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Abstract. Recent research explored the feasibility of using Machine Learning methods to provide 
accurate network traffic classification. We further believe that these methods can work on real-time 
Internet traffic with sufficient accuracy for practical applications. In this paper we present ANTc, a 
framework for quasi-realtime statistical traffic classification. It essentially demultiplexes network 
flows, collects statistical features of the flows, and then allows classification of the flows into 
arbitrary traffic classes using a pre-trained Naïve Bayes model. ANTc contains a built-in feature 
collector for the input of Naïve Bayes classifier and further provides a modular framework to 
facilitate further investigations into statistical classification methodologies. It also provides a set of 
flow sampling parameters which can be tuned, thus is capable of demonstrating the impact on 
classification accuracy from flow sample size restrictions. Results show that ANTc using Naïve 
Baye model can work in near real-time without obvious decrease in precision. 

1 Introduction 

Accurate real-time traffic classification is of fundamental importance to network operations, 
managements and studies. It serves as the input for Intrusion Detection Systems, provides 
Class-of-Service (CoS) mapping [1] for Quality of Service (QoS) control, and also provides statistics 
for network monitoring. 

Currently on the internet there are different types of network applications which have diverse 
statistical characteristics and QoS requirements. Based upon this diversity, statistical classification 
methods such as Naïve Bayes method and kernel estimator were applied to network traffic 
classification [2]. With as few as 10 features collected from traffic flows, up to 96% of precision was 
achieved to classify the traffic into 10 different application classes. It is fundamentally different from 
traditional traffic classification approaches in that statistical classification does not rely on specific port 
numbers and protocol signatures but on the statistical behaviour of a traffic flow, such as average 
segment size, variance of payload size and initial window size, thus avoiding from inspecting traffic 
payload which may cause privacy concerns and can be rendered ineffective due to the encryption of 
packet payload. Statistical classification has shown accurate classification results and also promising 
prospect to be further applied in real-time traffic classification systems, either working standalone or in 
combination with other methodologies. 

In this paper we present ANTc, an online traffic classification framework intended to demonstrate 
the feasibility of statistical traffic classification operating at near real-time, and further an entry toward 
accurate real-time classification. ANTc contains a prototype implementation of the above Naïve Bayes 
methodology that uses the same set of 10 flow features as selected by [2], and also provides a 
framework that makes it easy to further justify alternative classification methodologies using different 
features and algorithms later on.  

Experimental results show that statistical traffic classification methods can provide high accuracy 
with acceptable computational and memory overheads. Meanwhile, we believe this prototype of ANTc 



could be further developed into a faster and more accurate real-time statistical traffic classification 
framework for higher speed networks.  

The structure of this paper is as follows. The next section reviews some related work. Section 3 
presents the architecture design of ANTc. Section 4 discusses classification methodology for real-time. 
Section 5 presents the experimental results and analysis. Section 6 concludes the paper and outlines 
future work. 

2 Related Work 

Existing real-time traffic identification systems in application are intrusion detection systems (IDS) 
such as Snort [3] and Bro [4]. These applications mainly use IP and port information in TCP/UDP 
header and signatures in the packet payload to identify the traffic of an application. Matching the 
signature strings in packet payload can be very complex and laborious, therefore further IDS solutions 
turned to utilise hardware technology such as FPGA to allow traffic identification on high speed 
networks [5].  

However, an essential limitation for traditional mechanisms is that they relied on looking for the 
explicit “symbols” (such as protocol information, port number or signatures) of different applications, 
but in practice applications does not have one-to-one mapping to such symbols or even may not have 
such symbols. For example, there are currently many applications using port 80 in order to go through 
firewalls. More interestingly, POP3 and SMTP have been used for remote access and file sharing [6]. 
Besides, increasing use of packet payload encryption is troublesome for signature matching. 
Furthermore, prior knowledge of the application (such as port number and signatures it uses) is always 
required before these systems can effectively identify an application.  

