FORMAL SCHEMES AND GROTHENDIECK EXISTENCE

MINSEON SHIN

ABSTRACT. I wrote some notes for myself while preparing for Student Arithmetic Geometry Seminar talk on Fri, Oct 3, 2014. The abstract was "I will give an introduction to formal schemes, state a version of Grothendieck existence theorem, and discuss applications to deformation theory."

Contents

1.	Introduction	1
2.	Completions	2
3.	Adic rings	2
4.	Admissible rings	3
5.	Definition of Formal schemes	3
6.	Properties of Formal Schemes	8
7.	Grothendieck existence theorem	9
8.	Applications to deformation theory	11
9.	Appendix	12
References		13

(Last edited April 6, 2015 at 3:19pm.)

1. Introduction

- 1.1. **References.** [9, Section II.9], [6, Chapter 8], [2, Chapter 7], http://mathoverflow.net/q/47993/15505
- 1.2. Conventions. All rings are commutative rings with unit.
- 1.3. Outline. (INCOMPLETE:)
 - (1)
 - (2)
 - (3)
 - (4)
 - (5)

Date: Fri, Oct 3, 2014.

2. Completions

Given a ring A, an ideal \mathfrak{A} , and an A-module M, we denote the \mathfrak{a} -adic completion of M by $\widehat{M} := \lim_{n \to \infty} M/\mathfrak{a}^n M$.

Theorem 1. [9, II.9.3A] Let A be a Noetherian ring, and \mathfrak{a} an ideal of A.

- (a) $\widehat{\mathfrak{a}}$ is an ideal of \widehat{A} , and for any n, we have $\widehat{\mathfrak{a}}^n = \widehat{\mathfrak{a}}^n = \mathfrak{a}^n \widehat{A}$ and $\widehat{A}/\widehat{\mathfrak{a}}^n \simeq A/\mathfrak{a}^n$.
- (b) If M is a finitely generated A-module, then $\widehat{M} \simeq M \otimes_A \widehat{A}$.
- (c) The functor $M \mapsto \widehat{M}$ is an exact functor

$$\{\text{fin. gen. } A\text{-mod}\} \to \{\text{fin. gen. } \widehat{A}\text{-mod}\}\ .$$

- (d) \hat{A} is a Noetherian ring.
- (e) If $(\{M_n\}_{n\geq 1}, \{\varphi_{n,m}: M_m \to M_n\}_{m\geq n})$ is an inverse system, where each M_n is a finitely generated A/\mathfrak{a}^n -module, each $\varphi_{n,m}$ is surjective with ker $\varphi_{n,m} = I^n M_m$, then $M := \varprojlim M_n$ is a finitely generated \widehat{A} -module, and for each n, we have $M_n \simeq M/\widehat{\mathfrak{a}}^n M$.

Proof. (a) [1, Proposition 10.15]

- (b) [1, Proposition 10.13]
- (c) [1, Proposition 10.12] If M is a finitely generated A-module, then \widehat{M} is a finitely generated \widehat{A} -module since $\widehat{M} \simeq M \otimes_A \widehat{A}$ by (b).
- (d) [1, Theorem 10.26]
- (e) (See also Theorem 38.) Note that the conditions imply in particular that, for $m \geq n$, we have $M_n = M_m \otimes_{A/\mathfrak{a}^m} A/\mathfrak{a}^n$.

Lemma 2. [1, Proposition 10.14] Let A be a Noetherian ring, \mathfrak{a} an ideal, and \widehat{A} the \mathfrak{a} -adic completion of A. Then $A \to \widehat{A}$ is a flat ring homomorphism.

Proof. (Finitely generated) Ideal Criterion for Flatness [11, Lemma (9.26)]

Proposition 3. Let A be a Noetherian ring, \mathfrak{a} an ideal, and \widehat{A} the \mathfrak{a} -adic completion of A. Then dim $A \leq \dim \widehat{A}$.

Proof. Going-Down for flat algebras [11, Theorem (14.11)] and Lemma 2.

Theorem 4. [1, Corollary 11.19] Let (A, \mathfrak{m}) be a Noetherian local ring, and let \widehat{A} be the \mathfrak{m} -adic completion of A. Then dim $\widehat{A} = \dim A$.

Question 5. What can we say, other than Proposition 3, about the dimension of the \mathfrak{p} -adic completion of A if A not necessarily local or \mathfrak{p} is not necessarily prime? (INCOMPLETE:)

3. Adic rings

Definition 6. [2, Section 7.1] A topological ring A is a ring equipped with a topology such that the addition and multiplication maps $A \times A \to A$ are continuous, when $A \times A$ is given the product topology.

Definition 7. [2, Section 7.1] Let A be a ring, and \mathfrak{a} an ideal. There is a unique topology on A making it a topological ring such that the collection of ideals $\{\mathfrak{a}^n\}_{n\geq 1}$ form a basis of neighborhoods of 0 in A. Namely, a subset $U\subset A$ is open if for each $x\in U$ there exists $n\geq 1$ such that $x+\mathfrak{a}^n\subset U$. The resulting topology is called the \mathfrak{a} -adic topology on A. A topological ring A is called an adic ring if its topology is the \mathfrak{a} -adic topology for some ideal \mathfrak{a} . Any such \mathfrak{a} is called an ideal of definition.

Example 8. An example of a topological ring which is not adic is $A = \mathbb{C}$ with the analytic topology.

Given a topological ring, \widehat{A} is the set of Cauchy sequences in A; it is a ring equipped with a canonical ring homomorphism $A \to \widehat{A}$. We say that A is separated if $A \to \widehat{A}$ is injective, \widehat{A} and complete if $A \to \widehat{A}$ is surjective.

If A has the \mathfrak{a} -adic topology, then there is a canonical homomorphism of topological rings $\widehat{A} \simeq \varprojlim A/\mathfrak{a}^n$, where each A/\mathfrak{a}^n is given the discrete topology and $\varprojlim A/\mathfrak{a}^n$ has the coarsest topology such that each projection $\varprojlim A/\mathfrak{a}^n \to A/\mathfrak{a}^n$ is continuous.

4. Admissible rings

Definition 9. [2, page 160] We say that a topological ring A is admissible if the following conditions are satisfied:

- (1) A is linearly topologized, i.e. there is a basis of neighborhoods $(I_{\lambda})_{{\lambda} \in \Lambda}$ of 0 consisting of ideals of A.
- (2) A has an ideal of definition, i.e. there is an open ideal \mathfrak{a} such that for any neighborhood U of 0, there exists $n \geq 0$ such that $\mathfrak{a}^n \subset U$.
- (3) A is separated and complete.

