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Abstract

In this paper we present a novel engineering application of Origami,
using it for both the flexibility and the rigidity the folding patterns
provide. The proposed Folded Textured Sheets have several inter-
esting mechanical properties. The folding patterns are modelled as a
pin-jointed framework, which allows the use of established structural
engineering methods to gain insight into the kinematics of the folded
sheet. The kinematic analysis can be naturally developed into a stiff-
ness matrix approach; by studying its softest eigenmodes, important
deformations of a partially folded sheet can be found, which aids in
the understanding of Origami sheets for engineering applications.

1 Introduction

For structural engineers, Origami has proven to be a rich source of inspira-
tion, and it has found its way into a wide range of structural applications.
This paper aims to extend this range and introduces a novel engineering
application of Origami: Folded Textured Sheets.

Existing applications of Origami in engineering can broadly be catego-
rized into three areas. Firstly, many deployable structures take inspiration
from, or are directly derived from, Origami folding. Examples are diverse
and range from wrapping solar sails [Guest and Pellegrino 92] to medical
stents [Kuribayashi et al. 06] and emergency shelters [Temmerman 07]. Al-
ternatively, folding is used to achieve an increase in stiffness at minimal
expense of weight, for example in the design of light-weight sandwich panel
cores for aircraft fuselages [e.g. Heimbs et al. 07]. In architecture the prin-
ciple is also applied, ranging from straightforward folded plate roofs to
more complicated designs that unite an increase in strength with aesthetic
appeal [Engel 68]. Thirdly, Origami patterns have been used to design
shock absorbing devices, such as car crash boxes with Origami-inspired
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patterns that induce higher local buckling modes [Weina and You 10], and
packaging materials [Basily and Elsayed 04].

In contrast to existing engineering applications, the Folded Textured
Sheets introduced in this paper use Origami for a different, and slightly
paradoxical, purpose: both for the flexibility and the stiffness that it pro-
vides. The Origami folding patterns enable the sheets to deform easily into
some deformation modes, whilst remaining stiff in others. This anisotropy
in deformation modes is for example of interest for applications in mor-
phing structures; these types of structures are capable of changing their
shape to accommodate new requirements, whilst maintaining a continuous
external surface.

1.1 Outline

Section 2 introduces two example Folded Textured Sheets, the Eggbox
and Miura sheet, and will highlight some of their mechanical properties of
interest. Section 3 describes the mechanical model in detail, interleaved
with results for the two example sheets.

2 Folded Textured Sheets

The Folded Textured Sheets form part of ongoing research into the prop-
erties and applications of textured sheets. By introducing a ‘local’ tex-
ture (such as corrugations, dimples, folds, etc.) to otherwise isotropic thin-
walled sheets, the ‘global’ mechanical properties of the sheets can be fa-
vourably modified. The ‘local’ texture has no clearly defined scale, but
lies somewhere between the material and the structural level and in effect
forms a microstructure. The texture patterns in Folded Textured Sheets
are inspired by Origami folding, as the resulting sheets need not necessarily
be developable. The texture consists of distinct fold lines, and it is there-
fore better to speak of polygonal faceted surfaces. See Figure 1 for the two
example sheets used in this paper: the Eggbox and Miura sheet.

The first obvious property of the folded sheets is their ability to undergo
relatively large deformations, by virtue of the folds opening and closing.
Moreover, the fold patterns enable the sheets to locally expand and con-
tract — and thereby change their global Gaussian curvature — without any
stretching at material level. Gaussian curvature is an intrinsic measure of
the curvature at a point on a surface, which remains invariant when bend-
ing, but not stretching the surface [Huffman 76]. Our interest lies with the
macroscopic behaviour of the sheets, and we therefore consider the ‘global’
Gaussian curvature of an equivalent mid-surface of the folded sheet. Both
the Eggbox and Miura sheets are initially flat, and thus have a zero global
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(a) overview of folded textured sheets

(b) close-up of unit cells

Figure 1: photographs of the Eggbox (left) and the Miura sheet (right).
The models are made of standard printing paper, and the parallelograms in
both sheets have sides of 15mm and an acute angle of 60◦. The Miura sheet
is folded from a single flat sheet of paper; the Eggbox sheet, in contrast,
is made by gluing together strips of paper, and has (equal and opposite)
angular defects at its apices and saddle points.

