,

upon solving for the state of the system using the methods of Chapter 5, we find that the difference

is that the sign flips on the solutions of 〈J±〉, but not 〈Jz〉. As described later in Equation (3.29),

however, the output is measured by multiplying again with Q± and Qz, so the reversal cannot be

measured on the transmitted light, and the situation is consistent with our expectations. Note that

the issue does not arise in [34] because Q± = 0 when the light propagates [anti-]parallel to H0.



35

Figure 3.7. Q1 for LCP light, ε = −π/4. The radial units are 10−61 cm2.

Figure 3.8. Q1 for almost-LCP light (90%), ε = −9π/40. The radial units are 10−61 cm2.

Figure 3.9. Q1 for linearly-polarized light, ε = 0. The radial units are 10−61 cm2.

Figure 3.10. Q1 for RCP light, ε = π/4. The radial units are 10−61 cm2.
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Figures 3.11, 3.12, and 3.13 illustrate the progression of Q0 from LCP to linearly-polarized

light. These are roughly the equivalent of Qz in importance, but for the rank-two portion of the

density matrix.

Figure 3.11. Q0 for LCP light, ε = −π/4. The radial units are 10−61 cm2.

Figure 3.12. Q0 for almost-LCP light (90%), ε = −9π/40. The radial units are 10−61 cm2.

Figure 3.13. Q0 for linearly-polarized light, ε = 0. The radial units are 10−61 cm2.

Figures 3.14, 3.15, 3.16, and 3.17 are merely an assortment of other effects visible on some

of the other cross sections, and have no immediately apparent interpretation, other than to note

that all of the “almost-LCP” plots, some of which are shown in Figures 3.12, 3.8, and 3.17, bear a

strong similarity to the LCP plots, but with a marked distortion.
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Figure 3.14. Qzz for linearly-polarized light, ε = 0. The radial units are 10−61 cm2.

Figure 3.15. Q+− for linearly-polarized light, ε = 0. The radial units are 10−61 cm2.

Figure 3.16. Q2 for linearly-polarized light, ε = 0. The radial units are 10−61 cm2.

Figure 3.17. Q2 for almost-LCP light (90%), ε = −9π/40. The radial units are 10−61 cm2.
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3.7.5 Compilation of Traces

Equation (3.24), which describes the time evolution, can be reformulated as:(
d #–v
dt

)
L

=
πΦω′

24c}2

∑
ω′0

[
τ F

(
ω′ − ω′0

)
A1 + τ F′

(
ω′ − ω′0

)
A2

] #–v−
2πΦω′

3c}

∑
ω′0

τF
(
ω′ − ω′0

) #–a p , (3.28)

where #–a p =



Q+

Qz

Q−

Q2

Q1

Q0

Q−1

Q−2


, and #–v ≡



〈J+〉

〈Jz〉

〈J−〉〈
T(2)

2

〉〈
T(2)

1

〉〈
T(2)

0

〉〈
T(2)
−1

〉〈
T(2)
−2

〉


.

After a good deal of work, applying the techniques outlined in Section 3.7.1, we can obtain

the values of the propagation matrices in terms of the reduced cross sections. This is an extraordi-

narily unpleasant exercise in bookkeeping, but the derivation is hardly profound. See Appendix D

for the list of commutators and anticommutators used in the process.

A1 =



−6Q+− 24Q1 −24Q2 −24Q− 24Qz 4
√

6Q+ 0 0
−12Q−1 −24Qzz 12Q1 0 12Q− −8

√
6Qz −12Q+ 0

−24Q−2 −24Q−1 −6Q+− 0 0 4
√

6Q− −24Qz −24Q+

−6Q+ 0 0 −24Q22 24Q1 −8
√

6Q2 0 0
6Qz 6Q+ 0 −24Q−1 24Q11 4

√
6Q1 −24Q2 0

√
6Q− −4

√
6Qz

√
6Q+ −8

√
6Q−2 −4

√
6Q−1 −48Q00 −4

√
6Q1 −8

√
6Q2

0 −6Q− −6Qz 0 −24Q−2 4
√

6Q−1 24Q11 −24Q1

0 0 −6Q− 0 0 −8
√

6Q−2 24Q−1 −24Q22


,

and

A2 =



12Qz −12Q+ 0 48Q−1 −24
√

6Q0 24
√

6Q1 −48Q2 0
−6Q− 0 6Q+ −48Q−2 24Q−1 0 −24Q1 48Q2

0 12Q− −12Qz 0 −48Q−2 24
√

6Q−1 −24
√

6Q0 48Q1

−12Q1 −24Q2 0 24Qz 12Q+ 0 0 0
−6
√

6Q0 −12Q1 −12Q2 12Q− 12Qz 6
√

6Q+ 0 0
−6
√

6Q−1 0 −6
√

6Q1 0 6
√

6Q− 0 6
√

6Q+ 0
−12Q−2 12Q−1 −6

√
6Q0 0 0 6

√
6Q− −12Qz 12Q+

0 24Q−2 −12Q−1 0 0 0 12Q− −24Qz


.

Similarly, Equation (3.27) can be recast as:

α(z) = −
πΦω′

6c}3 nS

∑
ω′0

τ F
(
ω′ − ω′0

) (
C1

#–v + }Cp

)
, where Cp = 4QI (3.29)
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and C1 =
[
3Q− 6Qz 3Q+ 12Q−2 −12Q−1 12Q0 −12Q1 12Q2

]
.

Five of these terms are kept in [34], and all five are assigned names. Using those names,

and expanding a bit, we can say:

• Cp is the absorption cross section.

• The terms in C1 proportional to 〈Jz〉 or
〈
T(2)

0

〉
are dichroic monitoring cross sections. “Di-

chroic” reflects the fact that absorption changes with input polarization, but output polariza-

tion is neglected here.

•
#–a p contains the polarization cross sections.

• The “diagonal” terms of A1 are the light broadening cross sections. In particular, the one cor-

responding to 〈Jz〉 is considered longitudinal, and the one corresponding to 〈J+〉 is considered

transverse.

• The “diagonal” terms of A2 are the virtual light shift cross sections.

3.8 Magnetic Field With Spherical Tensors

Table 3.6. Symbols Introduced In Section 3.8

Symbol Units Description
Hz, H± nT Alternative description of magnetic fields
ξ, η rad longitude, colatitude, respectively of H1 in local system
Θ rad Replacement angle, θ + ξ〈

J̃z

〉
, etc. erg · s Slowly-varying angular momentum expectation value〈

T̃(2)
2

〉
, etc. erg · s Slowly-varying angular momentum expectation value

H′x, H′y, H′z — Direction cosines for true H1 in world system
A3 — Diagonal coupling matrix for magnetic fields H0 and H1

A4 — Off-diagonal coupling matrix for magnetic field H1

A4′ — A4, after transformation to rotating coordinates
A(1)

4 , A(2)
4 , A(1)

4′ , A(2)
4′ — rank 1&2 partitions of above

#–
v′ erg · s Vector of ensemble expectations in rotating system
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This section extends [34] to include the rank-two components of the density matrix, under the

action of magnetic fields, and details the approximation required to make the equations stand a

chance of analytical solution.

3.8.1 General Concerns

Let 2H− ≡ Hx + iHy and 2H+ ≡ Hx − iHy. Note that this is the opposite of the way J+ and J− are

defined. The motivation for these definitions can be seen by substituting into Equation (3.16):

HM = γHzJz + γH+J+ + γH−J−

Substituting instead into Equation (3.17), we obtain:(
dρ
dt

)
M

=
iγ
}

(
Hz

[
ρ, Jz

]
+ H+

[
ρ, J+

]
+ H−

[
ρ, J−

])
(3.30)

Each of these commutators can be expanded:

}
[
Jz, ρ

]
=
〈J−〉 J+

4
−
〈J+〉 J−

4
−2

〈
T(2)

2

〉
T(2)
−2 +2

〈
T(2)
−2

〉
T(2)

2 +
〈
T(2)

1

〉
T(2)
−1 −

〈
T(2)
−1

〉
T(2)

1

}
[
J+, ρ

]
=−
〈Jz〉 J+

2
+
〈J+〉 Jz

2
+
√

6
〈
T(2)

0

〉
T(2)

1 +2
〈
T(2)

2

〉
T(2)
−1−
√

6
〈
T(2)

1

〉
T(2)

0 −2
〈
T(2)
−1

〉
T(2)

2

}
[
J−, ρ

]
=
〈Jz〉 J−

2
−
〈J−〉 Jz

2
+
√

6
〈
T(2)

0

〉
T(2)
−1+2

〈
T(2)
−2

〉
T(2)

1 −2
〈
T(2)

1

〉
T(2)
−2 −

√
6
〈
T(2)
−1

〉
T(2)

0

(3.31)

Now the operators themselves are not time-dependent, but their expectation values are.

Thus, if we substituted Equation (3.22) into the LHS of Equation (3.30), we would find terms

containing operators times time derivatives of expectation values of operators.

Now the operators themselves are a linearly-independent basis for ρ. Thus we can equate

the coefficients of these operators on either side of the equation and drop the operators themselves.

Note also that the identity operator has dropped out of both sides of the equation. Therefore, the

solutions are:

(
d #–v
dt

)
M

= iγ



Hz −2H− 0 0 0 0 0 0
−H+ 0 H− 0 0 0 0 0

0 2H+ −Hz 0 0 0 0 0
0 0 0 2Hz 2H− 0 0 0
0 0 0 2H+ Hz

√
6H− 0 0

0 0 0 0
√

6H+ 0
√

6H− 0
0 0 0 0 0

√
6H+ −Hz 2H−

0 0 0 0 0 0 2H+ −2Hz


#–v (3.32)
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The rank-one portion, after some algebra, reduces to [34]:

d
〈

#–J
〉

dt
= γ

#–H ×
〈

#–J
〉

3.8.2 Orientation Issues

Ordinarily, we take H0 along world Ẑ, and the Helmholtz coil pair H1 along world X̂. The

Helmholtz coils, assuming uniformity, produce a field at any point in the cell of 2H1 cosωt. It

is common practice to introduce a “fake” quadrature component of H1, and treat the sum as two

counter-rotating magnetic fields [58]. The approximation is then to drop the rotational direction

which does not match the Larmor precession introduced by H0, leaving:

#–H′ = X̂H1 cosωt + ŶH1 sinωt + ẐH0 ⇒ H+ =
H1

2
e−iωt , H− =

H1

2
eiωt , Hz = H0

The error introduced in that approach is quantified as the Bloch-Siegert shift [8], and is small for

terrestrial values of H0 ∼ 50 000 nT, but noticeable in space applications, where a small H0 /

1000 nT is common, as observed in the fly-by calibration of the Cassini spacecraft [62]. We will

roll back this approximation later. Note that H1 was perpendicular to world Ẑ to begin with,

so the obvious direction to take the quadrature component was along the mutually perpendicular

direction.

However, the Helmholtz coils are fixed in the local frame, not the world frame, so their axis

will generally not be perpendicular to H0, and will sometimes even be closer to parallel. Failing to

make the approximation of counter-rotating fields seems to yield an intractable differential equa-

tion, so we will make the approximation for the purposes of analytical solutions, and later describe

how we rolled it back for numerical solutions.

Define the Helmholtz coil direction
[
sin η cos ξ sin η sin ξ cos η

]T
in local coordinates as

the direction the H1 field points at time t = 0, as indicated in Figure 3.18. The dependence in that

direction is 2H1 cosωt.
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Figure 3.18. Magnetic Field Orientation in Local and World Systems.

Recall the world-local transform of Figure 3.1. Because the equations will not distinguish

θ and ξ in this section, it is prudent to define Θ ≡ θ + ξ. Then the field (see Appendix B.2) in the

world system is given by:

#–H = 2H1 cosωt

 H′x
H′y
H′z

 +

 0
0

H0

 ,
 H′x

H′y
H′z

 ≡
 sin η cos Θ

sin η sin Θ cos φ − cos η sin φ
sin η sin Θ sin φ + cos η cos φ

 (3.33)

Keep in mind that these are direction cosines: H′2x +H′2y +H′2z = 1. We are now in a position

to approximate:

H− = H1 cosωt
[
H′x + iH′y

]
≈

H1

2
e−iωt

[
H′x + iH′y

]
H+ = H1 cosωt

[
H′x − iH′y

]
≈

H1

2
e iωt

[
H′x − iH′y

]
Hz = 2H1 cosωt

[
H′z

]
+ H0

(3.34)

This is equivalent to saying:[
Hx

Hy

]
= 2H1

[
H′x 0
H′y 0

] [
cosωt
sinωt

]
≈ H1

[
H′x −H′y
H′y H′x

] [
cosωt
sinωt

]
Notice that Hz is not approximated, and that the quadrature sinωt component is perpendicular to

the Ẑ direction. It should also be apparent that the cosωt term’s direction has not been affected

by the approximation. Finally, note that the cosωt and sinωt columns are orthogonal (but not

orthonormal). The situation is shown in Figure 3.19.
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Figure 3.19. Orientation of Quadrature Field After Approximation.

Take a moment to try to understand the geometry there. The leftmost drawing shows the

situation when there is no Ẑ component to H1, so we just get a circular rotation in the plane. The

rightmost drawing shows what the ellipses look like as the plane of H1 rotates towards Ẑ: there is

less of a component along X̂ or Ŷ. The projection into the X̂-Ŷ plane is always circular, but the

actual figure traced by the presumed H1 goes from circular to elliptical to linear. Staying in that

plane and tracing over previous figures, we get the middle drawing.

We now check if the approximation makes sense by checking some limiting cases. We re-

ally only need to examine cases where the local and world systems are aligned in one fixed fashion

with respect to each other, as the orientation of the light does not figure into the approximation.

Therefore, in Figure 3.20, I have shown 3 of these limiting cases with the local and world systems

totally aligned, as well as a (superfluous) example of what it might look like if the two systems

were not the same.
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Figure 3.20. Some Example Orientations of the Magnetic Fields.
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When we take H1 to be in the x̂ direction, with both coordinate systems aligned, as the

situation usually is, this gives η = π
2 , φ = 0 and θ undetermined, but we can still conclude that

Θ = 0, by assuming ξ compensates any choice of θ, which is to say that we choose H1 along the

world X̂ axis. From that, we recover the nominal MSP model of [34]. Even if we add an excess to

ξ, thereby adjusting Θ, we just get an in-plane rotation, so this is encouraging.

If we instead took H1 along H0, but otherwise kept a nominal aligned system of θ = φ = 0,

then η = 0, ξ is indeterminate, and therefore Θ is indeterminate. This gives H1 entirely along Ẑ,

which is not even an approximation. Therefore, with the nominal aligned coordinate system, we

have a good approximation at the two limiting points. Since it varies smoothly between the two

extremes, it is a good approximation in the aligned system. Due to the way the approximation is

constructed, it is good in unaligned systems, as well.

3.8.3 Compilation of Magnetic Evolution Equations

Substituting Equations (3.34) back into Equation (3.32):(
d #–v
dt

)
M

=

[
i
(
γH0 + 2H1γH′z cosωt

)
A3 +

iγH1

2
A4

]
#–v , A4 ≡

[
A(1)

4 0
0 A(2)

4

]
, (3.35)

where A3 ≡ diag
[
1 0 −1 2 1 0 −1 −2

]
, diag is the operator that puts an n-element vec-

tor onto the main diagonal of a diagonal n × n matrix, and where A4 has been split into rank one

and rank two portions, respectively:

A(1)
4 =


0 2

(
−H′x − iH′y

)
eiωt 0(

−H′x + iH′y
)

e−iωt 0
(
H′x + iH′y

)
eiωt

0 2
(
H′x − iH′y

)
e−iωt 0

 ,

A(2)
4 =



0 2
(
H′x + iH′y

)
eiωt 0 0 0

2
(
H′x − iH′y

)
e−iωt 0

√
6
(
H′x + iH′y

)
eiωt 0 0

0
√

6
(
H′x − iH′y

)
e−iωt 0

√
6
(
H′x + iH′y

)
eiωt 0

0 0
√

6
(
H′x − iH′y

)
e−iωt 0 2

(
H′x + iH′y

)
eiωt

0 0 0 2
(
H′x − iH′y

)
e−iωt 0


.