5. Definition of Formal schemes

Definition 10. [9, pg. 194], [8, I, Definition (10.8.4)] Let X be a Noetherian scheme, and let $i: Y \to X$ be a closed subscheme with ideal sheaf $\mathcal{I} \subset \mathcal{O}_X$. For any $n \geq 0$, the ringed space $X_n = (Y, i^{-1}(\mathcal{O}_X/\mathcal{I}^{n+1}))$ is a Noetherian scheme; there are canonical morphisms $X_n \to X$ and $X_n \to X_m$ for $m \geq n$ which makes $\{X_n\}_{n\geq 0}$ a directed system of schemes. We define the formal completion of X along Y, denoted $(\widehat{X}, \mathcal{O}_{\widehat{X}})$, to be the following ringed space. We take $|\widehat{X}| = |Y|$, and on it the sheaf of rings

$$\mathcal{O}_{\widehat{X}} := \varprojlim i^{-1}(\mathcal{O}_X/\mathcal{I}^n) . \tag{1}$$

Given a coherent² sheaf \mathscr{F} on X, define the completion of \mathscr{F} along Y to be the sheaf

$$\widehat{\mathscr{F}} := \varprojlim i^{-1}(\mathscr{F}/\mathcal{I}^n\mathscr{F}) \ . \tag{2}$$

 $^{^{1}}$ If A is Noetherian local, then Krull intersection theorem [11, Theorem (18.29)] implies that A is automatically separated.

²Defined as in [9, pg. 111]; essentially the same as "of finite type" defined in [8, 0, (5.2.1)]; my impression is that it doesn't matter for Hartshorne because coherent sheaves are discussed usually on Noetherian schemes, where the two notions coincide.

Then $\widehat{\mathscr{F}}$ has a natural structure of an $\mathcal{O}_{\widehat{X}}$ -module. If X is an affine scheme, say $X = \operatorname{Spec} A$ with $Y = \operatorname{Spec} A/I$, then we say that \widehat{X} is an affine Noetherian formal scheme, and denote $\widehat{X} = \operatorname{Spf} A.^3$

Definition 11 (\widehat{X}) is topologically ringed space). For any open subset U of \widehat{X} , give $(i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(U)$ the discrete topology and $\mathcal{O}_{\widehat{X}}(U)$ the coarsest topology such that each projection $\mathcal{O}_{\widehat{X}}(U) \to (i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(U)$ is continuous. Suppose $V \subset U$ is an inclusion of open subsets of X. The topology on $\mathcal{O}_{\widehat{X}}(V)$ is generated by fibers of the map $\mathcal{O}_{\widehat{X}}(V) \to (i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(V)$ for $n \geq 1$. Thus, to check that the restriction maps $\mathcal{O}_{\widehat{X}}(U) \to \mathcal{O}_{\widehat{X}}(V)$ are continuous ring homomorphisms, it suffices to check that the inverse image under $\mathcal{O}_{\widehat{X}}(U) \to \mathcal{O}_{\widehat{X}}(V)$ of a fiber of $\mathcal{O}_{\widehat{X}}(V) \to (i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(V)$ is open in $\mathcal{O}_{\widehat{X}}(U)$. This is the same as the inverse image of an element of $(i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(V)$ under the map $\mathcal{O}_{\widehat{X}}(U) \to (i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(U) \to (i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(V)$. Thus $\mathcal{O}_{\widehat{X}}$ is a sheaf of topological rings.

Remark 12. Let X, Y, \mathcal{I}, X_n be as in Definition 10. The completion $(\widehat{X}, \mathcal{O}_{\widehat{X}})$ comes equipped with a canonical morphism of locally ringed spaces

$$(i, i^{\sharp}): (\widehat{X}, \mathcal{O}_{\widehat{X}}) \to (X, \mathcal{O}_X)$$
 (3)

where $i:|\widehat{X}|\to |X|$ is the closed immersion and $i^{\sharp}:i^{-1}\mathcal{O}_X\to\mathcal{O}_{\widehat{X}}=\varprojlim i^{-1}(\mathcal{O}_X/\mathcal{I}^n)$ is the canonical morphism induced by $i^{-1}\mathcal{O}_X\to i^{-1}(\mathcal{O}_X/\mathcal{I}^n)$ for all n.

There are also canonical morphisms of locally ringed spaces $u_n: X_n \to \widehat{X}$ corresponding to the canonical projections $\varprojlim i^{-1}(\mathcal{O}_X/\mathcal{I}^n) \to i^{-1}(\mathcal{O}_X/\mathcal{I}^n)$, and the composition $X_n \to \widehat{X} \to X$ is the canonical morphism $i_n: X_n \to X$.

Remark 13. (1) If V is an open subset of \widehat{X} , then $\mathcal{O}_{\widehat{X}}(V) = \varprojlim ((\mathcal{O}_X(U)/\mathcal{I}^n)(U))$ for any open subset U of X such that $U \cap \widehat{X} = V$, by Lemma 47.

- (2) If we "complete X along X", i.e. if one takes $i: Y \to X$ to be the closed immersion id: $X \to X$ in Definition 10 (so that $\mathcal{I} = 0$), then \widehat{X} and X are isomorphic as locally ringed spaces (since i is a homeomorphism and $\lim_{X \to X} i^{-1}(\mathcal{O}_X/\mathcal{I}^n) \simeq \lim_{X \to X} \mathcal{O}_X$).
- (3) With X, \hat{X} as in Definition 10, we have that $|\hat{X}|$ is a Noetherian topological space, since |Y| is.
- (4) Taking the coherent sheaf $\mathscr{F} = \mathcal{O}_X$ in Equation (2), we have $\widehat{\mathcal{O}_X} = \mathcal{O}_{\widehat{X}}$.

Definition 14. [9, pg. 194] A Noetherian formal scheme is a locally ringed space $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$ which has a finite open cover $\{\mathfrak{U}_i\}_{i\in I}$ such that, for each i, the pair

 $^{^{3}}$ Note that, by abuse of notation, there is no mention of the ideal I.

