
15

Software Model Checking Using Languages of Nested Trees

RAJEEV ALUR, University of Pennsylvania
SWARAT CHAUDHURI, Rice University
P. MADHUSUDAN, University of Illinois

While model checking of pushdown systems is by now an established technique in software verification,
temporal logics and automata traditionally used in this area are unattractive on two counts. First, logics
and automata traditionally used in model checking cannot express requirements such as pre/post-conditions
that are basic to analysis of software. Second, unlike in the finite-state world, where the μ-calculus has
a symbolic model-checking algorithm and serves as an “assembly language” to which temporal logics can
be compiled, there is no common formalism—either fixpoint-based or automata-theoretic—to model-check
requirements on pushdown models. In this article, we introduce a new theory of temporal logics and automata
that addresses the above issues, and provides a unified foundation for the verification of pushdown systems.

The key idea here is to view a program as a generator of structures known as nested trees as opposed
to trees. A fixpoint logic (called NT-μ) and a class of automata (called nested tree automata) interpreted on
languages of these structures are now defined, and branching-time model-checking is phrased as language
inclusion and membership problems for these languages. We show that NT-μ and nested tree automata
allow the specification of a new frontier of requirements usable in software verification. At the same time,
their model checking problem has the same worst-case complexity as their traditional analogs, and can be
solved symbolically using a fixpoint computation that generalizes, and includes as a special case, “summary”-
based computations traditionally used in interprocedural program analysis. We also show that our logics and
automata define a robust class of languages—in particular, just as the μ-calculus is equivalent to alternating
parity automata on trees, NT-μ is equivalent to alternating parity automata on nested trees.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Model
checking; F.1.1 [Computation by abstract devices]: Models of computation—Automata; F.3.1 [Theory of
Computation]: Specifying and Verifying and Reasoning about Programs; F.4.1 [Theory of Computation]:
Mathematical Logic—Temporal logic

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Logic, specification, verification, μ-calculus, infinite-state, model-
checking, games, pushdown systems, interprocedural analysis

ACM Reference Format:
Alur, R., Chaudhuri, S., and Madhusudan, P. 2011. Software model checking using languages of nested trees.
ACM Trans. Program. Lang. Syst. 33, 5, Article 15 (November 2011), 45 pages.
DOI = 10.1145/2039346.2039347 http://doi.acm.org/10.1145/2039346.2039347

This work was partially supported by the National Science Foundation under CAREER award #0953507 and
CAREER award #0747041.
Authors’ addresses: R. Alur, Computer and Information Science Department, University of Pennsyl-
vania, 3451 Walnut Street, Philadelphia, PA 19104; email: alur@cis.upoenn.edu; S. Chaudhuri, Com-
puter Science Department, Rice University, 6100 Main, Houston, TX 77005; email: swarat@rice.edu;
P. Madhusudan, University of Illinois at Urbana-Champaign, 601 East John Street, Champaign, IL 61802;
email: madhu@illinois.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0164-0925/2011/11-ART15 $10.00

DOI 10.1145/2039346.2039347 http://doi.acm.org/10.1145/2039346.2039347

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:2 R. Alur et al.

1. INTRODUCTION

Because of concerted research over the last three decades, model checking of finite-
state reactive systems is now well understood theoretically as well as applied in
practice [Clarke et al. 1999]. The theories of temporal logics and automata have
played a foundational role in this area. For example, in branching-time model checking
[Emerson and Clarke 1982; Emerson and Lei 1985], the problem is to verify require-
ments such as: “Every execution of the system must eventually reach a state s such
that every state reachable from s satisfies a certain property.” These requirements are
written formally using finite-state tree automata or temporal logics like the μ-calculus.
Due to deep relationships between these formalisms and the theory of tree languages,
the verification problem becomes equivalent to the following language-theoretic ques-
tion: does the tree unfolding of the system belong to an ω-regular language of trees
satisfying this requirement? Decision procedures based on fixpoints [Emerson and Lei
1985] or tree automata [Kupferman et al. 2000] are now used to answer this question.

Verification of software, however, is a different story. Unlike in the verification of
finite-state systems, now we must handle unbounded data structures, allocated on the
heap as well as the stack. The software model checking approach [Ball and Rajamani
2001] to this problem is based on data abstraction. Here, the data in the program is
abstracted by a finite number of bits, but the semantics of control—loops, branches and
procedure calls—are modeled precisely. As most realistic programs have procedural
control flow, it is common in this setting to abstract programs using pushdown models,
or finite-state machines equipped with a pushdown stack (variants such as recursive
state machines [Alur et al. 2005] and boolean programs [Ball and Rajamani 2000] have
also been considered). Such a machine is viewed as a generator of a tree unfolding
capturing all executions of the program; the program is correct if this tree belongs to
the language of “correct” trees. Model checking is performed as before using language-
theoretic decision procedures.

There are, of course, deviations from the classical setting: since pushdown models
have infinitely many configurations, answering these queries requires infinite-state
model checking. Many positive results are known in this area—for instance, model-
checking the μ-calculus, often called the “assembly language for temporal logics,” is
decidable on sequential pushdown models [Walukiewicz 2001; Burkart and Steffen
1999]. However, many attractive computational properties that hold in the finite-state
world are lost. For instance, consider the property: “A state satisfying a proposition p
is reachable from the current state.” This property is expressible in the μ-calculus by
a formula ϕ = μX.(p∨ 〈〉X). In finite-state model checking, ϕ not only states a property,
but syntactically encodes a symbolic fixpoint computation: start with the states satisfy-
ing p, add states that can reach the previous states in one step, then two steps, and so
on. This is the reason why hardware model-checkers like SMV translate a specification
given in a simpler logic into the μ-calculus, which is now used as a directive for fix-
point computation. Known model-checking algorithms for the μ-calculus on pushdown
models, however, are complex and do not follow the structure of the formula. In par-
ticular, they cannot capture the natural, “summarization”-based fixpoint computations
for interprocedural software analysis that have been known for years [Reps et al. 1995;
Sharir and Pnueli 1981].

Another issue with directly applying classical temporal specifications in this context
is expressiveness. Traditional logics and automata used in model-checking define reg-
ular languages of words and trees, and cannot argue about the unbounded nesting of
calls and returns found in recursive programs. Consider the property of local reach-
ability: “a state satisfying p is reachable in the same procedural context (i.e., before
control returns from the current context, and not within the scope of new contexts
transitively spawned from this context via calls).” This property cannot be captured

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:3

Fig. 1. A nested tree.

by regular languages of words or trees. Other requirements include Floyd-Hoare-style
preconditions and postconditions [Hoare 1969] (“if p holds at a procedure call, then
q holds on return”), interface contracts used in real-life specification languages such
as JML [Burdy et al. 2003], stack-sensitive access control requirements arising in
software security [Wallach and Felten 1998], and interprocedural dataflow analysis
[Reps 1998].

While checking pushdown requirements on pushdown models is undecidable in gen-
eral, individual static analysis techniques are available for all the above applications.
There are practical static checkers for interface specification languages and stack
inspection-type properties, and interprocedural dataflow analysis [Reps et al. 1995]
can compute dataflow information involving local variables. Less understood is the
class of languages to which these properties correspond and the way they relate to
each other. Is there a unified logical formalism that can connect all these seemingly
disparate dots, extending the model-checking paradigm to properties such as above?
Can we offer the programmer a flexible, decidable temporal logic or automaton model
to write these requirements?

These are not merely academic questions. A key practical attraction of model-
checking is that a programmer, once offered a temporal specification language, can
tailor a program’s requirements without getting lost in implementation details. A logic
as above would extend this paradigm to interprocedural reasoning. Adding syntactic
sugar to it, one could obtain domain-specific applications—for example, one can con-
ceive of a language for module contracts or security policies built on top of such a
formalism.

1.1. Our Contributions

In this article, we offer a new theory of logics and automata that forms a unified
formal basis for branching-time model checking of procedural programs. (The article
consolidates results that we have previously published as conference articles [Alur et al.
2006a, 2006b], and generalizes similar efforts for the simpler linear-time setting [Alur
and Madhusudan 2009; 2004; 2006].) Unlike in prior approaches, we do not view the
program as the generator of a tree unfolding. Instead, a program is modeled by a
pushdown model called a nested state machine, whose unfolding is given by a graph
called a nested tree (Figure 1). This graph is obtained by augmenting the infinite tree
unfolding of the program with a set of extra edges, known as jump-edges, that connect
a node in the tree representing a procedure call to the tree nodes representing the
matching returns of the call. As a call may have a number of matching returns along
the different paths from it, a node may have multiple outgoing jump-edges. As calls

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:4 R. Alur et al.

and returns in executions of a structured program are properly nested, jump-edges
never cross.

We develop a theory of regular languages of nested trees through a fixpoint logic and
a class of ω-automata interpreted on nested trees. The former is analogous to, and a
generalization of, the μ-calculus [Kozen 1983; Grädel et al. 2002] for trees; the latter
are generalizations of tree automata. The branching-time model-checking question now
becomes: Does the nested tree generated by a program belong to the language of nested
trees defined by the requirement?

Our fixpoint calculus over nested trees is known as NT-μ. The variables of this calcu-
lus evaluate not over sets of states, but rather over sets of substructures that capture
summaries of computations in the “current” program block. The fixpoint operators in
the logic then compute fixpoints of summaries. For a node s of a nested tree repre-
senting a call, consider the tree rooted at s such that the leaves correspond to exits
from the current context. In order to be able to relate paths in this subtree to the trees
rooted at the leaves, we allow marking of the leaves: a 1-ary summary is specified by
the root s and a subset U of the leaves of the subtree rooted at s. Each formula of the
logic is evaluated over such a summary. The central construct of the logic corresponds
to concatenation of call trees: the formula 〈call〉ϕ{ψ} holds at a summary 〈s,U 〉 if the
node s represents a “call” to a new context starting with node t, there exists a summary
〈t, V 〉 satisfying ϕ, and for each leaf v that belongs to V , the subtree 〈v,U 〉 satisfies ψ .
Intuitively, a formula 〈call〉ϕ{ψ} asserts a constraint ϕ on the new context, and requires
ψ to hold at a designated set of return points of this context. To state local reachability,
we would ask, using the formula ϕ, that control returns to the current context, and,
using ψ , that the local reachability property holds at some return point. While this
requirement seems self-referential, it may be captured using a fixpoint formula.

We show that NT-μ can express requirements like local reachability, Hoare-style
pre- and postconditions, and stack-sensitive access control properties, which refer to
the nested structure of procedure calls and returns and are not expressible in tradi-
tional temporal logics. We also show that model checking NT-μ on pushdown models is
EXPTIME-complete, and therefore equal in complexity to the problem of model checking
the far weaker logic CTL [Walukiewicz 2001] on these abstractions. Like the classi-
cal symbolic algorithm for model checking the μ-calculus on finite-state systems, but
unlike the far more complex algorithm for μ-calculus model checking on pushdown sys-
tems, our algorithm computes symbolic fixpoints in a syntax-directed way (except in
this case, the sets used in the fixpoint computation are sets of summaries rather than
states). The kind of summary computation traditionally known in interprocedural pro-
gram analysis is a special case of this algorithm. Thus, just like the μ-calculus in case
of finite-state programs, NT-μ can be used as a language into which interprocedural
program analyses can be compiled.

As for automata on nested trees, they are a natural generalization of automata on
trees. While reading a node in a tree, a tree automaton can nondeterministically pick
different combinations of states to be passed along tree edges. In contrast, an automaton
on nested trees can send states along tree edges and jump edges, so that its state while
reading a node depends on the states at its parent and the jump-predecessor (if one
exists). As jump-edges connect calls to matching returns, these automata naturally
capture the nesting of procedural contexts.

Like tree automata, automata on nested trees come in nondeterministic and al-
ternating flavors, and can accept nested trees by various acceptance conditions. As
parity is the most powerful of the acceptance conditions common in ω-automata theory,
we mainly focus on two classes of such automata: nondeterministic parity automata on
nested trees (NPNTAs) and alternating parity automata on nested trees (APNTAs). These
automata can nondeterministically label a nested tree with states while maintaining

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:5

constraints like “If a node is labeled q, then all its tree-children are labeled with the
states q1 and q2, and all its jump-children are labeled q2 and q3” (this is an example of an
alternating constraint). We find that, unlike in the setting of tree automata, nondeter-
ministic and alternating automata have different expressive power here, and APNTAs
enjoy more robust mathematical properties. For example, these automata are closed
under all Boolean operations. Also, automata-theoretic model checking using APNTAs is
EXPTIME-complete, matching that for alternating tree automata on pushdown models.

In a result analogous to the equivalence between the μ-calculus and alternating
parity tree automata, we find that NT-μ has the same expressive power as APNTAs.
This strengthens our belief that NT-μ is not just another fixpoint logic, but captures
the essence of regularity in nested trees. Our proof offers polynomial translations from
APNTAs to NT-μ and vice-versa, as well as insights about the connection between runs
of APNTAs and the notion of summaries in NT-μ. This result is especially intriguing as
the model checking algorithms for NT-μ and APNTAs are very different in flavor—while
the latter reduces to pushdown games, the former seems to have no connection to the
various previously known results about trees, context-free languages, and pushdown
graphs. It also helps us compare the expressiveness of NT-μ with that of classical
temporal logics and the temporal logic CARET [Alur et al. 2004], which is a linear-time
temporal logic for context-sensitive specification. Finally, we show that the satisfiability
problem for NT-μ and the emptiness problem of APNTAs are undecidable—another
intriguing difference between languages of nested trees and languages of trees.

1.2. Organization

The structure of this article is as follows. In Section 2, we define nested trees, and
introduce nested state machines as abstractions of structured programs. In Section 3,
we present the logic NT-μ and show that it is closed under bisimulation; in Section 4, we
demonstrate its use in specifying program properties. In Section 5, we discuss in detail
our symbolic model-checking algorithm for NT-μ. In Section 6, we introduce automata
on nested trees. In Section 7, we study expressiveness results concerning NT-μ and
automata on nested trees—in particular, the equivalence of NT-μ and APNTAs. We
conclude with some discussion in Section 8.

2. NESTED TREES

In the formal methods literature, the branching behavior of a nondeterministic program
is commonly modeled using infinite trees [Clarke et al. 1999]. The nondeterminism in
the program is modeled via tree branching, so that each possible program execution
is a path in the tree. Nested trees are obtained by augmenting this tree with an extra
edge relation, known as the jump-edge relation. A jump-edge connects a tree node
representing a procedure call to the node representing the matching return. Thus, a
nested tree model of program behavior carries more information about the structure of
the program than a tree model.

As calls and returns in structured programs are nested, jump-edges in nested trees
do not cross, and calls and returns are defined respectively as sources and targets
of jump-edges. In addition, since a procedure call may not return along all possible
program paths, a call-node s may have jump-successors along some, but not all, paths
from it. If this is the case, we add a jump-edge from s to a special node ∞.

Definition 2.1 (Nested Tree). Let T = (S, r,→) be an unordered infinite tree with
node set S, root r and edge relation → ⊆ S × S. Let

+−→ denote the transitive (but not
reflexive) closure of the edge relation, and let a (finite or infinite) path in T from node
s1 be a (finite or infinite) sequence π = s1s2 · · · sn · · · over S, where n ≥ 2 and si → si+1
for all 1 ≤ i.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:6 R. Alur et al.

input x;

procedure foo()
{
L1: write(e);

if(x) then
L2: foo()

else
L3: think;

while (x) do
L4: read(e);
L5: return;

}

Fig. 2. A sample program.

A nested tree is a directed acyclic graph (T , ↪→), where ↪→ ⊆ S × (S ∪ {∞}) is a set
of jump-edges. A node s such that s ↪→ t or s ↪→ ∞ (similarly t ↪→ s) for some t is a
call (similarly, return) node; the remaining nodes are said to be local. The intuition is
that if s ↪→ t, then a call at s returns at t; if s ↪→ ∞, then there exists a path from
s along which the call at s never returns. The jump-edges must satisfy the following
properties.

(1) If s ↪→ t or s ↪→ ∞, then there is no t such that t ↪→ s. In other words, the sets
of call and return nodes are disjoint (also, by definition, the set of local nodes is
disjoint from both of these sets).

(2) If s ↪→ t, then s
+−→ t, and we do not have s → t. In other words, jump-edges

represent nontrivial forward jumps.
(3) If s ↪→ t and s ↪→ t′, then neither t

+−→ t′ nor t′ +−→ t. In other words, a call-node
has at most one matching return along every path from it.

(4) if s ↪→ t and s′ ↪→ t, then s = s′. In other words, every return node has a unique
matching call.

(5) For every call node s, we have either (a) on every path from s, there is a node t such
that s ↪→ t, or (b) s ↪→ ∞. In other words, a call node has a jump-edge to ∞ if there
is a path along which the call does not return.

(6) If there is a path π such that for nodes s, t, s′, t′ lying on π we have s
+−→ s′, s ↪→ t,

and s′ ↪→ t′, then either t
+−→ s′ or t′ +−→ t. Intuitively, jump-edges along a path do

not cross.
(7) For every pair of call-nodes s, s′ on a path π such that s

+−→ s′, if there is no node
t on π such that s′ ↪→ t, then a node t′ on π can satisfy s ↪→ t′ only if t′ +−→ s′.
Intuitively, if a call does not return, neither do the calls that were pending when it
was invoked.

Let NT (�) be the set of �-labeled nested trees. A language of nested trees is a subset
of NT (�).

We refer to → as the tree-edge relation. For an alphabet �, a �-labeled nested tree is
a structure T = (T , ↪→, λ), where (T , ↪→) is a nested tree with node set S, and λ : S → �
is a node-labeling function. All nested trees in this article are �-labeled.

Consider the recursive procedure foo in Figure 2. The procedure may read or write an
expression e or perform an action think, has branching dependent on an input variable
x, and can call itself recursively. Actions of the program are marked by labels L1–L5

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:7

...

...

...

...

call

return

local

{en}

{en}

{ex}

{ex}

{ex}
{rd}

{rd}

{rd}

{wr}

{wr}

{wr}

{tk}

{tk}

{tk}
∞

{end}

{end}

{end}

{end}

{end}

s

s

Fig. 3. A nested tree.

for easy reference. We will abstract this program and its behaviors, and subsequently
specify it using temporal logics and automata.

Figure 3 shows a part of a nested tree modeling the branching behavior of this
program. As the loop and the branch in the procedure depend on an environment-
dependent variable, we model them by a nondeterministic loop and a nondeterministic
branch. The choice of the alphabet � labeling this tree depends on the desired level of
detail. We choose it to consist of subsets of a set of atomic propositions AP , comprising
the propositions wr, rd, en, ex, tk, and end, respectively encoding a write statement,
a read statement, a procedure call leading to a beginning of a new context, the return
point once a context ends, the statement think, and the statement return. A node is
labeled by the proposition for a statement if it is the control point from which the
statement is executed— for example, the control point immediately preceding a read
statement is labeled rd. Each path in the underlying tree captures a sequence of pro-
gram statements—for example, the path fragment starting at the node s and ending
at s′ captures a (partial) execution that first executes write, then calls foo recursively,
then writes again, then makes another recursive call, ending once it has exited both
calls. Note that some of the maximal paths are finite—these capture terminating execu-
tions of the program—and some are not. Also, a call may return along some paths from
it, and yet not on some others. A path consisting of tree- and jump-edges that takes
a jump-edge whenever possible is interpreted as a local path through the top-level
context.

