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Abstract

The convex hull, Voronoi diagram and Delaunay triangulation are all essential concepts in
computational geometry. Algorithms for solving the convex hull problem are commonly taught
in an algorithms course, but the important relationship between convex hulls and the Voronoi
diagram/Delaunay triangulation is usually not discussed. This paper presentsHull2VD , a visu-
alization tool that illustrates the connection among these three important concepts. We provide
a short definition and discussion of each of the three problems and some of the algorithms
used to solve them. The important relationship between the three problems is also presented.
Finally, we discuss the details ofHull2VD , which allows these concepts and their interrela-
tionships to be learned visually in an interactive and easy to understand environment, without
the need of complex mathematics.



1 Introduction

The convex hull, Voronoi diagram and Delaunay triangulation are essential problems in computa-
tional geometry as well as many other scientific fields. In addition to being important individually,
these three concepts are closely related. Many visualization tools exist for the individual problems,
such as Paul Chew’s Voronoi/Delaunay applet (Chew, nd) and Icking, et al.’sVoroGlide (Icking
et al., nd). These tools solve the three problems but do not attempt to address the important rela-
tionship among them. There are also tools available for providing a step-by-step visualization of
the individual algorithms associated with each problem, such asMocha (Baker et al., nd). Algo-
rithm visualization tools are excellent aids in teaching specific algorithms, but do not present how
the problems and their solutions are interrelated. The connection between convex hull and Voronoi
diagram/Delaunay triangulation is usually not presented because it is considered too complex for
most undergraduates, and there is no visualization tool available. Furthermore, textbooks that ad-
dress these problems are written for beginning graduate courses (de Berg et al., 2000; O’Rourke
and Goodman, 1997; Preparata and Shamos, 1985). To be able to understand the connection be-
tween these concepts as presented in a computational geometry textbook, students must already
have a strong background in geometry.

Hull2VD is a visualization tool that illustrates the connection among these three essential con-
cepts in computational geometry: convex hull, Voronoi diagram and Delaunay triangulation. It
is written in C using OpenGL and GLUT, and is currently available on Microsoft Windows, Sun
Solaris, Mac OS X and Linux operating systems as part of theDesignMentor v2.0 package.
The application was written using Ken Clarkson’s QuickHull implementation (Clarkson, 1996).
Hull2VD displays the Voronoi diagram and Delaunay triangulation of planar point sets as well as
the convex hull of a projected point set in space. All displays are updated in real time as the user
modifies and adds points using GUI controls.Hull2VD is a unique tool that enables instructors
to present the important relationship between these concepts visually, without cumbersome math-
ematics.

This paper contains three main sections. Section 2 presents definitions, historical background and
a discussion of solutions for the three problems. Section 3 describes how the problems are related
and coversHull2VD’s method for computing the Voronoi diagram and Delaunay triangulation in
a plane from the convex hull in space. Section 4 provides a description ofHull2VD , as well as a
discussion of how it is used to illustrate the connection among the three problems.

2 Definitions

2.1 Convex Hull

The convex hull of a set of points is the smallest convex set that contains the points (Fig. 1)
(Preparata and Shamos, 1985). It is a fundamental concept in computational geometry, and many
solutions have been proposed, such as Graham’s Scan (Graham, 1972), Jarvis’s March (Jarvis,
1973), and QuickHull (Barber et al., 1996).



Figure 1: The convex hull of a planar set of points

The convex hull has been used in a multitude of scientific fields (especially computer graphics) for
applications such as pattern matching (Soille, 2000), finding bounding volumes (de Berg et al.,
2000) and analysis of spectrometry data (Boardman, 1993). Many problems can be reduced to
the convex hull problem, such as halfspace intersections, power diagrams, Voronoi diagram and
Delaunay triangulation (de Berg et al., 2000).

Students often learn one or more convex hull algorithm in their undergraduate algorithms course
because of the many different computational approaches that have been proposed (i.e., gift wrap-
ping, divide and conquer, incremental).Hull2VD uses QuickHull, which is an incremental algo-
rithm based on the Beneath-Beyond algorithm (Grünbaum, 1993). The QuickHull algorithm can
be generalized and applied to any dimensionality; however inHull2VD we are only concerned
with finding the convex hull in three dimensions.

