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Abstract

We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading,
velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to
be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model
postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An
important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this
context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its
neuroscientific interpretation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The purpose of this paper is to discuss the fundamental
limitations on the accuracy of place cell decoding from a
communications theoretic point of view. We develop a
general definition of place cell coding, derive and analyze
the optimal method for extracting data from the spike trains
generated by place cell coding. In doing so, we make use of
an unusually effective approximation which greatly simpli-
fies the analysis of the conditional density for the movement
parameters. The potential value of this analysis for neuros-
cientists is that it makes quantitative predictions about
performance based on a more flexible model of both the
movement process and the measurement mechanism. This
formalism can be easily adapted to accommodate other
modulation effects, such as the use of timing relative to
EEG rhythms, etc.

The idea that certain areas of the hippocampus represent
the present position of the animal by means of groups of
cells that are tuned to fire rapidly only when the animal is at,
or near, a particular location, has proven to be quite fruitful,
both as an inspiration for experimental work and as a start-
ing point for theoretical analyses. More specifically, the
problem of finding the most likely reconstruction of the
trajectory describing the animal’s recent movements based
on a knowledge of the firing pattern of an ensemble of such
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place cells, has been considered by a number of authors and
the literature is growing rapidly. Recent papers include a
broad analysis of various decoding schemes by Zhang,
Ginzburg, McNaughton and Sejnowski (1998) and a more
narrowly focused statistical analysis by Brown, Frank,
Tang, Quirk and Wilson (1998). These authors argue, and
this is our point of view as well, that it is of interest to find
the theoretical limits on the extent to which the trajectory
can be determined because this permits one to make defini-
tive statements about the adequacy of information carried
by these signals for describing the motion.

Experimental evidence has been reported suggesting a
role for several variations on the basic place cell model.
One important variation is that the firing rate is a function
of both the position and the velocity. We regard this as place
cell representation in position—velocity space. Evidence for
other modulation schemes have been reported, including the
possibility of coding information about position within the
support set of the tuning curve by the timing of the spiking
relative to the waveform of the theta rhythm component of
the EEG. Thus, there are good arguments for treating the
subject in some generality.

Our analysis builds on work done over the last 50 years in
which the critical question for estimation theory has come to
center on the propagation of the conditional density. This
point of view makes it clear that the problem of forming a
causal estimate of a stochastic process depends strongly on
the statistics of the process whose path is to be estimated. In
this literature, a prominent role is played by processes that
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are generated from Brownian motion via linear or nonlinear
stochastic differential equations. In particular, the so-called
Gauss—Markov processes play an important role.

There are two ways in which our analysis differs from that
discussed in the literature.

1. We work within a mathematically natural setting estab-
lished for generating causal estimates of stochastic
processes. In this theory one begins with a Markov
model for the process to be estimated and a model for
the observables that is independent of the reconstruction
process.

2. We consider the possibility of estimating the state of an
n-dimensional Markov process from the spike trains
coming from a regular array of place cells covering an
m-dimensional space. This is the type of formalism
needed, for example, to estimate the position and velocity
in two dimensions from place cell data responding to
position alone.

The paper is organized as follows. We begin with a quick
review of the relevant parts of estimation theory adapting it
to suit the present problem. We then derive the evolution
equation for an unnormalized form of the conditional
density equation which forms the basis of our subsequent
analysis. We follow this with a discussion of the question of
the computational complexity associated with propagating
the conditional density equation. We then discuss an
approximation scheme which leads to a pair of equations
for the conditional mean and the conditional variance.
Finally, we study the reconstruction error as a function of
the relevant parameters. Space limitations prevent us from
doing complete justice to the underlying mathematical
theory. The reader interested in these matters should consult
the thesis of Twum-Dansio (1997) for this and for a detailed
numerical study of some performance issues.

2. Markov models for movement

Beginning around 1960, Kalman and Bucy (1961) and
others reformulated in an iterative form the theory initiated
by Wiener and Kolomogrov relating to the use of noisy
measurements and an a priori model to generate a least
squares causal estimate of the current value of a stochastic
process. This work made the subject both more relevant in
various applied situations and more accessible to non
specialists. By now, there is a huge literature and a wealth
of applications. Although in its original form the theory
applied only to linear systems whose measurements were
corrupted by additive Gaussian noise, this work suggested
extensions embracing nonlinear problems and over the
years it has been extended in numerous ways. In outline
form, the ingredients of this theory as it now exists are:

e a Markov model for the stochastic process that is to be
estimated;

e a probabilistic model for the way in which the measure-
ments relate to the true values of variables associated
with the underlying stochastic process; and

e a propagation rule for the conditional density.

