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Abstract. I wrote some notes for myself while preparing for Student Arith-
metic Geometry Seminar talk on Fri, Oct 3, 2014. The abstract was “I will give

an introduction to formal schemes, state a version of Grothendieck existence
theorem, and discuss applications to deformation theory.”
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1. Introduction

1.1. References. [9, Section II.9], [6, Chapter 8], [2, Chapter 7], http://mathoverflow.
net/q/47993/15505

1.2. Conventions. All rings are commutative rings with unit.

1.3. Outline. (INCOMPLETE : )

(1)
(2)
(3)
(4)
(5)

Date: Fri, Oct 3, 2014.
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2. Completions

Given a ring A, an ideal A, and an A-module M , we denote the a-adic completion

of M by M̂ := lim←−M/anM .

Theorem 1. [9, II.9.3A] Let A be a Noetherian ring, and a an ideal of A.

(a) â is an ideal of Â, and for any n, we have ân = ân = anÂ and Â/ân ' A/an.

(b) If M is a finitely generated A-module, then M̂ 'M ⊗A Â.

(c) The functor M 7→ M̂ is an exact functor

{fin. gen. A-mod} → {fin. gen. Â-mod} .

(d) Â is a Noetherian ring.
(e) If ({Mn}n≥1, {ϕn,m : Mm →Mn}m≥n) is an inverse system, where each Mn

is a finitely generated A/an-module, each ϕn,m is surjective with kerϕn,m =

InMm, then M := lim←−Mn is a finitely generated Â-module, and for each

n, we have Mn 'M/anM .

Proof. (a) [1, Proposition 10.15]
(b) [1, Proposition 10.13]

(c) [1, Proposition 10.12] If M is a finitely generated A-module, then M̂ is a

finitely generated Â-module since M̂ 'M ⊗A Â by (b).
(d) [1, Theorem 10.26]
(e) (See also Theorem 38.) Note that the conditions imply in particular that,

for m ≥ n, we have Mn = Mm ⊗A/am A/an.

�

Lemma 2. [1, Proposition 10.14] Let A be a Noetherian ring, a an ideal, and Â the

a-adic completion of A. Then A→ Â is a flat ring homomorphism.

Proof. (Finitely generated) Ideal Criterion for Flatness [11, Lemma (9.26)] �

Proposition 3. Let A be a Noetherian ring, a an ideal, and Â the a-adic completion

of A. Then dimA ≤ dim Â.

Proof. Going-Down for flat algebras [11, Theorem (14.11)] and Lemma 2. �

Theorem 4. [1, Corollary 11.19] Let (A,m) be a Noetherian local ring, and let Â

be the m-adic completion of A. Then dim Â = dimA.

Question 5. What can we say, other than Proposition 3, about the dimension of
the p-adic completion of A if A not necessarily local or p is not necessarily prime?
(INCOMPLETE : )

3. Adic rings

Definition 6. [2, Section 7.1] A topological ring A is a ring equipped with a topology
such that the addition and multiplication maps A × A → A are continuous, when
A×A is given the product topology.
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Definition 7. [2, Section 7.1] Let A be a ring, and a an ideal. There is a unique
topology on A making it a topological ring such that the collection of ideals {an}n≥1

form a basis of neighborhoods of 0 in A. Namely, a subset U ⊂ A is open if for each
x ∈ U there exists n ≥ 1 such that x + an ⊂ U . The resulting topology is called
the a-adic topology on A. A topological ring A is called an adic ring if its topology
is the a-adic topology for some ideal a. Any such a is called an ideal of definition.

Example 8. An example of a topological ring which is not adic is A = C with the
analytic topology.

Given a topological ring, Â is the set of Cauchy sequences in A; it is a ring equipped

with a canonical ring homomorphism A→ Â. We say that A is separated if A→ Â

is injective,1 and complete if A→ Â is surjective.

If A has the a-adic topology, then there is a canonical homomorphism of topological

rings Â ' lim←−A/a
n, where each A/an is given the discrete topology and lim←−A/a

n

has the coarsest topology such that each projection lim←−A/a
n → A/an is continuous.