A far more sophisticated content-based traffic classification methodology was provided in [7] which 
composes of 9 functional blocks and can approach 100% accuracy with all 9 blocks in operation. The 
major constraints of such a system probably include the system throughput and not being possible to be 
applied in real-time. 

BLINC [8] is another approach based on identifying patterns of host behaviour to classifying traffic 
flows. This is orthogonal to the methodology used in ANTc that is based on behaviour of traffic flow. 
In future work we would also hope to combine this method to ANTc by interpreting the host behaviour 
information into features which can be utilised by ANTc. 

A preliminary empirical study into different machine learning algorithms was presented in [9]. It 
focused on comparing the accuracy and performance of the algorithms, and served as a good guide of 
entrance to apply various machine learning techniques into network traffic classification. However, the 
authors may have underestimated the complexity of the problem space. 

For real-time statistical traffic classification, [10] proposed to classify online game flows with a 
small sliding window based on a model trained on multiple short sub-flows. A number of experiments 
were presented on identification of online game which is a very specific kind of application. Apart 
from the experiment results, further investigation would be required to validate this methodology. 

3 Architecture 

A real-time network traffic classification framework based on flow behaviour would theoretically 
comprise of these following procedures:  
·Packet Capture: to capture packets from a network interface.  
·Flow Demultiplexing: to collect and aggregate packets in each flow into single flow objects. 
·Feature Collection: to collect flow features required for classification from single flow objects.  



·Classification: to check these flow features with a pre-trained flow model, in order to predict which 
application class the flow belongs to. 

These procedures above form a complete trace of the data flow, and the design of ANTc naturally 
followed that to become a layered architecture composing of the same four modules (layers).  
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Fig. 1 Layered model of ANTc 

Packet Capture and Flow Demultiplexing are bottom layers of the system, which demultiplex the 
original traffic into single flow objects for classification and are independent of the classification 
methods. A simple Packet Capture module included in ANTc utilises the libpcap [11] library, and 
therefore supports both live network traffic and traffic trace (dump) files.  

In Flow Demultiplexing layer, currently ANTc only collects packets from the beginning of every 
TCP flow. Other packets such as UDP and ICMP are ignored in this prototype, as well as those TCP 
flows where ANTc has not seen the starting of the flow. ANTc concentrates on the beginning of a flow 
for two reasons: firstly, it is comparably easy to keep track of the state of connection [12] by reading 
from the beginning of a flow; secondly, the beginning of a flow contains several effective flow 
features, such as the initial window size. On the other hand, different transport link layer protocols may 
require totally different Flow Demultiplexing methods, therefore for simplicity we temporarily only 
support TCP, which composes the majority of Internet traffic [13].  

To be operating at near real-time, ANTc should always return the classification result of a flow as 
soon as a few packets in that flow have arrived. This means it may not collect full TCP flows but an 
appropriate small number of packets instead. However, with how many packets enough precision can 
be achieved is still an open problem for research. Hence ANTc allows user to specify the maximum 
number of packets of a flow sample, and also another maximum flow duration parameter as well, as an 
alternative to the former. 

On top of Flow Demultiplexer layer are Feature Collection and Classification layers which are both 
related to the choice of classification method. Currently ANTc utilises WEKA [14] framework, which 
covers a wide range of classification algorithms including the Naïve Bayes method we used, in order to 
enable handy replacement and justification of classification methodology. In the Feature Collection 
layer 10 features (as shown in table.1 below) are collected and then stored in WEKA data format as the 
input of classification. Finally in Classification layer ANTc invokes WEKA to classify the flows based 
on the pre-trained Naïve Bayes kernel model and provides the output results. We will further discuss 
the Naïve Bayes methodology we used in the next Section. On the other hand, ANTc also provides a 
template to collect other flow features, so as to simplify the implementation of other classification 
methodologies using different features and algorithms later on. 