To properly account for the oscillating, rather than rotating, field (i.e., avoid the Bloch-Siegert

shift), at the expense of having to compute the solution numerically, simply replace the e±iωt in A4

with 2 cosωt, as one could easily determine from Equations (3.34).
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In anticipation of what is to come, we define the substitutions (not yet approximations):

〈Jz〉 =
〈
J̃z

〉
, 〈J+〉 =

〈
J̃+

〉
eiωt ,

〈
T(2)

2

〉
=

〈
T̃(2)

2

〉
e2iωt ,

〈
T(2)

1

〉
=

〈
T̃(2)

1

〉
eiωt ,

〈
T(2)

0

〉
=

〈
T̃(2)

0

〉
(3.36)

By the properties of the angular momentum operators, we can also deduce that:

〈J−〉 =
〈
J̃−

〉
e−iωt ,

〈
T(2)
−2

〉
=

〈
T̃(2)
−2

〉
e−2iωt ,

〈
T(2)
−1

〉
=

〈
T̃(2)
−1

〉
e−iωt . (3.37)

Substituting these, we obtain:d
#–
v′

dt


M

=

[
i
(
γH0 − ω + 2H1γH′z cosωt

)
A3 +

iγH1

2
A4′

]
#–

v′ , (3.38)

where
#–

v′ ≡



〈
J̃+

〉〈
J̃z

〉〈
J̃−

〉〈
T̃(2)

2

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉〈
T̃(2)
−2

〉


, A(2)

4′ =



0 2
(
H′x + iH′y

)
0 0 0

2
(
H′x − iH′y

)
0

√
6
(
H′x + iH′y

)
0 0

0
√

6
(
H′x − iH′y

)
0

√
6
(
H′x + iH′y

)
0

0 0
√

6
(
H′x − iH′y

)
0 2

(
H′x + iH′y

)
0 0 0 2

(
H′x − iH′y

)
0


,

A(1)
4′ =


0 2

(
−H′x − iH′y

)
0

−H′x + iH′y 0 H′x + iH′y
0 2

(
H′x − iH′y

)
0

 , and A4′ ≡

[
A(1)

4′ 0
0 A(2)

4′

]
.

It is possible to assign different ω’s to the two different ranks, but it can be shown that

resonance occurs at ω ∼ γH0 in both cases, so such a generalization has no benefit. Note that A3 is

invariant under this transformation, and that A4 → A4′ is a simplification. Unfortunately, A1 and

A2 would not be simplified, but the transformation is all or nothing, and the transformation will

be beneficial if the hypothesis that
〈
T̃(2)

0

〉
and

〈
J̃z

〉
are quasistatic holds up, the latter of which is

assumed in [34].

A4′ is displayed here without taking into account the Bloch-Siegert shift, but the shift can be

dealt with by multiplying the superdiagonal elements by 1+e−2iωt, and multiplying the subdiagonal

elements by 1 + e2iωt. Again, doing this precludes an analytical solution.
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3.9 Doppler Broadening

Table 3.7. Symbols Introduced In Section 3.9

Symbol Units Description
G(ω′) — Doppler-broadened F(ω′)
G′(ω′) — Doppler-broadened F′(ω′)

Ω′0d,ω′0d
rad/s

Random variable and outcome representing apparent
transition frequency at a given velocity

V,v cm/s Random variable and outcome for atomic velocity, projected on ẑ
σω

rad/s Standard deviation of doppler shift
σv cm/s Standard deviation of projection of atomic velocity

kBT erg Boltzmann constant times absolute temperature
δ rad/s σω

√
2 (following convention of [34])

Many texts, e.g., [38], present derivations of Doppler broadening kernels, and describe the required

process of convolving with the original distribution function. We are interested in both initial

distributions F(ω′) and F′(ω′), where the former is Lorentzian. The convolution of the Gaussian

kernel with a Lorentzian is the Voigt profile, but the convolution integral cannot be evaluated in

closed form. A similar consideration applies to the dispersive counterpart F′(ω′). The lifetime

of the 23PJ states is sufficiently long that, for the entire temperature range where helium remains

a gas, one can make good approximations for the Doppler broadening of the D0,1,2 lines of 4He.

This section elaborates on some notes from Douglas D. McGregor [36], and plots the quality of

the approximations at a few temperatures.

In order to account for atomic velocity, we begin by rewriting Equation (3.23) with an

effective center frequency ω0d:

F
(
ω′

)
=

2

1 + τ2
(
ω′ − ω′0d

)2 F′
(
ω′

)
=

2iτ
(
ω′ − ω′0d

)
1 + τ2

(
ω′ − ω′0d

)2

where the random variable Ω0d ∼ N
(
ω′0, σ

2
ω

)
, with the mean taken as the point of zero velocity by

symmetry considerations. There is a one-to-one relationship between ω0d and the ẑ projection of

the velocity of a particular atom, given by v, where this velocity is a random variableV ∼ N
(
0, σ2

v

)
,

with σ2
v = kBT/M, as given in [38]. The doppler shift is given by the linear transformation of
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random variables
(
Ω′0d − ω

′
0

)
c = ω′0V, which allows us to trivially relate the standard deviations:

σωc = ω′0σv.

Over the entire range of atomic velocities, and therefore apparent transition frequencies

ω′0d, we can find the expectation value of the lineshape factor F(ω′):

E
[
F
(
ω′

)]
=

∫ ∞

0
fΩ′0d

(
ω′0d

) 2

1 + τ2
(
ω′ − ω′0d

)2 dω′0d ≈

∫ ∞

0
fΩ′0d

(
ω′0d

) 2π
τ
δ
(
ω′ − ω′0d

)
dω′0d

=
2π
τ

fΩ′0d

(
ω′

)
=

√
2π

τσω

exp
−

(
ω′ − ω′0

)2

2σ2
ω

=
2
√
π

τδ
exp
−

(
ω′ − ω′0

)2

2σ2
ω

, δ ≡ σω

√
2

where the definition of the constant δ follows [34]. The approximation is justified since the HWHM

of the Lorentzian F(ω′) is about 107 rad/s, and the HWHM of the Gaussian is δ
√

ln 2 ≈ 5.4 ×

109 at 300 K, almost three orders of magnitude wider. At this temperature, the approximation

yields linewidths accurate to about a tenth of a percent, and, at the boiling point of helium, the

approximation is still better than one percent. We define G(ω′) ≡ E [F(ω′)], as given. Note that a

closed form of the integral is unavailable.

Likewise, we find that:

E
[
F′

(
ω′

)]
=

∫ ∞

0
fΩ′0d

(
ω′0d

)
F′

(
ω′0d

)
=

i
√

2
τσω

√
π

∫ ∞

0

τ2
(
ω′ − ω′0d

)
1 + τ2

(
ω′ − ω′0d

)2 exp
−

(
ω′0d − ω

′
0

)2

2σ2
ω

dω′0d

Now [1] gives on pages 303 and 297, respectively:∫ ∞

−∞

(x − t) e−t2

(x − t)2 + y2
dt = π Im {w(x + iy)} x real, y > 0

w(z) = e−z2
erfc(−iz)

If we identify:

x =
ω′ − ω′0

σω

√
2

t =
ω′0d − ω

′
0

σω

√
2

y =
1

σωτ
√

2

dω′0d

σω

√
2

= dt ,

then the integrals match, other than the question of limits. It is somewhat absurd to think that the

Doppler effect will cause any noticeable contributions at negative frequencies, so it is reasonable

to extend the limits and equate the two:

E
[
F′

(
ω′

)]
=

 i
√

2
τσω

√
π

 [π Im {w(x + iy)}
]

=
i2
√
π

τδ
Im

{
erfc (y − ix) ey2−x2−2ixy

}
=

i2
√
π

τδ
e−y2−x2 [

cos 2xy Im {erf (ix − y)} − sin 2xy (1 + Re {erf (ix − y)})
]
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For very small y (measured absolutely, not relative to x), it is reasonable to take y = 0. The relative

error involved in doing this is about a quarter of a percent, at worst, given that y ≈ 1.54 × 10−3.

Therefore:

G′
(
ω′

)
≡ E

[
F′

(
ω′

)]
≈

i2
√
π

τδ
e−x2

Im {erf (ix)} =
2
√
π

τδ
exp
−

(
ω′ − ω′0

)2

δ2 erf
i
(
ω′ − ω′0

)
δ

Replacing F′(ω′) and F(ω′) by their expectation values is equivalent to replacing them by G′(ω′)

and G(ω′), respectively, everywhere they occur in this document, save this section.

G(ω′) and G′(ω′) are plotted in Figures 3.21 and 3.23, respectively. Note that F′(ω′) and

G′(ω′) are odd and pure imaginary, while F(ω′) and G(ω′) are even and real. Note also that the

“tails” of G′(ω′) contribute far beyond where G(ω′) ceases to contribute; this means that cross

sections involving the former, but on distant spectral lines, often contribute. This is the case with

the virtual light shift, which is not quite zero on the center of the D0 line, due to contributions

from the other two lines. An idea of the error introduced with our approximations can be seen in

Figures 3.22 and 3.24. It is very small, as mentioned earlier. The temperatures were chosen to be

related by a factor of 4, with 300 K being approximately room temperature.
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Figure 3.21. G(ω′) Approximation Comparison, Overlay. The left figure is at 300 K, and the right
figure is at 75 K.
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Figure 3.22. G(ω′) Approximation Comparison, Difference. The left figure is at 300 K, and the
right figure is at 75 K.
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Figure 3.23. G′(ω′) Approximation Comparison, Overlay. The left figure is at 300 K, and the right
figure is at 75 K.
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Figure 3.24. G′(ω′) Approximation Comparison, Relative Error. The left figure is at 300 K, and
the right figure is at 75 K.
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3.10 State Space Form

Table 3.8. Symbols Introduced In Section 3.10

Symbol Units Description
τc s Polarization relaxation time constant
α′(z) cm−1rad−1s Photons gained per length per optical angular frequency
ΦIN cm−2s−1 Photon flux density at input to cell, Φ(0)

A1′ ,A2′ ,C1′ ,Cp′ , #–a p′ erg2cm3s2 Rotating-system versions, and summed over D0,D1,D2

This section adds all previous terms in a digestable form and completes the transformation to a

rotating coordinate system, in preparation for solution.

Combining Equations (3.28) and (3.35) with a polarization relaxation term [34], followed

by the substitutions of Section 3.9 (F → G and F′ → G′), gives the following:

d #–v
dt

=
πΦω′

24c}2

∑
ω′0

[
τG

(
ω′ − ω′0

)
A1 + τG′

(
ω′ − ω′0

)
A2

] #–v −
2πΦω′

3c}

∑
ω′0

τG
(
ω′ − ω′0

) #–a p

+

[
i
(
γH0 + 2H1γH′z cosωt

)
A3 +

iγH1

2
A4

(
eiωt

)
−

I8×8

τc

]
#–v

(3.39)

where I8×8 is the 8 × 8 identity matrix.

Here, A1 and A2 are polarization-dependent, A3 is constant, and A4 is a function of small

integer powers of eiωt, as partially indicated. The precise treatment of τc warrants further thought,

however it is beyond the scope of this research. To date, the discharge model8 that gives τc de-

pends on metastable density, overall pressure, and cell dimensions, giving an “average” value of

τc that includes the effects of diffusion, electron temperature, radiation trapping, and various rate

equations for excited atoms, ionized atoms, electrons, and ionized diatomic species. It assumes

homogeneous time-invariant discharge populations and a noiseless electrical stimulus from the RF

exciter. Φω′ is related to light intensity (but not wavelength, in spite of the appearance of ω′). It

remains to be determined whether it makes sense to convert some of the A matrices into nonlinear

exogenous inputs B’s, primarily as functions of Φ(0), ω′, and ω.

8Douglas D. McGregor, source code, September 19, 2007
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The justification for τc being the same for every component is that relaxations are thought

to simply remove metastables entirely, without regard to polarization of the atoms. Two significant

relaxation effects that contribute to τc are an electron striking a 23S1 atom and exciting it to a

random 23PJ state, destroying any polarization [37], and diffusion of 23S1 atoms into the walls

[24]. Penning ionization is an atomic polarization-dependent process [24, 33] where two 23S1

atoms collide yielding a ground-state 11S0 atom, a singly-ionized atom, and an electron, and is

considered in the calculation of τc primarily because it affects the electron density. However, the

polarization dependence of Penning ionization is ignored, partly because the polarization is small,

and partly because the model would need a feedback between the discharge calculations and the

optical pumping calculations. Such a modification, even if tractable, is not worth the difficulty,

since the contribution is often considered weak compared to the other relaxation effects.

The virtual light shift (on the diagonal of A2) has measurable effects far beyond the absorp-

tion line, as illustrated in Figure 3.23, so we must keep the summation, even though ω′ is only near

the D0 value of ω′0 in practice.

While solving this equation, it will be assumed H0 is a constant (in a constant direction),

but it is conceivable that the simplistic direction assumption necessitated by perturbation theory

might be tested by comparing a slowly oscillating coordinate system solution under this assumption

with a fixed coordinate-system solution where the effective AC component of H0 is added as an

additional term in a similar fashion to how H1 is handled. If this is feasible, the comparison will

likely give two results that diverge as the frequency of the test-vector H0 grows, validating the

adiabatic assumption for some low frequency range (likely � ω), up to some specification on

tolerable model error. This is not to suggest that motion of H0 will usually be sinusoidal, but is a

convenient test of accuracy, nevertheless.

The output equation can be obtained by taking Equation (3.29) and also applying the sub-

stitutions of Section 3.9:

α(z) = α′(z) Φω′ = −
πΦω′

6c}3 nS

∑
ω′0

τG
(
ω′ − ω′0

) (
C1

#–v + }Cp

)
, Φ(z) = ΦINeα

′(z)ω′z (3.40)

Note that this explicitly includes the frequency of the light. This appears unavoidable.

At absorption levels of interest (15%-20%), we may choose to approximate the exponential with
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a line [34]. At the opposite extreme, one accounts for the fact that light intensity, polarization

and light broadening vary along the length of the cell, and one could consider treating the cell

as several shorter cylinders stacked end-to-end, with the output of one feeding the input of the

next. We elaborate on this “cell slicing” procedure in Section 3.11. Because the vapor is optically-

thin under typical operating conditions, not many slices are needed, and neglecting to follow this

procedure still yields results with the proper qualitative features.

3.10.1 Rotating Coordinates

One approach that at least sometimes causes the DC component of the solution to dominate ω

and its harmonics is to make a mathematical transformation to rotating coordinates. This is, in

itself, not an approximation, but the approximations we eventually make will generally rely on

this. Transforming Equation (3.39) to rotating coordinates, we obtain:

d
#–
v′

dt
=

[
πΦω′

24c}2
(A1′ + A2′) + i

(
γH0 − ω + 2H1γH′z cosωt

)
A3 +

iγH1

2
A4′ −

I8×8

τc

]
#–

v′−
2πΦω′

3c}
#–a p′ ,

(3.41)

where

#–a p′ =
∑
ω′0

τG
(
ω′ − ω′0

) [
Q+e−iωt Qz Q−eiωt Q2e−2iωt Q1e−iωt Q0 Q−1eiωt Q−2e2iωt

]T
.

Note that the transpose in the definition of #–a p′ is merely a page space saving device to

change a row vector to a column vector; the component operators themselves are not transposed.

For the same page size limit reasons, we define

A12 ≡



1 e−iωt e−2iωt eiωt 1 e−iωt e−2iωt 0
eiωt 1 e−iωt e2iωt eiωt 1 e−iωt e−2iωt

e2iωt eiωt 1 0 e2iωt eiωt 1 e−iωt

e−iωt e−2iωt 0 1 e−iωt e−2iωt 0 0
1 e−iωt e−2iωt eiωt 1 e−iωt e−2iωt 0

eiωt 1 e−iωt e2iωt eiωt 1 e−iωt e−2iωt

e2iωt eiωt 1 0 e2iωt eiωt 1 e−iωt

0 e2iωt eiωt 0 0 e2iωt eiωt 1


,
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and use this to specify

A1′ =
∑
ω′0

τG
(
ω′ − ω′0

)
[A12 (.∗) A1] and

A2′ =
∑
ω′0

τG′
(
ω′ − ω′0

)
[A12 (.∗) A2] ,

where (.∗) is element-by-element matrix multiplication.

Finally, one can also transform the output equation, Equation (3.40), to rotating coordi-

nates:

α(z) = −
πΦω′

6c}3 nS

(
C1′

#–

v′ + }Cp′
)
, (3.42)

where

C1′ =
∑
ω′0

τG
(
ω′ − ω′0

)
×

[
3Q−eiωt 6Qz 3Q+e−iωt 12Q−2e2iωt −12Q−1eiωt 12Q0 −12Q1e−iωt 12Q2e−2iωt

]
,

and Cp′ =
∑
ω′0

4QIτG
(
ω′ − ω′0

)
.

3.11 Cell Slicing

This section presents details of an approach briefly mentioned in [34] for handling longitudinal

variation of light intensity in the cell and compares the quality of the theoretical results, depending

on how many slices the cell is conceptually divided into.