4. Admissible rings

Definition 9. [2, page 160] We say that a topological ring A is admissible if the
following conditions are satisfied:

(1) A is linearly topologized, i.e. there is a basis of neighborhoods (Iλ)λ∈Λ of
0 consisting of ideals of A.

(2) A has an ideal of definition, i.e. there is an open ideal a such that for any
neighborhood U of 0, there exists n ≥ 0 such that an ⊂ U .

(3) A is separated and complete.

5. Definition of Formal schemes

Definition 10. [9, pg. 194], [8, I, Definition (10.8.4)] Let X be a Noetherian scheme,
and let i : Y → X be a closed subscheme with ideal sheaf I ⊂ OX . For any
n ≥ 0, the ringed space Xn = (Y, i−1(OX/In+1)) is a Noetherian scheme; there are
canonical morphisms Xn → X and Xn → Xm for m ≥ n which makes {Xn}n≥0 a
directed system of schemes. We define the formal completion of X along Y , denoted

(X̂,OX̂), to be the following ringed space. We take |X̂| = |Y |, and on it the sheaf
of rings

OX̂ := lim←− i
−1(OX/In) . (1)

Given a coherent2 sheaf F on X, define the completion of F along Y to be the
sheaf

F̂ := lim←− i
−1(F/InF ) . (2)

1If A is Noetherian local, then Krull intersection theorem [11, Theorem (18.29)] implies that
A is automatically separated.

2Defined as in [9, pg. 111]; essentially the same as “of finite type” defined in [8, 0, (5.2.1)]; my
impression is that it doesn’t matter for Hartshorne because coherent sheaves are discussed usually
on Noetherian schemes, where the two notions coincide.
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Then F̂ has a natural structure of an OX̂ -module. If X is an affine scheme, say

X = SpecA with Y = SpecA/I, then we say that X̂ is an affine Noetherian formal

scheme, and denote X̂ = Spf A.3

Definition 11 (X̂ is topologically ringed space). For any open subset U of X̂, give
(i−1(OX/In))(U) the discrete topology and OX̂(U) the coarsest topology such

that each projection OX̂(U) → (i−1(OX/In))(U) is continuous. Suppose V ⊂ U
is an inclusion of open subsets of X. The topology on OX̂(V ) is generated by

fibers of the map OX̂(V ) → (i−1(OX/In))(V ) for n ≥ 1. Thus, to check that the
restriction maps OX̂(U)→ OX̂(V ) are continuous ring homomorphisms, it suffices
to check that the inverse image under OX̂(U) → OX̂(V ) of a fiber of OX̂(V ) →
(i−1(OX/In))(V ) is open in OX̂(U). This is the same as the inverse image of

an element of (i−1(OX/In))(V ) under the map OX̂(U) → (i−1(OX/In))(U) →
(i−1(OX/In))(V ). Thus OX̂ is a sheaf of topological rings.

Remark 12. Let X,Y, I, Xn be as in Definition 10. The completion (X̂,OX̂) comes
equipped with a canonical morphism of locally ringed spaces

(i, i]) : (X̂,OX̂)→ (X,OX) (3)

where i : |X̂| → |X| is the closed immersion and i] : i−1OX → OX̂ = lim←− i
−1(OX/In)

is the canonical morphism induced by i−1OX → i−1(OX/In) for all n.

X̂

Xm Xn

X

un,m

im

in

um

un

i

There are also canonical morphisms of locally ringed spaces un : Xn → X̂ cor-
responding to the canonical projections lim←− i

−1(OX/In) → i−1(OX/In), and the

composition Xn → X̂ → X is the canonical morphism in : Xn → X.

Remark 13. (1) If V is an open subset of X̂, thenOX̂(V ) = lim←−((OX(U)/In)(U))

for any open subset U of X such that U ∩ X̂ = V , by Lemma 47.
(2) If we “complete X along X”, i.e. if one takes i : Y → X to be the closed

immersion id : X → X in Definition 10 (so that I = 0), then X̂ and X
are isomorphic as locally ringed spaces (since i is a homeomorphism and
lim←− i

−1(OX/In) ' lim←−OX ' OX).