 $(\mathfrak{U}_i, \mathcal{O}_{\mathfrak{X}}|_{\mathfrak{U}_i})$ is isomorphic as a locally ringed space to the completion of some Noetherian scheme X_i along a closed subscheme Y_i . A morphism of Noetherian formal schemes is a morphism as locally ringed spaces. A sheaf \mathfrak{F} of $\mathcal{O}_{\mathfrak{X}}$ -modules is said to be coherent⁴ if there exists a finite open cover $\mathfrak{U}_i \simeq \widehat{X}_i$ as above, and for each i there is a coherent sheaf \mathscr{F}_i on X_i such that $\mathfrak{F}|_{\mathfrak{U}_i} \simeq \widehat{\mathscr{F}}_i$ as $\mathcal{O}_{\widehat{X}_i}$ -modules via the given isomorphism $\mathfrak{U}_i \simeq \widehat{X}_i$.

Definition 15. [8, I, Definition (10.4.5)] Let $\mathfrak{X}, \mathfrak{Y}$ be Noetherian formal schemes. A morphism of ringed spaces $f: \mathfrak{X} \to \mathfrak{Y}$ is said to be a morphism of formal schemes if it is a morphism of topologically ringed spaces, and, for each $x \in \mathfrak{X}$, the induced map $\mathcal{O}_{\mathfrak{Y},f(x)} \to \mathcal{O}_{\mathfrak{X},x}$ is a local homomorphism.

Remark 16. (1) Every Noetherian scheme is a Noetherian formal scheme; see Remark 13(2).

- (2) Let X, Y, \widehat{X} be as in Definition 10. Using Remark 21, we have that \widehat{X} has an open cover by a finite number of affine Noetherian formal schemes. Thus it's equivalent to require in Definition 14 that \mathfrak{X} have a finite open cover by "affine Noetherian formal schemes" (instead of "Noetherian formal schemes").
- (3) It seems that "affine Noetherian formal scheme" is to "Noetherian formal scheme" as "affine scheme" is to "scheme". (INCOMPLETE: maybe?)

Question 17. Is $\widehat{\mathscr{F}}$ a coherent $\mathcal{O}_{\widehat{X}}$ -module? Yes, by [9, Corollary II.9.8]. (INCOMPLETE:)

Example 18. Let A be a Noetherian ring and $\mathfrak a$ an ideal of A; set $X := \operatorname{Spec} A$ and $Y := \operatorname{Spec} A/\mathfrak a$; let \widehat{A} be the $\mathfrak a$ -adic completion of A. Let \widehat{X} be the completion of X along Y. Then $\widehat{X} = (|\operatorname{Spec} A/\mathfrak a|, \widehat{A})$.

- (1) Let $p \in \mathbb{Z}$ be a prime; set $A = \mathbb{Z}$ and $\mathfrak{a} = (p)$. Then $\widehat{X} = (\{*\}, \mathbb{Z}_p)$, where \mathbb{Z}_p is the ring of p-adic integers.
- (2) With k a field, set A = k[t] and $\mathfrak{a} = (t)$. Then $\widehat{X} = (\{*\}, k[[t]])$, where k[[t]] is the ring of power series in t and coefficients in k.
- (3) Completion of singular variety at singular point (INCOMPLETE:)
- (4) Completion of \mathbb{P}^n_k along hyperplane? (INCOMPLETE:)

Proposition 19 (Functoriality for completion along a closed subscheme). [8, I, (10.9.1), (10.9.2)] Let $f: X \to Y$ be a morphism of Noetherian schemes. Let $i: X_0 \to X$ (resp. $j: Y_0 \to Y$) be a closed subscheme of X (resp. Y) such that $f \circ i$ factors through j. Let \widehat{X} (resp. \widehat{Y}) be the completion of X (resp. Y) along X_0 (resp. Y_0). Then there exists a canonical morphism of formal schemes $\widehat{f}: \widehat{X} \to \widehat{Y}$ such that the following diagram commutes (where the horizontal arrows are the canonical morphisms described in Remark 12).

$$\begin{array}{ccc}
\widehat{X} & \xrightarrow{i_X} X \\
\widehat{f} & & \downarrow f \\
\widehat{Y} & \xrightarrow{i_Y} Y
\end{array}$$

⁴[8, 0, (5.3.1)] defines coherent modules differently.

Proof. Use Proposition 50. By assumption, there exists $f_0: X_0 \to Y_0$ such that $j \circ f_0 = f \circ i$. For each n > 0, define $X_n := (|X_0|, i^{-1}(\mathcal{O}_X/\mathcal{I}^{n+1}))$ and $Y_n := (|Y_0|, j^{-1}(\mathcal{O}_Y/\mathcal{I}^{n+1}))$. We show that there are morphisms $f_n: X_n \to Y_n$ such that the following two diagrams commute:

$$\begin{array}{cccc} X_m \xrightarrow{u_{n,m}} X_n & X_n \xrightarrow{i_n} X \\ \downarrow^{f_m} & \downarrow^{f_n} & \downarrow^{f_n} & \downarrow^{f} \\ Y_m \xrightarrow{v_{n,m}} Y_n & Y_n \xrightarrow{j_n} Y \end{array}$$

Fix n > 0. Since $f \circ i$ factors through j, by Proposition 50 we have $f^*\mathcal{J} \subset \mathcal{I}$. This implies $f^*(\mathcal{J}^n) = (f^*\mathcal{J})^{n+1} \subset \mathcal{I}^{n+1}$. Since \mathcal{I}^{n+1} and \mathcal{J}^{n+1} are the ideal sheaves of i_n and j_n , we have by Proposition 50 again that $f \circ i_n$ factors through j_n , say $j_n \circ f_n = f \circ i_n$. Commutativity of the left diagram follows from the fact that $f_n \circ u_{n,m}$ factors through $v_{n,m}$ and that j_n is a monomorphism (since it is a closed immersion): namely, if f'_m is the unique morphism such that $v_{n,m} \circ f'_m = f_n \circ u_{n,m}$, then f_m and f'_m are both factorizations of $f \circ i_m$ through j_m . Thus, by UMP of the colimit of \widehat{X} , there exists unique morphism of locally ringed spaces $\widehat{f}: \widehat{X} \to \widehat{Y}$ such that $i_Y \circ \widehat{f} = f \circ i_X$. (INCOMPLETE: Why is this a morphism of topologically ringed spaces?)