It was mentioned in the explanation of Equation (3.27) that optical pumping causes the

ensemble statistics to vary along the length of the cell. The variation is not very large, so it makes

sense to treat the problem as a number of shorter cells stacked end-to-end, each solved with the

previous cell’s output power becoming the new input power. The choice of the number of slices

has an impact on the amount of error. In this section, we will illustrate a quantitative example of the

effect of this choice for the configuration described in Section 4.1, which should also be similar to

the results one would obtain with the solution given in [34]. The code used is based on the solution

in Chapter 5. The results here are assumed to be representative of those in other configurations.

Perhaps most simple is the case when H1 = 0, or, equivalently, |γH0 − ω| → ∞. In this case,

shown in Figure 3.25, we are looking at the off-resonance transmitted light, and the effect of optical
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pumping on the transparency of the cell is highlighted. The computational time is proportional to

the number of sub-cells, or “slices,” used. Use of only 1 slice is sometimes referred to here as

“unsliced,” since it is the result one would obtain if this section had not been included. The plots

in this section use 1.5 torr, 1.805 cm inside-radius, 4.88 cm inside-length cells, and the results are

representative of other sizes.
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Figure 3.25. Effect of Slice Count, Off-Resonance (H1 = 0).
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Figure 3.26. Effect of Slice Count, γH0 = ω, H1 Optimized for Each Power.

When H1 is optimized for each power level, and ω = γH0, we have the on-resonance

case shown in Figure 3.26. Note that the error continues to increase as power increases, rather



55

than the apparent leveling-off displayed in Figure 3.25. Note that, in both figures, the traces are

approximately equally spaced on a logarithmic vertical scale, and that the number of traces has

been chosen to increase exponentially. Both figures use 100 slices (not shown, as it would simply

be a flat line at an ordinate of 0) as the “true” solution against which each option is compared, since

an analytic solution to the slicing problem is not readily available.

Next, the resonance curve for a given metastable density (chosen to give 15% absorption

with 100 slices) is shown in Figure 3.27. There is clearly a noticeable difference between these

traces. One of the cases considered is five slices, as that is the number most frequently used in

much of this document.

However, most of the error of Figure 3.27 can be attributed to improper absorption level,

or, equivalently, failing to adjust the metastable density. If we instead allow each trace to have its

own metastable density, thereby constructing solutions that each work out to 15% absorption, the

difference is much smaller, as shown in Figure 3.28. The difference between 5 and 32 slices is

unnoticeable on the scale of Figure 3.28. Since we generally use the absorption level to determine

the metastable density, Figure 3.28 is most representative of the errors we expect to see in the

remainder of this document, thus justifying the common choice of 5 slices. The input power was

1 mW in both figures.
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Figure 3.27. Effect of Slice Count, Resonance Curve, nS Chosen to give 15% in One Case.
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CHAPTER 4

SPECIAL-CASE SOLUTIONS

Table 4.1. Symbols Introduced In Chapter 4 (Intro Only)

Symbol Units Description
k1,k2 erg−2cm−3s−3 coefficients of A1′ ,A2′ in state equation (identical values)

k3 rad/s coefficient of A3; detuning of H1 frequency from γH0

k4 rad/s coefficient of A4′ in state equation; proportional to H1 amplitude
QB1 cm2 longitudinal light broadening cross section
QB2 cm2 transverse light broadening cross section
QP cm2 rank-one polarization cross section

Q(20)
P ,Q(22)

P cm2 polarization cross sections for
〈
T̃(2)

0

〉
and

〈
T̃(2)
±2

〉
, respectively

QS cm2 virtual light shift cross section
QC0 cm2 dispersive coupling cross section between rank one and rank two
Q(20)

M cm2 dichroic monitoring cross section for
〈
T̃(2)

0

〉
QA cm2 absorption cross section

This section solves the state equations for a few of the orientations and optical polarizations of

interest in practical magnetometers and describes a useful approximation for parameterizing reso-

nance curves.

To allow the following to fit better onto the page, we define the coefficients of A1′ through

A4′ to be k1 through k4, respectively. For the purposes of the special-case solutions, we also ne-

glect the cosωt term of Equation (3.41) (by assuming H′z = 0, or, equivalently, H1 ⊥ H0), and

we neglect the Bloch-Siegert shift (by assuming we have a true rotating H1 field, rather than the

experimentally-convenient oscillating field). Then k1 = k2 = πΦω′

24c}2 , k3 = i (γH0 − ω), and k4 =
iγH1

2 .

Then Equation (3.41) becomes:

d
#–
v′

dt
=

[
k1A1′ + k2A2′ + k3A3 + k4A4′ − τ

−1
c I8×8

] #–

v′ − 16}k1
#–a p′

57
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It is helpful to define some cross sections in a manner consistent with [34], but in terms of

the quantities used in this document:

−ΦQB2 = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(−6Q+−) , −ΦQB1 = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(−24Qzz) ,

ΦQP = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(−16Qz) , ΦQ(20)

P = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(−16Q0) ,

ΦQ(22)
P = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(−16Q2) , iΦQS = k2

∑
ω′0

τG′
(
ω′ − ω′0

)
(12Qz) ,

ΦQC0 = k2

∑
ω′0

τG′
(
ω′ − ω′0

) (
−6
√

6Q0

)
, −ΦQ(20)

M = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(48Q0) , and

ΦQA = k1

∑
ω′0

τG
(
ω′ − ω′0

)
(16QI) ,

where the Q’s are, in order of introduction, the transverse light broadening cross section9, the

longitudinal light broadening cross section, the rank-one polarization cross section, two different

rank-two polarization cross sections, the virtual light shift cross section, a cross section for the

coupling of the rank one and rank two portions, the dichroic monitoring cross section for the rank

two longitudinal polarization, and the absorption cross section (which is independent of atomic

polarization). Note that QS is real because G′
(
ω′ − ω′0

)
is imaginary.

4.1 Z-Aligned LCP (σ)

Table 4.2. Symbols Introduced In Section 4.1

Symbol Units Description
k′3 rad/s detuning of H1 frequency from magnetic line center
τ1,τ2 s rank-one longitudinal and transverse relaxation times, respectively
τ0 s rank-two longitudinal relaxation time

J0,J20 erg s off-resonance longitudinal polarization, rank-one and rank-two, respectively

This section solves the state equations for the case considered in [34], but presents the solutions

to all three rank-one components, rather than just the longitudinal polarization. Additionally, we

provide justification for considering only a steady-state solution when all parameters are constant.

9Note that, because of a typographical error, this is half as large as the definition of QB2 in [34]. It is believed that
the present work is correct.
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When ε = −π4 , φ = θ = ξ = 0, and η = π
2 , the reduced cross sections become:

Qz =
D2

0}

6

[
−2 −3 5

]
QI =

D2
0}

3

[
1 3 5

]
Q0 =

D2
0}

6
√

6

[
2 −3 1

]
−4Q11 ≡ Q+− =

D2
0}

3

[
2 9 13

]
Qzz ≡ Q22 =

D2
0}

6

[
2 3 7

]
Q00 =

D2
0}

36

[
2 15 19

]
Q+, Q−, Q2, Q−2, Q1, Q−1 are all 0

Note that the time-dependent elements of A12 each multiply zeros, so the rotating sys-

tem works out cleanly. Reference [34] also defines τ−1
1 ≡ τ−1

c + ΦQB1, τ−1
2 ≡ τ−1

c + ΦQB2, and

J0 ≡ }Φτ1QP, with the former two being time constants, and the latter being the off-resonance

longitudinal polarization (exactly when we only consider the rank one portion, otherwise approx-

imately). We now roll the virtual light shift in by defining k′3 ≡ k3 + iΦQS , where k′3 is purely

imaginary. We also define a similar time constant, τ−1
0 ≡ τ

−1
c + Φ

3 (4QB2 − QB1), where it can easily

be shown that the parenthesized quantity is strictly positive. Using this, we can similarly assign a

symbol to the rank-two-only off-resonance
〈
T(2)

0

〉
polarization as J20 ≡ }Φτ0Q(20)

P . Then:

d
#–
v′

dt
=



k′3 − τ
−1
2 −2k4 0

−k4 −τ−1
1 k4

0 2k4 −τ−1
2 − k′3

0 0 0
ΦQC0 − 3/8J0τ

−1
1 }

−1 0 0
0

√
3/8J0τ

−1
1 }

−1 0
0 0 ΦQC0 + 3/8J0τ

−1
1 }

−1

0 0 0




〈
J̃+

〉〈
J̃z

〉〈
J̃−

〉
 +



0
J0τ

−1
1

0
0
0

J20τ
−1
0

0
0



+



0 4ΦQC0 − 3/2J0τ
−1
1 }

−1 0 0 0
0 0

√
3/2J0τ

−1
1 }

−1 0 0
0 0 0 4ΦQC0 + 3/2J0τ

−1
1 }

−1 0
2k′3 − τ

−1
1 2k4 0 0 0

2k4 k′3 − τ
−1
2

√
6k4 0 0

0
√

6k4 −τ−1
0

√
6k4 0

0 0
√

6k4 −k′3 − τ
−1
2 2k4

0 0 0 2k4 −2k′3 − τ
−1
1





〈
T̃(2)

2

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉〈
T̃(2)
−2

〉


Because the homogeneous solution dies out at least as fast as τc, we are, at this point, only

interested in the particular solution. The particular solution can be obtained by undetermined co-

efficients, and is some nonnegative power of t times a constant vector. Clearly, a solution growing
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linearly, quadratically, etc. in time is nonphysical, so we only consider t0, i.e., a constant (steady-

state) solution. This is equivalent to saying that no component of the homogeneous solution is

constant, or saying that the homogeneous part of the transition matrix (the matrix that would have

resulted if I could have concatenated the 3 × 8 and 5 × 8 matrices on one page) is nonsingular.

Since the desired solution is constant, we set the derivative vector to zero and solve an

algebraic matrix equation. This is available in closed form, but is so unwieldy as to fail to yield

any insight. Therefore, we instead work only with the rank one portion at this point, since this

is known to dominate in this particular case, although we also present numerical solutions that

include both portions. Solving the rank one portion, we obtain the solution of [34], except also

including the virtual light shift:

〈Jz〉

J0
= 1 −

γ2H2
1τ1τ2

1 + γ2H2
1τ1τ2 + (γH0 − ω + ΦQS )2 τ2

2

We also find the rest of the solution, while we’re at it:

〈J+〉

〈Jz〉
= eiωt γH1τ2

i + (γH0 − ω + ΦQS ) τ2

Now the homogeneous solution to the rank-one portion involves the roots of an arbitrary

cubic polynomial, so it is more difficult to describe in closed form. The transition matrix is not Her-

mitian, but it is nevertheless normal, so it has a complete set of linearly-independent eigenvectors.

The characteristic polynomial is, in terms of a dummy variable λ:

λ3 + λ2
(
τ−1

1 + 2τ−1
2

)
+ λ

(
τ−2

2 + 2τ−1
1 τ
−1
2 − k′23 − 4k2

4

)
+

(
τ−1

1 τ
−2
2 − 4k2

4τ
−1
2 − k′23 τ

−1
1

)
= 0

All coefficients are positive (recall k′3 and k4 are imaginary), so we can use the Routh array:

λ3: 1 τ−2
2 + 2τ−1

1 τ
−1
2 − k2

3 − 4k2
4

λ2: τ−1
1 + 2τ−1

2 τ−1
1 τ
−2
2 − 4k2

4τ
−1
2 − k2

3τ
−1
1

λ : −4k2
4 + τ−2

2 + 3
2τ
−1
1 τ
−1
2 +

1−4k′23 τ
2
1+8k2

4τ
2
1

4τ2
1+2τ1τ2

1 : −k′23 τ
−1
1 + τ−1

1 τ
−2
2 − 4k2

4τ
−1
2

Clearly, all cells of the first column are positive, so all poles are in the open left half-plane and

transients die out as expected.

One can find comparisons of the prior theory, containing only rank-one terms, with the new

model, including both ranks, in Figures 5.2, 5.3, 5.4, 5.7, and 5.8.
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4.2 Z-Linearly-Polarized (π-Parallel)

Table 4.3. Symbols Introduced In Section 4.2

Symbol Units Description
α1,α2,α3,β1,β2 rad/s intermediate calculation in closed-form solution

γ2 — intermediate calculation in closed-form solution
a2,b2,d2 (rad/s)2 coefficients in rational function approximation
a0,b0,d0 (rad/s)4 coefficients in rational function approximation

This section takes the case of pumping with linearly-polarized light, with polarization azimuth

parallel to H0, and elaborates on the notes of [35], in the process converting to the more organized

matrix form used in the rest of the present document. Additionally, we have extended the solution

to include both ranks and derived an approximation that will be used in Sections 6.1 and 6.2 for

analyzing experimental data.

In the π-parallel case, where ε = 0, φ = θ = η = π
2 , and ξ = −π

2 , the reduced cross sections

become:

Q0 =
−D2

0}

3
√

6

[
2 −3 1

]
QI =

D2
0}

3

[
1 3 5

]
Q00 =

D2
0}

18

[
4 3 11

]
−4Q11 = Q+− =

2D2
0}

3

[
2 3 7

]
Qzz = Q22 = D2

0}
[

0 1 1
]

Qz, Q+, Q−, Q2, Q−2, Q1, Q−1 are all 0

Note that, as in Section 4.1, the time-varying components of A12 all multiply zeros. The

present case, the case considered in Section 4.1, and certain reflections of these cases are the only

cases where the time-varying portions disappear, and therefore the only cases where the closed

form solution is straightforward to obtain. And recall that this only occurs if we make the assump-

tions in the introduction to Chapter 4.
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The state equation is nearly identical to that of Section 4.1, but with several terms zeroed

out, including the rank-one pumping cross section:

d
#–
v′

dt
=



k3 − τ
−1
2 −2k4 0

−k4 −τ−1
1 k4

0 2k4 −k3 − τ
−1
2

0 0 0
ΦQC0 0 0

0 0 0
0 0 ΦQC0

0 0 0




〈
J̃+

〉〈
J̃z

〉〈
J̃−

〉
 +



0
0
0
0
0

J20τ
−1
0

0
0



+



0 4ΦQC0 0 0 0
0 0 0 0 0
0 0 0 4ΦQC0 0

2k3 − τ
−1
1 2k4 0 0 0

2k4 k3 − τ
−1
2

√
6k4 0 0

0
√

6k4 −τ−1
0

√
6k4 0

0 0
√

6k4 −k3 − τ
−1
2 2k4

0 0 0 2k4 −2k3 − τ
−1
1





〈
T̃(2)

2

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉〈
T̃(2)
−2

〉



(4.1)

Now some of the values for the symbols in here are different, but the system takes a similar form.