Some of these modules could be combined together, for example, Feature Collection does not 
necessarily start only after Flow Demultiplexing ends. However, separating them into different 
modules maintains the modularity with the cost of some computing redundancy. The benefit from 
modularity is two-fold: it allows network operators to conveniently add this software to their network 
monitoring suite, and also allows other researchers to easily apply different methodology or packet 
capture modules. Although the implementation of the Naïve Bayes method with kernel estimator [2] 
was already built in, it is only a starting point and we recognise there can be many different approaches. 
We can use ANTc to facilitate further investigations as to justify the classification methodology for 
real-time network traffic. 

The above modules of ANTc are implemented in C while WEKA is Java-based. Therefore JNI [15] 
is used to invoke WEKA from C. 



4 Classification Methodology for Real-time 

The real-time implementation of the classification methodology requires modifications and 
justifications in several aspects. Real-time traffic classification which aims at providing input for IDS 
or QoS would require early identification of a traffic flow; this indicates that the classification should 
be finished with limited information from as few packets as possible rather than the whole flow. 
Reducing number of packets in flow samples may reduce the computing overhead in collecting the 
features, as shown in Fig.2. Additionally, reducing the number of features collected will also reduce the 
computing and memory overhead both in collecting features and in classification. However, on the 
contrary ideally more information (more packets and more features) on a flow would be required in 
order to provide higher precision.  

To solve this contradiction, for a supervised classification system like ours, the challenge is to find a 
precise classification model for partial flows with limited number of packets. The problem is three 
dimensional: 1) the model should be built on a concise feature set resulting in limited computing and 
memory overheads but containing a maximum amount of information in order to correctly classify data 
samples (network flows) into application classes; 2) for model correctness, the model should be built 
on sufficient information, i.e. using a sufficient number of correct data samples in each application 
class to keep it unbiased, 3) the model itself should be of least-possible computational complexity.  

Our current model is based on the previous Naïve Bayes model in [2]. ANTc collectes 10 features as 
listed in Table.1 below to classify network traffic into 10 arbitrary classes. The features we used are 
identical to those selected by [2] and have been proven to be effective on classifying full flows. The 
only difference in our implementation is we collect features from limited number of packets at the 
beginning of a flow rather than full flow samples. Fig.2 shows the relationship between different packet 
number limits and the computing overhead of these features, which is approximately linear.  

As we are focusing on the beginning of flows, we generate our model also using the beginning of 
flows limited by the same maximum packet number as we use in classification. This is a natural 
solution based on the simple rule that the training data and testing data should always match up with 
each other.  

 
Name Collecting Time Memory Overhead  Complexity 

Push_packets_server During capture O (1) O (1) 
initial_window_bytes_server During capture O (1) O (1) 
initial_window_bytes_client During capture O (1) O (1) 

average_segment_size_server During capture and after end O (1) O (n) 
Ip_data_bytes_median_client After end O (n) O (n2) 
actual_data_packets_client During capture O (1) O (n) 
data_bytes_variance_server After end O (n) O (n) 

minimum_segment_size_client During capture O (1) O (n) 
RTT_samples_client During capture O (1) O (n) 
push_packets_client During capture O (1) O (1) 

Table. 1. List of features used in the Naive Bayes classifier. Details of these features is available in [16] 

5 Experimental Results 

Our dataset comprises of two non-consecutive days of internet traffic. Day2 is eight months after 
Day1. These datasets were collected using a high speed monitoring box [17] installed on the Internet 
connection of the network of Genome Campus. The campus is a research-facility with about 1,000 



employees and is connected to the Internet via a full-duplex Gigabit Ethernet link. Every packet on 
each direction of the link was captured along with its full payload. Then the packets were classified by 
hand into 10 application classes as the base for experimentations, namely WWW, EMAIL, ATTACK, 
P2P, DATABASE, MULTIMEDIA, SERVICE, INTERACTION, GAMES and BULK. The 
compositions of the Day1 and Day2 datasets are shown in Table.2. 