We may ask why we do not define $\mathcal{O}_{\widehat{X}}$ to be $i^{-1}(\varprojlim \mathcal{O}_X/\mathcal{I}^n)$; this is addressed by Lemma 20, which says that it doesn't matter.

Lemma 20. The canonical morphism

$$i^{-1}(\varprojlim \mathcal{O}_X/\mathcal{I}^n) \to \varprojlim i^{-1}(\mathcal{O}_X/\mathcal{I}^n)$$
 (4)

induced by the maps $i^{-1}(\varprojlim \mathcal{O}_X/\mathcal{I}^n) \to i^{-1}(\mathcal{O}_X/\mathcal{I}^n)$ is an isomorphism.

Proof. I don't know whether filtered colimits always commute with inverse limits (indexed by \mathbb{N}), but in this case i is a closed immersion of topological spaces and the supports of every $\mathcal{O}_X/\mathcal{I}^n$ and $\varprojlim \mathcal{O}_X/\mathcal{I}^n$ are contained in the image of i. Thus if $U \subset X$ is any open subset, then

$$(i^{-1}(\varprojlim \mathcal{O}_X/\mathcal{I}^n))(Y \cap U) \stackrel{*}{\simeq} (\varprojlim \mathcal{O}_X/\mathcal{I}^n)(U)$$

$$= \varprojlim ((\mathcal{O}_X/\mathcal{I}^n)(U))$$

$$\stackrel{*}{\simeq} \varprojlim ((i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(Y \cap U))$$

$$\simeq (\varprojlim i^{-1}(\mathcal{O}_X/\mathcal{I}^n))(Y \cap U)$$

so Equation (4) is an isomorphism. (In the previous chain of isomorphisms, the isomorphisms marked with * are by Lemma 47.)

Remark 21. Completion along a closed subscheme commutes with taking open subsets: Let X and Y be as in Definition 10, and let U be a quasicompact⁵ open subset of X. Let us denote by $Y \cap U$ the fiber product of $Y \times_X U$; then $\mathcal{J} := \mathcal{I}|_U$ is

 $^{^{5}}$ This is to ensure that U is also a Noetherian scheme.

the ideal sheaf of the closed immersion $j: Y \cap U \to U$. Let \widehat{U} denote the completion of U along $Y \cap U$. Then

$$\mathcal{O}_{\widehat{X}}|_{Y\cap U} = \left(\varprojlim i^{-1}(\mathcal{O}_X/\mathcal{I}^n)\right)|_{Y\cap U}$$

$$= \varprojlim \left(\left(i^{-1}(\mathcal{O}_X/\mathcal{I}^n)\right)|_{Y\cap U}\right)$$

$$= \varprojlim j^{-1}(\mathcal{O}_U/\mathcal{J}^n)$$

$$= \mathcal{O}_{\widehat{U}}.$$

Since $|Y \cap U| \to |Y|$ is an open immersion of topological spaces, we have an open immersion of locally ringed spaces $(\widehat{U}, \mathcal{O}_{\widehat{U}}) \to (\widehat{X}, \mathcal{O}_{\widehat{X}})$.

Lemma 22. [5] With the definition of Definition 10, the completion \widehat{X} is a locally ringed space.

Proof. We consider the canonical morphism $X_0 \to \widehat{X}$ (which is a homeomorphism on the underlying topological spaces). Given $x \in X_0$, we have an induced map $\varphi: \mathcal{O}_{\widehat{X},x} \to \mathcal{O}_{X_0,x}$. Set $\mathfrak{n} := \varphi^{-1}(\mathfrak{m}_{X_0,x})$. Since $\mathcal{O}_{X_0,x}$ is local with maximal ideal $\mathfrak{m}_{X_0,x}$, it suffices to show that $\mathcal{O}_{\widehat{X},x} \setminus \mathfrak{n}$ consists of units. Let $f \in \mathcal{O}_{\widehat{X},x} \setminus \mathfrak{n}$, its image $\varphi(f)$ is a unit in $\mathcal{O}_{X_0,x}$, so there exists an open affine neighborhood $U = \operatorname{Spec} A \subset X_0$ of x and a regular section $f' \in \mathcal{O}_{X_0}(U) = A/I$ which maps via the canonical morphism $\mathcal{O}_{X_0}(U) \to \mathcal{O}_{X_0,x}$ to $\varphi(f)$. Restricting further, we can assume that f' is a unit in A/I; restricting further, we may assume that there exists some $f'' \in \mathcal{O}_{\widehat{X}}(U)$ which maps to f' under $\mathcal{O}_{\widehat{X}}(U) \to \mathcal{O}_{X_0}(U)$ and to f under the canonical morphism $\mathcal{O}_{\widehat{X}}(U) \to \mathcal{O}_{\widehat{X},x}$. This implies that f'' is a unit, see Proposition 48. Thus f is a unit.

Question 23 (Conjecture). If \mathfrak{X} is an affine Noetherian formal scheme that is also a scheme, then it is an affine scheme. (INCOMPLETE:) Since $i:|\widehat{X}| \to |X|$ is a closed immersion of topological spaces, it is in particular quasi-compact and quasi-separated, so $i_*\mathcal{O}_{\widehat{Y}} = \lim \mathcal{O}_X/\mathcal{I}^n$ is a quasi-coherent \mathcal{O}_X -algebra.

Question 24 (Conjecture). With $X,Y,\mathcal{I},\widehat{X}$ as in Definition 10, suppose that \widehat{X} is a scheme. Then the canonical morphism Equation (3) of locally ringed spaces $\widehat{X} \to X$ is an affine morphism of schemes. Use Question 23, if it is true. (INCOMPLETE:)

Remark 25. By definition, every affine Noetherian formal scheme comes equipped with a morphism of locally ringed spaces into an affine Noetherian scheme.

Question 26. Given an affine Noetherian formal scheme, is there a way to determine if it is a scheme? A partial result is given by Proposition 27. (INCOMPLETE:)

Proposition 27. With $A, \mathfrak{a}, \widehat{A}, X, Y, \widehat{X}$ as in Example 18, if dim $Y < \dim X$, then \widehat{X} is not an affine scheme.

Proof. We have

$$\dim \widehat{X} = \dim Y < \dim X = \dim A \overset{(1)}{\leq} \dim \widehat{A} \overset{(2)}{=} \dim \Gamma(\widehat{X}, \mathcal{O}_{\widehat{Y}})$$

where (1) follows from Proposition 3 and (2) follows by definition of $\mathcal{O}_{\widehat{X}}$.

