
Sender-Based Message LoggingDavid B. JohnsonWilly ZwaenepoelDepartment of Computer ScienceRice UniversityHouston, TexasAbstractSender-based message logging is a new low-overhead mech-anism for providing transparent fault-tolerance in dis-tributed systems. It di�ers from conventional message log-ging mechanisms in that each message is logged in volatilememory on the machine from which the message is sent.Keeping the message log in the sender's local memoryallows us to recover from a single failure at a time with-out the expense of synchronously logging each message tostable storage. The message log is then asynchronouslywritten to stable storage, without delaying the computa-tion, as part of the sender's periodic checkpoint. Maintain-ing the sender-based message log requires at most one ex-tra network packet over non-fault-tolerant reliable messagecommunication and imposes little additional synchroniza-tion delay. It can be applied transparently to existingdistributed applications and does not require specializedhardware. It is currently being implemented on a networkof SUN workstations.1 IntroductionSender-based message logging is a new low-overhead mech-anism for providing fault tolerance in distributed systems.It can be applied transparently to existing applications anddoes not require the use of specialized hardware. It sup-ports the recovery of processes executing in a distributedsystem from a single concurrent failure in the system atany time (i.e., no process can fail while another process hasfailed or is recovering). We are using sender-based messagelogging to add fault tolerance to compute-intensive ap-plications executing in parallel on a collection of disklessworkstations connected by a local area network.In a network of personal workstations, individual ma-chines often become unavailable from hardware failure orfrom the workstation owner reclaiming his machine. It isthis type of failure from which we wish to recover. We doThis research was supported in part by the National ScienceFoundation under grant DCR-8511436 and by an IBM FacultyDevelopment Award.

not currently support recovery from more complicated fail-ure modes such as multiple concurrent failures or networkpartitioning, but instead concentrate on this situation ofa single failure at a time. Also, we do not address in thispaper the issues of maintaining the consistency and avail-ability of static data such as �le systems and databases [5]or the constraints of real-time applications [6, 7].Sender-based message logging di�ers from other types ofmessage logging mechanisms [2, 9, 13] in that the messagesare logged in the local volatile memory on the machinefrom which each is sent, as illustrated in Figure 1. Keepingthe message log in the sender's local memory allows us torecover from a single failure at a time without the expenseof synchronously logging each message to a special loggingor backup process or to stable storage, and without hav-ing to roll back any processes other than the failed one toachieve a consistent state following recovery. The messagelog is then asynchronously written to stable storage as partof the sender's periodic checkpoint. This allows the stablestorage logging to proceed independently of computation,much the same as in Strom and Yemini's optimistic re-covery protocol [13]. The sender-based message loggingprotocols accomplish this volatile logging with a minimumof overhead. They require at most one extra message overnon-fault-tolerant reliable message communication and im-pose little additional synchronization delay. This tech-nique also distributes message logging overhead propor-tionally over all processes sending messages and avoids thesingle point of failure possible with a centralized loggingfacility.This paper describes the design and operation of thesender-based message logging mechanism. In Section 2,the model of a distributed system assumed by sender-basedmessage logging is described. An overview of the designand the motivation behind it is presented in Section 3,Sender Receivermessage log messagesFigure 1: Process and message log con�guration



and Section 4 describes the data structures necessary forits realization. Section 5 provides a detailed descriptionof the message logging and failure recovery protocols usedin sender-based message logging, and an informal argu-ment of their correctness. This section also discusses an\optimistic" version of the logging protocol that is cur-rently under development. Related work is covered inSection 6, and conclusions and avenues for further workare presented in Section 7.2 Distributed System ModelSender-based message logging is designed to work with ex-isting distributed systems without the addition of special-ized hardware to the system or specialized code to appli-cations. We make the following assumptions about thehardware and the applications:� The system is composed of a network of fail-stop pro-cessors [12].� Packet delivery on the network is not guaranteed, butreliable delivery can be implemented by retransmit-ting the packet a limited number of times and waitingfor an acknowledgement from the destination. If noacknowledgement is received, the destination host isassumed to have failed.� The network supports broadcast communication. Allprocessors can be reached by a broadcast through alimited number of retransmissions of the packet.� A network-wide stable storage service is always acces-sible to all processors in the system.� Processes communicate with each other only throughmessages.� All processes in the system are deterministic in thesense that, if two processes start in the same state,and both receive the identical sequence of inputs, theywill produce the identical sequence outputs and will�nish in the same state. The state of a process is thuscompletely determined by its starting state and by thesequence of messages it has received.3 Design and MotivationIn sender-based message logging, each message transmit-ted is stored in the volatile memory of the machine fromwhich it was sent. Additionally, each process is occasion-ally checkpointed to stable storage, but there is no coor-dination between the checkpoints of individual processes.When a process receives a message, it returns to the sendera receive sequence number, or RSN, which is then addedto the log with the message. The return of the RSN maybe merged with any acknowledgement required by the ex-isting network protocol. This RSN indicates the order inwhich that message was received relative to other messagessent to the same process from other senders. This orderinginformation, which is not normally available to the sender,