If s ↪→ t, then s is the jump-predecessor of t and t the jump-successor of s. Let us now
consider the set of tree edges. If s is a call node (i.e., if s ↪→ t for some t, or s ↪→ ∞), then
each tree-edge out of s is called a call edge. If s is a return node, then every tree-edge
with destination s is a return edge. The remaining tree-edges are said to be local.

The fact that a tree-edge (s, t) exists and is a call, return or local edge is respectively

denoted by s
call−→ t, s

ret−→ t, or s
loc−→ t. Note that given the restrictions we have imposed

on jump-edges, the sets of call, return and local edges define a partition of the set of
tree-edges. Also, if a node has an outgoing tree-edge labeled call, then all its outgoing

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:8 R. Alur et al.

tree-edges are labeled call. Finally, if s
ret−→ s1 and s

ret−→ s2 for distinct s1 and s2, then
s1 and s2 have the same jump-predecessor.

The labeling of tree-edges as call, return, or local edges will prove extremely useful
to us; in particular, our fixpoint calculus will use the labels call, ret, and loc as modal-
ities. Interestingly, the jump-edges in a nested tree are completely captured by the
classification of the tree edges into call, return, local edges. To see why, let us define
the tagged tree of a nested tree as follows.

Definition 2.2 (Tagged Tree). For a nested tree T = (T , ↪→, λ) with edge set E,
the tagged tree of T is the node and edge-labeled tree Struct(T) = (T , λ, η : E →
{call, ret, loc}), where η(s, t) = a iff s

a−→ t.

Now consider any (nonnested) tree T = (S, r,−→) whose edges are labeled by tags
call, ret and loc and that satisfies the constraint: if a node has an outgoing edge labeled
call, then all its outgoing edges are labeled call. Let us call a word β ∈ I∗ balanced if it
is of the form

β := call β ′ ret β ′ := β ′β ′ | call β ′ ret | loc.

We define a relation ↪→′⊆ S × S as: for all s, s′, we have s ↪→′ t iff

(1) There is a path s0s1s2 · · · sn such that s0 = s and sn = s′ in Struct(T).
(2) The word η(s0, s1).η(s1, s2) · · · η(sn−1, sn) is balanced.

Consider the set Suc of nodes suc such that: (1) outgoing edges from suc are labeled
call, and (2) there is at least one path sucs1s2 · · · in T such that for no i ≥ 1 do we have
suc ↪→′ si. Intuitively, Suc consists of calls that do not return along at least one path.
Let us now construct the relation ↪→′′=↪→′ ∪{(suc,∞) : suc ∈ Suc}. It is easily verified
that (T , ↪→′′) is a nested tree, and that if T = Struct(T) for some nested tree T , then
T = (T , ↪→′′). In other words, T is the tagged tree of a unique nested tree, and the
latter can be inferred given T .

Ordered, Binary Nested Trees. Note that in the definition of nested trees we have
given, the tree structure underlying a nested tree is unordered. While this is the
definition we will use as the default definition in this thesis, we will find use for
ordered, binary nested trees in a few occasions.

Definition 2.3 (Ordered, Binary Nested Tree). Let T = (S, r,→1,→2) be an ordered
binary tree, where S is a set of nodes, r is the root, and →1,→2⊆ S × S are the left-and
right-edge relations. Then (T , ↪→) is an ordered, binary nested tree if ((S, r,→1 ∪ →2),
↪→) is a nested tree by Definition 2.1.

Labeled, ordered nested trees are analogous to labeled, unordered nested trees: for
an alphabet �, a �-labeled ordered nested tree is a structure T = (T , ↪→, λ), where
(T , ↪→) is a nested tree with node set S, and λ : S → � is a node-labeling map.

2.1. Nested State Machines

Now we define a class of abstractions for recursive programs—called nested state
machines—whose branching-time semantics is defined by nested trees. Like push-
down automata and recursive state machines [Alur et al. 2005], nested state machines
(NSMs) are suitable for precisely modeling changes to the program stack due to proce-
dure calls and returns. The main difference is that the semantics of an NSM is defined
using a nested tree rather than using a stack.

Syntax. Let AP be a fixed set of atomic propositions; let us fix � = 2AP as an alphabet
of observables. We give the following definition.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:9

Definition 2.4 (Nested State Machine). A nested state machine (NSM) is a structure
of the form M = 〈Vloc, Vcall, Vret, vin, κ,�loc,�call,�ret〉. Here, Vloc is a finite set of local
states, Vcall a finite set of call states, and Vret a finite set of return states. We write V =
Vloc∪Vcall∪Vret. The state vin ∈ V is the initial state, and the map κ : V → � labels each
state with an observable. There are three transition relations: a local transition relation
�loc ⊆ (Vloc ∪ Vret) × (Vloc ∪ Vcall), a call transition relation �call ⊆ Vcall × (Vloc ∪ Vcall),
and a return transition relation �ret ⊆ (Vloc ∪ Vret) × Vcall × Vret.

A transition is said to be from the state v if it is of the form (v, v′) or (v, v′, v′′), for some
v′, v′′ ∈ V . If (v, v′) ∈ �loc for some v, v′ ∈ V , then we write v

loc−→ v′; if (v, v′) ∈ �call, we

write v
call−→ v′; if (v, v′, v′′) ∈ �ret, we write (v, v′)

ret−→ v′′. Intuitively, while modeling a
program by an NSM, a call state models a program state from which a procedure call
is performed; the call itself is modeled by a call transition in �call. A return state of an
NSM models a state to which the control returns once a called procedure terminates.
The shift of control to a return state is modeled by a return transition (v, v′, v′′) in �ret.
Here, the states v and v′′ are respectively the current and target states, and v′ is the
state from which the last “unmatched” call-move was made. The intuition is that when
the NSM made a call transition from v′, it pushed the state v′ on an implicit stack. On
return, v′ is on top of the stack right before the return-move, which can depend on this
state and, on completion, pops it off the stack. This captures the ability of a structured
program to use its procedural stack, which is the essence of context-sensitivity. A state
that is neither a call nor a return is a local state, and a transition that does not modify
the program stack is a local transition.

Let us now abstract our example program (Figure 2) into a nested state machine
Mfoo. The abstraction simply captures control flow in the program, and consequently,
has states v1, v2, v3, v4, and v5 corresponding to lines L1, L2, L3, L4, and L5. We also
have a state v′

2 to which control returns after the call at L2 is completed. The set Vloc
of local states is {v1, v3, v4, v5}, the single call state is v2, and the single return state is
v′

2. The initial state is v1. Now, let us have propositions rd, wr, tk, en, ex, and end that
hold respectively iff the current state represents the control point immediately before
a read, a write, a think-statement, a procedure call, a return point after a call, and a
return instruction. More precisely, κ(v1) = {wr}, κ(v2) = {en}, κ(v′

2) = {ex}, κ(v3) = {tk},
κ(v4) = {rd}, and κ(v5) = {end} (for easier reading, we will, from now on, abbreviate
singletons such as {rd} just as rd).

The transition relations of Mfoo are given by:

—�call = {(v2, v1)}
—�loc = {(v1, v2), (v1, v3), (v′

2, v4), (v′
2, v5), (v3, v4), (v3, v5), (v4, v4), (v4, v5)}, and

—�ret = {(v5, v2, v
′
2)}.

Branching-Time Semantics. The branching-time semantics of M is defined via a
2AP-labeled unordered nested tree T (M), known as the unfolding of M. Consider the
V -labeled (unordered) nested tree T V (M) = (T , ↪→, λ), known as the execution tree,
that is the unique nested tree satisfying the following conditions:

(1) if r is the root of T , then λ(r) = vin;
(2) for every node s and every distinct call, return or local transition in M from λ(s), s

has precisely one outgoing call, return or local tree edge;
(3) for every pair of nodes s and t, if s

a−→ t, for a ∈ {call, loc}, in the tagged tree of this
nested tree, then we have λ(s)

a−→ λ(t) in M;
(4) for every s, t, if s

ret−→ t in the tagged tree, then there is a node t′ such that t′ ↪→ t
and (λ(s), λ(t′))

ret−→ λ(t) in M.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:10 R. Alur et al.

)b()a(s1
s2

s2

s3

s3

s4

s4

s5

s5 s6

s6

s7
s7 s8

s8

s9

s9

s10
s10

s11

s11

s12

s12

s13

s14

s15

s15

p

p

p

p

p

p

p

p

p

q

q

q

q

q

q

color 1

color 2

Fig. 4. (a) A nested tree (b) A 2-colored summary.

Note that a node s is a call or return node in this nested tree respectively iff λ(s) is a
call and return state of M. Now we have T (M) = (T , ↪→, λ′), where λ′(s) = κ(λ(s)) for
all nodes s. For example, the nested tree in Figure 3 is the unfolding of Mfoo.

While unfoldings of nested state machines are most naturally viewed as unordered
nested trees, we can also define an NSM’s unfolding as an ordered, binary nested tree. In
this case, we fix an order on the transitions out of a state and allow at most two outgoing
transitions from every state (we can expand the state set to make this possible). The
left and right edge relations in the unfolding Tord(M) respectively correspond to the 1st
and 2nd transitions out of a state. We leave out the detailed definition.

3. NT-μ: A FIXPOINT CALCULUS FOR NESTED TREES

In this section, we develop NT-μ, our modal fixpoint calculus interpreted on nested
trees. The variables of this logic are evaluated not over sets of states, but over sets of
subtrees that capture summaries of computations capturing procedural context. The
fixpoint operators in the logic then compute fixpoints of summaries. The main technical
result is that the logic NT-μ can be model-checked effectively on nested state machine
abstractions of software.

3.1. Summaries

Now we define summaries, the objects on which our logic is interpreted. These may
be viewed as substructures of nested trees capturing procedural contexts; a summary
models the branching behavior of a program from a state s to each return point of its
context. Also, to capture different temporal obligations to be met on exiting via different
exits, we introduce a coloring of these exits—intuitively, an exit gets color i if it is to
satisfy the ith requirement.

Formally, let a node t of T be called a matching exit of a node s if s
+−→ t, and there

is an s′ such that s′ +−→ s and s′ ↪→ t, and there are no s′′, t′′ such that s′ +−→ s′′ +−→
s

+−→ t′′, and s′′ ↪→ t′′. Note that matching exits are defined for all nodes, not just calls.
Intuitively, a matching exit of s is the first “unmatched” return along some path from
s, for instance, in Figure 4(a), the nodes s8 and s12 are the matching exits of the node
s3, and s11 and s10 are the matching exits of s2. Let the set of matching exits of s be
denoted by ME (s). Now we define as follows.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:11

Definition 3.1 (Summary). For a nonnegative integer k, a k-colored summary s in T
is a tuple 〈s,U1,U2, . . . ,Uk〉, where s is a node, k ≥ 0, and U1,U2, . . . ,Uk ⊆ ME (s) (such
a summary is said to be rooted at s).

For example, in the nested tree in Figure 4(a), 〈s1〉 is a 0-colored summary, and
〈s2, {s11}, {s10, s11}〉 and 〈s3, {s8},∅〉 are 2-colored summaries. The set of summaries in
a nested tree T , each k-colored for some k, is denoted by S. Note that such colored
summaries are defined for all s, not just “entry” nodes of procedures.

Observe how each summary describes a subtree along with a coloring of some of
its leaves. For instance, the summary s = 〈s2, {s11}, {s10, s11}〉 marks the subtree in
Figure 4(b). Such a tree may be constructed by taking the subtree of T rooted at node
s2, and chopping off the subtrees rooted at ME (s2). Note that because of unmatched
infinite paths from the root, such a tree may in general be infinite. Now, the node s11 is
assigned the color 1, and nodes s10 and s11 are colored 2. Note that the same matching
exit might get multiple colors.

It is useful to contrast our definition of summaries with the corresponding definition
for the linear-time setting. In this case, a pair (s, s′), where s′ ∈ ME (s), would suffice as a
summary— in fact, this is the way in which traditional summarization-based decision
procedures have defined summaries. For branching-time reasoning, however, such a
simple definition is not enough.

3.2. Syntax

In addition to being interpreted over summaries, the logic NT-μ differs from classical
calculi like the modal μ-calculus [Kozen 1983] in a crucial way: its syntax and semantics
explicitly recognize the procedural structure of programs. This is done using modalities
such as 〈call〉, 〈ret〉 and 〈loc〉 that can distinguish between call, return, and local edges
in a nested tree. Also, an NT-μ formula can enforce different “return conditions” at
differently colored returns in a summary by passing formulas as “parameters” to call
modalities. We give the following definition.

Definition 3.2 (Syntax of NT-μ). Let AP be a finite set of atomic propositions, Var
be a finite set of variables, and {R1, R2, . . .} be a countable, ordered set of markers. For
p ∈ AP , X ∈ Var, and k ≥ 0, formulas ϕ of NT-μ are defined by:

ϕ := p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | μX.φ | νX.φ | 〈call〉 ϕ{ψ1, ψ2, . . . , ψk} |
[call] ϕ{ψ1, ψ2, . . . , ψk} | 〈loc〉 ϕ | [loc] ϕ | 〈ret〉 Ri | [ret] Ri,

where k ≥ 0 and i ≥ 1.

Let us define the syntactic shorthands tt = p∨ ¬p and ff = p∧ ¬p for some p ∈ AP .
Also, let the arity of a NT-μ formula ϕ be the maximum k such that ϕ has a subformula
of the form 〈call〉ϕ′{ψ1, . . . , ψk} or [call]ϕ′{ψ1, . . . , ψk}.

Intuitively, the markers Ri in a formula are bound by 〈call〉 and [call] modalities, and
variables X are bound by fixpoint quantifiers μX and νX. We require our call-formulas
to bind all the markers in their scope. Formally, let the maximum marker index ind(ϕ)
of a formula ϕ be defined inductively as:

ind(ϕ1 ∨ ϕ2) = ind(ϕ1 ∧ ϕ2) = max{ind(ϕ1), ind(ϕ2)}
ind(〈loc〉ϕ) = ind([loc]ϕ) = ind(μX.ϕ) = ind(νX.ϕ)

= ind(ϕ)
ind(〈ret〉Ri) = ind([ret]Ri) = i

ind(p) = ind(X) = 0 for p ∈ AP , X ∈ Var

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:12 R. Alur et al.

ind(〈call〉ϕ{ψ1, . . . , ψk}) = ind([call]ϕ{ψ1, . . . , ψk})
= max{ind(ψ1), . . . , ind(ψk)}.

We are only interested in formulas where for every subformula 〈call〉χ ′{ψ1, . . . , ψk}
or [call]χ ′{ψ1, . . . , ψk}, we have ind(χ ′) ≤ k. Such a formula ϕ is said to be marker-closed
if ind(ϕ) = 0.

The set Free(ϕ) of free variables in a NT-μ formula ϕ is defined as:

Free(ϕ1 ∨ ϕ2) = Free(ϕ1 ∧ ϕ2) = Free(ϕ1) ∪ Free(ϕ2)
Free(〈loc〉ϕ) = Free([loc]ϕ) = Free(ϕ)

Free(〈ret〉Ri) = Free([ret]Ri) = ∅

Free(〈call〉ϕ{ψ1, . . . , ψk}) = Free([call]ϕ{ψ1, . . . , ψk}) = Free(ϕ) ∪
(

k⋃
i

Free(ψi)

)
Free(p) = Free(¬p) = ∅ for p ∈ AP
Free(X) = {X} for X ∈ Var

Free(μX.ϕ) = Free(νX.ϕ) = Free(ϕ) \ {X}.
A formula ϕ is said to be variable-closed if it has Free(ϕ) = ∅. We call ϕ closed if it is

marker-closed and variable-closed.

3.3. Semantics

Like in the modal μ-calculus, formulas in NT-μ encode sets, in this case sets of sum-
maries. Also like in the μ-calculus, modalities and Boolean and fixed-point operators
allow us to encode computations on these sets.

To understand the semantics of local (〈loc〉 and [loc]) modalities in NT-μ, consider
the 1-colored summary s = 〈s3, {s8}〉 in the tree T in Figure 4(a). We observe that
when control moves from node s3 to s5 along a local edge, the current context stays
the same, though the set of returns that can end it and are reachable from the current
control point can get restricted — that is, ME (s5) ⊆ ME (s3). Consequently, the 1-colored
summary s′ = 〈s5, {s8}〉 describes program flow from s5 to the end of the current context,
and is the local successor of the summary s. NT-μ allows us to use modalities 〈loc〉 and
[loc] to assert requirements on such local successors. For instance, in this case, the
summary s will be said to satisfy the formula 〈loc〉q, as s′ satisfies q.

An interesting visual insight about the structure of the tree Ts for s comes from Fig-
ure 5(a). Note that the tree Ts′ for s′ “hangs”’ from the former by a local edge; addition-
ally, (1) every leaf of Ts′ is a leaf of Ts, and (2) such a leaf gets the same color in s and s′.

Succession along call edges is more complex, because along such an edge, a frame is
pushed on a program’s stack and a new procedural context gets defined. In Figure 4(a),
take the summary s = 〈s1〉, and demand that it satisfies the two-parameter call formula
〈call〉ϕ′{q, p}. This formula asserts a condition on a subtree that: (1) is rooted at a child
of s1, and (2) has colors 1 and 2 assigned respectively to the leaves satisfying p and q.
Clearly, a possible such summary is s′ = 〈s2, {s10}, {s11}〉. Our formula requires that s′
satisfies ϕ′. In general, we could have formulas of the form ϕ = 〈call〉ϕ′{ψ1, ψ2, . . . , ψk},
where ψi are arbitrary NT-μ formulas.

Visually, succession along call edges requires a split of the nested tree Ts for summary
s in the way shown in Figure 5(b). The root of this structure must have a call-edge to
the root of the tree for s′, which must satisfy ϕ. At each leaf of Ts′ colored i, we must be
able to concatenate a summary tree Tr satisfying ψi such that (1) every leaf in Tr is a
leaf of Ts, and (2) each such leaf gets the same set of colors in Ts and Tr.

As for the return modalities, we use them to assert that we return at a node colored
i. Because the binding of these colors to temporal requirements was fixed at a context

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:13

)b()a(

(c)

s1

s2

color 1

color 1

color 2

color 2

s
s

r1 r2 r3

s

s

foo

P1

P2

P1

P2

Fig. 5. (a) Local modalities; (b) Call modalities; (c) Matching contexts.

that called the current context, the ret-modalities let us relate a path in the latter
with the continuation of a path in the former. For instance, in Figure 5(c), where the
rectangle abstracts the part of a program unfolding within the body of a procedure foo,
the marking of return points s1 and s2 by colors 1 and 2 is visible inside foo as well
as at the call site of foo. This lets us match paths P1 and P2 inside foo respectively
with paths P ′

1 and P ′
2 in the calling procedure. This lets NT-μ capture the pushdown

structure of branching-time runs of a procedural program.
Now we define the semantics of NT-μ formally. A NT-μ formula ϕ is interpreted in an

environment that interprets variables in Free(ϕ) as sets of summaries in a nested tree
T with node set S. Formally, an environment is a map E : Free(ϕ) → 2S. Let us write
[[ϕ]]TE to denote the set of summaries in T satisfying ϕ in environment E (usually T will
be understood from the context, and we will simply write [[ϕ]]E). We give Definition 3.3.