Lemma 28. With X, Y, \mathcal{I}, X_n as in Definition 10, $(\widehat{X}, \mathcal{O}_{\widehat{X}})$ is the colimit of $\{X_n\}$ in the category of locally ringed spaces.

Proof. Since the underlying topological spaces $|\widehat{X}|$ and |Y| are homeomorphic, it remains to consider the structure sheaves. Then the statement follows from the fact that $\mathcal{O}_{\widehat{X}}$ is defined to be the projective limit of $\mathcal{O}_{X_n} = i^{-1}(\mathcal{O}_X/\mathcal{I}^{n+1})$ in the category of sheaves of abelian groups on Y.

(INCOMPLETE : define Spf A; where is it defined in EGA?)

Question 29. Are the local rings of Spf A topological rings? (INCOMPLETE:)

Remark 30. If X is a Noetherian scheme and \mathcal{I}_1 and \mathcal{I}_2 are two ideal sheaves of \mathcal{O}_X such that $\operatorname{Supp}(\mathcal{O}_X/\mathcal{I}_1) = \operatorname{Supp}(\mathcal{O}_X/\mathcal{I}_2)$, then the completions defined in Definition 10 are isomorphic. This is because there exist positive integers n_1, n_2 such that $\mathcal{I}_1^{n_1} \subset \mathcal{I}_2$ and $\mathcal{I}_2^{n_2} \subset \mathcal{I}_1$ (work affine-locally and cover X with finitely many affine opens).

Question 31. In which situations is the inverse limit $\varprojlim \mathcal{O}_X/\mathcal{I}^n$ a quasicoherent sheaf on X? Let A be a ring, \mathfrak{a} an ideal, and $f \in A$ any element. Localizing the projection maps $\varprojlim A/\mathfrak{a}^n \to A/\mathfrak{a}^n$ give maps $(\varprojlim A/\mathfrak{a}^n)_f \to (A/\mathfrak{a}^n)_f$, which induces a morphism

$$(\underline{\lim} A/\mathfrak{a}^n)_f \to \underline{\lim} A_f/\mathfrak{a}_f^n \tag{5}$$

which may not be an isomorphism. Consider, for example, $A = \mathbb{Z}$ and $\mathfrak{a} = (p)$; then $\lim_{n \to \infty} A/\mathfrak{a}^n = \mathbb{Z}_p$. Let $f \in \mathbb{Z}$ be a positive integer. If p divides f, then $V_A(\mathfrak{a}) \cap D_A(f) = \emptyset$ and $(\lim_{n \to \infty} A/\mathfrak{a}^n)_f = (\mathbb{Z}_p)_f = \mathbb{Q}_p$ and $\lim_{n \to \infty} A_f/\mathfrak{a}^n_f = \lim_{n \to \infty} (\mathbb{Z}/p^n\mathbb{Z})_f = 0$ (so in this case Equation (5) is not an isomorphism). If p does not divide f, then $V_A(\mathfrak{a}) \cap D_A(f) \neq \emptyset$ and $(\lim_{n \to \infty} A/\mathfrak{a}^n)_f = (\mathbb{Z}_p)_f = \mathbb{Z}_p$ and $\lim_{n \to \infty} A_f/\mathfrak{a}^n_f = \lim_{n \to \infty} (\mathbb{Z}/p^n\mathbb{Z})_f = \mathbb{Z}_p$. (INCOMPLETE: According to [2, page 156, Remark 7.1/9; page 160], this is an isomorphism if \mathfrak{a} is finitely generated.) Perhaps we may able to use Theorem 1(b); but this requires that A_f is finitely generated over A, which is true if and only if $\frac{1}{f} \in A_f$ is integral over A.

Lemma 32. Let A be a Noetherian ring, $\mathfrak a$ an ideal of A, and X a Noetherian A-scheme. There is a commutative diagram of locally ringed spaces, which is not fibered (INCOMPLETE: ?)

6. Properties of Formal Schemes

Proposition 33. [9, II.9.4] Let A be a Noetherian ring, \mathfrak{a} an ideal of A, and $X := \operatorname{Spec} A$, $Y := V(\mathfrak{a})$, and $\mathfrak{X} := \widehat{X} = \operatorname{Spf} A$ (the completion of X along Y).

- (a) $\mathfrak{I}:=\mathfrak{a}^{\triangle}$ is a sheaf of ideals in $\mathcal{O}_{\mathfrak{X}}$, and for any n, $\mathcal{O}_{\mathfrak{X}}/\mathfrak{I}^n\simeq (A/\mathfrak{a})^{\sim}$ as sheaves on Y.
- (b) if M is a finitely generated A-module, then $M^{\triangle} \simeq \widetilde{M} \otimes_{\mathcal{O}_X} \mathcal{O}_{\mathfrak{X}}$.
- (c) The functor $M \mapsto M^{\triangle}$ is an exact functor from the category of finitely generated A-modules to the category of coherent $\mathcal{O}_{\mathfrak{X}}$ -modules.

Definition 34. Let $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$ be a Noetherian formal scheme. A sheaf of ideals $\mathfrak{I} \subset \mathcal{O}_{\mathfrak{X}}$ is called an ideal of definition for \mathfrak{X} if Supp $\mathcal{O}_{\mathfrak{X}}/\mathfrak{I} = |\mathfrak{X}|$ and the locally ringed space $(|\mathfrak{X}|, \mathcal{O}_{\mathfrak{X}}/\mathfrak{I})$ is a Noetherian scheme.

Remark 35. With $X, \widehat{X}, Y, \mathcal{I}, X_n$ as in Definition 10, we have an isomorphism of sheaves of rings $\mathcal{O}_{\widehat{X}}/\widehat{\mathcal{I}}^{n+1} \simeq \mathcal{O}_X/\mathcal{I}^{n+1}$ on Y; this yields an isomorphism of locally ringed spaces $(\widehat{X}, \mathcal{O}_{\widehat{X}}/\widehat{\mathcal{I}}^{n+1}) \simeq X_n$ (which is a Noetherian scheme) for all $n \geq 0$; thus every $\widehat{\mathcal{I}}^{n+1}$ is an ideal of definition for \widehat{X} . (INCOMPLETE: check this)

Proposition 36. [9, II.9.5] Let $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$ be a Noetherian formal scheme.