In Chapter 5, we will consider a Fourier series steady-state solution for each state element,

but this reduces to a constant for each element in this section because the transition matrix is con-

stant. Upon zeroing the state vector derivative, the state vector can be obtained from the algebraic

matrix equation:



0
0
0
0
0

−J20τ
−1
0

0
0


=



k3 − τ
−1
2 −2k4 0 0 4ΦQC0 0 0 0

−k4 −τ−1
1 k4 0 0 0 0 0

0 2k4 −k3 − τ
−1
2 0 0 0 4ΦQC0 0

0 0 0 2k3 − τ
−1
1 2k4 0 0 0

ΦQC0 0 0 2k4 k3 − τ
−1
2

√
6k4 0 0

0 0 0 0
√

6k4 −τ−1
0

√
6k4 0

0 0 ΦQC0 0 0
√

6k4 −k3 − τ
−1
2 2k4

0 0 0 0 0 0 2k4 −2k3 − τ
−1
1





〈
J̃+

〉〈
J̃z

〉〈
J̃−

〉〈
T̃(2)

2

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉〈
T̃(2)
−2

〉


Because the QC0 term coupling the rank-one and rank-two portions is nominally zero close

to the D0 line center, and because the rank-one portion is neither pumped nor directly observed, it

would be a very good approximation to neglect the rank-one portion. The solution if one neglects

that portion is [35]:
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α1 ≡ −k3 + τ−1
2 −

4k2
4

τ−1
1 − 2k3

〈
T(2)

0

〉
=

J20τ
−1
0

τ−1
0 − 12k2

4Re
{

1
α1

}
Here, we will derive a result similar to this, but keeping the terms from both ranks. First,

we use α1 to eliminate
〈
T̃(2)
±2

〉
:



0
0
0
0

−J20τ
−1
0

0


=



k3 − τ
−1
2 −2k4 0 4ΦQC0 0 0

−k4 −τ−1
1 k4 0 0 0

0 2k4 −k3 − τ
−1
2 0 0 4ΦQC0

ΦQC0 0 0 −α1
√

6k4 0
0 0 0

√
6k4 −τ−1

0

√
6k4

0 0 ΦQC0 0
√

6k4 −α∗1





〈
J̃+

〉〈
J̃z

〉〈
J̃−

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉


To make the steps a bit clearer, we use the scale factors of Equations (3.21) to make the

transition matrix more symmetric:



0
0
0
0

−J20τ
−1
0

0


=



k3 − τ
−1
2 −

√
2k4 0 2ΦQC0 0 0

−
√

2k4 −τ−1
1

√
2k4 0 0 0

0
√

2k4 −k3 − τ
−1
2 0 0 2ΦQC0

2ΦQC0 0 0 −α1
√

6k4 0
0 0 0

√
6k4 −τ−1

0

√
6k4

0 0 2ΦQC0 0
√

6k4 −α∗1





〈
J̃+

〉
/2〈

J̃z

〉
/
√

2〈
J̃−

〉
/2〈

T̃(2)
1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉


Now we define:

β1 ≡ 2τ1k2
4 + k3 − τ

−1
2

and eliminate
〈
J̃z

〉
, while changing notation for the remaining two rank-one tensors, as explained

in Equations (3.21):
0
0
0

−J20τ
−1
0

0

 =


β1 −2τ1k2

4 2ΦQC0 0 0
−2τ1k2

4 β∗1 0 0 2ΦQC0

2ΦQC0 0 −α1
√

6k4 0
0 0

√
6k4 −τ−1

0

√
6k4

0 2ΦQC0 0
√

6k4 −α∗1





〈
T̃(1)

1

〉〈
T̃(1)
−1

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉


Next, we define:

γ2 ≡
4Φ2Q2

C0

4k4
4τ

2
1 − |β1|

2 α2 ≡ α1 − β
∗
1γ2 β2 ≡ 2k2

4τ1γ2
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and use them to eliminate the rank-one portion entirely, but at the cost of making the remaining

matrix full: 0
−J20τ

−1
0

0

 =


−α2

√
6k4 β2√

6k4 −τ−1
0

√
6k4

β2
√

6k4 −α∗2



〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉


We can, however, define:

α3 ≡
|α2|

2
− β2

2

α∗2 + β2
=

Re {α2} + β2

|α2|
2
− β2

2

=
−4k4

4τ
2
1γ

2
2 +

∣∣∣α∗1 − β1γ2

∣∣∣2
2k4

4τ1γ2 + α∗1 − β1γ2

which is completely analogous to α1, in the sense that use of α1 in place of α3 is equivalent to only

solving the rank-two portion.

Using this, we recover the desired sparsity pattern: 0
−J20τ

−1
0

0

 =


−α3

√
6k4 0

√
6k4 −τ−1

0

√
6k4

0
√

6k4 −α∗3



〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉


Finally, we can directly obtain the solution for the observable component:〈
T̃(2)

0

〉
=

J20τ
−1
0

τ−1
0 − 12k2

4Re
{

1
α3

}
As mentioned, the rank-one portion contributes very little, and results in a ratio of even

sixth-order polynomials in k3, as opposed to the ratio of even fourth-order polynomials one obtains

if one lets α3 → α1:〈
T̃(2)

0

〉
J20

≈ [
4τ2

1τ
2
2

]
k4

3 +
[
−τ2

2 − 4τ2
1

(
1 + 4k2

4τ
2
2

)]
k2

3 +
[
1 − 4k2

4τ1τ2

]2[
4τ2

1τ
2
2

]
k4

3 +
[
−τ2

2 + 4τ2
1

(
−1 + 4k2

4 (3τ0 − τ2) τ2

)]
k2

3 +
[(
−1 + 4k2

4τ1τ2

) (
−1 + 4k2

4 (3τ0 + τ1) τ2

)]
(4.2)

One sees in an experimental resonance curve for this configuration, such as that in Fig-

ure 6.1, that a ratio of two even quartics makes some sense in analogy with a transfer function

having two poles and two zeros, outlined in Equation (4.4), particularly since k3 is proportional
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(by i) to a frequency detuning. The only possible difficulty is the observation equations, Equa-

tions (3.40) and (3.42), which, for the case considered in this section, become:

α′(z) = −
2πnS

3c}3

〈T̃(2)
0

〉 ∑
ω′0

τG
(
ω′ − ω′0

)
3Q0

 + }

∑
ω′0

τG
(
ω′ − ω′0

)
QI


 , Φ(z) = ΦINeα

′(z)ω′z ,

or, in terms of the appropriate cross sections:

Φ(z) = ΦINe−znS QA exp
[znS

}

〈
T̃(2)

0

〉
Q(20)

M

]
= ΦINe−znS QA exp

3z
(
Q(20)

P

)2
(nS τ0Φ)

〈
T̃(2)

0

〉
J20

 . (4.3)

Because the latter exponential (involving
〈
T̃(2)

0

〉
) is generally much smaller than the first (in-

volving QA), and the QA exponential factor is fixed for constant metastable density, [34] indicates a

first-order Taylor series expansion of the exponential in the longitudinal polarization is somewhat

appropriate. Under this assumption, and taking
〈
T̃(2)

0

〉
to be a ratio of even quartics in k3, Φ(z) is

also a ratio of even quartics in k3. This suggests that a 4 × 4 Padé approximant (which happens to

remain even) to Φ(z) in k3 would work at least as well. Keep in mind that the experimental data

of Section 6.1 actually supports the ratio of even-order quartics for Φ(z) directly, rather than for〈
T̃(2)

0

〉
, so the reasoning here was somewhat backwards.

The fit of Φ(z) to an arbitrary ratio of even quartics is so good that it makes sense to use the

Padé approximant to go back to a ratio of even quartics for
〈
T̃(2)

0

〉
and solve for five independent

parameters. Since k3 is the independent variable, there are only five parameters remaining to solve

for: J20, τ0,1,2, and k4. Actually, τ0 is not independent in the theory, a fact that may serve as a

partial check of the impact of the various approximations we’ve made. Note that these parameters

are unlikely to be simultaneously accurate at any one point in the cell, since they are all some sort

of spatial average. The exception is that, by design, k4 is expected to be reasonably uniform. It is

expected that, at least with only one resonance curve, we will not be able to solve independently

for nS and J20, since the absorption level is typically used as a measure of nS . Thus, the theoretical

model will provide the distinction between the two, and should not be considered an independent

verification of J20.

The output photon flux density Φ(L) is proportional to the photocurrent by factors involving

beam cross-sectional area, photodiode sensitivity, and some unknown amount of back-reflection
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from optical surfaces. Only the photodiode sensitivity is known, but, from a data fitting perspec-

tive, the back-reflection can be considered a reduction in the effective photodiode sensitivity, since

photocurrent is measured and the back-reflection percentage, like photodiode sensitivity, is a mul-

tiplicative factor used to determine the actual optical power in the cell. Since the photocurrent at

large magnetic detunings ω − γH0 is easily determined from collected data, we can consider all of

these to form a baseline and primarily examine the remaining multiplicative factor:

(
photocurrent

)
= (baseline)

[
k2

3 − γ
2 (first zero, in nT)2

] [
k2

3 − γ
2 (second zero, in nT)2

][
k2

3 − γ
2 (

first pole, in nT
)2
] [

k2
3 − γ

2 (
second pole, in nT

)2
] . (4.4)

Using a 4 × 4 Padé approximant at the origin, this can be expressed in the form:

(
photocurrent

)
= (baseline) e−1 exp

k4
3 + b2k2

3 + b0

k4
3 + a2k2

3 + a0
. (4.5)

The expressions used to perform this conversion are lengthy, but may be determined in

closed form if desired. The worst-case relative error introduced through the Padé approximation is

about 10−5 for the data considered in Section 6.1. It is then straightforward to convert this to the

form required by Equations (4.2) and (4.3):

(
photocurrent

)
= (baseline) exp

[
−3nS τ0

(
Q(20)

P

)2
ΦL

]
exp

[(
3nS τ0

(
Q(20)

P

)2
ΦL

) k4
3 + d2k2

3 + d0

k4
3 + a2k2

3 + a0

]

= (baseline) exp
[
−3nS τ0

(
Q(20)

P

)2
ΦL

]
exp

(3nS τ0

(
Q(20)

P

)2
ΦL

) 〈
T(2)

0

〉
J20

 ,
d2 = a2 + (b2 − a2)

(
3nS τ0

(
Q(20)

P

)2
ΦL

)−1
, and

d0 = a0 + (b0 − a0)
(
3nS τ0

(
Q(20)

P

)2
ΦL

)−1
.

(4.6)

We will consider the calculation of the cross section Q(20)
P to be comparatively well estab-

lished10, but note that there is a choice in the value of nS τ0Φ. It turns out that this value will have

a significant impact on the fit theoretical parameters, although, if one ignores the constraint on

the relationship between τ0, τ1, and τ2, an excellent fit may always be obtained at the expense of

10However, it is acceptable if it is not, provided one is only concerned about the transformation into the form of
Equation (4.6), and not the interpretation of the fit value of nS τ0Φ.
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any physical meaning. Such a fit is useful as a reference point for fitting more meaningful curves,

rather than (initially) attempting to fit straight to noisy data.

While the code for the model can determine τc (closely related to τ0) and nS as a function

of Φ, the beam radius, and a set of better-known experimental parameters, to date it is not clear if

we can satisfactorily extract the individual values of nS , τ0 and Φ from the product nS τ0Φ, because

the data may not be sufficiently sensitive to the individual variables. It is possible that a future

extension may accomplish this extraction.

One can solve for the parameters used in Equation 4.2 such that Equation (4.6) is satisfied:

τ−1
2 =

|a2 − d2|
√

d0

√
2
√

d0 − d2∣∣∣∣a0 −
√

d0

(
a2 − d2 +

√
d0

)∣∣∣∣ τ−1
1 = 2τ−1

2
d0 − a0

√
d0 (a2 − d2)

τ−1
0 = 3τ−1

2

τ−1
1 τ
−1
2 − 2

√
d0

a2 − d2
k2

4 = −
d2 + τ−2

2

4
−
τ−2

1

16
= −

γH1

2

(4.7)

Note that while it is desirable for 3τ−1
0 = 4τ−1

2 − τ
−1
1 , this cannot be used to solve for

nS τ0Φ in closed form. The constraint on τ0 is certainly one possible source of a merit function for

numerical optimization, however. It should be reiterated that, if one ignores this constraint, then

Equation (4.2) will fit for any choice of nS τ0Φ, and that Equation (4.4) is fit without even choosing

a value for nS τ0Φ at all. The latter case is useful for extracting slopes and linewidths from noisy

measurement data, where one cannot ordinarily take the derivative.

Presently three ranges of inputs are used to determine the range of allowable values of

nS τ0Φ to test for agreement between the model and data. In particular, we vary the effective light

beam radius, the input optical power, and a multiplicative factor applied to τc, where the value of

τc is obtained from the discharge model. This latter multiplicative factor was introduced because

there is some experimental evidence that the theoretically-calculated value of τc may be too low.

The input power is allowed to be larger than the experimentally-determined value due to

the unknown level of back-reflections. This hypothesis for power variation does not affect the

accuracy of the measured ratio of input power at large detunings ω − γH0 to input power with

the discharge extinguished. Reference to an “absorption level,” such as 15%, with no further
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qualification, may be used to describe the complement of this ratio; in that example, 85% of the

input light is transmitted when off-resonance.

4.3 Linearly-polarized against Z (π-Perpendicular)

Table 4.4. Symbols Introduced In Section 4.3

Symbol Units Description
uξ,n erg · s Fourier series coefficients for state vector components, frequency nω

This section presents a solution to the rank-two portion of the state equation for the case where

linearly polarized light (ε = 0) has its polarization azimuth perpendicular to the H0 field. This is

referred to as π-perpendicular, and is further specified in this case by φ = 0, −ξ = η = π
2 . The

work of this section can also be seen to motivate the results in Chapter 5, since the method here is

similar, but specialized.

The reduced cross sections become:

Q0 =
D2

0}

6
√

6

[
2 −3 1

]
QI =

D2
0}

3

[
1 3 5

]
Q∗−2 = Q2 =

D2
0}

12

(
−e2iθ

) [
2 −3 1

]
Qz, Q+, Q−, Q1, Q−1 are all 0

Q00 =
D2

0}

36

[
2 15 19

]
−4Q11 = Q+− =

D2
0}

3

[
2 9 13

]
Qzz = Q22 =

D2
0}

6

[
2 3 7

]
At first glance, the dependence of Q±2 on θ is interesting, since the value of θ should be

indeterminate for φ = 0, given the fact that the orientation of the X̂ and Ŷ axes does not figure into

the problem formulation. The choice of coordinate system may be what leads to the curious phase

factor in the evaluation of Q±2 in this situation. Numerical work based on the method of Chapter 5

indicates that the choice of θ does not make a difference in the observed transmitted light, so, in

this section, we will assume θ = π
2 to make Q∗

−2 = Q2 =
}D2

0
12

[
2 −3 1

]
real.
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As in Section 4.2, the rank-one portion is not directly pumped, not directly observed, and

only weakly coupled to the rank-two portion. This time we will neglect it. The arbitrary choice to

set H1 perpendicular to the light polarization is likely immaterial, up to a possible phase, since we

have assumed a rotating H1. Unlike Sections 4.1 and 4.2, this case is complicated by the fact that

the transition matrix has time-varying components. The state equation is:

d
dt



〈
T̃(2)

2

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉〈
T̃(2)
−2

〉


=


ΦQ(22)

P e−2iωt

0
J20τ

−1
0

0
ΦQ(22)

P e2iωt



+


2k3 − τ

−1
1 2k4

√
3/2ΦQ(22)

P e−2iωt 0 0
2k4 k3 − τ

−1
2

√
6k4 3/2ΦQ(22)

P e−2iωt 0
√

3/2ΦQ(22)
P e2iωt

√
6k4 −τ−1

0

√
6k4

√
3/2ΦQ(22)

P e−2iωt

0 3/2ΦQ(22)
P e2iωt

√
6k4 −k3 − τ

−1
2 2k4

0 0
√

3/2ΦQ(22)
P e2iωt 2k4 −2k3 − τ

−1
1





〈
T̃(2)

2

〉〈
T̃(2)

1

〉〈
T̃(2)

0

〉〈
T̃(2)
−1

〉〈
T̃(2)
−2

〉


If we neglect the time-varying components of the transition matrix, we wind up with the

same solution as in Section 4.2, although, of course, the symbols have substantially different nu-

merical values. Therefore, it makes sense to either stop here, or try to keep some or all of these

terms. If we did neglect the time-varying components, the interpretation of J20 would remain the

same as before, but keeping the time-varying components introduces a small change in the DC

off-resonance polarization, compared to J20.

Now, the only way the elements are related is by integer powers of e2iωt, and the system is

linear, but time-varying. It is reasonable to conclude that, whatever the time dependence of
〈
T̃(2)

0

〉
,

the other components follow it, modified, at most, by a Fourier series with fundamental 2ω.