(3) With X, X̂ as in Definition 10, we have that |X̂| is a Noetherian topological
space, since |Y | is.

(4) Taking the coherent sheaf F = OX in Equation (2), we have ÔX = OX̂ .

Definition 14. [9, pg. 194] A Noetherian formal scheme is a locally ringed space
(X,OX) which has a finite open cover {Ui}i∈I such that, for each i, the pair

3Note that, by abuse of notation, there is no mention of the ideal I.
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(Ui,OX|Ui
) is isomorphic as a locally ringed space to the completion of some Noe-

therian scheme Xi along a closed subscheme Yi. A morphism of Noetherian formal
schemes is a morphism as locally ringed spaces. A sheaf F of OX-modules is said

to be coherent4 if there exists a finite open cover Ui ' X̂i as above, and for each

i there is a coherent sheaf Fi on Xi such that F|Ui
' F̂i as O

X̂i
-modules via the

given isomorphism Ui ' X̂i.

Definition 15. [8, I, Definition (10.4.5)] Let X,Y be Noetherian formal schemes. A
morphism of ringed spaces f : X → Y is said to be a morphism of formal schemes
if it is a morphism of topologically ringed spaces, and, for each x ∈ X, the induced
map OY,f(x) → OX,x is a local homomorphism.

Remark 16. (1) Every Noetherian scheme is a Noetherian formal scheme; see
Remark 13(2).

(2) Let X,Y, X̂ be as in Definition 10. Using Remark 21, we have that X̂
has an open cover by a finite number of affine Noetherian formal schemes.
Thus it’s equivalent to require in Definition 14 that X have a finite open
cover by “affine Noetherian formal schemes” (instead of “Noetherian formal
schemes”).

(3) It seems that “affine Noetherian formal scheme” is to “Noetherian formal
scheme” as “affine scheme” is to “scheme”. (INCOMPLETE : maybe?)

Question 17. Is F̂ a coherent OX̂ -module? Yes, by [9, Corollary II.9.8]. (INCOM-
PLETE : )

Example 18. Let A be a Noetherian ring and a an ideal of A; set X := SpecA and

Y := SpecA/a; let Â be the a-adic completion of A. Let X̂ be the completion of

X along Y . Then X̂ = (|SpecA/a|, Â).

(1) Let p ∈ Z be a prime; set A = Z and a = (p). Then X̂ = ({∗},Zp), where
Zp is the ring of p-adic integers.

(2) With k a field, set A = k[t] and a = (t). Then X̂ = ({∗}, k[[t]]), where k[[t]]
is the ring of power series in t and coefficients in k.

(3) Completion of singular variety at singular point (INCOMPLETE : )
(4) Completion of Pnk along hyperplane? (INCOMPLETE : )

Proposition 19 (Functoriality for completion along a closed subscheme). [8, I,
(10.9.1), (10.9.2)] Let f : X → Y be a morphism of Noetherian schemes. Let
i : X0 → X (resp. j : Y0 → Y ) be a closed subscheme of X (resp. Y ) such that

f ◦ i factors through j. Let X̂ (resp. Ŷ ) be the completion of X (resp. Y ) along X0

(resp. Y0). Then there exists a canonical morphism of formal schemes f̂ : X̂ → Ŷ
such that the following diagram commutes (where the horizontal arrows are the
canonical morphisms described in Remark 12).