- (a) If \mathfrak{I}_1 and \mathfrak{I}_2 are two ideals of definition, then there are integers m, n > 0 such that $\mathfrak{I}_2^m \subseteq \mathfrak{I}_1$ and $\mathfrak{I}_1^n \subseteq \mathfrak{I}_2$.
- (b) There is a unique largest ideal of definition \Im , characterized by the fact that $(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}/\Im)$ is a reduced scheme. In particular, ideals of definition exist.
- (c) If \Im is an ideal of definition, so is \Im^n for any n > 0.

Question 37. To what extent can we recover the original scheme X from \widehat{X} ? [9, II.9.5] says that, given any Noetherian formal scheme \mathfrak{X} , we can ideals of definition (which are intrinsic) to come up with a direct system of noetherian schemes of which \mathfrak{X} is the colimit. (INCOMPLETE:)

Theorem 38. [9, II.9.6] Let \mathfrak{X} be a Noetherian formal scheme and let \mathfrak{I} be an ideal of definition. For each $n \geq 0$, we denote $Y_n := (|\mathfrak{X}|, \mathcal{O}_{\mathfrak{X}}/\mathfrak{I}^{n+1})$, which is a scheme.

- (a) If \mathfrak{F} is a coherent sheaf of $\mathcal{O}_{\mathfrak{X}}$ -modules, then $\mathscr{F}_n := \mathfrak{F}/\mathfrak{I}^n\mathfrak{F}$ is a coherent sheaf of \mathcal{O}_{Y_n} -modules for each $n \geq 0$, and $\mathfrak{F} \simeq \lim \mathscr{F}_n$.
- (b) Conversely, suppose $(\{\mathscr{F}_n\}_{n\geq 0}, \{\varphi_{n,m}: \mathscr{F}_m \to \mathscr{F}_n\})$ is an inverse system, where \mathscr{F}_n is a coherent \mathcal{O}_{Y_n} -module and $\varphi_{n,m}$ is surjective with $\ker \varphi_{n,m} = \mathfrak{I}^n\mathscr{F}_m$. Then $\mathfrak{F} := \varprojlim \mathscr{F}_n$ is a coherent $\mathcal{O}_{\mathfrak{X}}$ -module, and for each $n\geq 0$, we have $\mathscr{F}_n \simeq \mathfrak{F}/\mathfrak{I}^n\mathfrak{F}$.

Proof. Uses Theorem 1. The condition in (b) means we have a compatible system of \mathcal{O}_{Y_n} -modules; having exact sequences $0 \to \mathfrak{I}^n \mathscr{F}_m \to \mathscr{F}_m \to \mathscr{F}_n \to 0$ means $\mathscr{F}_n = \mathscr{F}_m/\mathfrak{I}^n \mathscr{F}_m \simeq \mathscr{F}_m \otimes_{\mathcal{O}_{\mathfrak{X}}/\mathfrak{I}^m} (\mathcal{O}_{\mathfrak{X}}/\mathfrak{I}^n)$.

Remark 39. Using Theorem 38 and Remark 35, the pullback of coherent sheaf on \widehat{X} along $X_n \to \widehat{X}$ gives a coherent sheaf on X_n , hence we obtain a functor $\operatorname{Coh}(\widehat{X}) \to \operatorname{Coh}(X_n)$ for every $n \geq 0$.

Theorem 40. [9, II.9.7] Let A be a Noetherian ring, \mathfrak{a} an ideal, and assume that A is \mathfrak{a} -adically complete. Let $X := \operatorname{Spec} A$, $Y := V(\mathfrak{a})$, and $\mathfrak{X} = \widehat{X}$. Then the functors $M \mapsto M^{\triangle}$ and $\mathfrak{F} \mapsto \Gamma(\mathfrak{X}, \mathfrak{F})$ are exact, and inverse to each other, on the categories of finitely generated A-modules and coherent $\mathcal{O}_{\mathfrak{X}}$ -modules respectively. Thus they establish an equivalence of categories. In particular, every coherent $\mathcal{O}_{\mathfrak{X}}$ -module is of the form M^{\triangle} for some M.

Corollary 41. [9, II.9.8] If X is any Noetherian scheme, Y a closed subscheme, and $\mathfrak{X} = \widehat{X}$ the completion along Y, then the functor $\mathscr{F} \mapsto \widehat{\mathscr{F}}$ is an exact functor from coherent \mathcal{O}_X -modules to coherent $\mathcal{O}_{\mathfrak{X}}$ -modules. Furthermore, if \mathcal{I} is the sheaf of ideals of Y, and \widehat{I} its completion, then we have $\widehat{\mathscr{F}}/\widehat{\mathcal{I}}^n\widehat{\mathscr{F}} \simeq \mathscr{F}/\mathcal{I}^n\mathscr{F}$ for each n, and $\widehat{\mathscr{F}} \simeq \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{O}_{\mathfrak{X}}$.

7. Grothendieck existence theorem

See also [3, Theorem 3.4].

Theorem 42 (Grothendieck existence). [8, III₁, (5.1.4)] Let A be a Noetherian adic ring, $Y := \operatorname{Spec} A$, \mathfrak{a} an ideal of definition of A, $Y' := \operatorname{Spec} A/\mathfrak{a}$, $f : X \to Y$ a morphism separated and of finite type, and $X' := f^{-1}(Y')$. Let \widehat{X}^6 (resp. $\widehat{Y} = \operatorname{Spf}(A)$) be the completion of X (resp. Y) along X' (resp. Y'), and $\widehat{f} : \widehat{X} \to \widehat{Y}$ the extension of f to the completions⁷; then, the functor $\mathscr{F} \mapsto \widehat{\mathscr{F}}^8$ is an equivalence of categories between the category of coherent \mathcal{O}_X -modules with support proper over Y^9 and the category of $\mathcal{O}_{\widehat{Y}}$ -modules with support proper over \widehat{Y} .

Proof. [8, III₁, Section 5.2 and 5.3; page 151–156]
$$\Box$$

Corollary 43. [8, III₁, (5.1.6)] Assuming the conditions of Theorem 42, suppose X is proper over $Y = \operatorname{Spec} A$. Then the functor $\operatorname{Coh}(X) \to \operatorname{Coh}(\widehat{X})$ sending $\mathscr{F} \mapsto \widehat{\mathscr{F}}$ is an equivalence of categories.