The book of Jazwinski (1970) can be consulted for a
detailed account.

In this paper, we apply this methodology to study the
problems involving coding and decoding relevant to
problems involving place cells and their responses. Two
particular types of primitive stochastic processes will play
a role—the Poisson counter and Wiener’s model for Brow-
nian motion. In particular, we will make use of the idea of a
Poisson counter of rate A. These will usually be denoted by
N or N, if several are involved. Poisson processes take on
the value O at t =0 and assume values in the set of nonne-
gative integers, {0, 1, 2, ...}. The probability that N will
advance in a small time interval of length A is given by
AA + y with y being second order in A.

Definition. We will say that N is a variable rate Poisson
counter of rate A if N takes on values in the set {0, 1,2, ...}
and for all 7 the probability p(#, A) associated with the event
N(t + A) — N(r) = 1 satisfies

p(t,A)
A

lim

A—0 =AM

By definition, the counting rate A is nonnegative. If A is a
constant, then such processes are said to be homogeneous; if
A depends on ¢, they are called inhomogeneous. They are
said to be conditional if A is allowed to depend on auxiliary
random variables or random processes. The use of such
models requires some care as will be touched on below.

From the point of view of minimizing mathematical tech-
nicalities, the simplest problems in this area involve estima-
tion of the state of a finite state Markov process. Because we
find it most reasonable to work with continuous time
models, we consider processes that jump at a random time
from one of a finite set of possible values to another accord-
ing to a probabilistic rule. More concretely, let x(¢) take on
values in the finite set {x;, x,, ..., x,}. Let p,(f) denote the
probability that x(f) = x; and suppose that the probability
law is such that

p(1) = AO)p(1)

The x-process is then a finite state, continuous time, Markov
process. The matrix A, called the intensity matrix, provides
a description of how its probability law evolves in time. Of
course, the description of the evolution of the probability
law does not provide a description of the sample paths.
Sample path descriptions are conveniently thought of as
being generated from Poisson counters using differential
equations in the following way. If N(#) is a continuous
time Poisson process, then, of course, dN(f)/dt is zero except
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at the times when N jumps. At these times, the derivative of
N fails to exist in the ordinary sense, but can be interpreted
as a Dirac delta function. In this sense, we can write

dN()
T Dt —ay)

Considering the times «; to be the times of initiation of
action potentials, this can model neural signals. We interpret
differential equations written as

. S dN;(2)
=D diln) = =

i=1 t
in the following way. When all the Ns are constant x(7) does
not change. If the i-th counter jumps at time @, then x(¢)
jumps from its value just before B8 to the value

x(By) = x(B-) + ¢;(x(B-))

That is to say, the amount of the jump is determined by the
value of x() at the left-hand end point of the trajectory. This
is the It0 interpretation of the differential equation. (See
Appendix A for a discussion of alternative notations found
in the literature.) Under standard assumptions, the probabil-
ity that two or more counters would advance at the same
time is zero and so this gives us a complete description of
the sample path behavior. It is not difficult to show that any
finite state, continuous time, a Markov process can be
realized by an equation of this form by suitably selecting
the functions ¢; and the rates of the Poisson counters.

Remark 1. If N is a counter of constant rate A, then the
expected value of the square of the deviation between
N+ T)— N(t) and AT is given by

EN@t+T) = N(t) — AT)> = AT

Put in a more directly relevant form, the ability to estimate
the rate of a Poisson counter from the sample path is limited
by

P N+ T)— N@©) A 2
( T )_T

To reduce the variance we would like to take 7 to be large,
but this makes it impossible to rapidly sense and respond to
a change in the counting rate. This expression makes it clear
that there is uncertainty about the underlying signal A even
though N is observed perfectly. It also puts in evidence the
source of the timeliness—accuracy trade-off.