X̂ X

Ŷ Y

iX

iY

f̂ f

4[8, 0, (5.3.1)] defines coherent modules differently.
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Proof. Use Proposition 50. By assumption, there exists f0 : X0 → Y0 such that
j ◦ f0 = f ◦ i. For each n > 0, define Xn := (|X0|, i−1(OX/In+1)) and Yn :=
(|Y0|, j−1(OY /J n+1)). We show that there are morphisms fn : Xn → Yn such that
the following two diagrams commute:

Xm Xn

Ym Yn

un,m

vn,m

fm fn

Xn X

Yn Y

in

jn

fn f

Fix n > 0. Since f ◦ i factors through j, by Proposition 50 we have f∗J ⊂ I. This
implies f∗(J n) = (f∗J )n+1 ⊂ In+1. Since In+1 and J n+1 are the ideal sheaves
of in and jn, we have by Proposition 50 again that f ◦ in factors through jn, say
jn ◦ fn = f ◦ in. Commutativity of the left diagram follows from the fact that
fn ◦ un,m factors through vn,m and that jn is a monomorphism (since it is a closed
immersion): namely, if f ′m is the unique morphism such that vn,m ◦f ′m = fn ◦un,m,
then fm and f ′m are both factorizations of f ◦ im through jm. Thus, by UMP of the

colimit of X̂, there exists unique morphism of locally ringed spaces f̂ : X̂ → Ŷ such

that iY ◦ f̂ = f ◦ iX . (INCOMPLETE : Why is this a morphism of topologically
ringed spaces?) �

We may ask why we do not define OX̂ to be i−1(lim←−OX/I
n); this is addressed by

Lemma 20, which says that it doesn’t matter.

Lemma 20. The canonical morphism

i−1(lim←−OX/I
n)→ lim←− i

−1(OX/In) (4)

induced by the maps i−1(lim←−OX/I
n)→ i−1(OX/In) is an isomorphism.

Proof. I don’t know whether filtered colimits always commute with inverse limits
(indexed by N), but in this case i is a closed immersion of topological spaces and
the supports of every OX/In and lim←−OX/I

n are contained in the image of i. Thus
if U ⊂ X is any open subset, then

(i−1(lim←−OX/I
n))(Y ∩ U)

∗' (lim←−OX/I
n)(U)

= lim←−((OX/In)(U))
∗' lim←−((i−1(OX/In))(Y ∩ U))

' (lim←− i
−1(OX/In))(Y ∩ U)

so Equation (4) is an isomorphism. (In the previous chain of isomorphisms, the
isomorphisms marked with ∗ are by Lemma 47.) �

Remark 21. Completion along a closed subscheme commutes with taking open
subsets: Let X and Y be as in Definition 10, and let U be a quasicompact5 open
subset of X. Let us denote by Y ∩U the fiber product of Y ×X U ; then J := I|U is

5This is to ensure that U is also a Noetherian scheme.
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the ideal sheaf of the closed immersion j : Y ∩U → U . Let Û denote the completion
of U along Y ∩ U . Then

OX̂ |Y ∩U =
(

lim←− i
−1(OX/In)

)
|Y ∩U

= lim←−
(
(i−1(OX/In))|Y ∩U

)
= lim←− j

−1(OU/J n)

= OÛ .

Since |Y ∩ U | → |Y | is an open immersion of topological spaces, we have an open

immersion of locally ringed spaces (Û ,OÛ )→ (X̂,OX̂).

Lemma 22. [5] With the definition of Definition 10, the completion X̂ is a locally
ringed space.

Proof. We consider the canonical morphism X0 → X̂ (which is a homeomorphism
on the underlying topological spaces). Given x ∈ X0, we have an induced map
ϕ : OX̂,x → OX0,x. Set n := ϕ−1(mX0,x). Since OX0,x is local with maximal

ideal mX0,x, it suffices to show that OX̂,x \ n consists of units. Let f ∈ OX̂,x \ n,

its image ϕ(f) is a unit in OX0,x, so there exists an open affine neighborhood
U = SpecA ⊂ X0 of x and a regular section f ′ ∈ OX0

(U) = A/I which maps
via the canonical morphism OX0(U)→ OX0,x to ϕ(f). Restricting further, we can
assume that f ′ is a unit in A/I; restricting further, we may assume that there
exists some f ′′ ∈ OX̂(U) which maps to f ′ under OX̂(U) → OX0

(U) and to f
under the canonical morphism OX̂(U)→ OX̂,x. This implies that f ′′ is a unit, see

Proposition 48. Thus f is a unit. �

Question 23 (Conjecture). If X is an affine Noetherian formal scheme that is also

a scheme, then it is an affine scheme. (INCOMPLETE : ) Since i : |X̂| → |X|
is a closed immersion of topological spaces, it is in particular quasi-compact and
quasi-separated, so i∗OX̂ = lim←−OX/I

n is a quasi-coherent OX -algebra.