Definition 3.3 (Semantics of NT-μ). For a summary s = 〈s,U1,U2, . . . ,Uk〉, where
s ∈ S and Ui ⊆ ME (s) for all i, s satisfies ϕ, that is, s ∈ [[ϕ]]E , if and only if one of the
following holds:

—ϕ = p ∈ AP and p ∈ λ(s)
—ϕ = ¬p for some p ∈ AP , and p /∈ λ(s)
—ϕ = X, and s ∈ E(X)
—ϕ = ϕ1 ∨ ϕ2 such that s ∈ [[ϕ1]]E or s ∈ [[ϕ2]]E
—ϕ = ϕ1 ∧ ϕ2 such that s ∈ [[ϕ1]]E and s ∈ [[ϕ2]]E
—ϕ = 〈call〉ϕ′{ψ1, ψ2, . . . , ψm}, and there is a t ∈ S such that (1) s

call−→ t, and (2)
the summary t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t) ∩ {s′ :
〈s′,U1 ∩ ME (s′), . . . ,Uk ∩ ME (s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

—ϕ = [call] ϕ′{ψ1, ψ2, . . . , ψm}, and for all t ∈ S such that s
call−→ t, the summary t =

〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t) ∩ {s′ : 〈s′,U1 ∩ME (s′), . . . ,Uk ∩
ME (s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

—ϕ = 〈loc〉 ϕ′, and there is a t ∈ S such that s
loc−→ t and the summary t =

〈t, V1, V2, . . . , Vk〉, where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E
—ϕ = [loc] ϕ′, and for all t ∈ S such that s

loc−→ t, the summary t = 〈t, V1, V2, . . . , Vk〉,
where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:14 R. Alur et al.

—ϕ = 〈ret〉 Ri, and there is a t ∈ S such that s
ret−→ t and t ∈ Ui

—ϕ = [ret] Ri, and for all t ∈ S such that s
ret−→ t, we have t ∈ Ui

—ϕ = μX.ϕ′, and s ∈ S for all S ⊆ S satisfying [[ϕ′]]E[X:=S] ⊆ S
—ϕ = νX.ϕ′, and there is some S ⊆ S such that (1) S ⊆ [[ϕ′]]E[X:=S] and (2) s ∈ S.

Here E[X := S] is the environment E ′ such that: (1) E ′(X) = S, and (2) E ′(Y) = E(Y)
for all variables Y �= X.

We say a node s satisfies a formula ϕ if the 0-colored summary 〈s〉 satisfies ϕ. A
nested tree T rooted at s0 is said satisfy ϕ if s0 satisfies ϕ (we denote this by T |= ϕ).
The language of ϕ, denoted by L(ϕ), is the set of nested trees satisfying ϕ.

A few observations are in order. First, while NT-μ does not allow formulas of form
¬ϕ, it is closed under negation so long as we stick to closed formulas. Given a closed
NT-μ formula ϕ, consider the formula Neg(ϕ), defined inductively in the following way:

—Neg(p) = ¬p, Neg(¬p) = p, Neg(X) = X
—Neg(ϕ1 ∨ ϕ2) = Neg(ϕ1) ∧ Neg(ϕ2), and Neg(ϕ1 ∧ ϕ2) = Neg(ϕ1) ∨ Neg(ϕ2)
—If ϕ = 〈call〉 ϕ′{ψ1, ψ2, . . . , ψk}, then

Neg(ϕ) = [call] Neg(ϕ′){Neg(ψ1),Neg(ψ2), . . . ,Neg(ψk)}
—If ϕ = [call] ϕ′{ψ1, ψ2, . . . , ψk}, then

Neg(ϕ) = 〈call〉 Neg(ϕ′){Neg(ψ1),Neg(ψ2), . . . ,Neg(ψk)}
—Neg(〈loc〉ϕ′) = [loc]Neg(ϕ′), and Neg([loc]ϕ′) = 〈loc〉Neg(ϕ′)
—Neg(〈ret〉Ri) = [ret]Ri, and Neg([ret]Ri) = 〈ret〉Ri
—Neg(μX.ϕ) = νX.Neg(ϕ), and Neg(νX.ϕ) = μX.Neg(ϕ).

Define the unique empty environment as ⊥: ∅ → S. Now we have the following theorem.

THEOREM 3.4. For all closed NT-μ formulas ϕ, [[ϕ]]⊥ = S \ [[Neg(ϕ)]]⊥.

PROOF. For an environment E , let Neg(E) be the environment such that for all vari-
ables X, Neg(E)(X) = S \ E(X). Also, for a summary s = 〈s,U1, . . . ,Uk〉, define Flip(s) to
be the summary 〈s,ME (s) \ U1, . . . ,ME (s) \ Uk〉. Thus, a leaf is colored i in Flip(s) iff it
is not colored i in s. We lift the map Flip to sets of summaries in the natural way.

Now, by induction on the structure of ϕ, we prove a stronger assertion: for an NT-μ
formula ϕ and an environment E , we have [[ϕ]]E = S\Flip([[Neg(ϕ)]]Neg(E)). Note that the
theorem follows when we restrict ourselves to variable and marker-closed formulas.

Cases ϕ = X, ϕ = p and ϕ = ¬p are trivial; the cases ϕ = μX.ϕ′ and ϕ = νX.ϕ′ are
easily shown as well. We handle a few other interesting cases.

Suppose ϕ = 〈ret〉Ri. In this case, Flip([[Neg(ϕ)]]Neg(E)) contains the set of summaries

t = 〈t,U1, . . . ,Uk〉 such that for all t′ satisfying t
ret−→ t′, we have t /∈ Ui. It is easy to see

that the claim holds.
If ϕ = 〈call〉ϕ′{ψ1, . . . , ψk}, then Flip([[Neg(ϕ)]]Neg(E)) equals the set of summaries t =

〈t,U1, . . . ,Uk〉 such that the following holds: for all t′ satisfying t
call−→ t′, the summary

t′ = 〈t′, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t′) ∩ {s′ : Flip(〈s′,ME (s′) \
U1, . . . ,ME (s′)\Uk〉) ∈ [[Neg(ψi)]]Neg(E)}, satisfies t′ ∈ [[Neg(ϕ′)]]Neg(E). Using the induction
hypothesis first for the ψi-s and then for ϕ′, we can now obtain our claim.

Note that the semantics of closed NT-μ formulas is independent of the environment.
Customarily, we will evaluate such formulas in the empty environment ⊥. More impor-
tantly, the semantics of such a formula ϕ does not depend on current color assignments;
in other words, for all s = 〈s,U1,U2, . . . ,Uk〉, s ∈ [[ϕ]]⊥ iff 〈s〉 ∈ [[ϕ]]⊥. Consequently,
when ϕ is closed, we can infer that “node s satisfies ϕ” from “summary s satisfies ϕ.”

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:15

s1
s2

s

Fig. 6. Negated return conditions.

Third, every NT-μ formula ϕ(X) with a free variable X can be viewed as a map
ϕ(X) : 2S → 2S defined as follows: for all environments E and all summary sets S ⊆ S,
ϕ(X)(S) = [[ϕ(X)]]E[X:=S]. Then, we have the following proposition.

PROPOSITION 3.5. The map ϕ : 2S → 2S is monotonic— that is, if S ⊆ S′ ⊆ S, then we
have ϕ(S) ⊆ ϕ(S′).

It is not hard to verify that the map ϕ(X) is monotonic, and that therefore, by the
Tarski-Knaster theorem, its least and greatest fixed points exist. The formulas μX.ϕ(X)
and νX.ϕ(X), respectively, evaluate to these two sets. From Tarski-Knaster, we also
know that for a NT-μ formula ϕ with one free variable X, the set [[μX.ϕ]]⊥ lies in the
sequence of summary sets ∅, ϕ(∅), ϕ(ϕ(∅)), . . . , and that [[νX.ϕ]]⊥ is a member of the
sequence S, ϕ(S), ϕ(ϕ(S)),

Alternately, a NT-μ formula ϕ may be viewed as a map ϕ : (U1,U2, . . . ,Uk) �→ S′,
where S′ is the set of all nodes s such that U1,U2, . . . ,Uk ⊆ ME (s) and the summary
〈s,U1,U2, . . . ,Uk〉 satisfies ϕ. Naturally, S′ = ∅ if no such s exists. Now, while a NT-μ
formula can demand that the color of a return from the current context is i, it cannot
assert that the color of a return must not be i (i.e., there is no formula of the form,
say, 〈ret〉¬Ri). It follows that the output of the above map will stay the same if we
grow any of the sets Ui of matching returns provided as input. Formally, we have
Proposition 3.6.

PROPOSITION 3.6. Let s = 〈s,U1, . . . ,Uk〉 and s′ = 〈s,U ′
1, . . .U

′
k〉 be two summaries

such that Ui ⊆ U ′
i for all i. Then for every environment E and every NT-μ formula ϕ,

s′ ∈ [[ϕ]]E if s ∈ [[ϕ]]E .

Such monotonicity over markings has an interesting ramification. Let us suppose
that in the semantics clauses for formulas of the form 〈call〉ϕ′{ψ1, ψ2, . . . , ψk} and
[call]ϕ′{ψ1, ψ2, . . . , ψk}, we allow t = 〈t, V1, . . . , Vk〉 to be any k-colored summary such
that (1) t ∈ [[ϕ′]]E , and (2) for all i and all s′ ∈ Vi, 〈s′,U1 ∩ME (s′),U2 ∩ME (s′), . . . ,Uk ∩
ME (s′)〉 ∈ [[ψi]]E . Intuitively, from such a summary, one can grow the sets Ui to get the
“maximal” t that we used in these two clauses. From the above discussion, NT-μ and
this modified logic have equivalent semantics.

Finally, let us see what would happen if we did allow formulas of form 〈ret〉¬Ri,
which holds at a summary 〈s,U1, . . . ,Uk〉 if and only if there is an edge s

ret−→ t such
that t /∈ Ui. In other words, such a formula permits us to state what must not hold at
a colored matching exit in addition to what must. It turns out that formulas involving
the above need not be monotonic, and hence their fixpoints may not exist. To see why,
consider the formula ϕ = 〈call〉(〈ret〉R1 ∧〈ret〉(¬R1)){X}) and the nested tree in Figure 6.
Let S1 = {〈s1〉}, and S2 = {〈s1〉, 〈s2〉}. Viewing ϕ as a map ϕ : 2S → 2S, we see that:
(1) ϕ(S2) = ∅, and (2) ϕ(S1) = 〈s〉.

Thus, even though S1 ⊆ S2, we have ϕ(S1) �⊆ ϕ(S2). In other words, the monotonicity
property breaks down.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:16 R. Alur et al.

3.4. Bisimulation Closure

Bisimulation is a fundamental relation in the analysis of labeled transition systems.
The equivalence induced by a variety of branching-time logics, including the μ-calculus,
coincides with bisimulation. In this section, we study the equivalence induced by NT-μ,
that is, we want to understand when two nodes satisfy the same set of NT-μ formulas.

Consider two nested trees T1 and T2 with node sets S1 and S2 (we can assume that
the sets S1 and S2 are disjoint) and node labeling maps λ1 and λ2. Let S = S1 ∪ S2 (we
can assume that the sets S1 and S2 are disjoint), and let λ denote the labeling of S as
given by λ1 and λ2. Also, we denote by S the set of all summaries in T1 and T2.

Definition 3.7 (Bisimulation). The bisimulation relation ∼⊆ S × S is the greatest
relation such that whenever s ∼ t holds, we have:

(1) λ(s) = λ(t),
(2) for a ∈ {call, ret, loc} and for every edge s

a−→ s′, there is an edge t
a−→ t′ such that

s′ ∼ t′, and
(3) for a ∈ {call, ret, loc} and for every edge t

a−→ t′, there is an edge s
a−→ s′ such that

s′ ∼ t′.

Let r1 and r2 be the roots of T1 and T2 respectively. We write T1 ∼ T2 if r1 ∼ r2.

NT-μ is interpreted over summaries, so we need to lift the bisimulation relation to
summaries. We define this as follows.

Definition 3.8 (Bisimulation-closed summaries). A summary 〈s,U1, . . . ,Uk〉 ∈ S is
said to be bisimulation-closed if for every pair u, v ∈ ME (s) of matching exits of s, if
u ∼ v, then for each 1 ≤ i ≤ k, u ∈ Ui precisely when v ∈ Ui.

Thus, in a bisimulation-closed summary, the marking does not distinguish among
bisimilar nodes, and thus, return formulas (formulas of the form 〈ret〉Ri and [ret]Ri)
do not distinguish among bisimilar nodes. Two bisimulation-closed summaries s =
〈s,U1, . . . ,Uk〉 and t = 〈t, V1, . . . , Vk〉 in S and having the same number of colors are said
to be bisimilar, written s ∼ t, iff s ∼ t, and for each 1 ≤ i ≤ k, for all u ∈ ME (s) and v ∈
ME (t), if u ∼ v, then u ∈ Ui precisely when v ∈ Vi. Thus, roots of bisimilar summaries
are bisimilar and the corresponding markings are unions of the same equivalence
classes of the partitioning of the matching exits induced by bisimilarity. Note that every
0-ary summary is bisimulation-closed, and bisimilarity of 0-ary summaries coincides
with bisimilarity of their roots.

Consider the nested trees S and T in Figure 7. We have named the nodes s1, s2, t1, t2
etc. and labeled some of them with proposition p. Note that s2 ∼ s4, hence the summary
〈s1, {s2}, {s4}〉 in S is not bisimulation-closed. Now consider the bisimulation-closed sum-
maries 〈s1, {s2, s4}, {s3}〉 and 〈t1, {t2}, {t3}〉. By our definition, they are bisimilar. However,
the (bisimulation-closed) summaries 〈s1, {s2, s4}, {s3}〉 and 〈t1, {t3}, {t2}〉 are not.

Our goal now is to prove that bisimilar summaries satisfy the same NT-μ formulas.
For an inductive proof, we need to consider the environment also. We assume that the
environment E maps NT-μ variables to subsets of S (the union of the sets of summaries
of the disjoint structures). Such an environment is said to be bisimulation-closed if for
every variable X, and for every pair of bisimilar summaries s ∼ t, s ∈ E(X) precisely
when t ∈ E(X).

LEMMA 3.9. If E is a bisimulation-closed environment and ϕ is a NT-μ formula, then
[[ϕ]]E is bisimulation-closed.

PROOF. The proof is by induction on the structure of the formula ϕ. Consider two
bisimulation-closed bisimilar summaries s = 〈s,U1, . . . ,Uk〉 and t = 〈t, V1, . . . , Vk〉, and

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:17

p

p

ppp

p

¬p ¬p¬p ¬p ¬p

S Ts1

s2

s3

s4s5

t1

t2

t3

t4

ret loc/call

Fig. 7. Bisimilarity.

a bisimulation-closed environment E . We want to show that s ∈ [[ϕ]]E precisely when
t ∈ [[ϕ]]E .

If ϕ is a proposition or negated proposition, the claim follows from bisimilarity of
nodes s and t. When ϕ is a variable, the claim follows from bisimulation closure of E .
We consider a few interesting cases.

Suppose ϕ = 〈ret〉Ri. s satisfies ϕ precisely when s has a return-edge to some node s′
in Ui. Since s and t are bisimilar, this can happen precisely when t has a return edge
to a node t′ bisimilar to s′, and from definition of bisimilar summaries, t′ must be in Vi,
and thus t must satisfy ϕ.

Suppose ϕ = 〈call〉ϕ′{ψ1, . . . , ψm}. Suppose s satisfies ϕ. Then, there is a call-successor
s′ of s such that 〈s′,U ′

1, . . . ,U ′
m〉 satisfies ϕ′, where U ′

i = {u ∈ ME (s′) | 〈u,U1 ∩
ME (u), . . . ,Uk∩ME (u)〉 ∈ [[ψi]]E}. Since s and t are bisimilar, there exists a call-successor
t′ of t such that s′ ∼ t′. For each 1 ≤ i ≤ m, let V ′

i = {v ∈ ME (t′) | ∃u ∈ U ′
i . u ∼ v}. Verify

that the summaries 〈s′,U ′
1, . . . ,U ′

m〉 and 〈t′, V ′
1, . . . , V ′

m〉 are bisimilar. By induction hy-
pothesis, 〈t′, V ′

1, . . . , V ′
m〉 satisfies ϕ′. Also, for each v ∈ V ′

i , for 1 ≤ i ≤ m, the summary
〈v, V1 ∩ME (v), . . . , Vk ∩ME (v)〉 is bisimilar to 〈u,U1 ∩ME (u), . . . ,Uk ∩ME (u)〉, for some
u ∈ Ui, and hence, by induction hypothesis, satisfies ψi. This establishes that t satisfies
ϕ.

To handle the case ϕ = μX.ϕ′, let X0 = ∅. For i ≥ 0, let Xi+1 = [[ϕ′]]E[X:=Xi]. Then [[ϕ]]E =
∪i≥0 Xi. Since E is bisimulation closed, and X0 is bisimulation-closed, by induction, for
i ≥ 0, each Xi is bisimulation-closed, and so is [[ϕ]]E .

As a corollary, we get the following.

COROLLARY 3.10. If T1 ∼ T2, then for every closed NT-μ formula ϕ, T1 |= ϕ precisely
when T2 |= ϕ.

The proof also shows that to decide whether a nested tree satisfies a closed NT-μ
formula, during the fixpoint evaluation, one can restrict attention only to bisimulation-
closed summaries. In other words, we can redefine the semantics of NT-μ so that the
set S of summaries contains only bisimulation-closed summaries. It also suggests that
to evaluate a closed NT-μ formula over a nested tree, one can reduce the nested tree by
collapsing bisimilar nodes as in the case of classical model checking.

If the two nested trees T1 and T2 are not bisimilar, then there exists a μ-calculus
formula (in fact, of the much simpler Hennessy-Milner modal logic, which does not
involve any fixpoints) that is satisfied at the roots of only one of the two trees. This
does not immediately yield a NT-μ formula that distinguishes the two trees because NT-
μ formulas cannot assert requirements across return-edges in a direct way. However,

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:18 R. Alur et al.

as we show in Section 7 via an automata-theoretic proof, every closed formula of the
μ-calculus may be converted into an equivalent formula in NT-μ. Thus, two nested
trees satisfy the same set of closed NT-μ formulas precisely when they are bisimilar.

Let us now consider two arbitrary nodes s and t (in the same nested tree, or in
two different nested trees). When do these two nodes satisfy the same set of closed
NT-μ formulas? From the arguments so far, bisimilarity is sufficient. However, the
satisfaction of a closed NT-μ formula at a node s in a nested tree T depends solely on
the subtree rooted at s that is truncated at the matching exits of s. In fact, the full
subtree rooted at s may not be fully contained in a nested tree, as it can contain excess
returns. As a result, we define the notion of a nested subtree rooted at s as the subgraph
obtained by taking the tree rooted at s and deleting the nodes in ME (s) along with the
subtrees rooted at them and the return-edges leading to them (the jump-edge relation
is restricted in the natural way).

For instance, in Figure 7, Ss1 comprises nodes s1 and s5 and the loc-edge connecting
them. It is easy to check that for a node s in a nested tree T and a closed NT-μ formula
ϕ, the summary 〈s〉 satisfies ϕ in the original nested tree precisely when Ts satisfies
ϕ. If s and t are not bisimilar, and the non bisimilarity can be established within the
nested subtrees Ts and Tt rooted at these nodes, then some closed NT-μ formula can
distinguish them.

THEOREM 3.11. Two nodes s and t satisfy the same set of closed NT-μ formulas
precisely when Ts ∼ Tt.