A second class of Markov models, useful for modeling
situations in which the x process takes on values in a Eucli-
dean space or some other manifold, are the diffusion
models, to which we now turn. In this case, the sample
path description depends on the Wiener process, which we
usually denote by w or w; if several are needed. The x
process is generated from one or more Wiener processes

by a stochastic differential equation of the form
=1+ g,
i=1

The corresponding equation for the probability law is typi-
cally expressed in terms of a density, p(#, x) which satisfies a
second order equation of the diffusion type,

dp(t, x)

= Lp(t,
at p(t, x)

Remark 2. The Fokker—Planck operator for the Gauss—
Markov model

x=Ax + Bw
is

J 1 s
Z (7x,- aljx 2 Z ylj ﬁx,- (?xj

where v;; is the ij-th entry of the matrix BB”. These are the
so-called Gauss—Markov models. They are especially
useful as prototypes because they often lead to closed
form expressions and yet are general enough to generate
arbitrary second order statistics.

3. Place cell models for measurement

Whereas many, or even most, aspects of the representa-
tion of information in the nervous system remains myster-
ious, one experimentally verified idea about the
representation of geometrical data is that of place cell repre-
sentation. This way of representing positions and trajec-
tories differs markedly from what one finds in most areas
of science and engineering. Usually, we think of the evolu-
tion of quantities such as the position of a particle or the
temperature of an object as defining a curve in a space in
which time is represented on the horizontal axis and the
quantity in question is represented on the vertical axis,
using some numerical scale. When the numerical represen-
tation is taken to be continuous, this gives a continuous
evolution in Cartesian space. In electrical engineering, one
often calls such a representation an analog representation to
distinguish it from a digital representation, where typical
waveforms do not show continuity with respect to the
underlying phenomenon being represented. Place cell repre-
sentation can also be described in mathematical terms, but
the representation differs from those traditionally studied in
physical science.

Let S be a convex, subset of R" and let {s;};,—;,. , bea
set of points in S. Let A = {A;, Ay, ..., A;} be a set of func-
tions mapping S into the nonnegative real numbers. Define a
function ¢, : S — S with

_ A (x)
dx) = 1; S N S
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and a second function ¢, : R" — § with

C A(x)
A) = __xv
l/jx( ) ]; Z /\k(x) S

Definitions. Let S and A be as above. Suppose that the As
have the properties

1. The functions A, are continuous and for each A, there
exists a single point s; € S where A, takes on its maxi-
mum value.

2. The values of each A, are monotone decreasing along
radial lines directed away from the point where it takes
on its maximum value.

3. At each point x € S at least one A(x) is nonzero.

Under these circumstances, we will say that the set A
defines a place cell family for S. The points s; will be called
the centers and the function A will be called tuning curves.
We will say that a collection of spike trains {dN,/dt}; k=1,
2, ..., ris a place cell-spike frequency representation of a
point x € S if the counting rates of the Poisson counters N,
are given by Ay.

Examples. Prototypical one dimensional tuning curves
include the Gaussian shape

)\k(x) — ae*(cx*sk)z/Z

having a center at s;/c and a width which decreases with
increasing c, and the raised cosine

A(x) = b(1 + cos(ex — s53)); x| = m/c

also having a center at s;/c and a width which decreases with
increasing c.

The function ¢, assigns to the point x a convex combi-
nation of the centers s;. If sy, s, ..., 5, are points in a vector
space, the convex hull of these points consists of the set of
all points of the form

-
XZZaksk;aEO; Zakzl
k=1

In this context, it is useful to recall the well known result
of Carathéodory stating that given a closed convex subset
of n-dimensional space, and a point x in the set, there
always exist n + 1 points on the boundary of the subset
such that x is a convex combination of these points. Place
cell representations are by no means constrained to use
this minimal number of points and, consequently, can be
much more robust and less sensitive to small changes in
the weights a;.

Early work by Georgopolis, Kettner and Schwartz (1988)
considered the situation in which the place cells were expli-
citly related to geometric data. It has been reported subse-

quently by Zhang et al. (1998) that place cells can have
directional dependence as well as a position dependence.
For this reason, we formulate our problem in a general
way, retaining the words place cell, but extending the mean-
ing so as to permit the interpretation that ‘place’ may be a
location anywhere in the state space of the Markov process
defining the motion. For example, it might define a field in
some position—velocity space with coordinates (£, £). Thus,
if x takes one values in R"” and C is an m X n matrix, we
consider ensembles of place cells with tuning curves of the
form

M(x) = aef(chsk)T(ch.vk)/z

Assuming a fixed lower bound on the spiking rate, one
expects that it will be possible to more accurately represent
the variables being coded if the place cells are more dense
and if the upper limit on spiking frequencies is higher. This
is most easily quantified in a situation in which the place
cells are uniformly distributed. In one dimension, this means
that the tuning curves of the ensemble of place cells each
have the same shape, differing in that they are generated by
repeatedly shifting the center of this shape by a fixed
distance. For reasons that will emerge later, we characterize
the geometry of the place cell distribution using two vari-
ables, C and «. The matrix C defines a linear transformation
from the state space of the Markov process to an m dimen-
sional measurement space, where the place cells are situ-
ated, and « is a positive number that we use to adjust the
spacing between the place cells. If y is one dimensional we
have
AY) = ae 0T 0,41, %D,
We can say that 1/a determines the density of the place cells
in y-space.