Before any incremental convex hull algorithm can run, a beginningsimplexof points must be
found. In three dimensions, this is a tetrahedron made up of four non-planar points chosen arbi-
trarily from the input set of points. The convex hull is then constructed as a set offacets. In three
dimensions a facet is a triangle. A point isabovea facet if the signed distance from the facet to
the point is positive. A facet is consideredvisible to a pointp if p is above the facet. Thehorizon
ridgesof a point are defined as the set of boundary edges of the visible facets (Barber et al., 1996).
To compute the convex hull of a setP of n points,CH(P ), QuickHull and most other incremental
algorithms use the following scheme:



1: initialize sets of facetsCH(P ) andF to empty
2: set CH(P ) to an arbirtary simplex of points inP
3: for eachp ∈ P
4: for each facetf ∈ CH(P )
5: if f is visible top
6: add f to F
7: for eachboundary edgee = v1v2 ∈ F
8: add new facet(p, v1, v2) to CH(P )
9: delete F
10: end for
11: end if
12: end for
13: end for

The above incremental approach iterates through all the pointsp in the input set (line 3). If a point
lies outside the current convex hull, it is added to the convex hullCH(P ). If no visible facets can
be found for a given point, then the point lies within the convex hull, and can be ignored. Each
point addition adds a new “cone” of facets from the added point to its horizon ridges. Several
algorithms exist that utilize this approach. One such algorithm is the randomized incremental al-
gorithm. Randomized incremental algorithms iterate through the list of points arbitrarily. Another
incremental algorithm, QuickHull, selects the furthest point from the current convex hull in each
iteration. The run time of QuickHull in three dimensions isO(n log r), wheren is the size of
the input point set andr is the number of points that are not ignored by the algorithm.Hull2VD
computes the convex hull using Ken Clarkson’s implementation of QuickHull which is written in
C and is freely available for download (Clarkson, 1996).

2.2 Voronoi Diagram

The Voronoi diagram is usually attributed to Dirichlet and is sometimes referred to as theDirichlet
tessellation(Dirichlet, 1850). However, Voronoi diagrams can be found in part III of Descarte’s
Principia Philosophiae, published in 1644 (de Berg et al., 2000). Voronoi diagrams have been
used in a wide array of scientific fields such as modeling forest dynamics (Mercier and Baujard,
1997), animating lava flows (Stora et al., 1999) and neural network design (Bose and K.Garga,
1993). Because the Voronoi diagram can be applied to so many fields outside of geometric comput-
ing and computer graphics, it is advantageous for a student to have an understanding of the basic
concepts behind it and its connection with other important problems in geometry. InHull2VD we
are concerned only with the Voronoi diagram of a set of points in a plane.

The Voronoi diagram can be defined using the Euclidian distance in a plane between two pointsp
andq, dist(p, q), wherep = (px, py) andq = (qx, qy), such that:

dist(p, q) =
√

(px − qx)2 + (py − qy)2



Let P be a set ofn distinct points (known assitesfor the purpose of this definition) in the plane.
The Voronoi diagram ofP is the subdivision of the plane inn Voronoi cells, one for each site in
P , with the property that a pointq lies in the cell of sitepi if and only if dist(q, pi) < dist(q, pj) for
eachpj ∈ P with j 6= i (Fig. 2a) (Preparata and Shamos, 1985; O’Rourke and Goodman, 1997;
de Berg et al., 2000).

(a)

a

b
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Figure 2: The Voronoi diagram of a planar point set (a) and associatedCP (a), CP (b) (b)

We denoteV (P ) as the Voronoi diagram ofP . Each edge inV (P ) is a bisector of a pair of two
neighboring sites inP , and the vertices inV (P ) are the intersection points of these bisectors. The
bisectors and intersection points that are included inV (P ) can be determined using the following
definition. Given a pointq its largest empty circle with respect toP , denotedCP (q), is the largest
circle with q as its center that does not contain any site inP (de Berg et al., 2000). The following
two traits hold:

1. A pointq is a vertex inV (P ) iff CP (q) contains three or more sites on its boundary.

2. A bisector between sitespi andpj is an edge inV (P ) iff there is a pointq on the bisector
such thatCP (q) contains bothpi andpj on its boundary but no other site.