A seemingly-reasonable simplification is to assume the driving terms set the time depen-

dence of the states, particularly since the observation equation brings those particular frequencies

back to DC in each case. Unfortunately, doing so leaves inconsistencies that, while perhaps accept-

able, are difficult to justify. So we instead try a Fourier series solution. This approach is similar to

what we will do in Chapter 5, but with fewer terms. Let〈
T̃(2)
ξ

〉
=

∞∑
n=−∞

uξ,2ne2niωt , which implies
d
dt

〈
T̃(2)
ξ

〉
=

∞∑
n=−∞

[
u̇ξ,2n + 2niωuξ,2n

]
e2niωt
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We have assumed that ω is constant here, like every other parameter; attention is called to

this since such an assumption is only reasonable in some experiments (such as those in Chapter 6),

and not in an actual magnetometer system. At this point, we approximate by neglecting u̇ξ,2n, i.e.,

taking the steady-state solution as we have been doing previously. Then we obtain a system of

equations:

2niω


u2,2n

u1,2n

u0,2n

u−1,2n

u−2,2n

 =


ΦQ(22)

P δ2n+2

0
J20τ

−1
0 δn

0
ΦQ(22)

P δ2n−2


+



(
2k3 − τ

−1
1

)
u2,2n + 2k4u1,2n +

√
3/2ΦQ(22)

P u0,2n+2

2k4u2,2n +
(
k3 − τ

−1
2

)
u1,2n +

√
6k4u0,2n + 3/2ΦQ(22)

P u−1,2n+2
√

3/2ΦQ(22)
P

(
u2,2n−2 + u−2,2n+2

)
+
√

6k4
(
u1,2n + u−1,2n

)
− τ−1

0 u0,2n

2k4u−2,2n +
(
−k3 − τ

−1
2

)
u−1,2n +

√
6k4u0,2n + 3/2ΦQ(22)

P u1,2n−2(
−2k3 − τ

−1
1

)
u−2,2n + 2k4u−1,2n +

√
3/2ΦQ(22)

P u0,2n−2


Clearly, this system is (countably) infinite, since n is any integer. However, it is only excited

in the near vicinity of n = 0, and, physically, one does not expect harmonics too far above ω, so the

coupling must be such that they eventually die out. That said, no statement has been made about

the relative magnitude of DC and the first few harmonics of ω. We might, at this point, assume we

know the magnitude of terms with n , 0, and solve for the other components. Then perhaps we

can return and see what the impact of varying those unknowns is, ideally setting them to zero. So:
0
0

−J20τ
−1
0

0
0

 = ΦQ(22)
P



√
3/2u0,2

3/2u−1,2√
3/2

(
u2,−2 + u−2,2

)
3/2u1,−2√

3/2u0,−2



+


2k3 − τ

−1
1 2k4 0 0 0

2k4 k3 − τ
−1
2

√
6k4 0 0

0
√

6k4 −τ−1
0

√
6k4 0

0 0
√

6k4 −k3 − τ
−1
2 2k4

0 0 0 2k4 −2k3 − τ
−1
1




u2,0

u1,0

u0,0

u−1,0

u−2,0


We can simplify in a manner similar to Section 4.2:

α1 ≡ −k3 + τ−1
2 −

4k2
4

τ−1
1 − 2k3 0

−J20τ
−1
0

0

 = ΦQ(22)
P


3/2u−1,2 +

√
3/2

2k4
τ−1

1 −2k3
u0,2

√
3/2

(
u2,−2 + u−2,2

)
3/2u1,−2 +

√
3/2

2k4
τ−1

1 +2k3
u0,−2

 +


−α1

√
6k4 0

√
6k4 −τ−1

0

√
6k4

0
√

6k4 −α∗1


 u1,0

u0,0

u−1,0


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The solution is then:

u0,0 =
J20τ

−1
0 + ΦQ(22)

P

√
3/2

(
u2,−2 + u−2,2

)
τ−1

0 − 12k2
4Re

{
1
α1

}
+ ΦQ(22)

P 3k4

1
α1

(√
3/2u−1,2 + 2k4

τ−1
1 −2k3

u0,2

)
+ 1

α∗1

(√
3/2u1,−2 + 2k4

τ−1
1 +2k3

u0,−2

)
τ−1

0 − 12k2
4Re

{
1
α1

}
Note that the longitudinal polarization when H1 is deactivated has moved from J20 to

J20 + τ0ΦQ(22)
P

√
3/2

(
u2,−2 + u−2,2

)
.

In terms of u0,0, we obtain the other solutions:

u1,0 =

√
6k4u0,0 + ΦQ(22)

P

(
3/2u−1,2 +

√
3/2

2k4
τ−1

1 −2k3
u0,2

)
α1

,

u−1,0 =

√
6k4u0,0 + ΦQ(22)

P

(
3/2u1,−2 +

√
3/2

2k4
τ−1

1 +2k3
u0,−2

)
α∗1

But because u∗1,0 = −u−1,0, we can simplify the solution for u0,0:

u0,0 =
J20τ

−1
0 + ΦQ(22)

P

√
3/2

(
u2,−2 + u−2,2

)
τ−1

0 − 12k2
4Re

{
1
α1

} +

Im
{

1
α1

(√
3/2u−1,2 + 2k4

τ−1
1 −2k3

u0,2

)}
τ−1

0 − 12k2
4Re

{
1
α1

}
Finally,

u±2,0 =
ΦQ(22)

P

√
3/2u0,±2 + 2k4u±1,0

τ−1
1 ∓ 2k3

Note that, since u∗2,0 = u
−2,0, we can conclude11 that u∗0,2 = u0,−2. This then implies that

u∗
−1,2 = −u1,−2. Now only the u2n,−2n terms can be observed at DC, and of the terms of that form, we

have only solved for u0,0, and, even then, only in terms of higher-order sets of coefficients. While

it is completely reasonable to expect these coefficients to be small for very large values of |n|, one

cannot justifiably claim |n| > 0 satisfies that criterion. It is desirable to obtain a recurrence relation

11This would not be approriate if Q(22)
P had not been chosen to be real.
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from one order to the next, and to evaluate the sensitivity of u0,0 to changes in initial estimates of

the higher-order terms. The first few equations in that process can be found in Appendix E.

In passing, it should be mentioned that the case of off-axis σ-pumping, where ε = ±π/4,

θ = φ = η = ξ = π/2, gives results that, at least at DC, are very similar to the solution to the

problem in this section. The off-axis σ-pumping case is more complex, since the Q± values are

then also nonzero, so both ranks are forced and observed. Some examples of the off-axis σ-

pumping case can be found in Figures 6.24 and 6.25. Off-axis σ-pumping, even more so than the

case presented in this section, yields a weak signal, but it is nevertheless a case of interest, since

most 4He magnetometers are used in applications where they can be rotated. Much of the theory of

this section (although, to better effect, the theory of Chapter 5) can also be applied to the off-axis

σ-pumping case.



CHAPTER 5

GENERAL STEADY-STATE SOLUTION

Table 5.1. Symbols Introduced In Chapter 5

Symbol Units Description
A′a s−1 general transition matrix
#–a p′′ erg general inhomogeneous term of state equation
η�� s−1 general transition term; superscript for LHS term, subscript for RHS term
ζ�� s−1 general transition term; superscript for LHS term, subscript for RHS term
ζ�h erg coefficients of forcing term; superscript for LHS term

#–
ζ h,n erg forcing vector, frequency nω
#–u n erg · s Fourier series coefficients for state vector, frequency nω

This section generalizes the special cases presented in Chapter 4 to provide a complete, albeit

numerical and steady-state, solution to the equations of Section 3.10.1 over the entire parameter

space. We no longer neglect the Bloch-Siegert shift introduced in Equation (3.34) and described

at the end of Section 3.8. The notation and approach are somewhat similar to that of Section 4.3,

since the situation considered in that section also needed to account for time-dependent elements

in the state transition matrix. Plots are presented for a variety of situations, with interesting effects

identified and improvements suggested.

5.1 General Concerns

Begin by rewriting Equation (3.41) as:

d
#–
v′

dt
= A′a

#–

v′ + #–a p′′ ,
#–a p′′ ≡ −

2πΦω′

3c}
#–a p′ ≡



ζ+
h e−iωt

ζz
h
ζ−h eiωt

ζ2
he−2iωt

ζ1
he−iωt

ζ0
h
ζ−1

h eiωt

ζ−2
h e2iωt


73
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Then:

A′a ≡



ζ+
+ ζ+

z e−iωt ζ+
−e−2iωt ζ+

2 eiωt ζ+
1 ζ+

0 e−iωt ζ+
−1e−2iωt 0

ζz
+eiωt ζz

z ζz
−e−iωt ζz

2e2iωt ζz
1eiωt ζz

0 ζz
−1e−iωt ζz

−2e−2iωt

ζ−+e2iωt ζ−z eiωt ζ−− 0 ζ−1 e2iωt ζ−0 eiωt ζ−
−1 ζ−

−2e−iωt

ζ2
+e−iωt ζ2

z e−2iωt 0 ζ2
2 ζ2

1e−iωt ζ2
0e−2iωt 0 0

ζ1
+ ζ1

z e−iωt ζ1
−e
−2iωt ζ1

2eiωt ζ1
1 ζ1

0e−iωt ζ1
−1e−2iωt 0

ζ0
+eiωt ζ0

z ζ0
−e
−iωt ζ0

2e2iωt ζ0
1eiωt ζ0

0 ζ0
−1e−iωt ζ0

−2e−2iωt

ζ−1
+ e2iωt ζ−1

z eiωt ζ−1
− 0 ζ−1

1 e2iωt ζ−1
0 eiωt ζ−1

−1 ζ−1
−2e−iωt

0 ζ−2
z e2iωt ζ−2

− eiωt 0 0 ζ−2
0 e2iωt ζ−2

−1eiωt ζ−2
−2



+



η+
+ η+

z e−iωt 0 0 0 0 0 0
ηz

+eiωt ηz
z ηz

−e−iωt 0 0 0 0 0
0 η−z eiωt η−− 0 0 0 0 0
0 0 0 η2

2 η2
1e−iωt 0 0 0

0 0 0 η1
2eiωt η1

1 η1
0e−iωt 0 0

0 0 0 0 η0
1eiωt η0

0 η0
−1e−iωt 0

0 0 0 0 0 η−1
0 eiωt η−1

−1 η−1
−2e−iωt

0 0 0 0 0 0 η−2
−1eiωt η−2

−2


(
eiωt + e−iωt

)

The cosine terms on the main diagonal are from H′z, and the trick on the super/subdiagonal is for the

Bloch-Siegert shift. For the latter case, neglecting the component that gives the second harmonic

and keeping the constant is equivalent to neglecting this shift and assuming an actual rotating field.

Let:

〈
T̃(2)
ξ

〉
=

∞∑
n=−∞

uξ,neniωt , ξ ∈ {−2, . . . , 2}
〈
J̃±

〉
=

∞∑
n=−∞

u±,neniωt
〈
J̃z

〉
=

∞∑
n=−∞

uz,neniωt (5.1)

If

#–u n ≡
[

u+,n uz,n u−,n u2,n u1,n u0,n u−1,n u−2,n

]T
,

and

#–
ζ h,n ≡

[
ζ+

h δn,−1 ζz
hδn,0 ζ−h δn,1 ζ2

hδn,−2 ζ1
hδn,−1 ζ0

hδn,0 ζ−1
h δn,1 ζ−2

h δn,2

]T
,
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then we have the following system:

−
#–
ζ h,n =



ζ+
+ − niω η+

z 0 0 ζ+
1 0 0 0

ηz
+ ζz

z − niω ηz
− 0 0 ζz

0 0 0
0 η−z ζ−− − niω 0 0 0 ζ−

−1 0
0 0 0 ζ2

2 − niω η2
1 0 0 0

ζ1
+ 0 0 η1

2 ζ1
1 − niω η1

0 0 0
0 ζ0

z 0 0 η0
1 ζ0

0 − niω η0
−1 0

0 0 ζ−1
− 0 0 η−1

0 ζ−1
−1 − niω η−1

−2
0 0 0 0 0 0 η−2

−1 ζ−2
−2 − niω


#–u n

+



η+
+ 0 0 ζ+

2 0 0 0 0
ζz

+ ηz
z 0 0 ζz

1 0 0 0
0 ζ−z η−− 0 0 ζ−0 0 0
0 0 0 η2

2 0 0 0 0
0 0 0 ζ1

2 η1
1 0 0 0

ζ0
+ 0 0 0 ζ0

1 η0
0 0 0

0 ζ−1
z 0 0 0 ζ−1

0 η−1
−1 0

0 0 ζ−2
− 0 0 0 ζ−2

−1 η−2
−2


#–u n−1 +



0 η+
z ζ+

− 0 0 0 ζ+
−1 0

0 0 ηz
− 0 0 0 0 ζz

−2
0 0 0 0 0 0 0 0
0 ζ2

z 0 0 η2
1 ζ2

0 0 0
0 0 ζ1

− 0 0 η1
0 ζ1

−1 0
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(5.2)

Clearly this is one block-row of an infinite-dimensional block-diagonal system, with block

size 8. If one only looks at the equations, it is not obvious how to solve it. Note that
#–
ζ h,n , 08×1

iff |n| ≤ 2; this corresponds to the fact that only DC through the second harmonic actually appears

in the inhomogeneous portion. Appealing again to the argument that we cannot physically expect

significant contributions for high harmonics, we can choose to solve for some subset of the #–u n’s,

where |n| ≤ mo. When combined with Equation (3.42), we find that α(z) formally has Fourier

components up to e±(mo+2)iωt.

Intuitively, one might expect Fourier components with |n| � mo (where� is intentionally

vague) to be more accurate than the rest. However, for every case tested, solutions of this system

seem to yield #–u n components that are numerically indistinguishable for two different values of
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mo, provided both values of mo are ≥ |n|. This is some indication that the solution procedure is

even more solid than one would expect; i.e., it leads one to suspect that the postulated condition

|n| � mo may be disregarded. When in doubt, however, one can always increase mo, where the cost

is that of solving a dimension-(16mo + 8) linear system, a procedure that is usually asymptotically

cubic in the matrix dimension.

A diagram for the case of mo = 3 is shown in Figure 5.1. Note that all blocks on the first

superdiagonal are the same, and, similarly, on the second superdiagonal. This is also true of the two

subdiagonal rows. However, there are slight differences (due to the niω terms) in the on-diagonal

blocks. Additionally, the right-hand side has been set separately, and the state variables are not

shown.
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Figure 5.1. Diagram of Matrix Equation Layout for mo = 3.

The basic idea is that each additional order introduces two new L-shaped pieces, but then

the matrix is truncated on the lower-right to ensure it remains square. For mo = 1 and mo = 0,

this reduces conveniently to a 3 × 3 full block diagonal matrix, and a 1 × 1 block diagonal matrix,

respectively. In other words, Equation (5.2) corresponds to any one row of Figure 5.1 (or of a

similar figure for some other mo).

5.2 Examples – Pumping with LCP Light (σ)

This section presents plots, comparisons, and optimizations for the case of circularly-polarized

light. Some comparisons are made with the theory of [34].
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5.2.1 Comparisons With Prior σ Theory12

In this section, Section 5.2.2, Section 5.3, and Section 5.4, the laser wavelength is assumed to be on

(and substantially narrower than) the D0 line center, and to uniformly fill a 3.61 cm inside diameter,

4.88 cm inside length cell filled with 4He to 1.5 Torr. The metastable level is chosen in each case

such that, at any large magnetic detuning |γH0 − ω| � 2πτ−1
c , 15% of the light is absorbed. In

the plots where H1 strength and/or optical power are independent variables (Figures 5.5, 5.6, 5.7,

and 5.8), the metastable density is changed, as described, at every point. In the other plots, both

the H1 amplitude and the metastable density are held fixed, with H1 always chosen optimally for

one orientation, and the metastable density chosen using the same orientation. In this section only,

optimization occurs for θ = φ = ξ = 0◦, and η = 90◦.

Some checks were made to ensure the present model reduces to the previous model, given

in [34], where experimental measurements were compared to theory on the basis of the shot noise

sensitivity limit. This limit is the photodiode shot noise in A/
√

Hz, divided by the slope of the

magnetic resonance curve, in A/T, at the inflection point. Figure 5.2 illustrates relative trans-

mission in the two cases as a function of detuning in nT; this is a typical σ-pumping magnetic

resonance curve. The light intensity into the cell is effectively multiplied by a point on this curve,

and the product is measured on the photodiode. Figure 5.3 is simply the slope of the curves shown

in Figure 5.2, but is an important intermediate step.
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Figure 5.2. Resonance curve for typical circularly-polarized configuration at 0.5 mW input power,
divided by the input power. The metastable densities, rather than the nominal absorptions, are
equal.

12A significant portion of the text of this section is based on [43], c© 2010 American Physical Society.
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Figure 5.3. Slope of resonance curve for typical circularly-polarized configuration at 0.5 mW input
power. The metastable densities, rather than the nominal absorptions, are equal. Note that this is
the slope of Figure 5.2, times the input power of 0.5 mW, since 0.5 mW had been divided out of
Figure 5.2. The sensitivity of the photodiode, assumed to be about 0.68 A/W, is also included.

Figure 5.4 shows the shot noise sensitivity limit as a function of the detuning of the H1

frequency ω from the precession frequency in the ambient field, but later plots will only display

the sensitivity at a minimum of such a curve, or at the maximum of a curve like those in Figure 5.3,

since this is the optimum operating point. To the printed precision, the curves are symmetric, so

we will always display whichever inflection point gives a positive slope. Note that the shot noise

sensitivity limit is simply the shot noise divided by the slope, so we will usually only show one or

the other. Observe in Figure 5.4 that the optimum sensitivity prediction for a typical configuration

agrees to about 3%, although the required detuning predicted in order to achieve this differs by

closer to 25%.
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Figure 5.4. Shot-noise sensitivity limit for typical circularly-polarized configuration at 0.5 mW
input power. The metastable densities, rather than the nominal absorptions, are equal. (from [43],
c© 2010, American Physical Society)
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Figure 5.5 shows the dependence of sensitivity on laser power and H1 amplitude. Each

grid point has a corresponding point in Figure 5.6 showing the frequency detuning at the positive

inflection point. Each power level has a separate metastable density chosen to ensure 15% nominal

absorption. One sees in Figure 5.5 that there is an optimal H1 amplitude for each power, displayed

separately in Figure 5.7. If this optimal H1 amplitude is overlaid across Figure 5.5, a simpler plot

of sensitivity as a function of power results, shown in Figure 5.8. The prior results of [34] are

shown on this plot, as well.