Proof. Every closed subscheme of X is proper over Y, and every closed subscheme of \widehat{X} is proper over \widehat{Y} ; apply Theorem 42. (INCOMPLETE: Does it make sense to define properness for morphisms of locally ringed spaces? How to define "of finite type" for morphisms of locally ringed spaces?) (INCOMPLETE: Is it harder to show that the functor is essentially surjective; given a coherent sheaf \mathfrak{F} on \widehat{X} , to find some coherent \mathscr{F} on X whose pullback is \mathfrak{F} is to "effectivize" \mathfrak{F} .) For "proper over \widehat{Y} ", look at remark following statement of [6, Theorem 8.4.2].

7.1. **Setup.** (From [14]. See also [6, 8.1.4].) Let (A, \mathfrak{m}) be a complete Noetherian local ring, I an ideal, and $X \to \operatorname{Spec} A$ a proper A-scheme. For each $n \geq 0$, set $A_n := A/\mathfrak{m}^{n+1}$ and $X_n := X \times_{\operatorname{Spec} A} \operatorname{Spec} A_n$. Let \widehat{X} denote the completion of X along the closed subscheme X_0 .

Note that, for any m > n, we have $X_n = X_m \times_{\operatorname{Spec} A_m} \operatorname{Spec} A_n$.

Define " \varprojlim Coh (X_n) " to be the category whose objects are collections of data $(\mathscr{F}_n, \iota_n)_{n\geq 0}$ where \mathscr{F}_n is a coherent sheaf on X_n and $\iota_n: \mathscr{F}_{n+1}|_{X_n} \to \mathscr{F}_n$ is an isomorphism. ¹¹ Morphisms $(\mathscr{F}_n, \iota_n)_{n\geq 0} \to (\mathscr{G}_n, \eta_n)_{n\geq 0}$ are collections of morphisms $(\varphi_n)_{n\geq 0}$ where $\varphi_n: \mathscr{F}_n \to \mathscr{G}_n$ is a morphism of coherent sheaves on X_n such that the following diagram commutes:

⁶The notation " $X_{/X'}$ " is also used; see [8, I, page 195].

⁷See [8, I, (10.9.1)].

⁸The notation " $\mathscr{F}_{/X'}$ " is also used; see [8, I, page 194, Definition (10.8.4)].

⁹(INCOMPLETE: "closed subspaces proper over")?

 $^{^{10}}$ The A_n are local Artinian rings, so the X_n are intuitively "points with fuzz on them".

¹¹Here " $\mathscr{F}_{n+1}|_{X_n}$ " denotes the pullback of the coherent sheaf \mathscr{F}_{n+1} along the closed immersion $i_{n,n+1}:X_n\to X_{n+1}$, i.e. $i_{n,n+1}^*\mathscr{F}_{n+1}$.

$$\begin{array}{c|c} \mathscr{F}_{n+1}|_{X_n} & \xrightarrow{\iota_n} \mathscr{F}_n \\ \varphi_{n+1}|_{X_n} & & & & & \varphi_n \\ \mathscr{G}_{n+1}|_{X_n} & \xrightarrow{-\eta_n} \mathscr{G}_n \end{array}$$

(INCOMPLETE:)

There is a functor

$$F: \operatorname{Coh}(X) \to \varprojlim \operatorname{Coh}(X_n)$$
 (6)

induced by the pullback functors $\operatorname{Coh}(X) \to \operatorname{Coh}(X_n)$, where pullback of coherent on X is coherent on X_n since $X_n \to X$ is a closed immersion of Noetherian schemes. which sends (INCOMPLETE: factors through $\operatorname{Coh}(\widehat{X})$; sends coherents on X to coherents on \widehat{X} by [9, II.9.6]? just a morphism of locally ringed spaces (need noetherian?))

Lemma 44. Let X be a scheme, and $I \subset \Gamma(X, \mathcal{O}_X)$ an ideal. Let $I\mathcal{O}_X$ be the sheaf associated to the presheaf $U \mapsto I \cdot \Gamma(U, \mathcal{O}_X)$. Then $I\mathcal{O}_X$ is quasicoherent. (INCOMPLETE: why is this here?)

(INCOMPLETE: Any idea about the proof?)

8. Applications to deformation theory

Theorem 45. [6, 8.5.19] (SGA1, III 7.3) Let (A, \mathfrak{m}, k) be a complete Noetherian local ring. Let $S = \operatorname{Spec} A$, $s = \operatorname{Spec} k$, and let X_0 be a smooth projective scheme over s satisfying $H^2(X_0, T_{X_0/s}) = 0$. Then there exists a proper and smooth formal scheme \mathfrak{X} over \widehat{S} lifting X_0 . If, in addition, X_0 satisfies $H^2(X_0, \mathcal{O}_{X_0}) = 0$, then there exists a smooth projective scheme X over S such that $X_s = X_0$.

Theorem 46. [14] Let (A, \mathfrak{m}) be a complete Noetherian local ring, and set $A_n := A/\mathfrak{m}^{n+1}$ for $n \geq 0$. Let r be a positive integer. Suppose given for every $n \geq 0$ a closed subscheme $i_n : Z_n \to \mathbb{P}^r_{A_n}$ flat over Spec A_n such that $Z_{n+1} \times_{\operatorname{Spec} A_{n+1}}$ Spec $A_n \to \mathbb{P}^r_{A_n}$ is isomorphic to i_n for all $n \geq 0$. Then there exists a unique closed subscheme $Z \to \mathbb{P}^r_A$ inducing the Z_n .

$$Z_{0} \qquad Z_{1} \qquad Z_{2} \qquad Z$$

$$\downarrow^{i_{0}} \qquad \downarrow^{i_{1}} \qquad \downarrow^{i_{2}} \qquad \downarrow^{i_{2}}$$

$$\mathbb{P}^{r}_{A_{0}} \longrightarrow \mathbb{P}^{r}_{A_{1}} \longrightarrow \mathbb{P}^{r}_{A_{2}} \longrightarrow \cdots \longrightarrow \mathbb{P}^{r}_{A}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{S}pec\ A_{0} \longrightarrow \operatorname{Spec}\ A_{1} \longrightarrow \operatorname{Spec}\ A_{2} \longrightarrow \cdots \longrightarrow \operatorname{Spec}\ A$$

In Theorem 46, we have

$$Z_{n+1} \times_{\operatorname{Spec} A_{n+1}} \operatorname{Spec} A_n \simeq Z_{n+1} \times_{\mathbb{P}^r_{A_{n+1}}} \mathbb{P}^r_{A_n}$$

because $\mathbb{P}^r_{A_n} \simeq \operatorname{Spec} A_n \times_{\operatorname{Spec} A_{n+1}} \mathbb{P}^r_{A_{n+1}}$. For this reason, it also follows that the projection $Z_{n+1} \times_{\operatorname{Spec} A_{n+1}} \operatorname{Spec} A_n \to \mathbb{P}^r_{A_n}$ is a closed immersion, since it is the base-change of a closed immersion (namely, i_{n+1}).