3



i
i

i
i

i
i

i
i

Gaussian curvature. Now, unlike conventional sheets, both folded textured
sheets can easily be twisted into a saddle-shaped configuration which has
a globally negative Gaussian curvature — see Figure 2(a) and Figure 3(a).

The sheets’ most intriguing property, however, relates to their Poisson’s
ratio. Both sheets have a single in-plane mechanism whereby the facets do
not bend and the folds behave as hinges; by contrast, facet bending is
necessary for the out-of-plane deformations. As shown in Figure 2(b) and
Figure 3(b), the Eggbox and the Miura sheet respectively have a positive
and a negative Poisson’s ratio in their planar deformation mode. A nega-
tive Poisson’s ratio is fairly uncommon, but can for instance be found in
foams with a reentrant microstructure [Lakes 87]. Conventionally, materi-
als with a positive Poisson’s ratio will deform anticlastically under bending
(i.e., into a saddle-shape) and materials with a negative Poisson’s ratio will
deform synclastically into a spherical shape. As illustrated in Figure 2(c)
and Figure 3(c), however, both folded textured sheets behave exactly op-
posite to what is conventionally expected, and their Poisson’s ratio is of
opposite sign for in-plane stretching and out-of-plane bending. This re-
markable mechanical behaviour has only been described theoretically for
auxetic composite laminates [Lim 07] and specially machined chiral aux-
etics [Alderson et al. 10], but is here observed in textured sheets made of
conventional materials.

2.1 Engineering Applications

Our interest in the Folded Textured Sheets is diverse. Firstly, they can
undergo large global deformations as a result of the opening and closing
of the folds. Furthermore, these folds provide flexibility in certain defor-
mation modes, whilst still providing an increased bending stiffness. This
combination of flexibility and rigidity is of interest in morphing structures,
such as the skin of morphing aircraft wings [Thill et al. 08].

Another interesting property of the folded sheets is their ability to
change their global Gaussian curvature, without stretching at material
level. This is of interest in architectural applications, where it may be used
as cladding material for doubly-curved surfaces, or, at a larger scale, as flex-
ible façades. Furthermore, the use of the sheets as reusable doubly-curved
concrete formwork is being explored; work is still ongoing to determine the
range of surface curvatures that these sheets can attain.

Applications for the remarkable behaviour of the oppositely signed Pois-
son’s ratios under bending and stretching are still being sought. Neverthe-
less, the folded sheets add a new category to the field of auxetic materials.
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(a)

(b)

(c)

Figure 2: mechanical behaviour of the Eggbox sheet. Firstly, it can change
its global Gaussian curvature by twisting into a saddle-shaped configura-
tion (a). Secondly, the Eggbox sheet displays a positive Poisson’s ratio
under extension (b), but deforms either into a cylindrical or a spherical
shape under bending (c). The spherical shape is conventionally seen in
materials with a negative Poisson’s ratio.
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(a)

(b)

(c)

Figure 3: mechanical behaviour of the Miura sheet; it can be twisted into a
saddle-shaped configuration with a negative global Gaussian curvature (a).
Secondly, the Miura sheet behaves as an auxetic material (negative Pois-
son’s ratio) in planar deformation (b), but it assumes a saddle-shaped con-
figuration under bending (c), which is typical behaviour for materials with
a positive Poisson’s ratio.
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3 Mechanical Modelling Method

Available mechanical modelling methods for Origami folding broadly cover
Rigid Origami simulators [Tachi 06, Balkcom 04] or methods describing
paper as thin shells using Finite Elements. Our purpose is not to formu-
late an alternative method to describe rigid origami, as we aim to obtain
different information. Neither do we wish to use Finite Element Modelling,
since we are not interested in the minutiae of the stress distributions, but
rather the effect of the introduced geometry on the global properties of
the sheet. The salient behaviour straddles kinematics and stiffness: there
are dominant mechanisms, but they have a non-zero stiffness. Our method
needs to cover this behaviour. It should also not be limited to rigid origami
as the out-of-plane kinematics of the sheets involves bending of the facets.

Our approach is based on modelling the partially folded state of a folded
pattern as a pin-jointed truss framework. Each vertex in the folded sheet
is represented by a pin-joint, and every fold line by a bar element. Addi-
tionally, the facets are triangulated to avoid trivial internal mechanisms, as
well as provide a first-order approximation to bending of the facets — see
Figure 4.