Question 24 (Conjecture). With X,Y, I, X̂ as in Definition 10, suppose that X̂ is a

scheme. Then the canonical morphism Equation (3) of locally ringed spaces X̂ → X
is an affine morphism of schemes. Use Question 23, if it is true. (INCOMPLETE :
)

Remark 25. By definition, every affine Noetherian formal scheme comes equipped
with a morphism of locally ringed spaces into an affine Noetherian scheme.

Question 26. Given an affine Noetherian formal scheme, is there a way to determine
if it is a scheme? A partial result is given by Proposition 27. (INCOMPLETE : )

Proposition 27. With A, a, Â,X, Y, X̂ as in Example 18, if dimY < dimX, then X̂
is not an affine scheme.

Proof. We have

dim X̂ = dimY < dimX = dimA
(1)

≤ dim Â
(2)
= dim Γ(X̂,OX̂)

where (1) follows from Proposition 3 and (2) follows by definition of OX̂ . �
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Lemma 28. With X,Y, I, Xn as in Definition 10, (X̂,OX̂) is the colimit of {Xn}
in the category of locally ringed spaces.

Proof. Since the underlying topological spaces |X̂| and |Y | are homeomorphic, it
remains to consider the structure sheaves. Then the statement follows from the
fact that OX̂ is defined to be the projective limit of OXn

= i−1(OX/In+1) in the
category of sheaves of abelian groups on Y . �

(INCOMPLETE : define Spf A; where is it defined in EGA?)

Question 29. Are the local rings of Spf A topological rings? (INCOMPLETE : )

Remark 30. If X is a Noetherian scheme and I1 and I2 are two ideal sheaves
of OX such that Supp(OX/I1) = Supp(OX/I2), then the completions defined in
Definition 10 are isomorphic. This is because there exist positive integers n1, n2

such that In1
1 ⊂ I2 and In2

2 ⊂ I1 (work affine-locally and cover X with finitely
many affine opens).

Question 31. In which situations is the inverse limit lim←−OX/I
n a quasicoherent

sheaf on X? Let A be a ring, a an ideal, and f ∈ A any element. Localizing
the projection maps lim←−A/a

n → A/an give maps (lim←−A/a
n)f → (A/an)f , which

induces a morphism

(lim←−A/a
n)f → lim←−Af/a

n
f (5)

which may not be an isomorphism. Consider, for example, A = Z and a = (p); then
lim←−A/a

n = Zp. Let f ∈ Z be a positive integer. If p divides f , then VA(a)∩DA(f) =

∅ and (lim←−A/a
n)f = (Zp)f = Qp and lim←−Af/a

n
f = lim←−(Z/pnZ)f = 0 (so in this

case Equation (5) is not an isomorphism). If p does not divide f , then VA(a) ∩
DA(f) 6= ∅ and (lim←−A/a

n)f = (Zp)f = Zp and lim←−Af/a
n
f = lim←−(Z/pnZ)f = Zp.

(INCOMPLETE : According to [2, page 156, Remark 7.1/9; page 160], this is an
isomorphism if a is finitely generated.) Perhaps we may able to use Theorem 1(b);
but this requires that Af is finitely generated over A, which is true if and only if
1
f ∈ Af is integral over A.

Lemma 32. Let A be a Noetherian ring, a an ideal of A, and X a Noetherian
A-scheme. There is a commutative diagram of locally ringed spaces, which is not
fibered (INCOMPLETE : ?)

6. Properties of Formal Schemes

Proposition 33. [9, II.9.4] Let A be a Noetherian ring, a an ideal of A, and X :=

SpecA, Y := V (a), and X := X̂ = Spf A (the completion of X along Y ).