If x is assumed to be a random variable with a Gaussian
probability density p(x) = (1/x/2mg)e ">, then the
expected counting rate for a cell centered at s is

*© o 1
A = ae—(c,\—as)2/27
s Jfoo J27g

a Jerg + le*(azsz)/[Z(cqurl)]
a  /2mq

The total number of spikes produced by the entire ensemble
in a fixed interval of time is an important parameter, often
considered to be a constraint on the system. This overall
counting activity is the sum of these terms over the entire
lattice and is given by

_ 2
e x/2qu

2
= ANCAt ] g @)

/\*
a  +2mq =

where Z denotes the set of integers. Appealing to the
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inequalities
1 -2
\/21Tq——=—+2J Sy = 3 e
q Zq 0 SEZ
2 « 1
= + ZJ e Sy = 2mq + —
2q 0 q
we see that

(g + D/a? = /g = X" = /(g + DI? + 1/q

In a higher dimensional setting, uniformity can be modeled
by assuming that there exists a place cell centered at each
point in a point lattice. Let the set of points in R™ that have
all integer components be denoted by Z". We call this the
standard m-dimensional point lattice. Let the place cells and
their tuning curves be indexed by a points s € Z™ according
to

—(v—5\ (v—
/\S(y)zae —s) (y—9)/2

It would be unduly restrictive to limit the discussion to place
cells that are separated by integers in each coordinate. To
achieve more generality, we incorporate a scaling parameter
a which rescales the point lattice and leads to the family

A(y) = qe~ 0@ G-as)2
S

Theorem 1. Suppose that x is a Gaussian random variable
with zero mean and variance Q. Assume that x determines
the counting rate of a family of Poisson counters {N,}
according to the rule

_ — ) _
/\S(x) = qe (172)(Cx—as)" (Cx ax); s E Zm

Then, the expected spiking rate for A, is
X Cl\/detQ 1 -
= ——v¢
s am\/deth

where Q= CQC" and Q, =+ (COCT)™ ™', The
expected value of the total number of spikes from the
ensemble per unit time is bounded by

a\/deth <
m\/@(l + VZqTAmm(Ql ) )\

a\/deth
m\/@(l + Vzﬂ)\maX(Ql )

where A i (Q) and A, (Qp) are the minimum and maxi-
mum eigenvalue of Q), respectively.

(az/Z)STQfls

Proof. Lety= Cx so thaty is a Gaussian random variable
with covariance Q,. Then

EX" = a J e 0-aoman L camye g,
Rm

JemydetQ,

Rearranging the exponents we get

EA* — e—(l/z)@”‘(g1 )*‘y—ay”‘s—(l/zmzs”‘s)dy

a
JQ2m)"detQ, J R"
which integrates to give the result of the theorem. The upper
bound on the total ensemble spike rate is obtained using the
estimate

e V0 < oY V(@)

valid for positive definite matrices Q, together with the
scalar version of this estimate invoked above.

Remark 3. If we scale C by a factor 3, then the above
estimates show that the expected value of the total spike rate
saturates at a multiple of a/a™ as B grows large.

Corollary. Let A be a square matrix having eigenvalues
with negative real parts. If the stochastic process x is gener-
ated by

x —Ax + Bw
and if

0= J VBB e ds
0

then when the steady state conditions are achieved, the
counting rate is given by Theorem 1 with this value of Q.

We point out for future reference what is otherwise
reasonably clear, namely that if the overall counting rate
A” is to remain bounded in the limit as @ goes to zero
then the rate coefficient a must be scaled with a™.

4. Reconstruction I: the conditional density equation

Following Sanger (1996) who investigated the condi-
tional density associated with a constant process, we now
consider the problem of the optimal estimation of the evolu-
tion of the process x based on place cell signals. We study
this to determine how accurately a place cell representation
captures the signal, not because there is any evidence that
this reconstruction is needed for some biological purpose.