Although the use of a pin-jointed bar framework to represent
Origami folding has been hinted at on several occasions [e.g., Tachi 06,
Watanabe and Kawaguchi 06], it has not been fully introduced into the
Origami literature. The method provides useful insights into the mechan-
ical properties of a partially folded Origami sheet, and has the benefit of
an established and rich background literature.

3.1 Governing Equations

The analysis of pin-jointed frameworks is well-established in structural me-
chanics. Its mechanical properties are described by three linearized equa-
tions: equilibrium, compatibility and material properties.

At = f (1)
Cd = e (2)
Ge = t (3)

where A is the equilibrium matrix, which relates the internal bar tensions
t to the applied nodal forces f ; the compatibility matrix C relates the
nodal displacements d to the bar extensions e and the material equation
introduces the axial bar stiffnesses along the diagonal of G. It can be
shown through a straightforward virtual work argument that C = AT , the
static-kinematic duality.
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3.2 Kinematic Analysis

The linear-elastic behaviour of the truss framework can now be described,
by analysing the vector subspaces of the equilibrium and compatiblity ma-
trices [Pellegrino and Calladine 86]. Of main interest in our case is the
nullspace of the compatibility matrix, as it provides nodal displacements
that — to first order — have no bar elongations: internal mechanisms.

Cd = 0

These mechanisms may either be finite or infinitesimal, but in general the
information from the nullspace analysis alone does not suffice to estab-
lish the difference. First-order infinitesimal mechanisms can be stabilised
by states of self-stress, and a full tangent stiffness matrix would have to
be formulated to take into account any geometric stiffness resulting from
reorientation of the members.

In the case of the folded textured sheets, the nullspace of the conven-
tional compatibility matrix does not provide much useful information: the
triangulated facets can easily ‘bend’, which is reflected by an equivalent
number of trivial internal mechanisms. The solution is to introduce ad-
ditional contraints. The compatibility matrix can be reformulated as the
Jacobian of the quadratic bar length constraints, with respect to the nodal
coordinates. This parallel can be used to introduce additional equality
constraints to the bar framework. In our case we add a constraint on the
dihedral angle between two adjoining facets.

The angular constraint F is set up in terms of the dihedral fold angle θ
between two facets. Using vector analysis, the angle between two facets can
be described in terms of cross and inner products of the nodal coordinates
p of the two facets (see Figure 5):

F = sin (θ) = sin (θ (p)) = . . . (4)

and the Jacobian becomes

J =
1

cos (θ)

∑ ∂F

∂pi
dpi = dθ (5)

The Jacobian of additional constraints J can now be concatenated with the
existing compatibility matrix[

C
J

]
d =

[
e
dθ

]
(6)

and the nullspace of this set of equations produces the nodal displacements
d that do not extend the bars, as well as not violate the angular constraints.
In effect, we have formulated a rigid origami simulator — no bending or
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Kfold

Kfacet

Figure 4: Unit cell of the Eggbox sheet, illustrating the pin-jointed bar
framework model used to model the folded textured sheets. The facets
have been triangulated, to avoid trivial mechanisms and provide a first-
order approximation for the bending of the facets. Bending stiffness has
been added to the facets and fold lines, Kfacet and Kfold respectively.
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Figure 5: The dihedral fold angle θ can be expressed in terms of the nodal
coordinates of the two adjoining facets. Using the vectors a, b and c,
the following expression holds: sin (θ) = 1

sin(γ) sin(β)
1

|a|3|b||c| (a× (c× a)) ·
(a× b). Here γ is the angle between a and b, and β the angle between a
and c.
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(a)

(b)

Figure 6: The Eggbox (a) and Miura (b) sheet both exhibit a single pla-
nar mechanism when the facets are not allowed to bend, as described in
Section 3.2. The reference configuration is indicated as dashed lines.

stretching of the facets is allowed. In order to track the motion of the
folded sheet, one iteratively follows the infinitesimal mechanisms whilst
correcting for the errors using the Moore-Penrose pseudo-inverse [see, e.g.
Tachi 06]. Our interest, however, remains with the first-order infinitesimal
displacements.

In the case of the two example textured sheets, the kinematic analysis
provides a single degree of freedom planar mechanism; see Figure 6. In this
mechanism the facets neither stretch nor bend. This is the mechanism a
rigid origami simulator would find.

3.3 Stiffness Analysis

A kinematic analysis of a framework, even with additional constraints,
can clearly only provide so much information. The next step is to move
from a purely kinematic to a stiffness formulation. Equations 1–3 can be
combined into a single equation, relating external applied forces f to nodal
displacements d by means of the material stiffness matrix K.