 
 
 
 
 
 
 
 
 

Fig. 2. Feature Collection Time vs. Flow Sample Size 

 Total WWW MAIL ATT P2P DB MMED SERV INTR GAME BULK
Day1 323879 273867 28120 2548 1908 2794 444 1798 86 5 12309
Day2 175651 140868 16483 987 2762 2606 4 1112 36 0 10793

Table. 2. Datasets from two non-consecutive days with an 8 months interval. 

In the experiment we tested with five different flow sample length limits, namely 5, 10, 25, 50 and 
100 packets. First we collected the Stratified Cross Validation [14] results from Weka for either day’s 
dataset. The total accuracy values of the models are calculated based on these results, as well as the 
precision and recall values for the three largest application classes, WWW, EMAIL and BULK. 

 

Fig. 3. Stratified Cross Validation of Day1 and Day2 Model 

From the results we can find the overall accuracy for Day1 and Day2 using different packet limits. 
With as few as 5 packets the overall accuracy either dataset can reach 90% and with 25 packets day1 
can reach up to 93% while day2 achieves surprisingly 97% accuracy. For comparison study we also 
tested full flow sampling using the same Naïve Bayes methodology (same features) built on the same 
datasets. These result in 96.5% and 95.8% accuracy for day1 and day2 respectively. 



Therefore, even the feature set we used for real-time beginning-of-flow samples are the same as 
those had been selected for full flow samples in [2], the results from these features can be regarded as 
of the same level of accuracy.  

Furthermore, in order to validate the temporal stasis of the model, we test using cross validation 
between the two datasets. Accuracy may decay with time due to emergence of new applications the 
transformation of Internet traffic. Although some level of decrease in the total accuracy can be seen in 
our results, the model is still capable of providing useful information on a flow. For example, the recall 
value of WWW traffic is still very high which means the prediction of a flow to be of WWW can be to 
some extent reliable. In comparison, sampling full flows result in 94% and 92% accuracy respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

Fig. 4. Cross validation between Day1 and Day2 datasets. 

6 Conclusions and Future Work 

There are multiple important factors in online traffic classification system, such as: accuracy, 
completeness, latency and throughput. The challenges in improving the overall performance as well as 
in balancing between these factors shape a sophisticated problem space. We acknowledge that our 
experiments in real-time classification research presented in this paper are early attempts which may be 
coarse-grained and unsophisticated. We also note that there are downsides of current statistical 
approaches as well. For example, statistical techniques would practically require the information of at 
least a few packets before it can make a reliable prediction on an unknown flow object. This means the 
latency in statistical traffic classification is probably higher than traditional header-based and 
signature-based mechanisms. The way to solve this problem leaves an open area for future work, and is 
largely depended on the purpose of the real-time traffic classification system. However, a more 
sophisticated traffic classification combining the strength of different approaches (flow-based, 
host-behaviour based and header/signature-based) is very promising to counter this problem. This can 
be a challenge but not a limitation for statistical traffic classification systems to be operating at 
real-time.  

In this paper we presented the architecture of ANTc: a statistical traffic classification framework 
operating at quasi-realtime. Based on ANTc, we also discussed the real-time implementation of a Naïve 
Bayesian classification methodology by collecting features at the beginning of flows. Our experimental 
results show that this classification method can achieve the same level of accuracy as it is used in 
offline traffic classification.  



ANTc is a simple framework but is starting to be a powerful tool in exploring the whole problem 
space. Allowing collecting different feature sets, using different classifiers and tuning flow sampling 
parameters, ANTc can easily facilitate further investigations into identifying a best-suitable feature set 
and a highly effective classification algorithm for real-time classification. Furthermore, ANTc would 
be equipped with much more built-in contents in the near future, so as to form a complete research 
platform for traffic classification on high speed networks.  
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