is required for successful recovery since the messages mustbe replayed from the log in the same order as they werereceived before the failure. Recovery of a failed process isdone by restarting the failed process from its checkpointand replaying the messages from the logs at the senders inascending order by RSN.Figure 2 shows an example of a distributed log result-ing from this protocol. In this example, process Y initiallyhad an RSN value of 6. Y �rst received two messages fromprocess X1, then two messages from process X2, and �nallyanother message from X1. For each message received, Yincremented its current RSN and returned this new valueto the sender. As the correct sender got the RSN from Y ,it added it to its local log along with the message. Afterreceiving these �ve messages, the current value of the RSNfor Y is 11.This design is motivated by the desire to minimize theoverhead on the system imposed by the provision of faulttolerance. In general, there are three components to thisoverhead: message logging, checkpointing, and failure re-covery. We concentrate here on minimizing the overheadof message logging. Since each message in the system mustbe logged, this overhead places a continuous burden on thesystem even when no faults occur. The checkpointing fre-quency can be tuned to balance its expense against thetime needed for recovery or the space needed to store thelog of messages received since the last checkpoint. Also,the overhead of failure recovery should be less importantthan that of message logging if failures are infrequent.The method used for logging messages here is derivedfrom a simple analysis of the minimum-cost method ofdoing the required logging. When one process sends amessage to another, both the sender and the receiver nat-urally get (or already have) a copy of the message. Ratherthan synchronously sending a copy of it elsewhere for log-ging, it is faster to simply save a copy in local memoryon either the sending or the receiving machine. Since thepurpose of the logging is to recover the receiver if it fails,the receiver can not do this; however, the sending machinecan easily save a copy of each message sent. Keeping themessage log in the sender's local memory also distributesthe logging overhead proportionally over all processes thatsend messages and avoids the possible single point of fail-X1 X2 Y7, 8, 11 9, 10 RSN= 11Figure 2: An example message log forsender-based message logging



ure of a centralized log. It is this idea that forms the basisof the sender-based message logging mechanism.4 Data StructuresThe inclusion of sender-based message logging in a dis-tributed system requires the maintenance of the followingitems of system data for each participating process:� A send sequence number or SSN : a sequence num-ber of messages sent by the process. This is usedfor duplicate message suppression during recovery.Distributed systems that do not provide fault toler-ance typically already require such a sequence num-ber for suppression of duplicate messages. When thissequence number is included in the checkpoint of aprocess, it can be used to suppress duplicates causedby process recovery as well.� A receive sequence number or RSN : a sequence num-ber of messages received by the process. The RSN isincremented each time a new message is received, andthe value after being incremented is assigned as theRSN for this message and is returned to the sender.� A message log of messages sent by the process. Thismust contain the entire message that was sent in-cluding the data, the identi�cation of the destinationprocess, and the SSN used for that message. Whenthe RSN for a message is returned by the receiver, it isalso added to the log. After a process is checkpointed,all messages sent to that process and received beforethe checkpoint can be removed from the logs in thesending processes.� A table recording the highest SSN value received in amessage sent by each process with which this processhas communicated. This is used for duplicate messagedetection.� A table maintaining the RSN value that was returnedfor each message received since the last checkpointof this process. This table is indexed by the SSN ofthe message and may be purged when the process ischeckpointed.Each of these data items except the last must be includedwhen the process is checkpointed. When a process isrestarted from its checkpoint, their values will be restoredalong with the rest of the checkpointed data.5 The ProtocolsThe act of logging a message under sender-based messagelogging is not atomic, since the message data is enteredinto the log when it is sent but the RSN can only be en-tered after it has been received by the target process. It isthus possible for the receiver to fail while some messagesdo not yet have their RSNs recorded at the sender; suchmessages are called partially logged messages. The sender-based message logging protocols are designed so that any