Proof. Set $X = \mathbb{P}_A^r$ and $X_n = \mathbb{P}_{A_n}^r$. Apply Corollary 43 to the ideal sheaves defining the i_n ,

(INCOMPLETE: Why do we need flatness in the above theorem?)

(INCOMPLETE: What is the deformation problem that this solves? See [12, Warning 6.1.17] and [15, Warning 2.2.3].)

(INCOMPLETE: See also Example 1.2.8(ii) in https://www.uni-due.de/~mat903/sem/ws0809/material/Minicourse_FormalGeometry.pdf for the notation $A\{T\}$.)

9. Appendix

Lemma 47. Let $i: Z \to X$ be a closed immersion of topological spaces, and let \mathscr{F} be a sheaf of abelian groups on X which has support contained in i(Z). If $V \subset U$ are nested open subsets of X such that $V \cap Z = U \cap Z$, then the restriction map $\mathscr{F}(U) \to \mathscr{F}(V)$ is an isomorphism. Thus, if $Y \subset Z$ is any open subset of Z, then $(i^{-1}\mathscr{F})(Y) = \mathscr{F}(U)$ for any open subset U of X such that $Y = U \cap Z$.

Proof. We have open cover $U = V \cup (U \setminus Z)$ of U where $V \cap (U \setminus Z) = V \setminus Z$. Then $\mathscr{F}(U \setminus Z) = 0$ and $\mathscr{F}(V \setminus Z) = 0$. Using the sheaf axioms, we have an exact sequence

$$0 \to \mathscr{F}(U) \to \mathscr{F}(V) \oplus \mathscr{F}(U \setminus Z) \to \mathscr{F}(V \setminus Z)$$

which reduces to the exact sequence $0 \to \mathscr{F}(U) \to \mathscr{F}(V) \to 0$.

Proposition 48. Let A be a ring, \mathfrak{a} an ideal, and \widehat{A} the \mathfrak{a} -adic completion of A. Then the canonical morphism $\widehat{A} \to A/\mathfrak{a}$ sends nonunits to nonunits.

Theorem 49. [7, Theorem 8] The fiber product of schemes in the category of locally ringed spaces is a scheme.

Proposition 50. [8, I, (4.4.6)] Let $f: X \to Y$ be a morphism of schemes, $i: X \to X'$ (resp. $j: Y \to Y'$) a closed subscheme of X (resp. Y) with ideal sheaf \mathcal{I} (resp. \mathcal{I}). Then the following are equivalent:

- (i) $f \circ i$ factors through j.
- (ii) $(f^*\mathcal{J})\mathcal{O}_X \subset \mathcal{I}$.

¹²Inspired by Emerton's claim in http://mathoverflow.net/a/27780/15505.

References

- Atiyah, M. F., and MacDonald, I. G. Introduction to Commutative Algebra, Westview Press, 1969.
- [2] Bosch, S. Lectures on Formal and Rigid Geometry, Lecture notes in mathematics 2105, Springer, 2014.
- [3] Conrad, B. "Gross-Zagier Revisited", *Heegner Points and Rankin L-Series*, MSRI Publications, Volume 49, 2004, pp. 67–163. http://library.msri.org/books/Book49/files/05conrad.pdf.
- [4] Cuong, D. T. "A minicourse on Formal Geometry", online notes. https://www.uni-due.de/ ~mat903/sem/ws0809/material/Minicourse_FormalGeometry.pdf
- [5] Emerton, M. Answer to question "formal completion", http://mathoverflow.net/a/27780/ 15505. Jun 11, 2010.
- [6] Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S. L., Nitsure, N., Vistoli, A. Fundamental Algebraic Geometry: Grothendieck's FGA Explained. Mathematical Surveys and Monographs, Volume 123. American Mathematical Society. 2005.
- [7] Gillam, W. D. "Localization of ringed spaces", arXiv:1103.2139 [math.AG], Mar 10, 2011.
- [8] Grothendieck, A. and Dieudonné, J. Eléments de Géométrie Algébrique.
- [9] Hartshorne, R., Algebraic Geometry, Springer, Graduate Texts in Mathematics 52, 1977.
- [10] Haugseng, R. "Notes on formal schemes, sheaves on R-functors, and formal groups", notes for a talk given on Mar 2, 2010. http://people.mpim-bonn.mpg.de/haugseng/talks/formalschemes.pdf
- [11] Kleiman, S., A Term of Commutative Algebra, http://web.mit.edu/18.705/www/13Ed.pdf. Version of Aug 31, 2013.
- [12] Lieblich, M., Olsson, M., Osserman, B., Vakil, R. Deformations and Moduli in Algebraic Geometry, draft of May 3, 2010. https://www.math.ucdavis.edu/~osserman/math/ Defbookactive.pdf
- [13] Matsumura, H. Commutative Ring Theory. Cambridge University Press, 1980.
- [14] Olsson, M. "Background Lecture: Grothendieck existence theorem for coherent sheaves". http://www.msri.org/people/members/defthy07/bgtopics/Background_Lecture8.pdf, 2007.
- [15] Osserman, B. "Deformations (b): representability and Schlessinger's criterion", online notes for 2007 MSRI Workshop *Deformation Theory and Moduli in Algebraic Geometry*, http://www.msri.org/people/members/defthy07/lectures/brian.pdf.
- [16] Strickland, N. P. Formal schemes and formal groups. http://arxiv.org/abs/math/0011121
- [17] The Stacks Project, http://stacks.math.columbia.edu.
- [18] Vakil, R., "Foundations of Algebraic Geometry." Version of March 23, 2010. http://math.stanford.edu/~vakil/216blog/.
- [19] Wedhorn, T. Adic Spaces, June 19, 2012. https://www2.math.uni-paderborn.de/fileadmin/ Mathematik/People/wedhorn/Lehre/AdicSpaces.pdf