Figure 2b illustrates these two traits. The upper circle,CP (a), is centered on a vertex ofV (P ), and
therefore contains three or more sites inP . CP (b) is centered on a point that lies on an edge in
V (P ) and correspondingly contains only the two sites that the edge bisects.

Optimal algorithms for constructing the Voronoi diagram of a set ofn points in the plane have a
runtime bounded byO(n log n). This can be proven by reducing constructing the Voronoi diagram
to sorting a set ofn real numbers (Preparata and Shamos, 1985). Many approaches have been
proposed to compute the Voronoi diagram in optimal time such as randomized incremental, divide
and conquer (Preparata and Shamos, 1985) and sweepline (Fortune, 1987).



2.3 Delaunay Triangulation

Triangulations of a planar point set are extremely important in computer graphics. Triangulation
is essential in polygon-based rendering (used by APIs such as OpenGL and Direct3D). Abstract
representations of objects, called primitives (such as cones or spheres), must be tessellated into
polygons. Usually these polygons are triangles, as triangles have proven to be easy to render using
scanline based rendering. Triangulation is used in a multitude of other applications, such as terrain
modeling, mesh decimation, and radiosity rendering. The optimal triangulation of a set of points
is one that maximizes the minimum angle in each triangle, leading to a set of triangles that are as
equilateral as possible. This triangulation will give us the fewest sharp “skinny” triangles, which
can cause visual problems in our model.

The Delaunay triangulation was named after the Russian mathematician Boris Nikolaevich De-
lone, who discovered it in his work on the regular partitioning of space and the theory of Dirichlet
partitionings (e.g., Voronoi diagrams) (Delone, 1934). The Delaunay triangulation is optimal; it
maximizes the minimum angle over all triangulations of a set of pointsP . We define the Delaunay
triangulation ofP , DT (P ), as follows:

1. Three pointspi, pj, pk ∈ P are vertices in the same face of the Delaunay triangulation iff the
circle throughpi, pj, pk contains no other points. This circle is known as thecircumcircleof
the triangle defined by(pi, pj, pk).

2. Two pointspi, pj ∈ P form an edge in the Delaunay triangulation iff there is a circle that
contains two pointspi, pj on its boundary and does not contain any other point.

It follows that the circumcircles of all triangles inDT (P ) will contain exactly three points inP
on their boundaries if and only if no more than three points inP are co-circular. This property is
illustrated inHull2VD .

The relation between the Delaunay triangulationDT (P ) and Voronoi diagramV (P ) can be de-
scribed using a concept known as thedual graph. The dual graph of a planar graphG has a node
for each of the face inG and an arc joining two nodes if their corresponding faces share a com-
mon edge (O’Rourke and Goodman, 1997).DT (P ) is the “straight line” dual graph ofV (P ). It
follows that every edge inV (P ) has a corresponding edge inDT (P ) and every cell inV (P ) has
a corresponding point inDT (P ) (Fig. 3). It is possible to computeDT (P ) from V (P ), and vice
versa.Hull2VD allows the user to see the Delaunay triangulation of P in real time, as well as the
circumcircle corresponding to each face in the triangulation.

Many algorithms for computing the Delaunay triangulation exist, such as plane sweep, divide-
and-conquer (O’Rourke and Goodman, 1997) and randomized incremental (Seidel, 1991). The
randomized incremental approach is of special note because the same method has been applied to
calculating the convex hull (Clarkson, 1987). Not surprisingly, the algorithm’s runtime is bounded
by O(n log n). This is in agreement with the runtime of the randomized incremental algorithms
used in computing the convex hull and Voronoi diagram.



Figure 3: Dual graphs: the Voronoi diagram and Delaunay triangulation

3 Connection

In his 1979 paper K.Q. Brown presented a beautiful connection between the convex hull in space
and Voronoi diagram and Delaunay triangulation in a plane (Brown, 1979). This connection shows
that it is possible to compute the Delaunay triangulation and Voronoi diagram of a set of points in
a plane from the convex hull of a set of points in space. This reduction from the convex hull to the
Voronoi diagram and Delaunay triangulation is whatHull2VD illustrates. This section contains a
short discussion on the connection itself, and a description of how it can be computed.