partially logged messages that exist for a failed process canbe sent to it in any order after the sequence of fully loggedmessages have been sent to it in ascending RSN order.5.1 Message Logging ProtocolWith the sender-based message logging protocol, the fol-lowing steps are required to send a messageM from processX to process Y :1. Process X sends the message M to process Y andinserts the message in its local volatile message log.2. Process Y returns an acknowledgement to X and in-cludes with this acknowledgement the RSN value itassigned to M .3. Process X adds the RSN for this message to its logand sends an acknowledgement for the RSN back to Y .The operation of this protocol in the absence of transmis-sion errors is illustrated in Figure 3.If either the message acknowledgement and RSN packetor the RSN acknowledgement packet is not received withinsome time, the preceding packet is retransmitted. If no re-sponse is received after some maximum number of such re-transmissions, the destination machine is assumed to havefailed. After returning the RSN, the receiver can continueexecution without waiting for the RSN acknowledgement,but it must not send any messages (including input oroutput with the \outside world") until the RSNs of allmessages that it has received have been acknowledged.The sender may continue normal execution immediatelyafter the message is sent, but it must continue to retrans-mit the original message until the RSN packet arrives.In comparison to the typical protocols used for reliablemessage delivery without fault tolerance, this protocol re-quires one extra network packet, used to acknowledge theRSN. The sender does not experience any extra delay, butdoes incur the overhead of copying the message and theRSN to the log. The receiver may or may not experi-ence some delay depending on whether it needs to sendmessages immediately after receipt of the original message.XY timemessage ack/RSNackAny new sends by Receivermust be delayed.Figure 3: Operation of the message loggingprotocol in the absence of transmission errors



5.2 Failure Recovery ProtocolTo recover a failed process, it is �rst restarted on someavailable processor from its most recent checkpoint. Allfully logged messages for this process are then resent to itin ascending order of their logged RSNs. Only messagesfor which both the message data and the RSN have beenrecorded in the log are resent at this time; any partiallylogged messages are then sent to the process in any or-der after this. There is a separate message log stored ateach process that sent messages to the failed process sinceits last checkpoint. The recovering process broadcasts re-quests for its logged messages, which are then replayed to itin ascending RSN order, beginning with the next messagefollowing the current RSN recorded in the checkpoint.As the recovering process executes from its checkpointedstate, it resends any messages that it sent after the check-point before the failure. Since the next SSN to use insending messages is included in the process checkpoint,the SSNs used during recovery are the same as those usedwhen these messages were originally sent before the failure.When receiving a message, If its SSN is less than or equalto the the highest SSN already received from this sender,the message is rejected as a duplicate. If the receiver hasnot checkpointed since originally receiving this message,it returns an acknowledgement including the RSN that itassigned when it �rst received this message. This RSNvalue is retrieved from its table recording the correspon-dence between the SSN of each message received and theRSN value assigned to that message. However, if the re-ceiving process has been checkpointed since this messagewas �rst received, this table entry will have been purged,and an indication that this message need not be logged atthe sender is returned instead.5.3 CorrectnessWe show that in the case of a single failure at a time,this mechanism will correctly restore the state of thefailed process to be consistent with the states of the otherprocesses in the system.First, during recovery, the process restored from itscheckpointed state, and the sequence of fully loggedmessages are replayed to it in the same order as they werereceived before the failure (in ascending RSN order), be-ginning following the checkpointed RSN value. By the as-sumption of a single concurrent failure, these messages areall available in the volatile logs, and thus, by the assump-tion of determinism, the process reaches the same state asit had after receipt of these messages before the failure.Next, the partially logged messages are replayed to theprocess in any order. Since processes are restricted fromsending new messages until all messages they have receivedare fully logged, no processes other than the receiver canbe a�ected by the receipt of a message that is still onlypartially logged. Thus, any change in the order of receiptof the partially logged messages during recovery can alsoonly a�ect the state of the receiver and can not alter itsconsistency with other processes in the system.