As we have said, in order to carry out a Bayesian analysis
of the problem of recovering x(¢) from the past values of
Ni(1), No(1), ..., N,(?) it is necessary to have a probabilistic
model for the stochastic process x. We provide an outline of
this analysis for a simple model and refer the reader to the
literature for the generalizations that are used below.
Suppose that x(#) is a continuous time jump process taking
on values in the set X = {x, x5, ..., X,}. Let p;(¢) be the
probability that x(¢) takes on the value x; and assume that

p=4,

for some known intensity matrix A. Assume further, that we
are given m functions A;(x), A,(x), ..., A,,(x) mapping the set
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X into the nonnegative real line. Let {N;}/L; be m condi-
tional Poisson counters with the rate of the i-th counter
being A (x). If we observe the sample paths of the counters
Ni, N,, ..., N,, we would naturally ask what is the condi-
tional probability of x given these observations? This
problem is conveniently analyzed using Bayes’ rule in the
form

_ PN, Nay s Ny OP()

N ,N ,-”aNm
PNy, N, ) p(Ny,N,,...,N,)

To streamline the notation, we introduce a family of diag-
onal matrices {A(x)} defined as

)\k(xl) 0 0 0
0 Ak(XQ) 0 0
A =1 0 0 N3 - 0 5 k=12,0,r
0 0 0 Ax)

In a small time interval & in which none of the counters
advance, the Bayes’ formula implies that the conditional
probability evolves in accordance with

p(t+h) = a(p(t) +Ap —h> Axp + e)

k=1
where e is of order h” and « is the (unique!) normalization
factor required to make the components of p(t + &) sum to
one. Taking the limit as & goes to zero we get

p@0) = a(r)(A -> Ak)p(n
k=1

The difference between this evolution and the evolution of
the probability of x with no observation is the presence of
the negative sum. This term reflects the fact that if there are
no jumps the probability shifts toward the values of x asso-
ciated with slower counting rates. On the other hand, if the
k-th counter advances at time ¢, then Bayes’ rule implies that
the probabilities should immediately change to reflect the
fact that when the k-th counter jumps the probabilities shift
in such as way as to reflect the tuning curve associated with
the k-th counter. A direct application of Bayes’ rule in this
situation gives

pty) = aA(p(t-)

Notice that the A term increases the probability of the
values of x associated with the larger counting rates of the
k-th counter. Putting these two types of evolution together
we have

m

) i dN
p=a®A =D (A4)+ > (Ax) — Dp(t)—=

k=1 k=1 dr
This is to be interpreted as a stochastic differential equation
in the It6 sense. If Ny advances at time 3 then p(B8_) changes
to Ap(B-). Moreover, the normalization factor a can be

dispensed with because its only effect is to rescale p. In fact,
the solution of the simpler equation

m m dN
b= (A =D (AGdr + 3 () = I)p(r)d—f)
k

k=1 =1

is related to the version with a present only by a scaling
factor. However, one can normalize the solution of the
unscaled equation after it is solved and this is generally
much easier, so we will work with the unscaled version.
Equations of this type have been in the literature for some
time, the paper of Davis and Marcus (1981) surveys many
aspects of the field. More relevant for our specific problem
is the important paper of Boel and Benés (1980).

We pause to point out two aspects of this equation.
First of all it is to be interpreted as an It6 equation (see
Appendix A) implying that the solutions are of the form

p(t) = eAfreAk,(x)eAfr—leAk,_l(X).__eAkz(x)eAflp(O)

Secondly, appealing to the symmetry principles discussed
in Brockett and Clark (1980) we see that the complexity
associated with solving this equation depends on the
dimensionally of the Lie algebra generated by matrix A —
> Ay and the logarithms of the individual A;.

With this analysis in mind, we now turn to a situation
more directly relevant to the place cell reconstruction
problem. Suppose that x takes on values in some n-dimen-
sional space and that its probability density, in the absence
of any measurements, evolves according to the Fokker—
Planck equation

Ipt,x) _ i b,
i=1

t
ot X; Y ox;ox;

ap(t, N (A
p(t, x) n Z c p(t,x)
ox; =
ij=1
As suggested by the application of Bayes’ rule carried out
above, in this situation we have an equation for the unnor-
malized conditional density which takes the form

,
PED (L= 3 0t + Y N@pte, 0
t &= dr

where L is the operator defined by the right-hand-side of the
Fokker—Planck equation. In this case, one says that x is a
diffusion process. Typically, such a process is associated
with a stochastic differential equation in which the stochas-
tic element is the increments of a Brownian motion, i.e. x is
the solution of a stochastic differential equation of the form