Kd = f (7)

K = AGC = CTGC (8)
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What is not immediately obvious is that this can easily be extended to
other sets of constraints by extending the compatibility matrix.

K =
[

C
J

]T [ G 0
0 GJ

] [
C
J

]
(9)

Depending on the constraint and the resulting error that its Jacobian con-
stitutes, either a physical stiffness value can be attributed in GJ or a
‘weighted stiffness’ indicating the relative importance of the constraint. In
our case, the error is the change in the dihedral angle between adjacent
facets. In effect, we introduce a bending stiffness along the fold line (Kfold)
and across the facets (Kfacet) — see Figure 4. As a result, we obtain a
material stiffness matrix that incorporates the stiffness of the bars, as well
as the bending stiffness of the facets and along the fold lines.

Plotting the mode shapes for the lowest eigenvalues of the material
stiffness matrix K provides insight into the deformation kinematics of the
sheets. Of main interest are the deformation modes that involve no bar
elongations (i.e., no stretching of the material), but only bending of the
facets and along fold lines. These modes are numerically separated by
choosing the axial members stiffness of the bars to be several orders of
magnitude larger than the bending stiffness for the facets and folds. In our
analysis only first-order infinitesimal modes within K are considered.

An important parameter in the folded textured sheets turns out to be
Kratio = Kfacet/Kfold. This is a dimensionless parameter that represents
the material properties of the sheet. When Kratio → ∞ we approach a
situation where rigid panels are connected by frictionless hinges; values of
Kratio ≈ 1 reflect folded sheets manufactured from sheet materials such as
metal, plastic and paper; and when Kratio < 1 the fold lines are stiffer than
the panels, which is the case for work-hardened metals or situations where
separate panels are joined together, for example by means of welding.

The results for the Eggbox and Miura sheet are shown in Figure 7 and
Figure 8 respectively. The graphs show a log-log plot of the eigenvalues
versus the stiffness ratio Kfacet/Kfold. It can be seen that the salient kine-
matics (the softest eigenmodes) remain dominant over a large range of the
stiffness ratio; this indicates that the dominant behaviour is dependent on
the geometry, rather than the exact material properties. The eigenvalues
can straightforwardly be plotted in terms of a combination of different pa-
rameters, such as the fold depth and different unit cell geometries, to obtain
further insight into the sheets.
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Figure 7: Here is plotted the relative stiffness of the nine softest eigenmodes
of the Eggbox sheet. It can be seen that the twisting deformation mode re-
mains the softest eigenmode over a large range of Kratio. The spherical and
cylindrical deformation modes observed in the models are also dominant.
As Kratio →∞ the planar mechanism becomes the softest eigenmode; this
corresponds with the result from the kinematic analysis.
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Figure 8: This figure shows the relative stiffness of the six softest eigen-
modes of the Miura sheet. The twisting deformation mode remains the
softest eigenmode over a large range of Kratio, while the saddle-shaped
mode is also dominant. As Kratio →∞ the planar mechanism identified in
the kinematic analysis becomes the softest eigenmode.
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3.4 Coordinate Transformation

Currently all properties of the folded sheet are expressed in terms of the
displacements of the nodal coordinates. The use of the (change in) fold
angles may be more intuitive to Origamists, and can improve understanding
of the modes. This can be done using a coordinate transformation. The
transformation matrix T converts nodal displacements d to changes in
angle dθ:

dθ = Td (10)

where T is identical to the Jacobian in Equation 5.

4 Conclusion

This paper has presented the idea of Folded Textured Sheets, where thin-
walled sheets are textured using a fold pattern, inspired by Origami folding.
When considering the resulting sheets as a plate or shell, the two exam-
ple sheets exhibit several remarkable properties: they can undergo large
changes in shape and can alter their global Gaussian curvature by virtue
of the folds opening and closing; they also exhibit unique behaviour where
the apparent Poisson’s ratio is oppositely signed in bending and extension.

The proposed modelling method, which represents the partially folded
sheet as a pin-jointed bar framework, enables a nice transition from a purely
kinematic to a stiffness matrix approach, and provides insight into the
salient behaviour without the expense of a full Finite Element analysis. It
captures the important behaviour of the two example sheets, and indicates
that the dominant mechanics are a result of the geometry rather than the
exact material properties.
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