While a process is recovering, it will resend the samemessages that it sent after the checkpoint before the fail-ure. Since the next SSN to use in sending messages ispart of the checkpoint, these duplicates will be correctlydetected and rejected by their receivers.The data structures necessary for further participationin the protocol (Section 4) are correctly restored since theyare recovered from the checkpoint and then modi�ed asa result of receiving the same sequence of messages. Inparticular, the volatile message log in the failed processis recreated such that it may be used in the recovery ofsome other process after the current recovery is completed.Normally, the original RSN is returned in response to theduplicate message and is added to the log. However, if thereceiver has checkpointed since this message was originallyreceived, this message can not be needed for any futurerecovery of the receiver. In this case, an indication thatthe message is not needed is returned instead, the partiallylogged message is removed from the volatile log, and noRSN is recorded. In either case, correct further operationof the protocol is assured.Finally, this mechanism avoids the problem of thedomino e�ect [10, 11] since no processes other than thefailed one need to be rolled back to recover from a failure.5.4 An Optimistic AlternativeThis protocol is an alternative to the basic message log-ging protocol of Section 5.1 that allows the receiver tosend new messages to other processes without waiting forall messages it has received to be fully logged at theirsenders. This is an optimistic protocol in that it makesthe optimistic assumption that the logging will eventu-ally be completed (through retransmissions if necessary)before a failure occurs and maintains enough extra in-formation to be able to roll back the system and to re-cover a consistent state if the assumption turns out to bewrong. Although this protocol is still under development,this section presents an initial overview of its design.Using this optimistic protocol, it is now possible for aprocess to enter a state that is not consistent with thesystem state that may be created from recovery after afailure. For example, the scenario shown in Figure 4 is nowpossible. Here, process X has received a message M andthen sent a message N to process Y . Process X then failedbefore the RSN for message M had been added to the logat its sender. During recovery, we cannot guarantee thatmessage M is resent in the same order as it was receivedbefore the failure. Thus, process X potentially can notrecreate the state from which message N was sent, andprocess Y may then exist in a state that is not consistentwith the state recreated for process X after its recovery.We introduce the following terminology to describe thissituation. The state of a process is unrecoverable until allmessages it has received are fully logged at their senders.If a process fails in an unrecoverable state, its state is lost ;otherwise, its state may again become recoverable if allmessages it has received are eventually fully logged by thereturn of their RSNs. When one process receives a message



XY timeM N RSNN failureY becomes an orphanFigure 4: A possible scenario when using theoptimistic logging protocolfrom another, the state of the receiver depends on the stateof the sender at the time the message was sent because anypart of the sender's state might have been included in themessage. If a process depends on a state that becomeslost, the process becomes an orphan process and the stateof the process is then an orphan state.In short, an orphan process Y is a process that hasreceived a message N from a failed process X that sentmessage N after receiving a message M that was not fullylogged at the time of X's failure (Figure 4). If the cur-rent RSN of a process is included in all messages sent bythe process, and if each process maintains a table of thehighest RSN it has received from any process, process Yhas become an orphan from the failure of process X, if thevalue for X in its RSN table is higher than the RSN towhich X was able to recover from the sequence of fullylogged messages. To determine whether its failure hascaused other processes to become orphaned, X broadcaststhe value of the RSN to which it was able to recover. Anyprocess that has a higher RSN value for X recorded inits table of highest RSN values received concludes that ithas become an orphan. In addition to being invoked af-ter a process failure, this orphan-detection algorithm mustalso be used before a process is checkpointed, since if theprocess does become an orphan, a checkpoint from beforethe state was orphaned will be needed for recovery.After recovering the state of a process, the states of anyorphaned processes are recovered by forcing them to failone at a time and recovering them from their checkpointsand message logs in the same manner as is used for nor-mal failed processes. Some of the messages logged for anorphaned process may have been recorded in the memoryof the failed process, but this log information will be re-constructed during the recovery of that process. After thefailed process and all orphans are recovered, their stateswill be consistent as of the time that the last fully loggedmessage was received before the failure.This form of the logging protocol has a number of ad-vantages in addition to the added concurrency of allowingthe receiver to proceed asynchronously from the receipt ofthe RSN acknowledgement. For instance, the sender coulddelay sending the acknowledgement of the RSN packet fora substantial period of time and piggyback it on the nextmessage it needs to send to the receiving process, with a