&= 1) + Geow

suitably interpreted. The probability density itself evolves
according to the corresponding Fokker—Planck equation

dp(t, x)
ot

= Lp(t,x)
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Then, the conditional density equation takes the form

J
2 (L ZM@%@@+Z@@

Ordinarily, equations of this type cannot be solved analyti-
cally and must be approached numerically. However, there
are special cases in which this partial differential equation
can be reduced to a finite set of ordinary (but stochastic)
differential equations. In such cases, one says that there are a
finite set of sufficient statistics for the problem. The
Kalman—Bucy filter, based on a quite different set of
assumptions, is probably the best known example of a situa-
tion in which there is a finite set of sufficient statistics. The
corresponding equation in that setting is

apt,x) _ (

1 2 dy
p L— 5 (cx) )p(l, x) + cxp(t, x) U

Example. Let x be a two-dimensional vector with compo-
nents x;, X, representing a point in the plane. Suppose that x
performs two-dimensional Brownian motion (i.e. a random
walk in the plane). Then

(7 &
L=—-|—+—
2\ a2 ad

and the conditional density equation takes the form

ﬁp([,x) B 1 (92 &2 7 m m

This is a special case of the more general situation in which
the x process is generated by the more general n-dimen-
sional Gauss—Markov model described by the linear equa-
tion

X =Ax+ Bw

5. Reconstruction II: Gaussian solutions

In order to understand when and how the conditional
density equation can be reduced to a set of ordinary stochas-
tic differential equations driven by the observations, we
focus on the objects

Ly=L— i M) and L= In(A(x))
k=1

We not only want to think of L, as an operator, but we also
want to think of the functions L, = In(A(x)) as operators in
that they act on p sending p into L;p.

The theory of sufficient statistics for problems of this type
tells us that it is the structure of the Lie algebra generated
from the operators by the adjoining commentators [L;, L;],
their commutators, etc. that ordinarily determinates the

dimensionally of the possible sets of sufficient statistics.
An important example of such a finite dimensional Lie alge-
bra is afforded by the algebra consisting of linear combina-
tions of the elements

& d d
ox?’ Y ax;’ i ox;
Notice that the terms in the Fokker—Planck operator for the
Gauss—Markov model are of the form appearing in this
algebra. There is no choice for the functional description
of the tuning curves Ay (x) such that both the individual
curves and their sum are a linear combination of constants,
terms linear in x, and terms quadratic in x. However, as we
discuss in Appendix B,

*(CX* as)T(foas)/Z =1

lim
a—o ;d \/(2"7)"1

Moreover, and this is a significant point, even for values of
a as large as one this approximation is remarkably good.
Using this approximation with a suitable set of ‘Gaussian’
tuning curves we will show that if L, comes from a Gauss—
Markov model, then because

In(A(x)) = a(x — )’

the conditional density can be propagated in a way analo-
gous to the Kalman—Bucy filter. In this case, the standard
unnormalized conditional density equation

? =Ip— Z ,ye—(Cx—aS)T(Cx—w)/Zp
X sezn

+ Z (ye (Cx— om) (Cx—as)l2 _ l)pi
s€7¢ dr

where

m
aa

"V

If we approximate the first sum by its limit as o goes to zero
then

7 - dn,
op =Ip—a+ Z (ye(C as) (Cx—as)2 _ —pSs
ox = dr

However, this equation does not enforce normalization, so
we can as well drop the a. Reverting to a notation that places
« in evidence, we get our final form for the unnormalized
conditional density.

ap(tyx) _ aam e*(Cx*as)T(Cx*a.\')/Z _ 1)

o Lo .v;’" ( Q)"

As just discussed, the conditional density equation leads to a
finite set of sufficient statistics if the sum of the tuning
curves, together with the logarithms of the individual tuning
curves, match certain profiles. In particular, we observed
that if the logarithms are quadratic, then there is a possibility
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of finding solutions of the conditional density equation that
are Gaussian.