(a) I := a4 is a sheaf of ideals in OX, and for any n, OX/I
n ' (A/a)∼ as

sheaves on Y .
(b) if M is a finitely generated A-module, then M4 ' M̃ ⊗OX

OX.
(c) The functor M 7→ M4 is an exact functor from the category of finitely

generated A-modules to the category of coherent OX-modules.

Definition 34. Let (X,OX) be a Noetherian formal scheme. A sheaf of ideals I ⊂ OX

is called an ideal of definition for X if SuppOX/I = |X| and the locally ringed space
(|X|,OX/I) is a Noetherian scheme.
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Remark 35. With X, X̂, Y, I, Xn as in Definition 10, we have an isomorphism of

sheaves of rings OX̂/Î
n+1 ' OX/In+1 on Y ; this yields an isomorphism of locally

ringed spaces (X̂,OX̂/Î
n+1) ' Xn (which is a Noetherian scheme) for all n ≥ 0;

thus every În+1 is an ideal of definition for X̂. (INCOMPLETE : check this)

Proposition 36. [9, II.9.5] Let (X,OX) be a Noetherian formal scheme.

(a) If I1 and I2 are two ideals of definition, then there are integers m,n > 0
such that Im2 ⊆ I1 and In1 ⊆ I2.

(b) There is a unique largest ideal of definition I, characterized by the fact that
(X,OX/I) is a reduced scheme. In particular, ideals of definition exist.

(c) If I is an ideal of definition, so is In for any n > 0.

Question 37. To what extent can we recover the original scheme X from X̂? [9,
II.9.5] says that, given any Noetherian formal scheme X, we can ideals of definition
(which are intrinsic) to come up with a direct system of noetherian schemes of
which X is the colimit. (INCOMPLETE : )

Theorem 38. [9, II.9.6] Let X be a Noetherian formal scheme and let I be an ideal
of definition. For each n ≥ 0, we denote Yn := (|X|,OX/I

n+1), which is a scheme.

(a) If F is a coherent sheaf of OX-modules, then Fn := F/InF is a coherent
sheaf of OYn -modules for each n ≥ 0, and F ' lim←−Fn.

(b) Conversely, suppose ({Fn}n≥0, {ϕn,m : Fm → Fn}) is an inverse system,
where Fn is a coherent OYn

-module and ϕn,m is surjective with kerϕn,m =
InFm. Then F := lim←−Fn is a coherent OX-module, and for each n ≥ 0,

we have Fn ' F/InF.

Proof. Uses Theorem 1. The condition in (b) means we have a compatible system
of OYn -modules; having exact sequences 0 → InFm → Fm → Fn → 0 means
Fn = Fm/I

nFm ' Fm ⊗OX/Im (OX/I
n). �

Remark 39. Using Theorem 38 and Remark 35, the pullback of coherent sheaf

on X̂ along Xn → X̂ gives a coherent sheaf on Xn, hence we obtain a functor

Coh(X̂)→ Coh(Xn) for every n ≥ 0.

Theorem 40. [9, II.9.7] Let A be a Noetherian ring, a an ideal, and assume that A is

a-adically complete. Let X := SpecA, Y := V (a), and X = X̂. Then the functors
M 7→M4 and F 7→ Γ(X,F) are exact, and inverse to each other, on the categories
of finitely generated A-modules and coherent OX-modules respectively. Thus they
establish an equivalence of categories. In particular, every coherent OX-module is
of the form M4 for some M .

Corollary 41. [9, II.9.8] If X is any Noetherian scheme, Y a closed subscheme, and

X = X̂ the completion along Y , then the functor F 7→ F̂ is an exact functor from
coherent OX -modules to coherent OX-modules. Furthermore, if I is the sheaf of

ideals of Y , and Î its completion, then we have F̂/ÎnF̂ ' F/InF for each n,

and F̂ ' F ⊗OX
OX.