4. REQUIREMENT SPECIFICATION USING NT-μ

In this section, we explore how to use NT-μ as a specification language. On one hand,
we show how NT-μ and classical temporal logics differ fundamentally in their styles
of expression; on the other, we express properties not expressible in logics like the μ-
calculus. The example program in Figure 2 (reproduced, along with the corresponding
nested tree, in Figure 8) is used to illustrate some of our specifications. As fixpoint
formulas are typically hard to read, we define some syntactic sugar for NT-μ using
CTL-like temporal operators.

Reachability. Let us express in NT-μ the reachability property Reach that says: “a
node t satisfying proposition p can be reached from the current node s before the
current context ends.” As a program starts with an empty stack frame, we may omit
the restriction about the current context if s models the initial program state.

Now consider a nontrivial witness π for Reach that starts with an edge s
call−→ s′.

There are two possibilities: (1) a node satisfying p is reached in the new context or a
context called transitively from it, and (2) a matching exit s′′ of s′ is reached, and at s′′,
Reach is once again satisfied.

To deal with case (2), we mark a matching exit that leads to p by color 1. Let X store
the set of summaries of form 〈s′′〉, where s′′ satisfies Reach. Then we want the summary
〈s,ME (s)〉 to satisfy 〈call〉ϕ′{X}, where ϕ′ states that s′ can reach one of its matching
exits of color 1. In case (1), there is no return requirement (we do not need the original
call to return), and we simply assert 〈call〉X{}.

Before we get to ϕ′, note that the formula 〈loc〉X captures the case when π starts with
a local transition. Combining the two cases and using CTL-style notation (we write EFc p
to denote “p is true before the end of the current context ends”), the formula we want
is

EFc p = μX.(p ∨ 〈loc〉X ∨ 〈call〉X{} ∨ 〈call〉ϕ′{X}).
Now observe that ϕ′ also expresses reachability, except: (1) its target needs to satisfy

〈ret〉R1, and (2) this target needs to lie in the same procedural context as s′. In other

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:19

x;input

foo()procedure
{

write(e);L1:
thenif(x)

foo()L2:
else
think;L3:

do(x)while
read(e);L4:

return;L5:
}

...

...

...

...

call

return

local

{en}

{en}

{ex}

{ex}

{ex}
{rd}

{rd}

{rd}

{wr}

{wr}

{wr}

{tk}

{tk}

{tk}
∞

{end}

{end}

{end}

{end}

{end}

s

s

Fig. 8. A program and its nested tree.

words, we want to express what we call local reachability of 〈ret〉R1. It is easy to verify
that

ϕ′ = μY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call〉Y {Y }).
We cannot merely substitute p for 〈ret〉R1 in ϕ′ to express local reachability of p.

However, a formula EFl
c p for this property is easily obtained by restricting the formula

EFc p:

EFl
c p = μX.(p ∨ 〈loc〉X ∨ 〈call〉ϕ′{X}).

Generalizing, we can allow p to be any NT-μ formula that keeps EFc p and EFl
c p closed.

For example, consider the nested tree in Figure 8 that models the unfolding of
the program in the same figure. In that case, EFl

c rd and EFc wr are true at the
control point right before the recursive call in L2 in the top-level invocation of foo (node
s in the figure); however, EFl

cwr is not.
It is now easy to verify that the formula AF c p, which states that “along all paths from

the current node, a node satisfying p is reached before the current context terminates,”
is given by

AF c p = μX.(p ∨ ([loc]X ∧ [call]ϕ′′{X})),
where ϕ′′ demands that a matching exit colored 1 be reached along all local paths:

ϕ′′ = μY.(p ∨ ([ret]R1 ∧ [loc]Y ∧ [call]Y {Y })).
As in the previous case, we can define a corresponding operator AF l

c that asserts local
reachability along all paths. For instance, in Figure 8, AF l

c rd does not hold at node s
(as the program can skip its while-loop altogether).

Note that the highlight of this approach to specification is the way we split a program
unfolding along procedure boundaries, specify these “pieces” modularly, and plug the

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:20 R. Alur et al.

summary specifications so obtained into their call sites. This “interprocedural” reason-
ing distinguishes it from logics such as the μ-calculus that would reason only about
global runs of the program.

Also, there is a significant difference in the way fixpoints are computed in NT-μ and
the μ-calculus. Consider the fixpoint computation for the μ-calculus formula μX.(p∨〈〉X)
that expresses reachability of a node satisfying p. The semantics of this formula is
given by a set SX of nodes which is computed iteratively. At the end of the i-th step, SX
comprises nodes that have a path with at most (i − 1) transitions to a node satisfying
p. Contrast this with the evaluation of the outer fixpoint in the NT-μ formula EFc p.
Assume that ϕ′ (intuitively, the set of “jumps” from calls to returns”) has already been
evaluated, and consider the set SX of summaries for EFc p. At the end of the ith phase,
this set contains all s = 〈s〉 such that s has a path consisting of (i − 1) call and loc-
transitions to a node satisfying p. However, because of the subformula 〈call〉ϕ′{X}, it
also includes all s where s reaches p via a path of at most (i − 1) local and “jump”
transitions. Note how return edges are considered only as part of summaries plugged
into the computation.

Invariance and Until. Now consider the invariance property “on some path from the
current node, property p holds everywhere till the end of the current context.” A NT-μ
formula EGc p for this is obtained from the identity EGc p = Neg(AF c Neg(p)). The
formula AGc p, which asserts that p holds on each point on each run from the current
node, can be written similarly.

Other classic branching-time temporal properties like the existential weak until (writ-
ten as E(p1 Wc p2)) and the existential until (E(p1 Uc p2)) are also expressible. The
former holds if there is a path π from the current node such that p1 holds at every
point on π till it reaches the end of the current context or a node satisfying p2 (if π
doesn’t reach either, p1 must hold all along on it). The latter, in addition, requires p2
to hold at some point on π . The for-all-paths analogs of these properties (A(p1 Uc p2)
and A(p1 Wc p2)) aren’t hard to write either.

Neither is it difficult to express local or same-context versions of these properties.
Consider the maximal subsequence π ′ of a program path π from s such that each node
of π ′ belongs to the same procedural context as s. A NT-μ formula EGl p for existential
local invariance demands that p holds on some such π ′, while AGl

c p asserts the same
for all π ′. Similarly, we can define existential and universal local until properties, and
corresponding NT-μ formulas E(p1 Ul

c p2) and A(p1 Ul
c p2). For instance, in Figure 8,

E(¬wr Ul
c rd) holds at node s (whereas E(¬wr Uc rd) does not). “Weak” versions of

these formulas are also written with ease. For instance, it is easy to verify that we can
write generic existential, local, weak until properties as

E(p1 Wl
c p2) = νX.((p1 ∨ p2) ∧ (p2 ∨ 〈loc〉X ∨ 〈call〉ϕ′{X})),

where ϕ′ asserts local reachability of 〈ret〉R1 as before.
Interprocedural Dataflow Analysis It is well known that many classic dataflow anal-

ysis problems can be reduced to temporal logic model-checking over program abstrac-
tions [Steffen 1991; Schmidt 1998]. For example, consider the problem of finding very
busy expressions in a program that arises in compiler optimization. An expression e is
said to be very busy at a program point s if every path from s must evaluate e before
any variable in e is redefined. Let us first assume that all variables are in scope all
the time along every path from s. Now label every node in the program’s unfolding im-
mediately preceding a statement evaluating e by a proposition use(e), and every node
representing a program state about to redefine a variable in e by mod(e). For example,
if e is as in the program in Figure 8, every node labeled wr in the corresponding nested
tree is also labeled mod(e), and every node labeled rd is also labeled use(e).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:21

Because of loops in the flow graph, we would not expect every path from s to even-
tually satisfy use(e); however, we can demand that each point in such a loop will have
a path to a loop exit from where a use of e would be reachable. Then, a NT-μ formula
that demands that e is very busy at s is

A((EFc use(e) ∧ ¬mod(e)) Wc use(e)).

Note that this property uses the power of NT-μ to reason about branching time.
However, complications arise if we are considering interprocedural paths and e has

local as well as global variables. Note that if e in Figure 8 contains global variables,
then it is not very busy at the point right before the recursive call to foo. This is because
e may be written in the new context. However, if e only contains local variables, then
this modification, which happens in an invoked procedural context, does not affect the
value of e in the original context. While facts involving global variables and expressions
flow through program paths across contexts, data flow involving local variables follow
program paths within the same context.

Local temporal properties are useful in capturing these two different types of data
flow. Let us handle the general case, where the expression e may have global as well
as local variables. Define two propositions modg(e) and modl(e) that are true at points
where, respectively, a global or a local variable in e is modified. The NT-μ property we
assert at s is

νX.(((EFl
c use(e)) ∧ ¬modg(e) ∧ ¬modl(e)) ∨ use(e)) ∧ (use(e) ∨ ([loc]X ∧ [call]ψ{X, tt})),

where the formula ψ tracks global variables in new contexts:

ψ = μY.(¬modg(e) ∧ (([ret]R1 ∧ 〈ret〉R2) ∨ ([call]Y {Y, tt} ∧ [loc]Y))).

Note the use of the formula 〈ret〉R2 to ensure that [ret]R1 is not vacuously true.
Pushdown Specifications. The domain where NT-μ stands out most clearly from pre-

viously studied fixpoint calculi is that of pushdown specifications, that is, specifications
involving the program stack. We have already introduced a class of such specifications
expressible in NT-μ: that of local temporal properties. For instance, the formula EFl

c p
needs to track the program stack to know whether a reachable node satisfying p is
indeed in the initial calling context. Some such specifications have previously been
discussed in context of the temporal logic CARET [Alur et al. 2004]. On the other hand,
it is well-known that the modal μ-calculus is a regular specification language (i.e., it
is equivalent in expressiveness to a class of finite-state tree automata), and cannot
reason about the stack in this way. We have already seen an application of these richer
specifications in program analysis. In the rest of this section, we will see more of them.

Nested Formulas and Stack Inspection Interestingly, we can express certain proper-
ties of the stack just by nesting NT-μ formulas for (nonlocal) reachability and invari-
ance. To understand why, recall that NT-μ formulas for reachability and invariance
only reason about nodes appearing before the end of the context where they were as-
serted. Now let us try to express a stack inspection property such as “if procedure foo is
called, procedure bar must not be on the call stack.” Specifications like this have pre-
viously been used in research on software security [Jensen et al. 1999; Esparza et al.
2003], and are enforced at runtime in the Java or .NET stack inspection framework.
However, because a program’s stack can be unbounded, they are not expressible by
regular specifications like the μ-calculus. While the temporal logic CARET can express
such properties, it requires a past-time operator called caller to do so. To express this
property in NT-μ, we define propositions cfoo and cbar that respectively hold at every
call site for foo and bar. Now, assuming control starts in foo, consider the formula

ϕ = EFc(cbar ∧ 〈call〉(EFc cfoo){}).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:22 R. Alur et al.

This formula demands a program path where, first, bar is called (there is no return
requirement), and then, before that context is popped off the stack, a call site for foo
is reached. It follows that the property we are seeking is Neg(ϕ).

Other stack inspection properties expressible in NT-μ include “when procedure foo
is called, all procedures on the stack must have the necessary privilege.” Like the
previous requirement, this requirement protects a a privileged callee from a malicious
caller. However, NT-μ also comes in handy to express properties that protect the caller
from the callee. For one such scenario [Abadi and Fournet 2003], consider a malicious
method A which, via side-effects or exceptional return conditions, may compromise
the security of methods that the caller method B calls subsequently. To prevent such
a scenario, we may assert requirements such as “If A has ever been on the stack,
do not execute the sensitive operation X.” Note that stack inspection cannot handle
this specification. This is an example of a dynamic security constraint (mentioned but
not formalized in Jensen et al. [1999]), which combines reasoning about the program
stack with reasoning about the global evolution of the program, allowing privileges of
procedures to change dynamically depending on the privileges used so far.

Stack Overflow. Stack overflow, caused by unbounded recursion, is a serious security
vulnerability in programs written in C-like languages. NT-μ can specify requirements
that safeguard against such errors. Once again, nested modalities come handy. Suppose
we assert AGc(〈call〉ff {}) throughout every context reached through k calls in succession
without intervening returns (this can be kept track of using a k-length chain of 〈call〉
modalities). This will disallow further calls, bounding the stack to height k.

Other specifications for stack boundedness include: “every call in every program
execution eventually returns.” This property requires the program stack to be empty
infinitely often. Though this requirement does not say how large the stack may get—
even if a call returns, it may still overflow the stack at some point. Further, in certain
cases, a call may not return because of cycles introduced by abstraction. However,
it does rule out infinite recursive loops in many cases; for instance, the program in
Figure 8 will fail this property because of a real recursive cycle. We capture it by
asserting AGc Termin at the initial program point, where

Termin = [call](AF l
c(〈ret〉R1)){tt}.

Preconditions and Postconditions. For a program state s, let us consider the set Jmp(s)
of nodes to which a call from s may return. Then, the requirement: “property p holds at
some node in Jmp(s)” is captured by the NT-μ formula 〈jump〉p = 〈call〉(EFl

c 〈ret〉R1){p}.
The dual formula [jump]p, which requires p to hold at all such jump targets, is also
easily constructed.

An immediate application of this is to encode the partial and total correctness re-
quirements popular in formalisms like Hoare logic and JML [Burdy et al. 2003]. A
partial correctness requirement for a procedure A asserts that if precondition Pre is
satisfied when A is called, then if A terminates, postcondition Post holds upon return.
Total correctness, additionally, requires A to terminate. These requirements cannot be
expressed using regular specifications. In NT-μ, let us say that at every call site to
procedure A, proposition cA holds. Then a formula for partial correctness, asserted at
the initial program state, is

AGc((Pre ∧ cA) ⇒ [jump]Post).

Total correctness is expressed as

AGc((Pre ∧ cA) ⇒ (Termin ∧ [jump]Post)).

Access Control. The ability of NT-μ to handle local and global variables simultane-
ously is useful in other domains, for example, access control. Consider a procedure A that

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:23

can be called with a high or low privilege, and suppose we have a rule that A can access a
database (proposition access is true when it does) only if it is called with a high privilege
(priv holds when it is). It is tempting to write a property ϕ = ¬priv ⇒ AGc (¬access)
to express this requirement. However, a context where A has low privilege may lead
to another where A has high privilege via a recursive invocation, and ϕ will not let A
access the database even in this new context. The formula we are looking for is really
ϕ′ = ¬priv ⇒ AGl

c (¬access), asserted at every call site for A.
Multiple Return Conditions. As we shall see in Section 7.2, the theoretical expres-

siveness of NT-μ depends on the fact that we can pass multiple return conditions as
“parameters” to NT-μ call formulas. We can also use these parameters to remember
events that happen within the scope of a call and take actions accordingly on return.

To see how, we go back to Figure 8, and observe that in any particular invocation
of foo, it is possible to exit the routine (1) having read the value of e that was written
in this invocation, and (2) not having read this value. Suppose that we demand that
in case (2), the expression e must be read at least once before the end of the current
context— that is, the value written in the last write must be read by that point. We do
not require this in case (1)— in this case control may skip the loop. In addition, let us
require that every path in an invocation of foo returns and that e is written at least
once in this path.

We express these requirements by asserting the NT-μ formula ϕ at the program point
right before the recursive call to foo:

ϕ = 〈call〉ψ ′{tt, EFc rd},
where ψ ′ is a fixed-point property that states that: each path in the new context must
either:

—see a node labeled wr followed, not necessarily immediately, by a node labeled rd,
and then read 〈ret〉R1 without seeing wr again,

—see a node labeled wr and then not see a node labeled rd till a node satisfying 〈ret〉R2
is reached.

5. MODEL CHECKING

In this section, we introduce the problem of model checking NT-μ over unfoldings of
nested state machines (NSMs). Our primary result is an iterative, symbolic decision
procedure to solve this problem. Appealingly, this algorithm follows directly from the
operational semantics of NT-μ and has the same complexity as the best algorithms for
model checking CTL or the alternation-free μ-calculus over similar abstractions. We
also show a matching lower bound.

For a specification given by a (closed) NT-μ formula ϕ and an NSM M abstracting
a program (recall Section 2.1), the model checking problem is to determine if T (M)
satisfies ϕ. We will now offer an algorithm for this problem.

Let V be the set of vertices of M, and consider a node s in the execution tree T V (M)
of M (defined in Section 2.1). The set ME (s), as well as the return-formulas that hold
at a summary s rooted at s, depend on states at call nodes on the path from the root
to s. However, we observe that the history of call-nodes up to s is relevant to a formula
only because they may be consulted by return-nodes in the future, and no formula
interpreted at s can probe “beyond” the nodes in ME (s). Thus, so far as satisfaction of
a formula goes, we are only interested in the last “pending” call-node; in fact, the state
of the automaton at this node is all that we need to record about the past.

Let us now try to formalize this intuition. First, we define the unmatched call-
ancestor Anc(s) of a node s in a nested tree T . Consider the tagged tree of T , and recall
the definition of a balanced word over tags (given in Section 2). If t = Anc(s), then we

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:24 R. Alur et al.

require that t
call−→ t′ for some node t′ such that in the tagged tree of T , there is a path π

from t′ to s such that the sequence of edge labels along π forms a balanced word. Note
that every node in a nested tree has at most one unmatched call-ancestor. If a node s
does not have such an ancestor, we set Anc(s) =⊥.

Now let us consider two k-colored summaries s = 〈s,U1,U2, . . . ,Uk〉 and s′ =
〈s′,U ′

1,U ′
2, . . . ,U ′

k〉 in the execution tree T V (M) = (T , ↪→, λ) of the NSM M, and let
Anc(s) = t and Anc(s′) = t′, where t, t′ can be nodes or the symbol ⊥ (note that if we
have Anc(s) =⊥, then ME (s) = ∅, so that Ui = ∅ for all i).

Now we say s and s′ are M-equivalent (written as s ≡M s′ or simply s ≡ s′ when M
is clear from the context) if:

—λ(s) = λ(s′);
—either t = t′ =⊥, or λ(t) = λ(t′);
—for each 1 ≤ i ≤ k, there is a bijection �i : Ui → U ′

i such that for all u ∈ Ui, we have
λ(u) = λ(�i(u)).

It is easily seen that the relation ≡ is an equivalence. Let us call a set S of summaries
in T V (M) M-equivalence-closed (written ≡-closed) if for any two summaries s and s′
such that s ≡ s′, we have s ∈ S iff s′ ∈ S. In other words, such a set is the union of
a certain number of equivalence classes induced by ≡. Let us call an environment E
≡-closed if for every variable X, the set E(X) is ≡-closed.

Note that these definitions involve summaries in the execution tree T V (M). However,
each summary in the execution tree may also be viewed as a summary in the unfolding
T (M) ofM, in which case we can interpret NT-μ formulas involving atomic propositions
on them.

Now we prove the following.

LEMMA 5.1. For any ≡-closed environment E , NT-μ formula ϕ, and ≡-equivalent
summaries s and s′, we have s ∈ [[ϕ]]T (M)

E iff s′ ∈ [[ϕ]]T (M)
E .

PROOF. The proof is by structural induction on the formula ϕ. Let s and s′ be M-
equivalent summaries as in the definition of M-equivalence above, and let us continue
to denote the bijection between the i-colored exits of s and s′ by �i : Ui → U ′

i . Let us
denote by λ the labeling of nodes in the execution tree T V (M). We denote λ(s) = λ(s′)
by v0 and λ(t) = λ(t′) by v1. It suffices to show that assuming E is ≡-closed, s ∈ [[ϕ]]E ⇒
s′ ∈ [[ϕ]]E .