Figure 5.4 corresponds to a point at the far left of Figure 5.8. The models agree less

at higher powers, and this is relevant in light of recent advances in high-power 1083 nm lasers.

Figures 5.7 and 5.8 are important from an instrument design perspective, since the former allows

one to quickly determine how accurately the laser power must be adjusted for a given sensitivity

tolerance, and the latter is a guide to choosing the H1 amplitude afterwards. It is interesting to note

that, at low power, a vertical slice of Figure 5.6 shows optimal detuning is approximately a linear

function of H1 amplitude, but at the upper end of the displayed power scale, the optimal detuning

is not even a monotonic function of H1 amplitude. This gives an indication of the value of this

rigorous theoretical analysis in designing magnetometer instruments.
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Figure 5.5. Shot-noise floor (fT/
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Hz) for typical circularly-polarized configuration over laser
power and H1 strength. The cross marks the optimum. (from [43], c© 2010, American Physical
Society)



80

50 92

92

134

134134

176 176

218
218

259

laser power into cell (mW)
H

1 (
nT

)

1 10

40

80

120

160

200

240

280

320

360
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laser power and H1 strength. (from [43], c© 2010, American Physical Society)

In Figures 5.7 and 5.8, the metastable densities are chosen identically to those in Figures 5.5

and 5.6, which, in turn, use all the terms added to the model presented here. This means that the

“prior theory” traces have the same metastable density for a given power level as the “all terms”

traces, but not the same absorption level. The metastable density is a more fundamental quantity,

since the optical absorption depends not only on the metastable density nS , but also, indirectly

through the metastable polarization #–v , on the photon flux density Φ.
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Figure 5.7. Optimal H1 amplitude as a function of laser power, circularly-polarized light.
(from [43], c© 2010, American Physical Society)

Figure 5.8 has an optimum (and would even if H1 had been constant for the entire plot)

because of two competing effects. Since rms shot noise increases as the square root of power, but

signal strength increases proportionally to the power, higher powers tend to improve the signal-to-

noise ratio; this effect dominates in the left half of the plot. However, at higher power levels, the

longitudinal and transverse relaxation time constants τ1 and τ2 (see Section 4.1) become shorter
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and the metastable polarization is degraded, causing the slopes of the magnetic resonance curves

to decrease and the linewidth to increase; this latter effect is referred to as light broadening. Note

that shot noise is not the only source of noise, and some experimental fine-tuning is required to

find the optimal power, but such a figure provides a good initial estimate, reducing the effort and

allowing the choice of an appropriate range of tuning for the electronics design.
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Figure 5.8. Shot-noise sensitivity limit for typical circularly-polarized configuration over laser
power, with H1 amplitude picked optimally as a function of laser power. (from [43], c© 2010,
American Physical Society)

5.2.2 Three Cells

One of the principal advantages of a scalar sensor (as most optically-pumped magnetometers,

helium and otherwise13, are) is that there is no need to combine several vector component sensors

with an estimate of the system orientation [17]. Because the signal slope in a 4He double-resonance

magnetometer using circularly-polarized light follows an approximate dependence of cos2 φ, the

natural way to achieve isotropic sensitivity is to simply add the signals from three orthogonal

cells [23].

However, we now show that such an approach is only approximate, as the relation cos2 φ

is less accurate for φ ∼ π/2: there is nonzero signal at this angle, as illustrated experimentally in

Section 6.3. Therefore, it is desirable to know exactly how much such a configuration deviates

from isotropic sensitivity. Figure 5.9 shows the optimum slope of the sum of the 3 cells’ magnetic

resonance curves over all orientations, where each cell receives 0.5 mW of optical power and runs

13Note, though, that because 4He lacks a nuclear spin, 4He is the only practical pumping medium the author is
aware of where angular velocity of the magnetometer is not a significant source of error.
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at 15% absorption. While the slopes are relatively consistent, ranging from about 164–184 A/T,

they are not uniform. The conversion to a shot noise floor can be found by dividing the slope into

17 pA/
√

Hz, giving about ∼100 fT/
√

Hz. The optimal detuning corresponding to each orientation

is displayed in Figure 5.10, and ranges from about 14–20 nT.
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Corresponding curves for the individual cells are shown in Figures 5.11–5.16. In these

cases, the conversion factor to shot noise is
√

3 smaller, giving an optimum of about 64 fT/
√

Hz,

at the expense of having some orientations where the sensitivity is nonexistent. These latter regions

are where H1 is parallel to H0, where |θ| = φ = π/2. Prior theory lacked the constraint on θ. Since

the slope ranges from about 0–10 A/T in the new model, some orientations with φ = π/2 achieve

shot noise floors as low as about 1 pT/
√

Hz. Note also that the optimal detunings vary considerably

more, as well, from about 9–27 nT.
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Figure 5.16. Optimal detuning (nT) when
using only cell 3.

5.3 Examples – H1 Improvements for Linearly-Polarized Pumping Light14

In this section, the metastable density and optimal H1 amplitude are chosen for θ = φ = η = 90◦.

η and ξ do not affect the choice of metastable density, but they do affect the optimal H1 amplitude,

so plots with ξ = 90◦ have a different optimal H1 amplitude than plots with ξ ≈ 54.7◦. This is

reasonable for the particular orientation in question, since, to a first approximation (ignoring the

H′z component in Equation (3.38)), the effective H1 amplitude is the amount of H1 perpendicular

to H0, and so the actual H1 amplitude must be increased for the latter choice of ξ.

14A significant portion of the text of this section is based on [43], c© 2010 American Physical Society.
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For ε = 0, Q0 vanishes when 3 sin2 φ sin2 θ = 1. This is one of the primary areas where

the shot noise floor is very high, as shown in both Figures 5.17 and 5.18. For φ = 90◦, 90 − θ ≈

54.7◦. Now Figure 5.18, with ξ = 90◦, puts H1 parallel to H0 in an area where the magnetometer

would otherwise be sensitive, while Figure 5.17 places this point of insensitivity inside the already-

insensitive ring just described, allowing a more straightforward description of the effects of system

orientation on sensitivity. Notice the “bulge” in Figure 5.17 around φ = 90◦ and θ = 35.3◦; this is

where the sharp peak at the center of Figure 5.18 moved to.
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0.5 mW optical power,
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The most sensitive area for linearly-polarized light is with φ = 90◦ and θ = ±90◦, where

the light polarization vector is along H0, as shown in Figures 5.17 and 5.18. However, a reasonably

sensitive region of operation is also available with φ = 0 or 180◦, and, at least in the ξ ≈ 54.7◦

case, the θ = 0, 180◦ slices also remain flat and sensitive. The comparison of Figures 5.19 and

5.20 illustrates even better that much stays the same with the change in ξ, but that the θ = 0 slice
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becomes rather flat in the former. In contrast, comparing the region from φ ≈ 60◦ to 120◦ in

Figures 5.19 and 5.20 merely indicates a further degradation in performance for θ = 30◦.

Finally, the levels of magnetic detuning required to achieve the best sensitivity in each

orientation appear in Figures 5.21 and 5.22. Note that the “low detuning” areas shift with the ori-

entation of H1, rather than with the orientation of the optical polarization, unlike the areas of high

sensitivity, shown previously, which remained aligned with the optical polarization. Figures 5.21

and 5.22 also show that the resonance is slightly broader in the ξ ≈ 54.7◦ case, but, from Fig-

ures 5.17 and 5.18, one finds that the sensitivity is nevertheless similar. Many omnidirectional

designs require multiple cells, and these curves argue that using ξ ≈ 54.7◦ will facilitate the devel-

opment of an omnidirectional sensor design using linearly polarized light.

5.4 Examples – Bloch-Siegert and Virtual Light Shifts15

A common technique [58] in magnetic resonance is to treat the experimental oscillating field as a

rotating field, which is mathematically equivalent to only keeping the constant terms of A4′ . The

magnitude [8] of the first-order apparent shift for a spin-1/2 system is H2
1/ (4H0), in our notation.

Applying this to typical values of H1 ≈ 17 nT and H0 ≈ 50 µT, the calculations in Figure 5.23

show good agreement.
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Figure 5.23. Virtual light shift and Bloch-Siegert (BS) shift, at 0.5 mW optical power. The shifts
are about 18.5 pT and 1.4 pT, respectively. The vertical scale is the transmission ratio minus
0.8322443, chosen to make the scale legible. “L” indicates left-circular polarization, and “R”
indicates right-circular polarization. The traces labeled (BS) assume the more realistic oscillating
field, rather than a rotating field. (from [43], c© 2010, American Physical Society)

15A significant portion of the text of this section is based on [43], c© 2010 American Physical Society.
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Shown in Figure 5.23 are the troughs of the four magnetic resonance curves for the two

circular polarizations, with and without accounting for the Bloch-Siegert shift. Comparing the

curves with and without the Bloch-Siegert shift gives an estimate of 1.4 pT for that effect. For

terrestrial applications, the Bloch-Siegert shift is small. However, the Bloch-Siegert shift is of

interest in space applications, where the H0 field is low enough for the effect to have a greater

impact on absolute magnetometer accuracy than in Figure 5.23.

Also shown in Figure 5.23 is the virtual light shift. The numerical value of the virtual

light shift can be calculated from this plot because the sign of the light shift reverses when the

direction of the circular polarization reverses [50]. The minimum of the resonance curve for right-

handed polarization is at −19.8 pT. Similarly, the minimum of the resonance curve for left-handed

polarization is at 17.1 pT. Thus, the virtual light shift in this example is ≈ 18.5 pT.
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Figure 5.24. Derivative of virtual light shift with respect to laser frequency ω′, as a function of
H1 strength. Each trace was evaluated at a different input laser power level. (from [43], c© 2010,
American Physical Society)
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The virtual light shift is important in any system pumped with circularly-polarized laser

light, because it transforms laser relative intensity noise (RIN) into a magnetic noise that slightly

degrades magnetometer sensitivity. Often, in the case of circularly-polarized pumping light, a

larger contribution to magnetometer sensitivity degradation results from the conversion of laser

frequency noise by the virtual light shift into a transmitted optical amplitude noise.

Figure 5.24 shows this conversion factor for several input optical powers. Figure 5.25

shows the same data with the input power level divided out, and illustrates that, for most H1

amplitudes, the conversion factor grows in strength slightly sublinearly with respect to input laser

power. Figure 5.24 illustrates that, in order to yield an acceptably-low virtual light shift noise, it

is desirable to choose an H1 amplitude above the value that optimizes other constraints, such as

shot noise sensitivity. This tradeoff is more important in magnetometers where the light shift noise

plays a more dominant role, such as when magnetometers are miniaturized.



CHAPTER 6

EXPERIMENTAL DATA

This section presents experimental data for pumping with linearly-polarized light and circularly-

polarized light in several orientations. Theoretical comparisons to the data are also made, without

fitting in both cases (Sections 6.1 and 6.3), as well as with fitting in the linearly-polarized case

(Section 6.2).

6.1 Linearly-Polarized (π-Parallel Pumping) Data From 4-12-201016

Resonance curves from a 2.44 cm inside diameter, 7.52 cm inside length Pyrex cell filled to 1.5 Torr

were collected using the θ = φ = η = ξ = π/2, ε = 0 configuration. The measurements took place

in a nonmagnetic test facility operated by Polatomic, Inc. and routinely used for the characteriza-

tion of commercial and advanced magnetometers. The apparatus was arranged such that the error

in declination was below 4 deg, and the error in the dip angle was less than 1 deg. The 4.05 mW

laser light was swept in a ∼ 10 kHz triangle wave across the D0 absorption line and locked to the

line center, and the photodiode data was logged at a 1 kHz sampling rate using a custom preampli-

fier with a 2000 V/A transimpedance. The photodiode sensitivity was 0.815 A/W.

The experimental configuration follows Figure 2.1, and the measurements were taken with

the coil control open loop. The H1 frequency ω was swept linearly across the Larmor frequency

γH0 at a rate of 2 kHz/s. One of the measured resonance curves is shown in Figure 6.1. The

“cell off” trace comes from a DC voltmeter measurement of the photodiode preamp output while

the cell is extinguished; the actual AC signal (not shown) is significantly shorter than the vertical

deviation on the measured resonance curve. The “exper” trace was logged in LabView as a voltage

measurement out of the photodiode preamp.

16A significant portion of the text of this section is based on [43], c© 2010 American Physical Society.
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Also shown in Figure 6.1 is the theoretical calculation of the magnetic resonance curve

based on the treatment presented in Section 5.1. In calculating the theoretical curve in Figure 6.1,

we have used our best independent estimates of the experimental values for the parameters required

by the model.

Of particular note in this comparison of theory to experiment is the treatment of the laser

beam shape and size. The laser beam has an uncorrected astigmatism that, after passing through

the various beamsplitters, waveplates, and lenses, causes the profile entering the cell to resemble a

capital letter “I.” This is partially corrected for in the model by assuming a fill factor, or effective

beam radius, where only the atoms within that cylindrical cross section are assumed to be pumped.

A previous experiment has been used to estimate the effective beam radius by measuring the light

broadening of the magnetic resonance line as the laser intensity was varied, and we found an

approximate beam radius of 1.3 cm. This 53% fill has been used in the plots below, and was not

fit to the logged data set shown here. We have used our best experimental estimates of the various

model parameters, known to have substantial uncertainty in some cases, to generate the theoretical

curves in Figures 6.1 and 6.2.
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Figure 6.1. Comparison of theoretical and experimental magnetic resonance curves at H1 ≈ 52 nT.
The photocurrent with no RF excitation is shown as a reference. (from [43], c© 2010, American
Physical Society)

The experiment was repeated for 19 different H1 amplitudes in the range 12–237 nT. In Fig-

ure 6.2 are plotted the slopes at the inner and outer inflection points of the experimental magnetic

resonance curves. The theoretical calculation of the slopes versus H1 amplitude is also plotted in

Figure 6.2, again using the best independent estimate of the experimental values for the parameters
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required by the model. In this light, the agreement between theory and experiment is reasonable,

given the uncertainty in the experimental conditions.

From this data, approximate shot noise sensitivities can be obtained by dividing the pho-

tocurrent shot noise (30 pA/
√

Hz) by each slope. This suggests an experimental optimum shot

noise contribution to sensitivity of around 6 fT/
√

Hz, which is within 1% of the theoretical opti-

mum.
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Figure 6.2. Comparison of theoretical and experimental slopes at the inflection points of magnetic
resonance curves with varying H1 amplitude. (from [43], c© 2010, American Physical Society)

The large ripple on the experimental trace in Figure 6.1 is likely due to the laser wavelength

modulation, and is, in any case, representative of the level measured on the other 18 recorded traces.

Even with a heavy amount of smoothing (not shown), it is not possible to directly extract the slopes

at the inflection points. However, Equation (4.4) fits both the data and a heavily smoothed version

of the data extremely well, to the point that it is likely there is not a function that could visibly

improve the fit.

With this in mind, the procedure for extracting the slopes proceeded as follows. Data

was cropped to one half cycle of the H1 detuning triangle wave, and an auto-convolution proce-

dure was used to remove a coarse estimate of the magnetic resonance line center, to an accuracy

typically better than about 4 nT. A modified form of Equation (4.4) was fit twice, once to Savitzky-

Golay [45] smoothed data, and once to the original data, using the first fit as initial conditions to the

second. The modification to Equation (4.4) was simply to allow for an additional fine offset in the

resonance center frequency that could not be removed by the initial auto-convolution procedure.

The fit was to the ratio of two even quartics, but with an offset in the horizontal direction. One
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realizes that the even order is dictated by the axis of symmetry on the data, and that the choice of

order four is simply a sufficiently-large choice to support the number the peaks and troughs in the

data. Therefore, while the form of the curve used to extract the slopes was inspired by theoretical

considerations, it is nevertheless a neutral mathematical device for parametric approximation of

functions. Note also that the extraction of the slopes does not use the transformation of Equa-

tion (4.6), since the model parameters are not necessary to determine slopes and linewidths, and

such a transformation could possibly bias the results.

It is important to reiterate that the results of this fit were used only to estimate the experi-

mental slope of each resonance curve, and that the fit itself is not shown in this section. Theoretical

curves based on the new model were generated independently, and without any fitting in this sec-

tion. To emphasize this independence, a separate section, Section 6.2, describes theoretical fits.

6.2 Fits to Data with Linearly-Polarized Light

This section describes the results of fitting the models of Section 4.2 and Chapter 4.3 to the data of

Section 6.1, rather than using independent experimental estimates of the parameters.