Given a setP of n points in the planez = 0, we first project them onto the unit elliptic paraboloid
z = x2 + y2 to yield a point setP ′ such that for eachp = (px, py) ∈ P a pointp′ ∈ P ′ is computed
as follows:

p′ = (px, py, p
2
x + p2

y)

The convex hullCH(P ′) will contain everyp′ ∈ P ′. The downward-facing facets ofCH(P ′)
are those whose normal vectors have a negativez-value. Surprisingly, projecting the edges of the
downward-facing facets inCH(P ′) onto thez = 0 plane yields the Delaunay triangulation ofP ,
DT (P )! After determining the Delaunay triangulation, it is a simple task to compute the Voronoi
diagram. This is done by connecting all circumcircle centers of the triangles inDT (P ) that share
an edge. Each circumcircle center inDT (P ) is a node inV (P ). BecauseV (P ) is the dual graph of
DT (P ) there is a one-to-one correspondence between faces inDT (P ) and nodes inV (P ) as well
as edges inDT (P ) and edges inV (P ). The procedureHull2VD uses to compute these problems
is very similar:



1: initialize P ′, DT (P ) andV (P ) to empty
2: for eachp = (px, py) ∈ P
3: add p′ = (px, py, p

2
x + p2

y) to P ′

4: end for
5: compute CH(P ′)
6: for each facetf ∈ CH(P ′)
7: if f ’s normal faces downwards
8: for eachedgee of f
9: set z-values of each vertex ine to 0
10: construct new edgee′ = e
11: add e′ to DT (P )
12: end for
13: end if
14: end for
15: for each trianglet ∈ DT (P )
16: for each trianglet′ that neighborst
17: create edgem by connecting circumcircle centers oft′ andt
18: add m to V (P )
19: end for
20: end for

The above algorithm will computeDT (P ) and V (P ) from CH(P ′). One issue that must be
addressed is infinite length edges inV (P ). Hull2VD handles infinite edges by extending those
edges outside of the OpenGL view volume, then using clipping planes to clip them at the border
of the unit square in thez = 0 plane.

4 Hull2VD

Hull2VD is an application written in OpenGL and C used to illustrate the reduction from the
convex hull in space to the planar Voronoi diagram and Delaunay triangulation.Hull2VD is com-
pletely graphical and displays all information on-the-fly. When a user adds or changes the position
of a point,Hull2VD recalculates the convex hull and resulting Voronoi diagram and Delaunay
triangulation and refreshes. This behavior allows the student to explore the concepts presented by
the program in real time.Hull2VD is intended for use in the classroom as an aid to the instructor,
or as a freely downloadable application for interested students and enthusiasts.

Hull2VD consists of two main windows: a2D Points window and a3D Projection window.
When the user launchesHull2VD , both2D Points and3D Projection windows will appear blank,
with no points on the screen. Once the user adds four points (required to create a simplex) by
right-clicking on the2D Points canvas,Hull2VD will begin calculating the convex hull, Voronoi



Diagram and Delaunay triangulations. Each subsequent point addition will causeHull2VD to re-
calculate and refresh all windows. By default, the Voronoi diagram and Delaunay triangulation
visualization is toggled on. The Voronoi diagram is represented by randomly colored cells on both
windows, with black lines for edges. Delaunay triangulation is shown with heavy blue lines. When
the user selects the current point by left-clicking, the point is colored magenta on both windows.
Similarly, when the interior of a Delaunay triangle is left-clicked it is highlighted in light red.

The 2D Points window (Fig. 4) is used for all point manipulation, visualization of the planar
Voronoi diagram, Delaunay triangulation and corresponding circumcircles. It also contains other
general application controls for tasks such as creating a new set of points and exiting the pro-
gram. The window consists of a large canvas that represents thez = 0 plane, and a bottom bar
which includes toggles for graphical options and other GUI controls. A user can add points by
simply right-clicking on the canvas. Points are selected by left-click, and modified by clicking
and dragging the mouse. Additionally, the user can select individual triangles in the Delaunay
triangulation by left-clicking within a triangle’s area. The bottom bar of the2D Points window
includes check boxes:Show Paraboloid, Show Delaunay Edges, Show Voronoi Diagram and
Show Circumcircles. These check boxes toggle the visibility of their associated visualizations
on the screen. Any changes made to the check boxes affect both2D Points and3D Projection
windows. The bottom bar also contains sliders to translate the projected points along the z-axis,
and an opacity slider that controls unit elliptic paraboloid transparency. Users can create a new set
of points by clickingNew.