We handle some interesting cases.

—If ϕ = X, then the claim holds as E is M-equivalence-closed.
—Suppose ϕ = μX.ϕ′. Let X0 = ∅, and for i ≥ 0, let Xi+1 = [[ϕ′]]E[X:=Xi]. Then [[ϕ]]E =

∪i≥0 Xi. Since X0 is M-equivalence-closed, and E is M-equivalence-closed, and [[ϕ′]]E ′

is M-equivalence-closed for all M-equivalence-closed environments E ′, by induction
on i, [[ϕ]]E is M-equivalence-closed.

—Suppose ϕ = 〈ret〉Ri. That means that there is some s
ret−→ u such that u ∈ Ui. Let

λ(u) = v2; then λ(�(u)) = v2. However, in that case the same transition (v0, v1)
ret−→ v2

can be “fired” from s′ to �(u)— that is, s′ ret−→ �(u). In other words s′ ∈ [[ϕ]]E .

—Suppose ϕ = 〈call〉ϕ′{ψ1, . . . , ψk}. This means that there is some call-edge s
call−→ u

and a summary u = 〈u, V1, . . . , Vk〉 satisfying ϕ′ such that for all i and all w ∈ Vi, we
have w = 〈w,U1 ∩ ME (w), . . . ,Uk ∩ ME (w)〉 satisfying ψi.

Now note that, because λ(s) = λ(s′), there is a call-edge s′ call−→ u′. We can show
inductively that there is a bijection �′ : ME (u) → ME (u′) such that for any node
w ∈ ME (u), we have λ(w) = λ(�′(w)). The reason is that any path in the tree from s

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:25

to ME (s) is independent of the labeling λ(w) of any node w such that w
+−→ Anc(s)

(we can prove this using induction). As λ(s) = λ(s′) and λ(Anc(s)) = λ(Anc(s′)), every
path in from s to a node in ME (s) is simulated by a unique path from s′ to a node in
ME (s′).
By restricting �′ to the sets V1, V2, . . . ⊆ ME (u), we get the bijections �′

i : Vi → V ′
i , for

1 ≤ i ≤ k. Let us now construct u′ = 〈u′, V ′
1, . . . , V ′

k〉. We observe that u and u′ are M-
equivalent. In that case u′ satisfies ϕ′ in environment E . Likewise, for w ∈ Vi as before,
let w′ = �i(w), and construct the summary w′ = 〈w′, V ′

1 ∩ ME (w′), . . . , V ′
k ∩ ME (w′)〉.

Then, w and w′ are M-equivalent, and both satisfy ψi. In that case, s′ satisfies ϕ.

The remaining cases are handled similarly, establishing the claim.

Now note that the number of equivalence classes that ≡ induces on the set of
summaries is bounded! Each such equivalence class may be represented by a tuple
〈v, v′, V1, . . . , Vk〉, where v ∈ V , v′ ∈ V ∪ {⊥}, and Vi ⊆ V for all i—for this class of
the summary s, for instance, we have λ(s) = v and λ(Ui) = Vi; we also have λ(t) = v′
in case t �=⊥, and v′ =⊥ otherwise. Let us call such a tuple a bounded summary. The
idea behind the model-checking algorithm of NT-μ is that for any formula ϕ, we can
maintain, symbolically, the set of bounded summaries that satisfy it. Once this set
is computed, we can compute the set of bounded summaries for formulas defined in-
ductively in terms of ϕ. This computation follows directly from the semantics of the
formula; for instance, the set for the formula 〈loc〉ϕ contains all bounded summaries

〈v, v′, V1, . . . , Vk〉 such that for some v′′ ∈ V , we have v
loc−→ v′′, and, letting V ′′

i comprise
the elements of Vi that are reachable from v′′, 〈v′′, v′, V ′′

1 , . . . , V ′′
k 〉 satisfies ϕ.

Let us now define bounded summaries formally. Consider any state u in an NSM
M with state set V . A state u′ is said to be the unmatched call-ancestor state of state
u if there is a node s labeled u in T V (M) such that u′ is the label of the unmatched
call-ancestor of s (we have a predicate AncV (u′, u) that holds iff this is true). Note that
a state may have multiple unmatched call-ancestor states. If there is a node s labeled
u in T V (M) such that Anc(s) =⊥, we set AncV (⊥, u).

A state v is a matching exit state for a pair (u, u′), where AncV (u′, u), if there are nodes
s, s′, t in T V (M) such that t ∈ ME (s), s′ is the unmatched call-ancestor of s, and labels
of s, s′, and t are u, u′, and v, respectively, (a pair (u,⊥) has no matching exit state).

The modeling intuition is that from a program state modeled by NSM state u and a
stack with a single frame modeled by the state u′, control may reach a u′′ in the same
context, and then return at the state v via a transition (u′′, u′)

ret−→ v. Using well-known
techniques for pushdown models [Alur et al. 2005], we can compute, given a state u, the
set of u′ such that AncV (u′, u), and for every member u′ of the latter, the set MES (u, u′)
of matching exit states for (u, u′), in time polynomial in the size of M.

Now we give definition 5.2.

Definition 5.2 (Bounded summaries). Let n be the arity of the formula ϕ that we
seek to model-check. A bounded summary is a tuple 〈u, u′, V1, . . . , Vk〉, where 0 ≤ k ≤ n,
AncV (u′, u) and for all i, we have Vi ⊆ MES (u, u′). The set of all bounded summaries in
M is denoted by BS .

Let EBS : Free(ϕ) → 2BS be a bounded environment mapping free variables in ϕ to
sets of bounded summaries, and let ⊥B denote the empty environment. We define a
map Eval (ϕ, EBS) assigning a set of bounded summaries to a NT-μ formula ϕ:

—If ϕ = p, for p ∈ AP , then Eval (ϕ, EBS) consists of all bounded summaries
〈u, u′, V1, . . . , Vk〉 such that p ∈ κ(u) and k ≤ n.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:26 R. Alur et al.

FIXPOINT (X,ϕ, EBS)
1 X = Eval (ϕ, EBS)
2 if X = EBS(X)
3 then return X
4 else return FIXPOINT (X,ϕ , EBS [X := X])

Fig. 9. Fixpoint computation for NT-μ.

—If ϕ = ¬p, for p ∈ AP , then Eval (ϕ, EBS) consists of all bounded summaries
〈u, u′, V1, V2, . . . , Vk〉 such that p /∈ κ(u) and k ≤ n.

—If ϕ = X, for X ∈ Var, then Eval (ϕ, EBS) = EBS(X).
—If ϕ = ϕ1 ∨ ϕ2 then Eval (ϕ, EBS) = Eval (ϕ1, EBS) ∪ Eval (ϕ2, EBS).
—If ϕ = ϕ1 ∧ ϕ2 then Eval (ϕ, EBS) = Eval (ϕ1, EBS) ∩ Eval (ϕ2, EBS).
—If ϕ = 〈call〉 ϕ′{ψ1, . . . , ψm}, then Eval (ϕ, EBS) consists of all bounded summaries

〈u, u′, V1, . . . , Vk〉 such that for some transition u
call−→ u′′ of M, we have a bounded

summary 〈u′′, u′′, V ′
1, V ′

2, . . . , V ′
m〉 ∈ Eval (ϕ′, EBS), and for all v ∈ V ′

i , where i = 1, . . . , m,
we have 〈v, u′, V ′′

1 , . . . , V ′′
k 〉 ∈ Eval (ψi, EBS), where V ′′

j = Vj ∩ MES (v, u′) for all j ≤ k.
—If ϕ = [call] ϕ′{ψ1, . . . , ψm}, then Eval (ϕ, EBS) consists of all bounded summaries

〈u, u′, V1, . . . , Vk〉 such that for all u′′ such that there is a transition u
call−→ u′′ in

M, we have a bounded summary 〈u′′, u′′, V ′
1, V ′

2, . . . , V ′
m〉 ∈ Eval (ϕ′, EBS), and for all

v ∈ V ′
i , where i = 1, . . . , m, we have 〈v, u′, V ′′

1 , . . . , V ′′
k 〉 ∈ Eval (ψi, EBS), where V ′′

j =
Vj ∩ MES (v, u′) for all j ≤ k.

—If ϕ = 〈loc〉 ϕ′, then Eval (ϕ, EBS) consists of all bounded summaries of the form

〈u, u′, V1 . . . , Vk〉 such that for some v such that there is a transition u
loc−→ v, we have

〈v, u′, V1 ∩ MES (v, u′), . . . , Vk ∩ MES (v, u′)〉 ∈ Eval (ϕ′, EBS).
—If ϕ = [loc] ϕ′, then Eval (ϕ, EBS) consists of all bounded summaries of the form

〈u, u′, V1 . . . , Vk〉 such that for all v such that there is a transition u
loc−→ v, we have

〈v, u′, V1 ∩ MES (v, u′), . . . , Vk ∩ MES (v, u′)〉 ∈ Eval (ϕ′, EBS).
—If ϕ = 〈ret〉 Ri, then Eval (ϕ, EBS) consists of all bounded summaries of the form

〈u, u′, V1, . . . , Vk〉 such that for some u′′ ∈ Vi, M has a transition (u, u′)
ret−→ u′′.

—If ϕ = [ret] Ri, then Eval (ϕ, EBS) consists of all bounded summaries of the form
〈u, u′, V1, . . . , Vk〉 such that for all transitions of the form (u, u′)

ret−→ u′′, we have
u′′ ∈ Vi.

—If ϕ = μX.ϕ′, then Eval (ϕ, EBS) = FixPoint (X, ϕ′, EBS[X := ∅]).
—If ϕ = νX.ϕ′, then Eval (ϕ, EBS) = FixPoint (X, ϕ′, EBS [X := BS]).

Here FixPoint (X, ϕ, EBS) is a fixpoint computation function that uses the formula ϕ as
a monotone map between subsets of BS , and iterates over variable X. This computation
is as in Figure 9.

Now we show that to model check a formula ϕ on an NSM M, we only
have to compute Eval (ϕ,⊥B). Let us first define, for any bounded summary b =
〈v, v′, V1, . . . , Vk〉, the set Unbound(b) of summaries in T V (M) that it captures. Let
λ be denote the node-labeling map in T V (M). A summary s = 〈s,U1, . . . ,Uk〉 is
in Unbound(b) iff λ(s) = v, λ(Anc(s)) = v′, and for all 1 ≤ i ≤ k, we have
λ(Ui) = Vi.

The map is lifted to sets of bounded summaries in the natural way. We also lift
the map Unbound to bounded environments. For a bounded environment EBS, the set
Unbound(EBS) is the environment E in T V (M) such that for every variable X, we have
E(X) = Unbound(EBS(X)).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:27

Now observe that:

(1) for any bounded summary b, the set Unbound(b) is ≡M-closed.
(2) for any bounded environment EBS, the environment Unbound(EBS) is ≡-closed.

Next we show inductively that:

LEMMA 5.3. For any NT-μ formula ϕ, bounded environment EBS, and bounded sum-
mary b, and for all s ∈ Unbound(b), we have

b ∈ Eval (ϕ, EBS) iff s ∈ [[ϕ]]Unbound(EBS).

Now note that if initial state of M is vin and the root of T (M) is sin, then 〈sin〉 ∈
Unbound(〈vin〉). Also note that Unbound(⊥B) =⊥, where ⊥ is the empty environment
for T (M). From Lemma 5.3, Theorem 5.4 follows.

THEOREM 5.4. For an NSM M with initial state vin and a closed NT-μ formula ϕ,
T (M) satisfies ϕ if and only if 〈vin〉 ∈ Eval (ϕ,⊥B). Further, Eval (ϕ,⊥B) is inductively
computable.

To understand this more concretely, let us see how this model-checking algorithm
runs on a simple NSM. Consider the NSM abstraction Mfoo in Section 2.1. The states
of this NSM are v1, v2, v3, v4, v5, and v′

2; the initial state is v1. The states are labeled
by the atomic propositions rd, wr, tk, en, and ex using a map defined as: κ(v0) = ∅,
κ(v1) = {wr}, κ(v2) = {en}, κ(v′

2) = {ex}, κ(v3) = {tk}, κ(v4) = {rd}, and κ(v5) = {end}. The
transition relations of Mfoo are given by:

(1) �call = {(v2, v1)},
(2) �loc = {(v1, v2), (v1, v3), (v′

2, v4), (v′
2, v5), (v3, v4), (v3, v5), (v4, v4), (v4, v5)}, and

(3) �ret = {(v5, v2, v
′
2)}.

Now suppose we want to check if a write action is locally reachable from the ini-
tial state. The NT-μ property specifying this requirement is ϕ = μX.(wr ∨ 〈loc〉X ∨
〈call〉ϕ′{X}), where ϕ′ = μY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call〉Y {Y }).

We show how to compute the set of bounded summaries satisfying ϕ′—the com-
putation for ϕ is very similar. After the first iteration of the fixpoint computa-
tion that builds this set, we obtain the set S1 = {{〈v5, v2, {v′

2}〉} (the set of sum-
maries satisfying 〈ret〉R1). After the second step, we obtain the set of summaries
S2 = S1 ∪ {〈v′

2, v2, {v′
2}〉, 〈v3, v2, {v′

2}〉, 〈v4, v2, {v′
2}〉}, and the next set computed is S3 =

S2 ∪ {〈v1, v2, {v′
2}〉}. Note that in these two steps, we only use local edges in the NSM.

Now, however, we have found a bounded summary starting at the “entry state” of the
procedure foo, which may be plugged into the recursive call to foo. More precisely, we
have (v2, v1) ∈ �call, 〈v1, v2, {v′

2}〉 ∈ S3, and 〈v′
2, v2, {v′

2}〉 ∈ S3, so that we may now con-
struct S4 = S3 ∪ 〈v2, v2, {v′

2}〉. This ends the fixpoint computation, so that S4 is the set
of summaries satisfying ϕ′.

Let us now analyze the complexity of this algorithm. Let NV be the number of states
in M, and let n be the arity of the formula in question. Then the total number of
bounded summaries in M that we need to consider is bounded by N = N2

V 2NV n. Let us
now assume that union or intersection of two sets of summaries, as well as membership
queries on such sets, take linear time. It is easy to see that the time needed to evaluate
a non-fixpoint formula ϕ of arity n ≤ |ϕ| is bounded by O(N2|ϕ|NV) (the most expensive
modality is 〈call〉ϕ′{ψ1, . . . , ψn}, where we have to match an “inner” summary satisfying
ϕ′ as well as n “outer” summaries satisfying the ψi-s). For a fixpoint formula ϕ with
one fixpoint variable, we may need N such evaluations, so that the total time required
to evaluate Eval (ϕ,⊥B) is O(N3|ϕ|NV). For a formula ϕ of alternation depth d, this
evaluation takes time O(N3dNd

V |ϕ|), that is, exponential in the sizes of M as well as ϕ.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:28 R. Alur et al.

It is known that model-checking alternating reachability specifications on a push-
down model is EXPTIME-hard [Walukiewicz 2001]. Following constructions similar to
those in Section 4, we can generate a NT-μ formula ϕ from a μ-calculus formula f
expressing an alternating reachability property such that: (1) the size of ϕ is linear
in the size of f , and (2) M satisfies ϕ if and only if M satisfies f . It follows that
model-checking a closed NT-μ formula ϕ on an NSM M is EXPTIME-hard. Combining,
we conclude the following.

THEOREM 5.5. Model checking a NT-μ formula ϕ on an NSM M is EXPTIME-complete.

Better bounds may be obtained if the formula has a certain restricted form. For
instance, it can be shown that for linear time (Büchi or reachability) requirements,
model-checking takes time polynomial in the number of states of M. The reason is
that in this case, it suffices to only consider bounded summaries of the form 〈v, v′, {v′′}〉,
which are polynomial in number. The fixpoint computation stays the same.

Note that our decision procedure is very different from known methods for branching-
time model-checking of pushdown models [Walukiewicz 2001; Burkart and Steffen
1999]. These methods are complex, very different from what branching-time model
checking looks like in the finite-state setting, and seem difficult to implement. In con-
trast, our algorithm is a simple fixpoint computation that computes, in a syntax-driven
way, the semantics of NT-μ formulas over bounded summaries. In this regard, NT-μ re-
sembles the modal μ-calculus, whose formulas encode fixpoint computations over sets;
to model-check μ-calculus formulas, we merely need to perform these computations.
Unsurprisingly, our procedure is very similar to classical symbolic model-checking for
the μ-calculus.

6. AUTOMATA ON NESTED TREES

In this section, we study finite-state automata operating on nested trees, our general-
ization of automata on trees. Recall that for tree automata, the state while reading a
(nonroot) tree node depends on its state at the node’s parent. The state of a nested tree
automaton at a node in a nested tree depends on its states at the node’s parent and the
node’s jump-predecessor (if it exists). We define these automata in nondeterministic
and alternating flavors; the natural semantics of these are respectively over ordered
and unordered nested trees. Regarding acceptance conditions, we focus on the parity
condition for the most part as it is the most powerful among the popular ω-acceptance
conditions; however, we also discuss acceptance by final state.

We start with nondeterministic automata.

Definition 6.1 (NPNTA). A (top-down) nondeterministic parity nested tree automaton
(NPNTA) over � is a structure A = (Q, q0,�,�) where Q is a finite set of states, q0 ∈ Q is
the initial state, � ⊆ Q× � × (TT ×TT), where TT = Q∪ (Q× Q) ∪ {⊥}, is a transition
relation, and � : Q → {0, 1, . . . , n}, for some n ∈ N, is the parity accepting condition
that assigns a priority to each automaton state.

NPNTAs accept languages of ordered, binary nested trees. A run of A on an ordered,
binary nested tree T = ((S, r,→1,→2), ↪→, λ) is a labeling ρ : S → Q of nodes of T by
automaton states such that:

(1) ρ(r) = q0;
(2) for all s, if ρ(s) = q and λ(s) = σ , then

—if s1 and s2 are the left and right children of s, then for some (q, σ, (τ1, τ2)) ∈ �,
we have: (a) if si, for i ∈ {1, 2}, is a call or local node, then τi = ρ(si), and (b) if si
is a return node, then τi = (ρ(t), ρ(si)), where t ↪→ si

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:29

q0

q1

q1

q2

q2

q2

call

return

local

Fig. 10. A run of an NPNTA.

—if s′ is the left (similarly, right) child of s and s has no right (similarly, left) child,
then for some (q, σ, (τ ′,⊥)) ∈ � (similarly, (q, σ, (⊥, τ ′)) ∈ �), we have: (a) if s′ is a
call or local node, then τ ′ = ρ(s′), and (b) if s′ is a return node, then τ ′ = (ρ(t), ρ(s′)),
where t ↪→ s′

Let πi denote the ith vertex in a path π in T . A run ρ of A on T is accepting if for
all infinite paths π in T , θ ′ = max{θ : �(ρ(πi)) = θ for infinitely many i} is even. An
ordered, binary nested tree T is accepted if A has an accepting run on it. The language
L(A) of A is the set of nested trees it accepts.

Figure 10 illustrates part of a run of an NPNTA on a nested tree (let us assume that
the label of every node is σ and that every node has a left child). Transitions include
(q1, σ, ((q0, q2),⊥)) and (q0, σ, (q1, q2)).