Figures 6.3–6.21 show data and fits for the experiment described in Section 6.1. Each plot

is for a different H1 amplitude. The data traces have been cropped, centered, and had their units

converted. The ripple is of approximately the same magnitude in all plots, but the resonance curve

grows deeper and broader as H1 increases. Note that these two effects combine to give an optimum

slope at interior H1 values, as shown in Figure 6.2. More traces were collected in the vicinity of

the two optimum H1 values than in other areas.

The fitting procedure is as follows: first the procedure in Section 4.2 is followed to obtain

a rational function inside an exponential, in the form described in Equation (4.5). Then, a range of

values for the beam radius, optical power input, and augmentation factor for the discharge model’s

τc are chosen, and used to calculate the metastable density nS , the actual value of τc, the photon

flux density Φ, and the value of the relaxation time constant τ0 for the
〈
T(2)

0

〉
state. The minimum

and maximum values of nS τ0Φ obtained were used to seed the following iterative procedure.
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Several values in the chosen range were used to carry out the transformation of Equa-

tion (4.6), and Equations (4.7) were solved for each value. Because, for this procedure, the

theoretically-required equation 3τ−1
0 = 4τ−1

2 − τ
−1
1 seems to always have a single well-defined

root, a bracketing and iterative refinement procedure was used to narrow the appropriate value of

nS τ0Φ down until the relative discrepancy in τ0 was better than 10−13; note that this is really not the

dominant source of any discrepancies, and that the tight tolerance was used simply because it ran

fast enough and so there was no need to loosen it. The best value of nS τ0Φ was used to calculate

the metastable density nS from knowledge of the absorption percentage, about 15% in the data

considered here. Using nS and the fit τ0, simple division returns the photon flux density Φ.

Next, a range of optical power levels is compared against the photon flux density to de-

termine a self-consistent range of beam radii. A bracketing algorithm, using linear interpolation

to subdivide the interval on each iteration, was used to optimize the value of τc such that the ab-

sorption level would be correct. This algorithm was repeated for each power level considered until

the relative error in absorption was under 10−6. No single beam-radius/power-level pair performed

noticeably better than another according to this error metric, so we are limited to specifying results

in terms of photon flux density, which neatly consolidates the dependence of the two values.

The “trivial fit” trace in Figures 6.3–6.21 shows the results when the H1,τ0,τ1, and τ2 values

obtained above via Equations (4.7) are directly substituted into the other resonance curve formulas

of Section 4.2. Note that it appears to bisect the ripple on the data in some sense. The values

for the “model” trace come from the formulas τ−1
0,1,2 = τ−1

c + ΦQB0,B1,B2, where τc and Φ are the

results of the postprocessing just described. These values seem to have an additional constraint

not yet identified, so, while the fit is acceptable, it is not as close as the “trivial fit” plots. The

fit is a clear improvement over the results of Figure 6.1, where experimental parameters were not

fit. The “model” traces based on Section 4.2 indistinguishably overlaid the results based on the

model of Chapter 5, so only one “model” is shown. Because a value needed to be chosen from the

list of power levels and beam radii, we chose the pair closest to the value of beam radius used in

Section 6.1.
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Figure 6.3. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

11.8 nT.
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Figure 6.4. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

18.9 nT.
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Figure 6.5. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

23.7 nT.
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Figure 6.6. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

28.4 nT.
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Figure 6.7. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

35.5 nT.
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Figure 6.8. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

47.3 nT.
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Figure 6.9. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

52.1 nT.
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Figure 6.10. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

59.2 nT.
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Figure 6.11. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

66.3 nT.
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Figure 6.12. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

71.0 nT.
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Figure 6.13. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

82.8 nT.
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Figure 6.14. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

94.6 nT.
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Figure 6.15. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

106.5 nT.
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Figure 6.16. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

118.3 nT.
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Figure 6.17. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

142.0 nT.
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Figure 6.18. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

165.6 nT.
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Figure 6.19. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

189.3 nT.
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Figure 6.20. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

213.0 nT.
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Figure 6.21. Comparison of theoretical fit to experimental magnetic resonance curves, for H1 ≈

236.6 nT.

The values of the H1 field are subject to some experimental uncertainty. A function gener-

ator drove a 1.4 MHz signal over terminated coaxial cable in excess of a hundred feet to a pair of

Helmholtz coils. Measurements of the dimensions of the coils yielded an approximate conversion

factor from the voltage to the field in nT, ignoring small gradients in the field. The ordinate of

Figure 6.22 shows the fit values of the H1 field, obtained as a by-product of the fitting procedure

above. Except at the lowest couple points, there is a clean proportionality between the two traces,

so it is possible that some properties of the coil setup were not modeled properly in the conversion

factor we determined. The captions for Figures 6.3–6.21 use the experimentally-inferred H1 value

as their distinctive label, rather than the fit value.

Because τc and Φ are not expected to be a function of H1 amplitude, nor are the cross

sections QB1 or QB2, the theory predicts the value of τ0,1,2 to be constant, as well. That said, the

implications of an effective beam radius are poorly-understood, and so it is certainly possible that

it may vary, causing Φ to also vary. Additionally, Slichter [58] describes the phenomenon of H1

broadening. All three traces in Figure 6.23, showing fit values of τ−1
0 , τ−1

1 , and τ−1
2 , show linewidth

broadening as H1 increases. The (constant) predicted values of these three quantities are also

shown in the figure.
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6.3 LCP (σ-pumping) Data From 5-5-2010

Data was collected in two different orientations from a set of four 0.79 cm inside-radius by 1.8 cm

inside-length cells (cells A, C, D, and F) at a pressure of 9 torr, each of which received circularly-

polarized light. The four cells all received the same H1 amplitude and H1 frequency at any given

moment. The H1 frequency was swept sinusoidally in time, unlike in the experiment of Section 6.1,

where the frequency had been modulated by a triangle wave. The effective beam radius is estimated

to be near 51% of the cell radius, and the input optical power, ignoring back-reflections, can be

estimated to be around 0.5 mW, although there was some uncertainty in photodiode sensitivity due

to permutation of the labels attached to the photodiodes. The off-resonance absorption level for

cells with their axes parallel to the H0 field was configured to be close to 15%.

One orientation had the axes of cells A and D parallel to the H0 field, and the other had

the axes of cells C and F parallel to the H0 field. In the former case, cells C and F had their axes

perpendicular to the attached H1 field axes, while, in the latter case, cells A and D had their axes

parallel to their theoretical H1 axes. “Theoretical” orientation is stipulated since this configuration

should yield no signal, so any residual field from nearby cells (which are in a different orientation

that will produce a signal) may quite plausibly be detected at very low levels. For each of the four

cells of interest, we take ξ = η = π/2.
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For the first orientation, cells A and D had θ = π and φ = 0, while cells C and F had

θ = φ = π/2. In the second orientation, cells A and D had θ = 0 and φ = π/2, and cells C and F

had θ = −π/2 and φ = 0. Note that this parameterization of coordinates is not unique. Note also

that, when φ = 0, values for θ were parameterized primarily to give particular values for Θ to

properly describe the H1 orientation. Three different H1 amplitudes were used in each case, where

our best experimental estimate places these values at 39, 78, and 117 nTrot. The resulting magnetic

resonance curves are shown in Figures 6.24–6.31.

Figures 6.26 and 6.27 illustrate standard approximately-Lorentzian magnetic resonance

lineshapes for cells C and F in the second orientation described, while Figures 6.28 and 6.29

correspond to the other two cells in the opposite orientation. In Figures 6.30 and 6.31, the H1 axes

of cells A and D were parallel to the H0 field, so both the prior theory and the new model both

predict an absence of signal. The existence of a small variation in output current near resonance

line center can be attributed to two factors: stray H1 field from adjacent cells, and a solely-apparent

difference due to the fact that the data is not sampled evenly on the horizontal axis in time. The

latter factor also explains why the frequency of the interference signal appears to be lower near

the center of the resonance: the interpolation to the proper grid spacing necessarily changed the

apparent frequency of the interference, which is around 0.3 Hz throughout. It is not clear why there

appears to be a decrease in amplitude of interference near resonance on these six plots.

In Figures 6.24 and 6.25, we see there is a small resonance signal when the cell axes, H0,

and H1 are all mutually orthogonal. This contradicts prior theory, which indicates there should

simply be a flat line like there was in Figures 6.30 and 6.31. The new theory, however, plotted

on the same axes, predicts a signal level in reasonable agreement with the data in both shape and

magnitude. The theoretical traces in the eight plots in this section involved no fitting. The results

in Figures 6.24 and 6.25, in spite of the interference, lend credibility to the new theory.
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Figure 6.24. σ-pumping data, cell
C, AD in field. This
is a new effect.
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Figure 6.25. σ-pumping data, cell
F, AD in field. This
is a new effect.
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Figure 6.26. σ-pumping data, cell
C, CF in field. Stan-
dard.
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Figure 6.27. σ-pumping data, cell
F, CF in field. Stan-
dard.
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Figure 6.28. σ-pumping data, cell
A, AD in field. Stan-
dard.
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Figure 6.29. σ-pumping data, cell
D, AD in field. Stan-
dard.
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Figure 6.30. σ-pumping data, cell
A, CF in field. No
signal, except maybe
some bleedover from
other cells.
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CHAPTER 7

CONCLUSIONS, APPLICATIONS, AND FUTURE EXTENSIONS

The work presented here is directly applicable to the task of rapidly evaluating new magnetometer

designs and to the problem of identifying ranges of parameter values to experimentally optimize

within. Several sets of data demonstrate effects that agree well with the new theory, and, in the

case presented in Section 6.3, agree with an experimentally-known effect not even qualitatively

predicted by prior theory. The ability to parameterize magnetic resonance curves without losing

essential features to inaccurate fits is beneficial for straightforward comparisons with this theory

and future theory. The means to predict the amount of variation in approximately-isotropic magne-

tometer designs can save time by allowing the first few design iterations to proceed in simulation.

Finally, the work here provides a solid foundation for further extensions into interesting theory and

practical effects relevant to the field of optically-pumped magnetometers, overall.

Future extensions to the model may include polarization-dependent and spatially-dependent

discharge effects, incorporation of the repopulation pumping and collisional mixing effects that

become important in the less-expensive lamp-pumped systems, additional resonance-broadening

effects (possibly due to H1 inhomogeneities), the inclusion of noise sources and other stochastic

phenomena, and output equations for the monitoring of scattered light or the polarization of the

transmitted light. If stochastic processes are included in the model, the solution would likely need

significant modification. The solutions may also be extended to include time-varying parameters

and transient effects, which are important primarily becauseω is a function of time in a locked-loop

magnetometer, and ω′ is also usually varied when using a laser. A thorough study of the harmonics

in the transmitted light may also yield valuable information on vector components of the field.
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APPENDIX A

ELECTRIC DIPOLE APPROXIMATION

We will work in the world coordinate system, as shown in Figure 3.1. ẑ is still the (local axis)

direction of light propagation, and we now define
#–R as the position operator in the world system.

Symbols defined in this appendix, such as
#–A, are local to the appendix.

Reference [48] outlines the electric dipole (E1) approximation, in the context of time-

dependent perturbation by classical light. Briefly, in the notation of this work, the electric field

of the light is given by:

#–E ′(t) =
−1
c
∂

∂t
#–A(t) =

−1
c
∂

∂t

cE0

ω′
#–e sin

ω′
(

#–R · ẑ
)

c
− ω′t


 = E0

#–e cos
(
ω′

c

(
#–R · ẑ

)
− ω′t

)

where
#–A(t) is the vector potential. The perturbation is:

H ′
L =

−q
mec

#–A · #–P =
−q
mec

cE0

ω′
#–e sin

ω′
(

#–R · ẑ
)

c
− ω′t


 · #–P =

−qE0

meω′

(
#–e · #–P

)
sin

ω′
(

#–R · ẑ
)

c
− ω′t


In order to write the dipole approximation in the form used in Reference [34], we have

to throw away a 90-degree phase factor in the light, but an overall phase will not be important

anyway:

H ′
L →

iqE0

meω′

(
#–e · #–P

)
cos

ω′
(

#–R · ẑ
)

c
− ω′t

 (A.1)

Moreover, the electric field only enters our treatment via the perturbation, so we can define things

to avoid inconsistency.

We define the dipole operator as:

#–D =
−iq

meω′
#–P = q

#–R
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The final equality is the result of an extension to the brief explanation in reference [48]:

[
#–R,H0

]
=

[
#–R,

P2

2me

]
=

i}
#–P

me
⇒

〈
m
∣∣∣ #–P

∣∣∣µ〉 =
me

i}

〈
m
∣∣∣∣[ #–R,H0

]∣∣∣∣µ〉 = imeω
′
〈
m
∣∣∣ #–R

∣∣∣µ〉
Equation (A.1) can be restated now, and the electric dipole approximation can be applied:

H ′
L → −

#–E ′(t) · #–D = −qE0

(
#–e · #–R

)
cos

ω′
(

#–R · ẑ
)

c
− ω′t

 ≈ −qE0

(
#–e · #–R

)
cosω′t

This is a result of taking the first term of the Taylor series of e±iω′(
#–R ·ẑ)/c, which is 1.

Now we can redefine the symbols to take the approximation into account:

#–E(t) = E0
#–e cosω′t HL = −

#–E(t) ·
#–D

Reference [48], which all of this appendix is based loosely on, gives the region of validity as

Z � 137, which is true for helium: 2 � 137. Z is the atomic number. Reference [32] indicates that

parity must remain unchanged in magnetic dipole (M1) and electric quadrupole (E2) transitions,

however it is clear that ∆L = ±1 is odd for D0, D1, and D2 transitions, so M1 and E2 probabilities

do not contribute and E1 is therefore an even better approximation than it already was for the

spectral lines of interest in this work.



APPENDIX B

COORDINATE ROTATIONS

The purpose here is to develop coordinate transformations between the local and world systems

defined in Figure 3.1. Symbols defined in this appendix, such as 0
1q, are local to the appendix.

X̂, Ŷ, and Ẑ are the world axes (0). The local axes (1) are identified by small x̂, ẑ, and ŷ, as

defined previously. To take a vector #–p1 in local coordinates to a vector #–p0 in world coordinates, we

apply a quaternion transform, #–p0 =
(

0
1q

)
#–p1

(
0
1q∗

)
. We derive this as a frame rotation, rotating first

about the common x̂/X̂ axis by φ, and then about the local ẑ axis by θ:

qx,φ ≡ cos γ + i sin γ φ ≡ 2γ φ in [0, π]
qz,θ ≡ cos β + k sin β θ ≡ 2β θ in [−π, π]

Composing these, we obtain:

0
1q ≡ qx,φqz,θ =

[
cos β cos γ

]
+

[
cos β sin γ

]
i −

[
sin β sin γ

]
j +

[
sin β cos γ

]
k (B.1)

Note that the i, j, and k are not the unit spatial vectors of [34], but, rather, the standard pure

unit quaternions. This usage is local to the appendix. It should be clear from Figure 3.1 that:

x̂ · Ẑ = sin φ sin θ ŷ · Ẑ = sin φ cos θ ẑ · Ẑ = cos φ

If it is not clear, however, one could also obtain those relations from Equation (B.1). Note that θ is

undetermined when φ = 0. We can take

φ = cos−1
(
ẑ · Ẑ

)
θ = atan2

(
x̂ · Ẑ, ŷ · Ẑ

)
where the two-argument arctan follows the convention of MATLAB R© and C, but is opposite of

Excel R© and Mathematica R©. The sine and cosine of these angles can be obtained in terms of the

direction cosines:

cos φ = ẑ · Ẑ sin φ =

√
1 −

(
ẑ · Ẑ

)2
cos θ =

ŷ · Ẑ√
1 −

(
ẑ · Ẑ

)2
sin θ =

x̂ · Ẑ√
1 −

(
ẑ · Ẑ

)2

(B.2)
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B.1 3-D Jones Vector

Section 3.1 gives, from [4], an arbitrary state of elliptical polarization in the local coordinate sys-

tem, constrained to have zero azimuth (θ = 0) and zero absolute phase, as:

[
cos ε −i sin ε 0

]T

The quaternion transform, using Equation (B.1), yields:

#–e =
(

0
1q

)  cos ε
−i sin ε

0

 (0
1q∗

)
which evaluates out to give Equation (3.2). Substituting Equation (B.2) into Equation (3.2) yields

Equation (3.3).

The quantity
〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 is clearly invariant if a unit magnitude complex

number is multiplied by #–e , so all cross sections are invariant under such a multiplication. This is

as it should be, since some uses of these coordinate system transformations will introduce such a

phase, and that phase must not affect the cross sections. This also justifies the lack of an explicit

absolute phase above.