Figure 4:2D Points window showing Voronoi diagram and Delaunay triangulation

The3D Projection (Fig. 5) window displays the unit elliptic paraboloid in transparent yellow, as
well as the projected points on the paraboloid and the planar Delaunay triangulation and Voronoi



diagram. The convex hull in space is shown as a flat shaded polyhedron. Each downward-
facing facet used in the Delaunay triangulation is colored cyan; upward-facing facets are colored
green and are discarded in the projection. The3D Projection window allows the user to toggle
dashed vectors from the points in thez = 0 plane to their corresponding point on the unit elliptic
paraboloid, illustrating their connection. Additionally, the user can rotate, zoom and pan the scene.

Figure 5:3D Projection window showing the convex hull and unit elliptic paraboloid

Hull2VD allows the user to see the connection between these problems in several significant ways.
First, Hull2VD uses a learning-by-doing approach; users are given the flexibility to explore the
problems by themselves. For example, the trackball feature in the3D Projection window can be
used to align the view with thez-axis, essentially “looking up” at the convex hull in space. It is
apparent that the planar Delaunay triangulation lines up exactly with the downward-facing facets
of the convex hull in space. Both the Delaunay triangulation and Voronoi diagram are displayed
on thez = 0 plane in the3D Projection window, this gives the user a “global” perspective by
seeing all problems displayed at once. Vectors connecting the planar points to the points in space
illustrate the projection and corresponding 3D convex hull (Fig. 6). Second, all calculations are
updated on-the-fly. When the user adds a new point or changes a point location, he/she can see the
effect it has on the Voronoi diagram, Delaunay triangulation and convex hull. Third, when a point
is selected in the2D Points window, its color is changed in the plane and in space. This allows
the user to see which point is being modified and how those modifications affect the surrounding
structure of the Voronoi diagram, Delaunay triangulation and convex hull.

Other interesting properties of the Voronoi diagram and Delaunay triangulation can be seen in the
2D Points window. WhenShow Circumcircles is toggled on, the circumcircles associated with
each triangle in the Delaunay triangulation are displayed in light blue. The user can left-click
within a triangle to mark it as the “selected triangle”. The selected triangle’s circumcircle will be
highlighted in red, allowing users to verify that the circle contains exactly three points on its bound-
ary if no more than three points in the input point set are co-circular (Fig. 7). Individual points



Figure 6: Projections of planar points into space and the resulting convex hull

can be dragged around the canvas, and the user can see the Voronoi cells and Delaunay triangles
change in response. Enabling the visualization of both the Delaunay triangulation and Voronoi
diagram by selectingShow Delaunay Edges andShow Voronoi Diagram demonstrates the du-
ality between both problems; it is clear that each edge in the Delaunay triangulation corresponds
to an edge in the Voronoi diagram, and each cell in the Voronoi diagram corresponds with a point
in the Delaunay triangulation.

Figure 7: Circumcircles associated with Delaunay triangles

5 Conclusions

We have presented the three problems: convex hull, Voronoi diagram and Delaunay triangulation,
as well as their important connection and a visual tool,Hull2VD , used to illustrate this connec-
tion. Hull2VD allows students and other interested parties to explore these problems without any



complex mathematical language or prior background in computational geometry. The underlying
mathematics and theory involved in the connection among these problems is left up to the instruc-
tor who may useHull2VD as a supplementary tool.

Hull2VD was developed under Microsoft Windows XP using Visual Studio .NET and has been
ported to Linux, Solaris and Mac OS X operating systems. It has been tested on a wide variety of
system configurations and has been found to run smoothly on most modern hardware.Hull2VD is
available for free download as part of theDesignMentor v2.0 package (Shene, nd).
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