We can define an equivalent semantics of NPNTAs by letting the automaton manip-
ulate a stack rather than consult a node’s jump-predecessor. In this case, A pushes
the current state while taking a call edge, pops on a return edge, and leaves the stack
unchanged on a local edge. As jump-edges are nested, the top of the automaton stack
at a return node stores the state at the node’s matching call.

As we shall see, unlike their analogs on trees, nondeterministic automata on nested
trees do not have robust closure properties. However, this problem goes away for alter-
nating nested tree automata, which we now consider.

We interpret our alternating automata on unordered nested trees.

Definition 6.2 (APNTA). For a finite set Q, define the set TT (Q) of transition terms
whose members f are of the form f := tt | ff | f ∨ f | f ∧ f | 〈loc〉q | [loc]q |
〈call〉q | [call]q | 〈ret, q′〉q | [ret, q′]q, where q, q′ ∈ Q. An alternating parity nested tree
automaton (APNTA) over � is a structure A = (Q, q0,�,�), where Q is a finite set of
states, q0 ∈ Q is the initial state, � : Q × � → TT (Q) is a transition function, and
� : Q → {0, 1, . . . , n} is the parity accepting condition.

We define the semantics of an APNTA A = (Q, q0,�,�) via a parity game. The ac-
ceptance game G(A, T) of a �-labeled nested tree T = (T , ↪→, λ) by A is played by two
players A and E. The vertex set of the game graph is V = T × Q× Q∗ ×TT , and the set
of moves ⇒ ⊆ V × V is the least set such that:

—for all v ∈ V of the form (s, q, α, f1 ∨ f2) or (s, q, α, f1 ∧ f2) for some v′ ∈ V ∪ {ε}, we
have v ⇒ (s, q, α, f1) and v ⇒ (s, q, α, f2);

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:30 R. Alur et al.

—for all v ∈ V of the form (s, q, α, 〈loc〉q′)) or (s, q, α, [loc]q′)), and for all s′ such that

s
loc−→ s′, we have v ⇒ (s′, q′, α, f), where f = �(q′, λ(s′));

—for all v ∈ V of the form (s, q, α, 〈call〉q′) or (s, q, α, [call]q′), and for all s′ such that

s
call−→ s′, we have v ⇒ (s′, q′, q.α, f), where f = �(q′, λ(s′));

—for all v ∈ V of the form (s, q, q′′.α, 〈ret, q′′〉q′) or (s, q, q′′.α, [ret, q′′]q′), and for all s′

such that s
ret−→ s′, we have v ⇒ (s′, q′, α, f), where f = �(q′, λ(s′));

The vertex set V is partitioned into two sets VE and VA corresponding to the two
players. The set VA comprises vertices of the form (s, q, α, f), where s, q and α are
arbitrary and f has the form tt , [call]q, [loc]q, [ret, q′]q, or (f1 ∧ f2). The remaining
vertices constitute VE. We also lift the priority map � to �V : V → {0, 1, . . . , n} by
defining �V (s, q, α, f) = �(q) for all s, q, α, and f .

The two players A and E play on the graph starting from the initial position vin =
(s0, q0, ε,�(q0, λ(s0))) by moving a token along edges of the game graph. Whenever
the token is in a position v, the player who owns the vertex must move the token.
Formally, a play of G is a nonempty, finite or infinite sequence α = v1v2 · · · that is
a path in the game graph, where v1 = vin. A finite play is winning for player A if
the last position is a player E vertex from which there is no move; analogously, we
define winning finite plays for player E. An infinite play α is winning for player E if
θ ′ = max{θ : �V (vi) = θ for infinitely many i} is even; otherwise, A wins the play (this is
the standard max-parity acceptance condition for parity games). A strategy for player
E (or A) is a subset of edges Str ⊆ ⇒ such that all these edges originate in a vertex
in VE (or VA).1 A play is in accordance with a strategy Str if all edges in the play are
in Str . A strategy is winning if all maximal plays in accordance with the strategy are
winning.

An APNTA A accepts a nested tree T if E has a winning strategy in G(A, T). The
language L(A) of A is the set of nested trees accepted by A.

We also consider automata that accept by the weaker final-state condition. For non-
deterministic versions of such automata, a nested tree is accepted if a special final state
qf is seen along every path in some run on it. In alternating versions, all infinite plays
are won by A, and if a play reaches a game vertex (s, qf , α, f) for some s, α, and f , then
the game terminates and E is the winner.

6.1. Decision Problems

The model checking problem for APNTAs on nested state machines is the problem of
deciding, given an APNTA A and a nested state machine M, whether T (M) ∈ L(A).

THEOREM 6.3. The model-checking problem for APNTAs on nested state machines is
EXPTIME-complete.

PROOF. We obtain an EXPTIME procedure for this problem via a reduction to a push-
down parity game. A two-player pushdown parity game is a parity game played on the
configuration graph of a pushdown system. It is known that pushdown parity games
are solvable in EXPTIME [Walukiewicz 2001]. Now, given an APNTA A and a nested state
machine M, T (M) ∈ L(A) iff player E wins the acceptance game of A. Now recall that
call-edges (similarly, return-edges) in T (M) encode call transitions (similarly, return
transitions) of M— that is, these capture pushes (similarly pops) to the stack implicit
in an NSM abstraction. However, these edges are also where the stack of states in the
semantics of A is pushed (popped). Thus, the implicit stack of M is “synchronized” with

1Strategies are often defined in a more general way that refer to the history of the play. This definition
suffices as parity games always admit zero-memory strategies [Grädel et al. 2002].

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:31

(a)

(b)

a1 a2
an $

bm1 bm2 bmn

b21 b22

b11

b1n

b2n

b12

cim ci2 ci1 w1 w2 w3 w4 w5 wn

∗

∗∗

∗

∗

∗
∗$

$

$

$

$

$

$

ui1 = w1

ui2 = w2w3w4

vi1 = w1w2w3

vi2 = w4w5

call
return

local

Fig. 11. (a) Closure properties of APNTAs and NPNTAs; (b) Gadget for undecidability.

the implicit stack of A, so that the graph of the acceptance game of T (M) by A happens
to be the configuration graph of a pushdown system that is roughly the “synchronized
product” of M and A.

An EXPTIME-hardness result for this problem follows from the known hardness
of the model-checking problem for alternating tree automata on pushdown sys-
tems [Walukiewicz 2001].

While model checking for APNTAs is decidable, emptiness is not.2

THEOREM 6.4. Universality for nondeterministic nested tree automata and emptiness
for alternating nested tree automata are undecidable problems, even for acceptance by
final state.

PROOF. The proof employs a reduction from the Post’s Correspondence Problem
(PCP) [Hopcroft and Ullman 1979]. Consider a tuple ((u1, . . . , uk), (v1, . . . , vk)), where
the ui ’s and vi ’s are finite words over an alphabet A; the PCP is to determine if there is a
sequence i1, . . . , im, where i j ≤ k, such that ui1ui2 · · · uim = vi1vi2 · · · vim = w. Now consider
nested trees of the form in Figure 11(b) (the jump-edges are omitted to keep the figure
simple) such that the initial call-chain is of length m and is labeled by symbols from
the alphabet {1, . . . , k}, and the symbols wi on the “stem” of local nodes succeeding
this chain form the string w. Now suppose the sequence of input symbols on the call
chain is cim · · · ci1 . There are two kinds of return chains hanging from the stem—the

2This result was obtained independently by C. Löding (2005, Private communication).

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:32 R. Alur et al.

ones marked with the symbol ∗ (similarly $) are exactly at the points where w may be
possibly factored into ui1 , ui2 , . . . , uim (similarly vi1 , . . . , vim). Also, the ith return chain
(counting from left) of either type is of length i. Then such a nested tree is a witness
for an instance of PCP being positive. We can, however, show that there is an alternat-
ing NTA accepting by final state that accepts the set of nested trees bisimilar to such
witnesses. In fact, we can show that there is a nondeterministic final-state NTA that
accepts any nested tree not of the previous form (under some ordering of edges).

However, we can prove the emptiness problem of NPNTAs to be solvable in EXPTIME

by reducing it to that for pushdown tree automata [Kupferman et al. 2002].

6.2. Closure Properties

Now we investigate the closure properties of APNTAs and NPNTAs.

THEOREM 6.5. APNTAs are closed under union, intersection, and complement. NPNTAs
are closed under union and intersection.

PROOF. Proofs that APNTAs are closed under union and intersection are easy, and
mirror corresponding results for alternating tree automata. We give a proof sketch of
the closure of APNTAs under complement.

Consider an APNTA A = (Q, q0,�,�). Let us define, for every transition term f , the
transition term Neg(f) as follows:

Neg(f1 ∨ f2) = Neg(f1) ∧ Neg(f2)
Neg(f1 ∧ f2) = Neg(f1) ∨ Neg(f2)

Neg(tt) = ff
Neg(ff) = tt

Neg(〈loc〉q) = [loc]q
Neg([loc]q) = 〈loc〉q

Neg(〈call〉q) = [call]q
Neg(()[call]q) = 〈call〉q
Neg(〈ret, q′〉q) = [ret, q′]q
Neg([ret, q′]q) = 〈ret, q′〉q.

Let �¬ be the transition function defined as: if �(q, σ) = f for some q, σ, f , then
�¬(q, σ) = Neg(f). Also, we define a new parity acceptance condition �¬ as: for all
q ∈ Q, �¬(q) = 1+�(q). Now we construct an APNTA A¬ which is the same as A, except
its transition function is �¬ and acceptance condition �¬.

Now suppose that in the acceptance game G for A and a nested tree T , Player E has
a winning strategy (i.e., T is not accepted by A). It is known, from research on parity
games, that this strategy is memoryless [Grädel et al. 2002]. It can now be shown that
the same strategy, applied to the acceptance game for T and Aneg, is winning for Player
A. As for the other direction, suppose Player E has no winning strategy in G. As parity
games are determined, this means A has a memoryless winning strategy in G. We can
now show that the same strategy is winning for E in the acceptance game for A¬ (the
arguments are the same as in the proof of closure of alternating tree automata under
complement [Grädel et al. 2002]— as a result, we leave the details out). It follows that
A¬ accepts the complement of L(A).

Regarding NPNTAs, their closure under union is trivial. As for closure under inter-
section, consider NPNTAs A1 = (Q1, q1

0 ,�1,�1) and A2 = (Q2, q2
0 ,�2,�2), and construct

an NPNTA A∩ = (Q, q0,�,�). Here, Q = Q1 × Q2 and q0 = (q1
0 , q2

0). Let us now define
the “product” Prod (τ1, τ2) of two transition terms τ1 and τ2 as follows:

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:33

—if τ1 =⊥ and τ2 =⊥, then Prod (τ1, τ2) =⊥;
—if τ1 = q1 and τ2 = q2, then Prod (τ1, τ2) = (q1, q2);
—if τ1 = (q′

1, q1) and τ2 = (q′
2, q2), then Prod (τ1, τ2) = ((q′

1, q′
2), (q1, q2)).

Then the transition relation � is the least relation such that for each transition
(q1, a, (τ 1

1 , τ 1
2)) in �1 and (q2, a, (τ 2

1 , τ 2
2)) in �2 such that Prod (τ 1

1 , τ 2
1) and Prod (τ 1

2 , τ 2
2) are

defined, we have a transition ((q1, q2), a, (Prod (τ 1
1 , τ 2

1),Prod (τ 1
2 , τ 2

2))) in �. Finally, we
define � such that for all (q1, q2) ∈ Q1 × Q2, we have �((q1, q2)) = max{�1(q1),�2(q2)}.

It can now be verified that L(A∩) = L(A1) ∩ L(A2).

Observe that by our definition, languages accepted by APNTAs are closed under bisim-
ulation, while those accepted by NPNTAs are not in general. To compare the expres-
siveness of an APNTA and an NPNTA meaningfully, we need to consider the language
obtained by starting with the language L of the NPNTA, stripping the order between tree
edges off nested trees in L, and closing it under bisimulation.3 Formally, for a language
L of ordered nested trees, we define Unord (L) as the bisimulation closure of the set of
nested trees ((S, r,→), ↪→, λ) such that →= →1∪→2 for some ((S, r,→1,→2), ↪→, λ) ∈ L.
Now we show the following.

THEOREM 6.6. There is a language L of ordered, binary nested trees such that:
(1) there is no NPNTA accepting L, and (2) there is an APNTA accepting Unord (L).

PROOF. Consider ordered nested trees of the form in Figure 11(a), where � = {0, 1, $},
and ai, bij ∈ � for all i, j (while the structure in the figure is not binary, it can be encoded
as such; also, the jump-edges, omitted to keep the figure clean, can be reconstructed).
Let Lgap be the language of such structures where for all i ≤ n, there is some k ≤ m
such that an−i+1 = bki. First, we note that Lgap cannot be recognized by an NPNTA AN
with N states. To see why, take a structure as above where n = m > N, and for each
1 ≤ i ≤ n, there is a distinct branch k such that an−i+1 = bki. In any run, AN must
enter two branches in the same state; also, the sequence of states at calls unmatched
till these points are the same. We can replace one of these branches with the other to
get an accepting run on a structure not in Lgap.

On the other hand, it is easy to build an APNTA A that recognizes Unord (Lgap).
The automaton has a state q, q∗

0 and q∗
1. While reading the sequence of symbols ai,

the automaton uses alternation to assert a condition at each i (we can view this
as the automaton “forking” a copy). This is done such that the copy of A forked at
the node labeled an−i+1 has state q∗

an−i+1
at that node. On reading the next symbol, this

copy changes its state to q; it continues reading the structure in this state till it reaches
the node marked $, at which point it nondeterministically chooses to “check” branch k.
When it reaches the node labeled bki (i.e., the node s such that at the node t satisfying
t ↪→ s, the automaton had state q∗

j for some j), it can check if bki = an−i+1 and accept
the nested tree. A accepts the structure iff every “copy” forked this way accepts it.

This is an example of how automata theory for nested trees differs from the theory of
tree automata. In the latter setting, allowing alternation does not affect an automaton’s
expressiveness. In fact, this is also a point of difference between nested tree automata
and automata on nested words [Alur and Madhusudan 2004; 2006], as alternating and
nondeterministic automata on nested words are expressively equivalent.

Further, Theorem 6.6 implies the following.

THEOREM 6.7. NPNTAs are not closed under complementation.

3Alternatively, we could define APNTAs on ordered nested trees. Under this definition as well, APNTAs are
strictly more powerful than NPNTAs.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:34 R. Alur et al.

PROOF. We give an NPNTA AN that accepts the complement of the language Lgap in
the proof for Theorem 6.6. Consider a nested tree T in this language. We can assume
that T has the same “shape” as the nested tree in Figure 11(a)— that is, there is a
chain of nodes from the root that ends with a node with multiple children, each of
which leads to a chain of nodes. This is because an NPNTA can determine if a nested
tree violates this property, and accept it if it does.

While running on nested trees of this form, AN nondeterministically guesses the i
such that ai cannot be “matched” along any of the branches, and lets its state at the
node labeled ai be q∗

ai
(at other nodes along the stem of a-s, its state is q). Now it sends a

state to each branch to determine a node s such that the automaton state at the node t,
where t ↪→ s, is of the form q∗

j . It compares the label bjk of this node with ai, and rejects
the nested tree if bjk = ai. The accepts if all the copies sent along the different branches
accept. It can now be easily verified that AN accepts the complement of Lgap.

The projection over �1 of a language L of (ordered, unordered) nested trees over
�1 × �2 is the language Proj�1

(L) obtained by replacing every label (a, b) in every
nested tree T ∈ L by a. We can show the following.

THEOREM 6.8. NPNTAs are closed under projection, but APNTAs are not.

PROOF. First we show that NPNTAs are closed under projection. Consider nested
trees over �1 × �2, and let there be an NPNTA A accepting a language of such trees.
An NPNTA A′ accepting the language Proj�1

(L) is constructed as follows. While reading
a node labeled a ∈ �1, A′ guesses a second component b ∈ �2 using nondeterminism,
and mimics a move of A on the label (a, b). It is easy to see that A′ accepts Proj�1

(L).
As for the second part of the theorem, consider a PCP instance as in Theorem 6.4.

Now consider a simple NSM M such that every word over �1 ×�2 is the label of a path
in the nested tree unfolding of M. Now suppose a device existed to select a substructure
in Figure 11(b) from the unfolding T (M). As in Theorem 6.4, an APNTA can check if
such a substructure is a witness for the given PCP instance. Therefore, if an APNTA A
could select an arbitrary substructure of a nested tree before operating on it, then we
would be able to decide the PCP problem by model checking A on M. This is, however,
impossible.

Now note that if APNTAs were closed under projection, then the preceding selection
operation could be performed by an APNTA. By contradiction, APNTAs are not closed
under projection.

7. EXPRESSIVENESS

In this section, we explore the expressiveness of NT-μ and nested tree automata. Our
main result is a theorem that APNTAs are exactly as expressive as NT-μ. This result
is the analog of the equivalence between the modal μ-calculus and alternating parity
automata on trees [Emerson and Jutla 1991]. We also establish a hierarchy theorem
for NT-μ, by which the expressiveness of NT-μ formulas is connected to their arity.

7.1. Relationship between NT-μ and APNTAs

We begin by proving our main expressiveness result.

THEOREM 7.1. Given any closed NT-μ formula ϕ, we can construct an APNTA Aϕ such
that for any nested tree T , T ∈ L(ϕ) iff T ∈ L(Aϕ). The size of Aϕ is polynomial in the
size of ϕ.

PROOF. The proof is similar in spirit to the known translation from the μ-calculus to
alternating tree automata [Emerson and Jutla 1991]. The APNTA Aϕ is over an input
alphabet 2AP . For every subformula ψ of ϕ, Aϕ has a state qψ . The initial state is qϕ .

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:35

For any variable X in ϕ, let �(X) be the subformula of the form μX.ϕ′ or νX.ϕ′ that
binds X (we assume that each variable in ϕ is bound at most once). For instance, if
ϕ = 〈call〉(μX.(p ∨ X)){q}, then �(X) = μX.(p ∨ X). For each bound variable X in ϕ, the
state qX is identified with the state q�(X).

Let p ∈ AP , and σ ∈ 2AP . The transition relation � of Aϕ is defined inductively over
the structure of ϕ:

�(qp, σ) = tt if p ∈ σ , else ff
�(qϕ1∧ϕ2 , σ) = �(qϕ1 , σ) ∧ �(qϕ2 , σ)
�(qϕ1∨ϕ2 , σ) = �(qϕ1 , σ) ∨ �(qϕ2 , σ)
�(qμX.ϕ′ , σ) = �(qϕ′ , σ)
�(qνX.ϕ′ , σ) = �(qϕ′ , σ)

�(q〈call〉(ϕ′){ψ1,...,ψk}, σ) = 〈call〉qϕ′

�(q[call](ϕ′){ψ1,...,ψk}, σ) = [call]qϕ′

�(q〈loc〉ϕ′ , σ) = 〈loc〉qϕ′

�(q[loc]ϕ′ , σ) = [loc]qϕ′

�(q〈ret〉Ri , σ) =
∨

φ′,ψ1≤ j≤k

(〈ret, q〈call〉(φ′){ψ1,...,ψk}〉qψi ∨

〈ret, q[call](φ′){ψ1,...,ψk}〉qψi)

�(q[ret]Ri , σ) =
∨

φ′,ψ1≤ j≤k

([ret, q〈call〉φ′{ψ1,...,ψk}]qψi

∨[ret, q[call]φ′{ψ1,...,ψk}]qψi).