B.2 3-D Magnetic Field

The Helmholtz coil direction has been defined in Figure 3.18 to be
[
sin η cos ξ sin η sin ξ cos η

]T

in the local system, and so it must be rotated. H0 is already in the world system. The common

amplitude factor of 2H1 cosωt rides along, since rotations are linear transformations. Then, using

Equation (B.1):

#–H = 2H1 cosωt
(

0
1q

)  sin η cos ξ
sin η sin ξ
cos η

 (0
1q∗

)
+

 0
0

H0


= 2H1 cosωt

 sin η cos Θ

sin η sin Θ cos φ − cos η sin φ
sin η sin Θ sin φ + cos η cos φ

 +

 0
0

H0


which can be rewritten as in Equation (3.33).
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B.3 Multiple Cells

If multiple cells are used, and if not all of θ,φ,η,ξ, and ε are the same, it is sometimes desirable to

account for the world axes X̂ and Ŷ, not just Ẑ, as we did in the introduction to this appendix. This

is, however, not generally possible, since ẑ is constructed orthogonal to X̂:

x̂ · X̂ = cos θ ŷ · X̂ = − sin θ ẑ · X̂ = 0

x̂ · Ŷ = sin θ cos φ ŷ · Ŷ = cos θ cos φ ẑ · Ŷ = − sin φ

Note that now, even when φ = 0, θ can still be determined as long as x̂ and ŷ are distinguishable

(i.e., for anything but circularly polarized pumping light), provided that X̂ and Ŷ have some mean-

ing. As just mentioned, neither X̂ nor Ŷ has any instrinsic meaning, but they can nevertheless be

defined to retain information about relative arrangements between any two cells. Then, for exam-

ple, θ = atan2
(
−ŷ · X̂, x̂ · X̂

)
= atan2

(
x̂ · Ŷ, ŷ · Ŷ

)
. However, this formula for θ is incorrect if the

transformation was not originally constructed to obey the relation ẑ · X̂ = 0, a relation we will

violate below.

Certainly a rotation could have been constructed with an extra degree of freedom, aside

from θ and φ, that would have allowed consistency in “world” systems from one cell to the next,

but, since only Ẑ matters, any consistency in X̂ and Ŷ is of no theoretical benefit. At the expense of

a more complicated formulation including this extra degree of freedom, there would be a practical

benefit: the ability to confirm the solution by approaching the problem differently. This will not be

pursued here.

Now if two local systems, x̂1/ŷ1/ẑ1 and x̂2/ŷ2/ẑ2, each corresponding to one cell orientation,

are known to be related, and if we know the dot products between the axes, then we can express

the direction of Ẑ in the second system using our knowledge of the orientation of the first system.

Note that this construction only ensures consistency of Ẑ; in other words, if this construction is

applied twice to support, e.g., 3 cells, one should not expect any consistent relationship between

the X̂ and Ŷ resulting from the two iterations. Then we find:

x̂2 · Ẑ = (x̂2 · x̂1) sin θ1 sin φ1 + (x̂2 · ŷ1) cos θ1 sin φ1 + (x̂2 · ẑ1) cos φ1 = sin φ2 sin θ2

ŷ2 · Ẑ = (ŷ2 · x̂1) sin θ1 sin φ1 + (ŷ2 · ŷ1) cos θ1 sin φ1 + (ŷ2 · ẑ1) cos φ1 = sin φ2 cos θ2

ẑ2 · Ẑ = (ẑ2 · x̂1) sin θ1 sin φ1 + (ẑ2 · ŷ1) cos θ1 sin φ1 + (ẑ2 · ẑ1) cos φ1 = cos φ2

From there, we can easily solve for φ2 and θ2 in the same way we did previously.



APPENDIX C

REDUCED CROSS SECTIONS WITH ARBITRARY POLARIZATION

In order to be able to fit everything on the page, we define three temporary factors that are local to

this appendix:

f1 =
[
cos θ + i sin θ cos φ

]
cos ε +

[
i sin θ + cos θ cos φ

]
sin ε

f2 =
√

2
[
sin θ sin φ

]
cos ε − i

√
2

[
cos θ sin φ

]
sin ε

f3 =
[
cos θ − i sin θ cos φ

]
cos ε +

[
i sin θ − cos θ cos φ

]
sin ε

We first multiply the polarization vector from Equation (3.2) with Equation (3.20):

D0 :
〈
m
∣∣∣ #–e · #–D

∣∣∣µ〉 =
D0
√

6

[
(µ = 1) (µ = 0) (µ = −1)

(m = 0) f1 − f2 − f3

]

D1 :
〈
m
∣∣∣ #–e · #–D

∣∣∣µ〉 =
D0

2


(µ = 1) (µ = 0) (µ = −1)

(m = 1) f2 f3 0
(m = 0) f1 0 f3

(m = −1) 0 f1 − f2



D2 :
〈
m
∣∣∣ #–e · #–D

∣∣∣µ〉 =
D0

2
√

3



(µ = 1) (µ = 0) (µ = −1)
(m = 2) − f3

√
6 0 0

(m = 1) f2
√

3 − f3
√

3 0
(m = 0) f1 2 f2 − f3

(m = −1) 0 f1
√

3 f2
√

3
(m = −2) 0 0 f1

√
6


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Then we multiply the matrices with themselves to obtain:〈
µ
∣∣∣ #–e ∗ · #–D

∣∣∣m〉 〈
m
∣∣∣ #–e · #–D

∣∣∣µ′〉 =

D0 :
D2

0

6


(µ′ = 1) (µ′ = 0) (µ′ = −1)

(µ = 1) f1 f ∗1 − f2 f ∗1 − f3 f ∗1
(µ = 0) − f1 f ∗2 f2 f ∗2 f3 f ∗2

(µ = −1) − f1 f ∗3 f2 f ∗3 f3 f ∗3


D1 :

D2
0

4


(µ′ = 1) (µ′ = 0) (µ′ = −1)

(µ = 1) f1 f ∗1 + f2 f ∗2 f3 f ∗2 f3 f ∗1
(µ = 0) f2 f ∗3 f3 f ∗3 + f1 f ∗1 − f2 f ∗1

(µ = −1) f1 f ∗3 − f1 f ∗2 f2 f ∗2 + f3 f ∗3


D2 :

D2
0

12


(µ′ = 1) (µ′ = 0) (µ′ = −1)

(µ = 1) f1 f ∗1 + 3 f2 f ∗2 + 6 f3 f ∗3 2 f2 f ∗1 − 3 f3 f ∗2 − f3 f ∗1
(µ = 0) 2 f1 f ∗2 − 3 f2 f ∗3 3 f1 f ∗1 + 4 f2 f ∗2 + 3 f3 f ∗3 3 f2 f ∗1 − 2 f3 f ∗2

(µ = −1) − f1 f ∗3 3 f1 f ∗2 − 2 f2 f ∗3 6 f1 f ∗1 + 3 f2 f ∗2 + f3 f ∗3


Substituting into the equations in Section 3.7.2 and using the representations of Equa-

tion (3.21), we find the traces for lines D0, D1, and D2, respectively, where these are arrays, not

matrices:

QI =
}D2

0

6
(
f1 f ∗1 + f2 f ∗2 + f3 f ∗3

) [
1 3 5

]
Q0 =

}D2
0

12
√

6

(
f1 f ∗1 − 2 f2 f ∗2 + f3 f ∗3

) [
2 −3 1

]
Qz =

}D2
0

12
(
f1 f ∗1 − f3 f ∗3

) [
2 3 −5

]
Q1 =

}D2
0

12
√

2

(
f2 f ∗3 + f1 f ∗2

) [
2 −3 1

]
Q+ =

}D2
0

√
2

12
(
f2 f ∗3 − f1 f ∗2

) [
2 3 −5

]
Q2 =

}D2
0

12
(
− f1 f ∗3

) [
2 −3 1

]
It is apparent that:

f1 f ∗1 + f2 f ∗2 + f3 f ∗3 = 2

f1 f ∗1 − 2 f2 f ∗2 + f3 f ∗3 =
1 + 3 cos 2φ + 3 (1 − cos 2φ) cos 2ε cos 2θ

2

= 3
(
ẑ · Ẑ

)2
− 1 − 3

[(
x̂ · Ẑ

)2
−

(
ŷ · Ẑ

)2
]

cos 2ε

f1 f ∗1 − f3 f ∗3 = 2 cos φ sin 2ε = 2 sin 2ε
(
ẑ · Ẑ

)
− f1 f ∗3 = sin2 ε (cos θ cos φ + i sin θ)2

− cos2 ε (cos θ + i cos φ sin θ)2

=

[(
ŷ · Ẑ

)
+ i

(
x̂ · Ẑ

) (
ẑ · Ẑ

)]2
cos2 ε +

[(
x̂ · Ẑ

)
− i

(
ŷ · Ẑ

) (
ẑ · Ẑ

)]2
sin2 ε(

ẑ · Ẑ
)2
− 1
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Similarly,

f2 f ∗3 + f1 f ∗2 =
√

2 cos 2ε sin 2θ sin φ −
i
√

2
(cos 2ε cos 2θ − 1) sin 2φ

=
√

2
i
(
ẑ · Ẑ

) [
1 −

(
ẑ · Ẑ

)2
]

√
1 −

(
ẑ · Ẑ

)2

+
√

2
cos 2ε

[
i
(
x̂ · Ẑ

)2 (
ẑ · Ẑ

)
− i

(
ŷ · Ẑ

)2 (
ẑ · Ẑ

)
+ 2

(
x̂ · Ẑ

) (
ŷ · Ẑ

)]
√

1 −
(
ẑ · Ẑ

)2

f2 f ∗3 − f1 f ∗2 = −i
√

2 sin 2ε sin φ = −i
√

2 sin 2ε

√
1 −

(
ẑ · Ẑ

)2

This yields the results in Section 3.7.3, but also provides an alternative method of evaluation for the

situations in which certain limits are difficult to evaluate, notably when ẑ · Ẑ = 1. In that situation,

we find that Q1 = 0 and Q2 = −
}D2

0
12 e2iθ cos 2ε, but θ is indeterminate in this situation, so we can

arbitrarily take Q2 =
}D2

0
12 cos 2ε, as described in Section 4.3.



APPENDIX D

COMMUTATOR LIST

D.1 Commutators





Jz

J+

J−
T(2)

2
T(2)

1
T(2)

0
T(2)
−1

T(2)
−2


,



Jz

J+

J−
T(2)

2
T(2)

1
T(2)

0
T(2)
−1

T(2)
−2



T
= }



0 J+ −J− 2T(2)
2 T(2)

1 0 −T(2)
−1 −2T(2)

−2
−J+ 0 2Jz 0 2T(2)

2

√
6T(2)

1

√
6T(2)

0 2T(2)
−1

J− −2Jz 0 2T(2)
1

√
6T(2)

0

√
6T(2)
−1 2T(2)

−2 0
−2T(2)

2 0 −2T(2)
1 0 0 0 −1

2 J+ Jz

−T(2)
1 −2T(2)

2 −
√

6T(2)
0 0 0

√
3
8J+

−1
2 Jz

1
2J−

0 −
√

6T(2)
1 −

√
6T(2)
−1 0 −

√
3
8J+ 0 −

√
3
8J− 0

T(2)
−1 −

√
6T(2)

0 −2T(2)
−2

1
2J+

1
2Jz

√
3
8J− 0 0

2T(2)
−2 −2T(2)

−1 0 −Jz
−1
2 J− 0 0 0


Note that “transpose” here is just a device to make a row vector of operators; the operators them-

selves inside the second argument are not transposed by this notation.

D.2 Anticommutators





Jz

J+

J−
T(2)

2
T(2)

1
T(2)

0
T(2)
−1

T(2)
−2


,



Jz

J+

J−
T(2)

2
T(2)

1
T(2)

0
T(2)
−1

T(2)
−2



T
= }



* −2T(2)
1 2T(2)

−1 0 −1
2 J+

√
2
3Jz

1
2J− 0

−2T(2)
1 4T(2)

2 * 0 0 −1
√

6
J+ Jz J−

2T(2)
−1 * 4T(2)

−2 J+ −Jz
−1
√

6
J− 0 0

0 0 J+ 0 0
√

2
3T(2)

2 T(2)
1 *

−1
2 J+ 0 −Jz 0 −T(2)

2
−1
√

6
T(2)

1 * T(2)
−1√

2
3Jz

−1
√

6
J+

−1
√

6
J−

√
2
3T(2)

2
−1
√

6
T(2)

1 * −1
√

6
T(2)
−1

√
2
3T(2)
−2

1
2J− Jz 0 T(2)

1 * −1
√

6
T(2)
−1 −T(2)

−2 0

0 J− 0 * T(2)
−1

√
2
3T(2)
−2 0 0



}−1 {Jz, Jz} =
4}
3

+

√
8
3

T(2)
0 }−1 {J±, J∓} =

8}
3
−

√
8
3

T(2)
0 }−1

{
T(2)

0 ,T(2)
0

}
=

2}
3
−

√
2
3

T(2)
0

}−1
{
T(2)
±1,T

(2)
∓1

}
=
−2}

3
+

1
√

6
T(2)

0 }−1
{
T(2)
±2,T

(2)
∓2

}
=

2}
3

+

√
2
3

T(2)
0
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APPENDIX E

FURTHER π-PERPENDICULAR CALCULATIONS

Continuing from Section 4.3, we find that the next level up is governed by a similar system of

equations:

2iω


u2,2

u1,2

u0,2

u−1,2

u−2,2

 = ΦQ(22)
P



√
3/2u0,4

3/2u−1,4√
3/2

(
u2,0 + u−2,4

)
3/2u1,0√

3/2u0,0 + 1



+


2k3 − τ

−1
1 2k4 0 0 0

2k4 k3 − τ
−1
2

√
6k4 0 0

0
√

6k4 −τ−1
0

√
6k4 0

0 0
√

6k4 −k3 − τ
−1
2 2k4

0 0 0 2k4 −2k3 − τ
−1
1




u2,2

u1,2

u0,2

u−1,2

u−2,2



−2iω


u2,−2

u1,−2

u0,−2

u−1,−2

u−2,−2

 = ΦQ(22)
P



√
3/2u0,0 + 1
3/2u−1,0√

3/2
(
u2,−4 + u−2,0

)
3/2u1,−4√

3/2u0,−4



+


2k3 − τ

−1
1 2k4 0 0 0

2k4 k3 − τ
−1
2

√
6k4 0 0

0
√

6k4 −τ−1
0

√
6k4 0

0 0
√

6k4 −k3 − τ
−1
2 2k4

0 0 0 2k4 −2k3 − τ
−1
1




u2,−2

u1,−2

u0,−2

u−1,−2

u−2,−2


Let

α2 ≡ 2iω − k3 + τ−1
2 −

4k2
4

τ−1
1 − 2k3 + 2iω

α3 ≡ −2iω − k3 + τ−1
2 −

4k2
4

τ−1
1 − 2k3 − 2iω

2iω

 0
u0,2

0

 = ΦQ(22)
P


3/2u−1,4 + 2k4

τ−1
1 −2k3+2iω

√
3/2u0,4

√
3/2

(
u2,0 + u−2,4

)
3/2u1,0 + 2k4

τ−1
1 +2k3+2iω

(√
3/2u0,0 + 1

)
 +


−α2

√
6k4 0

√
6k4 −τ−1

0

√
6k4

0
√

6k4 −α∗3


 u1,2

u0,2

u−1,2


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−2iω

 0
u0,−2

0

 = ΦQ(22)
P


3/2u−1,0 + 2k4

τ−1
1 −2k3−2iω

(√
3/2u0,0 + 1

)
√

3/2
(
u2,−4 + u−2,0

)
3/2u1,−4 + 2k4

τ−1
1 +2k3−2iω

√
3/2u0,−4

 +


−α3

√
6k4 0

√
6k4 −τ−1

0

√
6k4

0
√

6k4 −α∗2


 u1,−2

u0,−2

u−1,−2


This procedure can be completed, allowing the uξ,0 terms of Section 4.3 to be expressed

in terms of the uξ,±4 coefficients, by eliminating the uξ,±2 coefficients through the equations in this

section. Each set of such equations relates fifteen coefficients, five each of orders 2n, and 2n ± 2.

While this procedure appears to introduce a solution in terms of quantities at both ±2n, it should be

noted that careful treatment allows one to use Hermitian and/or skew-Hermitian properties to keep

the number of unknowns the same. Each additional order likely introduces a small perturbation in

those components observable through Equation (3.42), but each additional order must necessarily

become smaller. Indeed, numerical tests with the model of Chapter 5 seem to indicate that, at most,

only the n = −2, 0, 2 coefficients need be treated in order to account for light level variations at DC

(0ω) to within rounding error. This appendix serves as the beginning to an analytic treatment, and

may be completed in a future extension.
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