If, as this analysis suggests, we assume that there is a
regular array of exponential tuning curves centered on the
points of a scaled regular point lattice and if we replace the
sum of the tuning curves by a constant, then there will exist
solutions of the form

plt,x) = n(t)e—(uz)(x—mfz*‘(x—m)

Theorem 2. Suppose that x satisfies the stochastic equa-
tion

X =Ax + Bw; y=Cx

and that x(f) determines the counting rate of a family of
Poisson counters {N,} according to the rule

m
L) =a o e*(l/2)(y*as)T(y*as).
S 9

V(@2m)™

Assume further that the limiting approximation yielding the
unnormalized conditional density equation

se 7™

Ip(t, x)
ox

ad"  _ o (y— dN,
= (L — t,x) + A=) 6=y — 1 t, s
(L — a)p(t,x) (SEEZW (2w)me (x) p(t, x) ar

is used. Then if £ and ¥ satisfy the equations

d _ dN.
= AR + EZZ S+clo)y 'cT(as — Cp) d;

and

dz T T -1 T 1 st
— = A3+ 3AT +BB" + +cfo)! -

dr I+2 (< ) E)Z dr

SEZ™

respectively, then the conditional density of x given the past
values of the counting processes is given by

1 e (12— 3 x—%)

AN TS

Remark 4. The differential equations are to be interpreted
in the It6 sense as discussed in Appendix A.

Remark 5. We observe (see Appendix B) that because

dN; ( o
€ as—— — asad —F————
SEZ:Z’” dr sEzZZ’” v (2Tl')m

e—<1/2>(y—as>"<,v—as)) ~ ay

The equation for X can be thought of as being driven by a
multiple of (y — CX), much as the innovations drive the
Kalman—Bucy filter.

Remark 6. The error variance is a function of the overall
spike rate, A". The spacing variable o does not enter the

variance equation. In the close spacing situation considered
here, a large value of C (narrow tuning curves) makes the
variance smaller because of the way in which C, enters the
variance equation. However, this effect saturates as C
becomes larger, with the effect beginning to diminish
when CC” is comparable in size with 3. The overall spike
rate can be nondimensionalized by comparing it with the
frequency range in which the power spectrum of the x
process contains the most power.

Proof. We can solve the conditional density equation
most easily by treating separately the intervals on which
there are no spikes and the moments at which there are
spikes. The probability of two or more spikes occurring at
the same is zero so these events can be ignored. Between
spikes, the normalized conditional density and the Fokker—
Planck equation are the same so in these intervals the mean
and variance satisfy

—x =AxX

dr

d
d—§=A2+ZAT+BBT

At a jump, Bayes’ rule implies that the Gaussian density
existing prior to the jump is multiplied by the tuning curve
associated with the excited spike. The solution can be found
by rearranging the product of two Gaussians. To this end,
observe

e*(1/2)(CX*ax)T(foozs)e*(1/2)(X*m,)T271(JC*m,)
_ ef(1/2)(X7m+)(CTC+27])(X7m+)

with

my ="'+ cT0) N alls + 37 'm)
and, thus

S, =C'+co!

Putting these two together gives

d N T -1 T “14 AN
_— = _ K -
dtx AX + E (C'C+2) (aC's+237'% I

RSVAL

dN;
dr

A

which can be rearranged as

d _ dn,
—f=At+ > ([C"C+3 )7 'CMas — C)—
dr sEZ™ dr
For the variance, we have

d _ T T -1 T =1 _ %
EZ_ALLZA + BB +Sezzm((2, +cfo) 3) P

which completes the proof.
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6. Comparison with additive noise model

Our goal here is to establish an approximate correspon-
dence between the place cell model and the additive noise
measurement model more widely studied in other fields.
This analysis gives new insights into the nature of the
approximations made above and will allow us to convert
the spacing and firing rate data into an equivalent signal
to noise ratio.

The update rule for the continuous time situation asso-
ciated with the model

X=Ax+BWw; y=RCx+v

is

d
E;e =A%+ 3CT(y — Cw)

S =A3+3AT + BB — 3C"R"RC3

In the case of the Kalman—Bucy filter the variance is
not sample path dependent, whereas in the situation
described in Theorem 2, it is. More specifically, we
see that in the case of rate observations, the variance
drops immediately after a pulse is received and rises
between pulses. If 37" is large relative to C’'C and/or
the pulses occur frequently relative to the natural time
constants of the A matrix, the variance is nearly
constant and can be expected to nearly equal to the
solution of

%2‘ =AS+3AT+BB" — (' +CTO) = I*

To get to this approximation we have replaced the
counting term in the variance equation by its average
value. This suggests that the estimation problem of
Theorem 2 could be approximately modeled by an esti-
mation of the Gauss—Markov, additive white noise type
provided we can find R =R’ be such that

SCRC'S=3+0 7 '-3

with 3 being the solution to the variance equation asso-
ciated with the counting process.