The priority of states of the form qμX.ϕ and qνX.ϕ are respectively odd and even, and
roughly equal to the alternation depth of ϕ. The priority for all other states is 0. We do
not define the acceptance condition in detail as we do not prove its correctness in this
setting—this is because this part of the proof is exactly the same as in the translation
from the μ-calculus to alternating parity tree automata.

We will, however, discuss in some more detail the transition relation of Aϕ . The
automaton implements the operational semantics of the formula ϕ. If ϕ = p or ϕ = ¬p,
Aϕ checks if the atomic proposition p holds at the node of the nested tree currently
being read. Conjunction and disjunction in ϕ is captured respectively by conjunction
and disjunction in the transition relation of Aϕ . If ϕ = X, then in the operational
semantics of ϕ, the fixpoint formula binding X is executed recursively. Accordingly, Aϕ

loops to the state �(X). At a fixpoint formula of the form μX.ϕ′ or μX.ϕ′, the automaton
starts the corresponding fixpoint computations by moving to the state for ϕ′. All this is
exactly the same as for the μ-calculus and alternating tree automata. The difference
from the tree setting is in the treatment of modal operators.

If ϕ = 〈loc〉ϕ′, the corresponding automaton makes a transition to the state for ϕ′
along some loc-edge from the current node. The [loc] modality is similar. Now suppose
ϕ = 〈call〉ϕ′{ψ1, . . . , ψk}. In this case Aϕ transitions to the state for the formula ϕ’
along some call-edge from the current node (the [call] modality is similar, except the
automaton sends copies along all call-edges). The constraint is that the automaton
must be at the state qψi at the jump-successors of the current node marked by color
i. The automaton checks this constraint using its 〈ret〉 and [ret] modalities. Consider
a formula 〈ret〉Ri that asserts that some ret-successor of the current node has color i.
Consider such a successor t and its jump-predecessor s. The automaton checks, using
a disjunction, if the automaton state at node s (in the current copy of the automaton)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:36 R. Alur et al.

corresponds to any subformula of ϕ starting with a 〈call〉 or [call] modality. If so—that
is, if a formula of the form 〈call〉ϕ′{ψ1, . . . , ψk} or [call]ϕ′{ψ1, . . . , ψk} was asserted at the
jump-predecessor s of this ret-successor— the automaton has to check that the nested
tree from node t on satisfies the ith return obligation—that is, ψi—asserted by that
formula. Accordingly, it changes state to qψi .

THEOREM 7.2. Given any APNTA A, one can construct an NT-μ formula ϕA such that
for any nested tree T , T ∈ L(ϕA) iff T ∈ L(A). The size of ϕA is polynomial in the size of
ϕ.

We will first establish the above for alternating nested tree automata A accepting by
a final state qf . The reason is that the proof is simpler and more intuitive in this case.
After this, we will present the full proof.

PROOF. It will be simpler for us to write the formula ϕA using a set of equations rather
than in the standard form. Translation from this equational form to the standard form
is as for the modal μ-calculus [Grädel et al. 2002].

Let Q = {q1, . . . , qn} and TT , respectively, be the sets of states and transition con-
ditions of A. For each q ∈ Q, we have a marker Rq; for each pair of states q, q′ ∈ Q,
we have a variable Xq,q′ . Intuitively, a summary 〈s,Uq1 , . . . ,Uqn〉 is collected in Xq,q′ iff
A has a way to start at node s at state q, and end up at a return s′ ∈ Uqj in state qj ,
having checked that q′ was the state of the automaton in the current play at the jump-
predecessor of s′. Now for each pair of states q, q′ ∈ Q, we define a map Fq,q′ : TT → �,
where � is the set of NT-μ formulas:

Fq,q′ (tt) = tt
Fq,q′ (ff) = ff

Fq,q′ (f1 ∧ f2) = Fq,q′ (f1) ∧ Fq,q′ (f2)
Fq,q′ (f1 ∨ f2) = Fq,q′ (f1) ∨ Fq,q′ (f2)
Fq,q′ (〈call〉q′′) = 〈call〉(Xq′′,q){Xq1,q′ , . . . , Xqn,q′ }
Fq,q′ ([call]q′′) = [call](Xq′′,q){Xq1,q′ , . . . , Xqn,q′ }
Fq,q′ (〈loc〉q′′) = 〈loc〉Xq′′,q′

Fq,q′ ([loc]q′′) = [loc]Xq′′,q′

Fq,q′ (〈ret, q〉q′′) = 〈ret〉(Rq′′)
Fq,q′ ([ret, q]q′′) = [ret]Rq′′ .

Then the formula ϕA is the formula corresponding to Xq0,γ0 when taking the least
fixpoint of the following equations:

Xq,q′ =
{

tt if q = qf∨
σ⊆AP ((

∧
p∈σ p) ∧ (

∧
p/∈σ ¬p) ∧ Fq′,q(�(q, σ))) otherwise.

Now we give the general proof. Our translation from APNTAs to NT-μ uses finite-state
alternating parity tree automata, which we will define now. The automata we use are
bisimulation-closed and run on unranked trees—similar definitions may be found in
Kirsten’s survey chapter [Grädel et al. 2002] on alternating tree automata. For a set
I of tags, a set Q of states, and a set AP of atomic propositions, let a (finite-state)
transition term be of the form g = p | ¬p | q | 〈a〉g | [a]g | g ∧ g | g ∨ g, where a ∈ I,
p ∈ AP , and q ∈ Q. Fix a set TT at of such terms. A finite-state alternating parity tree
automaton (TA) over TT at is a structure M = (Q, q0, γ0,�,�), where Q is a finite set
of automaton states, q0 ∈ Q is the initial state, � : Q → TT at is a transition function,
and � : Q → {1, 2, . . . , n} is the parity accepting condition that assigns a priority to
each automaton state.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:37

TAs run on unordered infinite trees whose nodes are labeled by 2AP and edges by
I. We skip a formal definition of the semantics. Intuitively, the term p means that the
proposition p holds at the current node, 〈a〉q means that the automaton propagates the
state q along some a-labeled edge, and the term [a]q means that the state q is passed
along all a-edges. Note that we allow complex terms like [a1]〈a2〉q, which means that
the automaton first takes all edges labeled a1, and then, from each child of the current
node so reached, picks an edge labeled a2 and passes the state q to it. Terms can be
combined conjunctively and disjunctively, as is par course for alternating automata.
Our acceptance condition is max-parity, meaning a run is accepting if along all its
infinite paths, the maximum priority seen infinitely often is even. We write T |= M if
a labeled tree T is accepted by M.

Our proof also depends on a translation from TAs to the modal μ-calculus (actually,
we will be interested in a syntactic fragment of the μ-calculus). Recall that formulas of
the μ-calculus over a set of variables Var have syntax

ϕ = p | ¬p | 〈a〉ϕ | [a]ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X | μX.ϕ | νX.ϕ,

where a ∈ I, X ∈ Var and p ∈ AP .
Such formulas are interpreted over (2AP , I)-labeled trees under environments E :

X �→ S′, where S′ is a set of nodes in the tree in question. Again, we skip a formal
definition of the semantics. We write T , E |= ϕ if a tree T satisfies the formula ϕ under
an environment E (sometimes we write t, E |= ϕ if T in the above is rooted at the node
t). If ϕ is closed, we can omit E .

Now we define a special class of labeled trees obtained by applying a “summariza-
tion” transformation to nested trees. Speaking roughly, these trees have summaries
as their nodes (in addition to some intermediate nodes), and trees rooted at returns
are “plucked” and “lifted” to the matching call-sites. Formally, let NT be the set of
all nested trees and T the set of all node and edge-labeled trees. We define a map
Summarize : NT × N → T.

Let k ≥ 0 and I = {call, ret, loc}. We consider the augmented set of atomic propositions
ÂP = AP ∪ {leaf i : 1 ≤ i ≤ k}, and the set of edge labels Î = I ∪ {choose, in} ∪ {i : 1 ≤
i ≤ k}. Then for a nested tree S = (((S, s0,→), ↪→), λ) whose nodes are labeled by the
alphabet 2AP , we define a node and edge-labeled tree T = Summarize(S, k). Let SummS

k
be the set of k-colored summaries in S. Then, the set of nodes of T is T ⊆ (SummS

k ∪T ′)+,
where T ′ = {(U1,U2, . . . ,Uk) : for all 1 ≤ j ≤ k, U j ⊆ ME (u) for some u ∈ S} (the node
set will be defined more precisely soon). The root of T is t0 = 〈s0,∅, . . . ,∅〉. The edges
of the tree are labeled by the alphabet Î using a map ηT ; the nodes are labeled by the
alphabet �̂ = 2ÂP using a map λT .

The set T of nodes and the set ET of edges of T are those obtained when the computa-
tion described below reached a fixpoint. The set Leaves of leaf-nodes where we chop S is
also obtained as part of the same least fixpoint. Initially, T = {t0} and Leaves = ET = ∅.
Now, let us write t

a
� t′ if there is an a-labeled edge from node t to node t′ in T . Then

we have the following.

(1) For each s′ such that s
loc−→ s′ in S and each node t.s /∈ Leaves in T , where

s = 〈s,U1,U2, . . . ,Uk〉 is a summary in S, we add a node t.s.s′ to T , where
s′ = 〈s′,U ′

1,U ′
2, . . . ,U ′

k〉 such that U ′
j = U j ∩ MR(s′) for all j. Also, we add an

edge t.s
loc
� t.s.s′ to T .

(2) For each s′ such that s
call−→ s′ in S and each node t.s /∈ Leaves, where s =

〈s,U1,U2, . . . ,Uk〉 /∈ Leaves is a summary of S:

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:38 R. Alur et al.

(a) we add to T the node t1 = t.s.s′. We also add the edge t.s
choose
� t1.

(b) For every t1, we add to T every node that is of the form t2 = t1.(V1, V2, . . . , Vk),

where V1, . . . , Vk ⊆ ME (s′). We also add edges t1
choose
� t2 for each such t2.

(c) For every t2, we add to T the node t3 = t2.s′, where s′ = 〈s′, V1, V2, . . . , Vk〉,
and for every s′′ ∈ Vj for some j, we add the node t4 = t2.s′′, where s′′ =
〈s′′,U ′

1,U ′
2, . . . ,U ′

k〉 is a summary such that U ′
i = Ui ∩ ME (s′′). We also add the

edge t2
in
� t3, and, for each t4 as above such that s′′ ∈ Vj , the edge t2

j
� t4.

Nodes of the form t.s and t.(V1, . . . , Vk), where s ∈ S, t ∈ {ε}∪ T and V1, . . . , Vk ⊆ T ,
will be sometimes referred to as intermediate nodes.

(3) For each s′ such that s
ret−→ s′ in S and each node t.s /∈ Leaves of T such that

s = 〈s,U1,U2, . . . ,Uk〉 is a summary, we add the node t.s.s̃′ to T , where s̃′ =
(s′,U1,U2, . . . ,Uk). Note that s̃′ is not a summary. We also add the edge t.s

ret
� t.s.s̃′

to ET , and t.s.s̃′ to Leaves.

Note that this also defines the edge-labeling function ηT in T . The node-labeling
map λT : T → �̂ is defined as: for t ∈ T \ Leaves, λT (t.s) = λ(s) if t ∈ {ε} ∪ T and
s = 〈s,U1, . . . ,Uk〉 ∈ SummS

k , and λT (t.(V1, . . . , Vk)) = λT (t.s) = ∅ for all t, s, V1, . . . , Vk.
For t′ = t.̃s ∈ Leaves, where s̃ = (s,U1, . . . ,Uk), we set λT (t′) = {leaf j : s ∈ U j}.

Now we proceed to the lemmas to be used in this proof. First, let AP be defined as
before; now for a set Q of TA states, fix the set of atomic terms TT at (Q,AP), comprising
the terms

p ¬p
〈loc〉q [loc]q
〈ret〉leaf i [ret]leaf i〈call〉〈choose〉([in]q ∧ [1] q1 ∧ · · · ∧ [k] qk)
[call]〈choose〉([in] q ∧ [1] q1 ∧ · · · ∧ [k] qk)

for all q, q1, . . . , qk ∈ Q, 1 ≤ i ≤ k, and p ∈ AP . Then we have the following Lemma.

LEMMA 7.3. Given an APNTA A, we can effectively construct a TA F(A) over
TT at (Q,AP) such that for any nested tree S, we have S ∈ L(A) iff Summarize(S, k) |=
F(A). The size of F(A) is polynomial in the size of A.

The second lemma is an augmentation of the translation from TAs to the modal
μ-calculus. Consider TAs over the set of atomic terms TT at (Q,AP) defined previously.
Now consider the syntactic fragment of the μ-calculus, parameterized by TT at , whose
formulas ϕ are given by:

ϕ = p | ¬p | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈loc〉 ϕ | [loc] ϕ

| 〈call〉〈choose〉([in]ϕ ∧ [1]ϕ ∧ · · · ∧ [k]ϕ)
| [call]〈choose〉([in]ϕ ∧ [1]ϕ ∧ · · · ∧ [k]ϕ)
| 〈ret〉leaf i | [ret]leaf i | μX.ϕ | νX.ϕ,

where p ∈ AP and X ∈ Var. Let �(TT at) be the set of formulas in this form. Then we
have Lemma 7.4.

LEMMA 7.4. For any TA M with state set Q and over the set of atomic terms
TT at (Q,AP), we can construct a closed formula �(M) ∈ �(TT at) such that for any
(�̂, Î)-labeled tree T , we have T |= �(M) iff T |= M. The size of �(M) is polynomial in
the size of M.

The third lemma connects μ-calculus formulas of the above form to NT-μ formulas.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:39

LEMMA 7.5. Let ϕ be a closed μ-calculus formula in �(TT at). Then, from ϕ we can
construct a NT-μ formula Nest(ϕ) such that for any (�̂, Î)-labeled tree T satisfying
T = Summarize(S, k) for some nested tree S over 2AP , we have T |= ϕ iff S ∈ L(Nest(ϕ)).
The size of Nest(ϕ) is polynomial in the size of ϕ.

Let us first establish that if these three lemmas hold, then Theorem 7.2 holds. This
is proved by the following construction. Given A, we construct the NT-μ formula ϕA =
Nest(�(F(A))). By these lemmas, this construction is possible. Now fix any structured
tree S. If S |= A, then by Lemma 7.3, Summarize(S, k) |= F(A), and by Lemma 7.4,
Summarize(S, k) |= �(F(A)). But then, by Lemma 7.5, S |= ϕA. Similarly, if S |= ϕA, it
is easily established that S |= A.

Let us now prove Lemmas 7.3-7.5.

PROOF OF LEMMA 7.3. Let A = (Q, q0,�,� : Q → {1, . . . , n}) be an APNTA. Let ⊥ be
a special state not in Q. Then states of F(A) are of the form r = (q, γ, θ, m), where
q ∈ Q, γ ∈ Q ∪ {⊥}, and θ, m ∈ {1, . . . , n} are priorities of A. Let us now consider a
map indexmap : Q × {1, . . . , n} → {1, . . . , |Q|n} that assigns a unique index to every
tuple (q, θ). Intuitively, indexmap assigns an index to the fact that “A can end up at a
matching exit of the current node in state q, with θ as the minimum priority seen in
the current context."

We will present the semantics of some of the interesting transitions of F(A) in
English. Since treatment of alternation is similar in APNTAs and TAs, we will focus
on “atomic” transition terms. Suppose F(A) is in state r = (q, γ, θ, p) while reading a
node t of T . Let us now have, say, �(q, λ(t)) = 〈call〉q′ or �(q, λ(t)) = [call]q′, In these
two cases, F(A) forks copies to check that the λ(t) is precisely the set of propositions
satisfied at t; it also forks a copy that respectively reads one or all of the call-children
of t. Each of these children are intermediate nodes, each with (uncountably) many
choose-children. F(A) now reads one of these choose-children; once this is done, it is at
an intermediate node with outgoing transitions labeled in, 1, . . . , k. At this point F(A)
passes:

(1) the state (q′, q, 0,�(q′)) to the unique child along the edge labeled in;
(2) the state (q′′, q, max(θ, m), m) to every child along a transition labeled j, for every

j, iff j = indexmap(q′′, m). Now the move is over.

If �(q, λ(t)) = 〈loc〉q′ or [loc]q′, then from state r, respectively along some or all loc-
edges, the TA F(A) passes the state (q′, z, max(θ,�(q)),�(q)) (also, copies need to be
forked to ensure that λ(t) is satisfied currently).

Let us now assume that �(q, λ(t)) = 〈ret, q′′〉q′ or [ret, q′′]q′. Again, it is made
sure that λ(t) holds currently. Now, if r is the current state of F(A), the state
(q′, q′′, max(θ,�(q)),�(q)) is passed respectively along some or all ret-edges out of t.
By definition of T , the child t′ = t.s̃′ is a leaf. At this point F(A) accepts if leaf j ∈ λT (t′),
where j = indexmap(q′, max(θ,�(q))), and rejects otherwise.

The priority function �̂ of a state r = (q, γ, θ, m) is defined as: �̂(r) = m.
The TA F(A) is clearly over the restricted set of transition terms TT at (Q,AP) that

we fixed. Lemma 7.3 may now be established using arguments used by Walukiewicz
in the context of pushdown parity games [Walukiewicz 2001]. Finally, note that F(A)
is polynomial in the size of A.

PROOF OF LEMMA 7.4. We follow a translation from TAs to the μ-calculus discussed in a
survey chapter by Alberucci [Grädel et al. 2002]. The key observation that we exploit is
that this translation can be carried out even when we restrict TAs to the special form
that is under consideration here.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:40 R. Alur et al.

The proof proceeds by induction on the index n of the TA M, defined as the maximum
number of distinct priorities in a strongly connected component in the state transition
graph of M. It also uses a lemma about the existence of simultaneous fixpoints. We
will not reproduce the arguments here in detail, but will present a skeleton.

First, we note that the simultaneous fixpoint theorem holds even for the subset of
the μ-calculus we consider here.

LEMMA 7.6. Let T1, . . . , Tk be sets of nodes of T , and let δ1, . . . , δk ∈ �(TT at) be μ-
calculus formulas in �(TT at) with k free variables each. Now consider the monotone
map F : (T1, . . . , Tk) �→ ([[δ1(T1, . . . , Tk)]], . . . , [[δk(T1, . . . , Tk)]]). There are μ-formulas
τ1, . . . , τk ∈ �(TT at) and ν-formulas ρ1, . . . , ρk ∈ �(TT at) such that (τ1, . . . , τk) and
(ρ1, . . . , ρk) are, respectively, the least and greatest fixpoints of F.

The proof of this follows from the fact that simultaneous fixpoints are obtained by
substitution of variables by formulas, so that the basic structure of the modalities
remains unaltered.

Let us now go through the induction. The idea is to inductively replace states ap-
pearing in infinite cycles by variables. Base case: n = 0, so that the automaton does
not have any cycles in its state transition graph. In this case, the formula �(M) is
obtained by “expanding” the transitions; given the structure of TT at , we conclude that
the �(M) is in �(TT at).