timeout mechanism if no such message is present. Thiswould reduce the number of network packets to the samenumber as for reliable delivery in a system without faulttolerance. Extending this further, if processes use a remoteprocedure call protocol to communicate, there often is noexplicit acknowledgement packet since the return from theRPC call implicitly acknowledges the call [1]. In this case,the RSN can be piggybacked on the RPC return packetand the RSN acknowledgement can be piggybacked on thenext call packet, again without any additional networkpackets for the provision of fault tolerance, even with thishighly optimized protocol.6 Related WorkA number of fault-tolerance systems require applicationsto be written according to speci�c computational modelsto simplify the provision of fault tolerance. For example,the ARGUS system [8] requires applications to be struc-tured as a (possibly nested) set of atomic actions on ab-stract data types. Since sender-based message logging isa transparent mechanism, it does not impose such restric-tions on the applications.The Auros distributed operating system [2] and thePUBLISHING mechanism [9] both use message loggingbut require specialized hardware to assist with the log-ging. Auros uses special networking hardware that atom-ically sends each message also to backup processes for thesender and the receiver. PUBLISHING uses a centralizedlogging machine that must reliably receive every networkpacket. Since sender-based message logging requires nosuch specialized hardware, it can be used over a broaderclass of existing systems without loss of e�ciency.Strom and Yemini's optimistic recovery mechanism usesan optimistic asynchronous message logging protocol thatdoes not delay the sender or the receiver for synchroniza-tion with stable storage logging [13]. Causal dependencytracking and process rollback are used to recreate a consis-tent system state after a failure. The presence of a volatilelog in sender-based message logging allows us to recoverfrom a single failure at a time without rollback, while stillmaintaining the asynchrony between computation and sta-ble storage logging. Furthermore, their desire to recoverfrom more than a single concurrent failure leads to proto-cols that are signi�cantly more complicated than sender-based message logging.7 ConclusionThe sender-based message logging mechanism o�ers a sim-ple, low-overhead solution to providing fault tolerance indistributed systems. Keeping a volatile log allows us to re-cover from a single failure at a time without rollback, andavoids the expense of synchronously logging each messageto stable storage. Organizing the volatile log by senderresults in an e�cient logging protocol, with minimal extranetwork communication and synchronization delay. This



results in an e�cient fault-tolerance protocol that worksnaturally within the constraints of a distributed system.No special knowledge of fault tolerance is required by pro-grams or programmers to use sender-based message log-ging. Since it does not rely on any specialized hardware toachieve fault tolerance, sender-based message logging canbe added easily to existing distributed systems, as well asbeing designed into new systems.We are currently implementing a prototype of sender-based message logging under the V-System [4, 3] on a col-lection of SUN workstations connected by an Ethernetnetwork. Although the V-System di�ers slightly from thedistributed system model assumed in this work, we believethat this can be satisfactorily handled in the implementa-tion. We are also continuing development of the optimisticlogging protocol discussed in Section 5.4. Finally, we areconsidering the extension of sender-based message loggingwith causal dependency tracking similar to that used inStrom and Yemini's optimistic recovery protocol [13] toallow for recovery from multiple concurrent failures. Thepresence of the volatile log in the sender should greatly re-duce the occurrence of orphaned processes, thus reducingthe need to roll back processes other than those that havefailed. AcknowledgementsWe would like to thank Ken Birman, David Cheriton,Elaine Hill, Ed Lazowska, and Rick Schlichting for theircomments on earlier drafts of this paper. We would alsolike to thank the referees for their help in improving theclarity of the presentation.References[1] Andrew D. Birrell and Bruce Jay Nelson. Implement-ing remote procedure calls. ACM Transactions onComputer Systems, 2(1):39{59, February 1984.[2] Anita Borg, Jim Baumbach, and Sam Glazer. Amessage system supporting fault tolerance. In Pro-ceedings of the Ninth ACM Symposium on OperatingSystems Principles, pages 90{99, ACM, October 1983.[3] David R. Cheriton. The V kernel: a software basefor distributed systems. IEEE Software, 1(2):19{42,April 1984.[4] David R. Cheriton and Willy Zwaenepoel. The dis-tributed V kernel and its performance for disklessworkstations. In Proceedings of the Ninth ACM Sym-posium on Operating Systems Principles, pages 129{140, ACM, October 1983.[5] J. N. Gray. Notes on database operating systems.In R. Bayer, R. M. Graham, and G. Seegm�uller, edi-tors, Operating Systems: An Advanced Course, chap-ter 3. F., pages 393{481, Springer-Verlag, New York,1979.
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