7. Grothendieck existence theorem

See also [3, Theorem 3.4].
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Theorem 42 (Grothendieck existence). [8, III1, (5.1.4)] Let A be a Noetherian adic
ring, Y := SpecA, a an ideal of definition of A, Y ′ := SpecA/a, f : X → Y a

morphism separated and of finite type, and X ′ := f−1(Y ′). Let X̂6 (resp. Ŷ =

Spf(A)) be the completion of X (resp. Y ) along X ′ (resp. Y ′), and f̂ : X̂ → Ŷ the

extension of f to the completions7; then, the functor F 7→ F̂ 8 is an equivalence of
categories between the category of coherent OX -modules with support proper over

Y 9 and the category of OX̂ -modules with support proper over Ŷ .

Proof. [8, III1, Section 5.2 and 5.3; page 151–156] �

Corollary 43. [8, III1, (5.1.6)] Assuming the conditions of Theorem 42, suppose X

is proper over Y = SpecA. Then the functor Coh(X)→ Coh(X̂) sending F 7→ F̂
is an equivalence of categories.

Proof. Every closed subscheme of X is proper over Y , and every closed subscheme

of X̂ is proper over Ŷ ; apply Theorem 42. (INCOMPLETE : Does it make sense to
define properness for morphisms of locally ringed spaces? How to define “of finite
type” for morphisms of locally ringed spaces?) (INCOMPLETE : Is it harder to

show that the functor is essentially surjective; given a coherent sheaf F on X̂, to
find some coherent F on X whose pullback is F is to “effectivize” F. ) For “proper

over Ŷ ”, look at remark following statement of [6, Theorem 8.4.2]. �

7.1. Setup. (From [14]. See also [6, 8.1.4].) Let (A,m) be a complete Noetherian
local ring, I an ideal, and X → SpecA a proper A-scheme. For each n ≥ 0, set

An := A/mn+1 and Xn := X ×SpecA SpecAn.10 Let X̂ denote the completion of
X along the closed subscheme X0.

X0 X1 X2 · · · X̂ X

SpecA0 SpecA1 SpecA2 · · · Spec Â SpecA

Note that, for any m > n, we have Xn = Xm ×SpecAm SpecAn.

Define “lim←−Coh(Xn)” to be the category whose objects are collections of data

(Fn, ιn)n≥0 where Fn is a coherent sheaf on Xn and ιn : Fn+1|Xn → Fn is an
isomorphism.11 Morphisms (Fn, ιn)n≥0 → (Gn, ηn)n≥0 are collections of morphisms
(ϕn)n≥0 where ϕn : Fn → Gn is a morphism of coherent sheaves on Xn such that
the following diagram commutes:

6The notation “X/X′” is also used; see [8, I, page 195].
7See [8, I, (10.9.1)].
8The notation “F/X′” is also used; see [8, I, page 194, Definition (10.8.4)].
9(INCOMPLETE : “closed subspaces proper over”)?
10The An are local Artinian rings, so the Xn are intuitively “points with fuzz on them”.
11Here “Fn+1|Xn” denotes the pullback of the coherent sheaf Fn+1 along the closed immersion

in,n+1 : Xn → Xn+1, i.e. i∗n,n+1Fn+1.
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Fn+1|Xn
Fn

Gn+1|Xn Gn

ιn

ηn

ϕn+1|Xn
ϕn

(INCOMPLETE : )

There is a functor

F : Coh(X)→ lim←−Coh(Xn) (6)

induced by the pullback functors Coh(X)→ Coh(Xn), where pullback of coherent
on X is coherent on Xn since Xn → X is a closed immersion of Noetherian schemes.
which sends (INCOMPLETE : factors through Coh(X̂); sends coherents on X to

coherents on X̂ by [9, II.9.6]? just a morphism of locally ringed spaces (need
noetherian?))

Lemma 44. Let X be a scheme, and I ⊂ Γ(X,OX) an ideal. Let IOX be the
sheaf associated to the presheaf U 7→ I · Γ(U,OX). Then IOX is quasicoherent.
(INCOMPLETE : why is this here?)