For the induction step, consider the TA M(Q′, q′) obtained by duplicating the state
q′ ∈ Q′ ⊆ Q and declaring q′ as the new initial state, and then replacing all states
q ∈ Q′ by propositions. Intuitively, this operation identifies the runs of M starting
from state q′, while “chopping off” said runs at states in Q′. Clearly, M(Q′, q′) is also
a TA over TT at ; it turns out that M(Q′, q′) has index less than n and hence can be
translated to an equivalent formula in �(TT at). Now we let Q′ be the set of states of
maximum priority in M, set qi to be the i-th state in Q′, and consider the formula
δi ∈ �(TT at) equivalent to M(Q′, qi). We do this for all i, then plug these formulas δi
into Lemma 7.6 and obtain the formulas τ1, . . . , τk corresponding to their simultaneous
fixpoints (depending on whether the maximum priority is odd or even, we will need
least or greatest fixpoints). We also look at the formula τ0 equivalent to M(Q′), which
is simply M with states in Q′ moved to propositions.

Then, �(M) = τ0(τ1, . . . , τk), which, by our arguments, belongs to �(TT at). Fur-
ther, as the proof in Alberucci’s chapter shows, �(M) is polynomial in the size of M.

PROOF OF LEMMA 7.5. For subformulas of a μ-calculus formula ϕ in �(TT at), let us define
Nest(ϕ) inductively:

Nest(p) = p (1)
Nest(¬p) = ¬p (2)
Nest(X) = X (3)

Nest(ϕ1 ∧ ϕ2) = Nest(ϕ1) ∧ Nest(ϕ2) (4)
Nest(ϕ1 ∨ ϕ2) = Nest(ϕ1) ∨ Nest(ϕ2) (5)
Nest(〈loc〉ϕ) = 〈loc〉Nest(ϕ) (6)
Nest([loc] ϕ) = [loc] Nest(ϕ) (7)

Nest(〈call〉〈choose〉
([in]ϕ ∧ [1]ψ1 ∧ · · · ∧ [k]ψk)) = 〈call〉(Nest(ϕ))

{Nest(ψ1), . . . ,Nest(ψk)} (8)

Nest([call]〈choose〉
([in]ϕ ∧ [1]ϕ1 ∧ · · · ∧ [k]ϕk)) = [call](Nest(ϕ))

{Nest(ψ1), . . . ,Nest(ψk)} (9)

Nest(〈ret〉leaf i) = 〈ret〉Ri (10)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:41

Nest([ret] leaf i) = [ret]Ri (11)
Nest(μX.ϕ) = μX.Nest(ϕ) (12)
Nest(νX.ϕ) = νX.Nest(ϕ) (13)

Now, let S be any nested tree and T = Summarize(S, k) as before; recall that SummS
k

is the set of summaries in S and T the set of nodes of T . Consider a μ-calculus
environment Ê : Var → T for T ; for any two bisimilar nodes t1, t2 in T , we can assume
that t1 ∈ Ê iff t2 ∈ Ê . Now note that even if we prevent our environments from containing
nodes not of the form t.s (i.e., if we remove every “nonsummary” node from each of
the fixpoint sets as they are computed), the semantics of ϕ at “summary” nodes of
form t.s (and hence at the root of T) is not affected. This can be verified by a simple
induction. We will assume environments for T to have this property from now on.
Now consider the NT-μ environment E : Var → SummS

k defined as: for all X ∈ Var,
E(X) = {s : s is a summary, and t.s ∈ Ê(X) for some t}.

Our inductive hypothesis is: for any environment Ê in T , any node t.s in T where s
is a summary, and any ϕ ∈ �(TT at), s ∈ [[Nest(ϕ)]]E iff t.s, Ê |= ϕ.

Cases (1), (2), (4), (5), (6), (7), (10), and (11) are easy. For the case ϕ = X (case 3),
recall that Ê is bisimulation-closed. For cases (8) and (9) (the call-clauses), note that
the branching of T exactly captures the semantics of the call clauses of NT-μ. For the
case ϕ = μX.ϕ′ (the case νX.ϕ′ is similar), assume that Ti and BS i are the i-th sets in the
fixpoint computation in ϕ and Nest(ϕ) (we can assume that Ti is bisimulation-closed).
We show that BS i = {s : t.s ∈ Ti} by induction. Initially, T0 = ∅ and BS 0 = ∅. Now,
Ti+1 = {t : t, Ê[X := Ti] |= ϕ′}, and BS i+1 = [[Nest(ϕ′)]]E[X:=BS i

. It is easy to see that
BS i+1 = {s : t.s ∈ Ti+1}. It is also easily seen that Nest(ϕ) is linear in the size of ϕ. This
establishes the theorem.

Corollaries. Theorems 7.1 and 7.2 imply a few results for NT-μ that we have not
already derived. Let us define the satisfiability problem for NT-μ as the problem of
determining, given an NT-μ formula ϕ, ifL(ϕ) = ∅. Then, we have the following theorem.

THEOREM 7.7. Given a NT-μ formula, the problem of checking whether there is some
nested tree that satisfies it is undecidable.

PROOF. By Theorem 6.4, determining if L(A) = ∅ is undecidable. However, by
Theorem 7.2, for every APNTA A there is an NT-μ formula ϕA such that L(A) = L(ϕA).
Thus, if we could determine, given an NT-μ formula ϕ, if L(ϕ) = ∅, then we could solve
the emptiness problem for APNTAs. This means the satisfiability problem for NT-μ is
undecidable.

The automata-theoretic characterization also makes it easy for us to compare the ex-
pressiveness of NT-μ with that of other temporal logics. As APNTAs are more expressive
than alternating parity tree automata, which are polynomially interconvertible with
closed μ-calculus formulas, we have the following.

THEOREM 7.8. Any closed μ-calculus formula ϕ may be converted into an equivalent
NT-μ formula ϕ′. The size of ϕ′ is polynomial in the size of ϕ.

We may now also relate NT-μ to the temporal logic CARET [Alur et al. 2004], which
can express many linear-time context-sensitive properties of programs. This is because
any CARET formula may be translated to an exponentially larger nondeterministic finite
automaton on nested words. As such automata form a subclass of APNTAs, we have the
following.

THEOREM 7.9. Any CARET formula ϕ may be translated to an equivalent NT-μ formula
ϕ′. The size of ϕ′ is at worst exponential in the size of ϕ.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:42 R. Alur et al.

7.2. A Hierarchy Theorem for NT-μ
Now we show that the expressiveness of NT-μ formulas increases with their arity. For
two nested trees T1 and T2, respectively, rooted at nodes s1 and s2, we say T1 and T2 are
distinguished by a closed, k-ary NT-μ formula ϕ if and only if s1 satisfies ϕ and s2 does
not. Then we have the following theorem.

THEOREM 7.10. For every k ≥ 1, there is a a closed (k + 1)-ary formula ϕk+1, and two
nested trees T1 and T2, such that ϕk+1 can distinguish between T1 and T2, but no closed
k-ary NT-μ formula can.

We will sketch the proof for the case k = 1. Before we do so, we need some extra
machinery. More precisely, we will define a preorder called quasi-bisimilarity over
summaries that takes into account their coloring. It turns out that NT-μ respects this
preorder.

Consider a pair of k-colored summaries s = 〈s,U1, . . . ,Uk〉 and t = 〈t, V1, . . . , Vk〉 such
that each path in the trees rooted at s and t comprises a chain of loc-edges followed by
one ret-edge leading to a leaf. Let S and T , respectively, be the sets of non-leaf nodes
in these trees. We say that s and t are quasi-bisimilar if there is a relation �⊆ S × T
such that s � t and

(1) for all s′ � t′, we have λ(s′) = λ(t′).
(2) if s′ � t′, then for every s′′ such that s′ loc−→ s′′, there is a t′′ such that t′ loc−→ t′′ and

s′′ � t′′. Also, for every t′′ such that t′ loc−→ t′′, there is an s′′ such that s′ loc−→ s′′ and
s′′ � t′′.

(3) if s′ � t′, then for every s′′ such that s′ ret−→ s′′, there is a t′′ such that t′ ret−→ t′′, and
for every t′′ such that t′ ret−→ t′′, there is an s′′ such that s′ ret−→ s′′. Further, if s′′ ∈ Ui
then t′′ ∈ Vi, for all i (note that this is not an “iff” condition).

Now, we can show inductively that if s and t are quasi-bisimilar, then for every
variable-free NT-μ formula ϕ, if s satisfies ϕ, then t satisfies ϕ as well (note that the
converse is not true; for instance, t may satisfy [ret]Ri even when s does not). We skip
the proof.

Let us now come back to Theorem 7.10. Consider the two nonbisimilar nested trees
S and T in Figure 12 with initial nodes s0 and t0 (the jump-edges are not shown, but
can be reconstructed from the edge labeling). It is easy to see that the 2-ary NT-μ
formula ϕ = 〈call〉(〈loc〉(〈ret〉R1 ∧ 〈ret〉R2)){p,¬p} distinguishes s0 and t0. Let us now
see if there is a closed, 1-ary formula ϕ that can distinguish between S and T . First,
if ϕ is a disjunction or conjunction, we can get a smaller witness for this distinction.
Further, because trees S and T are of fixed depth, we need only consider fixpoint-free
formulas. The interesting case is that of formulas of the form ϕ = 〈call〉ϕ′{ψ}.

Assume this formula is satisfied by 〈s0〉; then there is a bisimulation-closed sum-
mary of the form s = 〈s1,U 〉 that satisfies ϕ′. For each such s, we find a t = 〈t1, V 〉.
Note that s can assume only four values; these are 〈s1, {s9, s4, s5}〉, 〈s1, {s10, s6, s7}〉,
〈s1, {s9, s4, s5, s10, s6, s7}〉, and 〈s1,∅〉. The corresponding values of t are 〈t1, {t6, t7}〉,
〈t1, {t4, t5}〉, 〈t1, {t4, t5, t6, t7}〉, and 〈t1,∅〉 respectively. Note that for any value s takes,
the corresponding t is quasi-bisimilar to it, which means that t satisfies ϕ′. Further, for
each v ∈ V there is a bisimilar node u ∈ U . It follows that if all u ∈ U satisfy ψ , then
so do all v ∈ V . Then 〈t0〉 satisfies ϕ.

Similarly one can show that 〈t0〉 satisfies ϕ only if 〈s0〉 satisfies ϕ.
To extend the proof to arbitrary k, we consider a structure S ′ where, like in S, the

root has one call-child s1—except s1 now has a large number N of loc-children s′. From
each s′, we have (k + 1) ret-edges leading to “leaves” s′′, each of which is labeled with

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:43

ppppp ¬p¬p¬p¬p¬p

TS
s0

s1

s2 s3

s4 s5 s6 s7

s8

s9 s10

t0

t1

t2 t3

t4 t5 t6 t7

call
ret
loc

Fig. 12. An arity hierarchy.

exactly one proposition from the set AP = {p1, p2, . . . , pk+1}. For (N − 1) values of s′,
the leaves of the trees rooted at s′ are labeled such that only k of them have distinct
labels. But there is a particular s′ (call it s′

d) for which these leaves get distinct labels
p1, . . . , pk+1.

Now take a structure T ′ that is obtained by removing the subtree rooted at node s′
d

from S ′. Following the methods for the case k = 1, we can show that S ′ and T ′ may be
distinguished by a (k + 1)-ary formula, but by no k-ary formula. We skip the details.

8. CONCLUSION

In this article, we have offered a new framework for software model checking of pro-
cedural programs based on regular languages of nested trees. Temporal specification
logics like the μ-calculus, while mainstays of traditional model checking, cannot specify
program properties that refer to the nesting of procedural contexts. Our fixpoint logic
NT-μ based on nested trees, on the other hand, can express context-sensitive program
requirements such as pre/post-conditions, combinations of local and global temporal
properties, and stack-sensitive security requirements, while admitting tractable, sym-
bolic model checking. The logic unifies and generalizes many existing logics and fixpoint
computations, identifying a new class of decidable properties of programs. We have
further explored the theory of regular languages of nested trees through automata on
nested trees. We have shown that these languages have many of the attractive proper-
ties of tree automata— for example, they are closed under logical operations and allow
model checking— while being more expressive. In a result that “lifts” the equivalence
between the μ-calculus and alternating parity tree automata and suggests that NT-μ is
a canonical calculus for these structures, we have shown NT-μ and alternating parity
automata on nested trees are interconvertible.

Regarding future directions and open questions, we note that our decision procedure
for model checking NT-μ is very different from known methods for branching-time
model-checking of pushdown models [Walukiewicz 2001; Burkart and Steffen 1999].
The latter seem too complex to work in practice; our algorithm, being symbolic in
nature, appears more implementable. Also, note that our algorithm directly imple-
ments the operational semantics of NT-μ formulas over bounded summaries. In fact, in
this regard NT-μ resembles the modal μ-calculus in the setting of finite-state systems
whose formulas encode fixpoint computations over sets; to model-check μ-calculus for-
mulas, we merely need to perform these computations. Unsurprisingly, our procedure
is very similar to classical symbolic model-checking for the μ-calculus. There is one key

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

15:44 R. Alur et al.

difference, however: in the latter setting, efficient data structures such as binary deci-
sion diagrams (BDDs) are used to represent sets of system states. On the other hand,
we do not yet know of an efficient data structure to store sets of bounded summaries.
Note that the problem is more complex than that of representing sets of states; in our
case, we need to store sets of tuples of the form 〈v,U1, . . . ,Uk〉, where v is a state and
the Vi-s are sets of states. We leave this as an open question.

Also of interest will be an axiomatization of NT-μ and its applications to the veri-
fication of general programs (where data is not abstracted out). Also, note that NT-μ
expresses properties using forward modalities. As argued in Schmidt [1998], several
program analysis problems also require backward modalities; extending NT-μ to back-
ward modalities will result in expressing several other dataflow problems. How will
this affect expressiveness and decidability? In general, we believe that nested trees
are conceptually fundamental and merit further study. It would be interesting to ex-
amine languages of nested trees in other ways: do they, for example, have algebraic
characterizations? Also, can it have applications of nested trees beyond program ver-
ification? Nested word structures are already known to have connections with XML
query languages, since XML documents have a natural matching tag structure that
can be modeled by jump-edges. Do nested trees have similar applications?

REFERENCES

ABADI, M. AND FOURNET, C. 2003. Access control based on execution history. In Proceedings of the Network and
IT Security Conference (NDSS).

ALUR, R., BENEDIKT, M., ETESSAMI, K., GODEFROID, P., REPS, T., AND YANNAKAKIS, M. 2005. Analysis of recursive
state machines. ACM Trans. Prog. Lang. Syst. 27, 4, 786–818.

ALUR, R., CHAUDHURI, S., AND MADHUSUDAN, P. 2006a. A fixpoint calculus for local and global program flows. In
Proceedings of the 33rd Annual ACM Symposium on Principles of Programming Languages.

ALUR, R., CHAUDHURI, S., AND MADHUSUDAN, P. 2006b. Languages of nested trees. In Proceedings of the Sympo-
sium on Computer-Aided Verification (CAV’06).

ALUR, R., ETESSAMI, K., AND MADHUSUDAN, P. 2004. A temporal logic of nested calls and returns. In Proceedings
of the 10th International Conference on Tools and Algorithms for the Construction and Analysis of
Software. Lecture Notes in Computer Science, vol. 2988. Springer, 467–481.

ALUR, R. AND MADHUSUDAN, P. 2004. Visibly pushdown languages. In Proceedings of the 36th ACM Symposium
on Theory of Computing. 202–211.

ALUR, R. AND MADHUSUDAN, P. 2006. Adding nesting structure to words. In Proceedings of the Symposium on
Developments in Language Theory.

ALUR, R. AND MADHUSUDAN, P. 2009. Adding nesting structure to words. J. ACM 56, 3.
BALL, T. AND RAJAMANI, S. 2000. Bebop: A symbolic model checker for boolean programs. In Proceedings of

the Workshop on Model Checking of Software. Lecture Notes in Computer Science, vol. 1885. Springer,
113–130.

BALL, T. AND RAJAMANI, S. 2001. The SLAM toolkit. In Proceedings of the 13th International Conference on
Computer Aided Verification.

BURDY, L., CHEON, Y., COK, D., ERNST, M., KINIRY, J., LEAVENS, G., LEINO, R., AND POLL, E. 2003. An overview
of JML tools and applications. In Proceedings of the 8th International Workshop on Formal Methods for
Industrial Critical Systems. 75–89.

BURKART, O. AND STEFFEN, B. 1999. Model checking the full modal mu-calculus for infinite sequential processes.
Theoret. Comput. Sci. 221, 251–270.

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press. CLA e 99:1 1.Ex.
EMERSON, E. AND CLARKE, E. 1982. Using branching-time temporal logic to synthesize synchronization skele-

tons. Sci. Comput. Prog. 2, 241–266.
EMERSON, E. AND JUTLA, C. 1991. Tree automata, mu-calculus, and determinacy. In Proceedings of the 32nd

IEEE Symposium on Foundations of Computer Science. 368–377.
EMERSON, E. AND LEI, C. 1985. Modalities for model-checking: Branching time logic strikes back. In Proceedings

of the 12th ACM Symposium on Principles of Programming Languages. 84–96.
ESPARZA, J., KUCERA, A., AND SCHWOON, S. S. 2003. Model-checking LTL with regular valuations for pushdown

systems. Inf. Computation 186, 2, 355–376.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

Software Model Checking Using Languages of Nested Trees 15:45

GRÄDEL, E., THOMAS, W., AND WILKE, T., Eds. 2002. Automata, Logics, and Infinite Games: A Guide to Current
Research. Lecture Notes in Computer Science, vol. 2500. Springer.

HOARE, C. 1969. An axiomatic basis for computer programming. Comm. ACM 12, 10, 576–580.
HOPCROFT, J. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Computation. Addison-

Wesley.
JENSEN, T., METAYER, D. L., AND THORN, T. 1999. Verification of control flow based security properties. In

Proceedings of the IEEE Symposium on Security and Privacy. 89–103.
KOZEN, D. 1983. Results on the propositional mu-calculus. Theoret. Comput. Sci. 27, 333–354.
KUPFERMAN, O., PITERMAN, N., AND VARDI, M. 2002. Pushdown specifications. In Proceedings of the 9th Inter-

national Conference on Logics for Programming, Artifical Intelligence, and Reasoning. Lecture Notes in
Computer Science, vol. 2514. Springer, 262–277.

KUPFERMAN, O., VARDI, M., AND WOLPER, P. 2000. An automata-theoretic approach to branching-time model
checking. J. ACM 47, 2, 312–360.

REPS, T. 1998. Program analysis via graph reachability. Inf. Softw. Tech. 40, 11-12, 701–726.
REPS, T., HORWITZ, S., AND SAGIV, S. 1995. Precise interprocedural dataflow analysis via graph reachability. In

Proceedings of the ACM Symposium on Principles of Programming Languages. 49–61.
SCHMIDT, D. 1998. Data flow analysis is model checking of abstract interpretations. In Proceedings of the 25th

Annual ACM Symposium on Principles of Programming Languages. 68–78.
SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural dataflow analysis. In Program Flow

Analysis: Theory and Applications, 189–234.
STEFFEN, B. 1991. Data flow analysis as model checking. In Proceedings of the Symposium on Theoretical

Aspects of Computer Software (TACS’91). Lecture Notes in Computer Science, vol. 526. 346–365.
WALLACH, D. S. AND FELTEN, E. W. 1998. Understanding Java stack inspection. In Proceedings of the IEEE

Symposium on Security and Privacy. 52–63.
WALUKIEWICZ, I. 2001. Pushdown processes: Games and model-checking. Inf. Comput. 164, 2, 234–263.

Received November 2010; accepted April 2011

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 5, Article 15, Publication date: November 2011.