Lemma. Assume that C is m X n and of rank m. Suppose
that 3 is the positive definite solution of

AS+3AT+BBT + (S '+ Ty =30 =0

If

R=X((ccH™ ey — (3 + 2,cTczy) Heleech™
then 3 also satisfies

A3+ 3AT +BBT — 3CTRC3 =0

Proof. Let F=F" = (3" +cc’) " — 3, so that
I— (o' +cchzy =y + cchF

This implies that I — I — CC"3y = (3y"' + CCT)F and,
thus

S+ ech e sy =F= (3" +cch)y T - 3,
Transposing we get
SycC” =Xy v e =3 +ech)T - 5,

Thus, we see that the range spaces of (20_1 +cch™ - 0
and 3,CRC" 3 agree, as do the null spaces. Because C is of
full rank, this means that we can conclude that

R=C"Ey '@+ o'y - 37h)c!

where # denotes the Moore—Penrose inverse. The final form
follows from some further matrix identities.

This can be viewed as a constructive process for finding
an approximately equivalent white noise measurement
problem. Because the matrix +/RC is a measure of the signal
to noise ratio this also gives a way to associate an approx-
imate signal to noise ratio with the model of Theorem 2.
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Appendix A. Stochastic differential equations

Our models involve differential equations with right-
hand-sides that are stochastic. One type involves differential
equations with the derivatives of counting processes appear-
ing, such as

dN
=100+ 8-

The meaning that we assign to such equations was discussed
in the main text. Within a time interval over which N(¢) is
constant, the evolution of x is governed by the ordinary
deterministic equation x = f(x). If N has a jump of magni-
tude one at t = 3, then x(¢) moves from its limiting value as ¢
approaches B from below to the value x(r_) + g(x(z-)). In
the stochastic differential equations literature it is common
to use the notation

dx = f(0)dt + g(x)dN

for this model and to refer to the solution we have described
as the solution in the sense of Itd6 (Brémaud, 1981). Notice
that when doing analysis with It equations it is necessary to
use a special form of the chain rule. The standard rules of
calculus are not directly applicable.
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The situation for differential equations with the derivative
of Brownian motion appearing also require some explana-
tion. The equations we have written in the form

W= fx) = gw
are more commonly written as
dx = f(x)dr + g(x)dw

and referred to as It6 equations. It is not possible to relate the
trajectory of x to the trajectory of w in the direct way used
above and we must refer the reader to the literature (e.g.
Jazwinski, 1970) for an explanation.

Appendix B. Some identities

There are many ways of seeing that for t > 0 and o > 0

(04 (o 2
lim Y ——e 2 =1, >0
a—=0 Z N2
One way, having the advantage of quantifying the rate, is to
use the identity from the theory of theta functions, (e.g.
Whittaker & Watson, 1963, p. 476) which states

k)2t — Z e @Mt o2kl a); t>0

1
d —e
ez V2wt kEZ

Let ¢ be positive and take the limit as a goes to zero. All the
terms on the right except the one corresponding to k = 0 go
to zero and the k= 0 term contributes a 1.

If we take the derivative of this identify with respect to y,
we get

. aly —as) _q_as’n2
lim ———— e VT =9
a—0 z

SEZ V2T

Splitting this up we get

2
o 2 Q'S ol
lim e VT2 — [im e T2 —
2 o i 2, o
and so
2
y=1lim § Sl 0w

a=0 s€Z N 2m

Now, consider a higher dimensional version. Recall the
definition of Z™ as the set of all m-vectors in R™ that have
integer components. Let C be an nxm matrix. For s € 7"
define A, to be

A() = ™ (Crmay(Cxmas)2

V(@2m)™

Lemma 2. LetxbelongtoR" and let Cbe an m X n matrix

of rank m. Assume that « is positive. Then

lim Z aime*(CX*as)T(foas)/z -1

=0 G5 T

and

. o"as
lim

a0 sezz,,, Jmy"

_ — )] _
e (Cx—as)’ (Cx—as)/2 = Cx

Proof. Let y= Cx and let y; be the i-th component of y.
Then

m
lim o e*(y*as)T(y*as)/Z

a—0 SEZ‘ZW 1/(21’r)m

T QO _gsern
=lim[] > NN

i=1 s&Z

but this is 1 by virtue of the identity proved above. For the
second part, we proceed as above, taking the derivative with
respect to y.
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