(INCOMPLETE : Any idea about the proof?)

8. Applications to deformation theory

Theorem 45. [6, 8.5.19] (SGA1, III 7.3) Let (A,m, k) be a complete Noetherian
local ring. Let S = SpecA, s = Spec k, and let X0 be a smooth projective scheme
over s satisfying H2(X0, TX0/s) = 0. Then there exists a proper and smooth formal

scheme X over Ŝ lifting X0. If, in addition, X0 satisfies H2(X0,OX0
) = 0, then

there exists a smooth projective scheme X over S such that Xs = X0.

Theorem 46. [14] Let (A,m) be a complete Noetherian local ring, and set An :=
A/mn+1 for n ≥ 0. Let r be a positive integer. Suppose given for every n ≥ 0
a closed subscheme in : Zn → PrAn

flat over SpecAn such that Zn+1 ×SpecAn+1

SpecAn → PrAn
is isomorphic to in for all n ≥ 0. Then there exists a unique closed

subscheme Z → PrA inducing the Zn.

Z0 Z1 Z2 Z

PrA0
PrA1

PrA2
· · · PrA

SpecA0 SpecA1 SpecA2 · · · SpecA

i0 i1 i2 i

In Theorem 46, we have

Zn+1 ×SpecAn+1 SpecAn ' Zn+1 ×Pr
An+1

PrAn

because PrAn
' SpecAn ×SpecAn+1

PrAn+1
. For this reason, it also follows that the

projection Zn+1 ×SpecAn+1
SpecAn → PrAn

is a closed immersion, since it is the
base-change of a closed immersion (namely, in+1).
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Proof. Set X = PrA and Xn = PrAn
. Apply Corollary 43 to the ideal sheaves defining

the in, �

(INCOMPLETE : Why do we need flatness in the above theorem?)

(INCOMPLETE : What is the deformation problem that this solves? See [12,
Warning 6.1.17] and [15, Warning 2.2.3].)

(INCOMPLETE : See also Example 1.2.8(ii) in https://www.uni-due.de/~mat903/

sem/ws0809/material/Minicourse_FormalGeometry.pdf for the notationA{T}.)

9. Appendix

Lemma 47. Let i : Z → X be a closed immersion of topological spaces, and let F
be a sheaf of abelian groups on X which has support contained in i(Z). If V ⊂ U
are nested open subsets of X such that V ∩ Z = U ∩ Z, then the restriction map
F (U) → F (V ) is an isomorphism. Thus, if Y ⊂ Z is any open subset of Z, then
(i−1F )(Y ) = F (U) for any open subset U of X such that Y = U ∩ Z.

Proof. We have open cover U = V ∪ (U \ Z) of U where V ∩ (U \ Z) = V \ Z.
Then F (U \ Z) = 0 and F (V \ Z) = 0. Using the sheaf axioms, we have an exact
sequence

0→ F (U)→ F (V )⊕F (U \ Z)→ F (V \ Z)

which reduces to the exact sequence 0→ F (U)→ F (V )→ 0. �

Proposition 48. Let A be a ring, a an ideal, and Â the a-adic completion of A.

Then the canonical morphism Â→ A/a sends nonunits to nonunits.12

Theorem 49. [7, Theorem 8] The fiber product of schemes in the category of locally
ringed spaces is a scheme.

Proposition 50. [8, I, (4.4.6)] Let f : X → Y be a morphism of schemes, i : X → X ′

(resp. j : Y → Y ′) a closed subscheme of X (resp. Y ) with ideal sheaf I (resp. J ).
Then the following are equivalent:

(i) f ◦ i factors through j.
(ii) (f∗J )OX ⊂ I.

12Inspired by Emerton’s claim in http://mathoverflow.net/a/27780/15505.

https://www.uni-due.de/~mat903/sem/ws0809/material/Minicourse_FormalGeometry.pdf
https://www.uni-due.de/~mat903/sem/ws0809/material/Minicourse_FormalGeometry.pdf
http://mathoverflow.net/a/27780/15505
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