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Abstract. Let Γ ⊂ O(n) be a finite group acting on Rn. In this
work we describe the possible symmetry groups that can occur for
attractors of smooth (invertible) Γ-equivariant dynamical systems.
In case Rn contains no reflection planes and n ≥ 3, our results
imply there are no restrictions on symmmetry groups. In case
n ≥ 4 (diffeomorphisms) and n ≥ 5 (flows), we show that we may
construct attractors which are Axiom A. We also give a complete
description of what can happen in low dimensions.
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1. Introduction

In this work we are interested in describing the possible symmetry
groups of attractors for smooth (invertible) equivariant dynamical sys-
tems.

Let Γ ⊂ O(n) be a finite group acting on Rn. We start by reviewing
some results on discrete Γ-equivariant dynamical systems on Rn. Sup-
pose that f : Rn→Rn is continuous and Γ-equivariant. Given x ∈ Rn,
we let ω(x) denote the ω-limit set of x. The collection of ω-limit sets
ω(x) represents the possible asymptotic dynamics of f .

If an element γ ∈ Γ fixes the point y ∈ Rn, we say that γ is a
symmetry of y. (The set of all symmetries of y is usually called the
isotropy subgroup of Γ at y and is denoted by Γy.) We say that the
ω-limit set A has the instantaneous symmetry γ, if γ is a symmetry of
each point of A.

Suppose that A is an ω-limit set of f . If A consists of a single point y,
then y is a fixed point of f , and the group of instantaneous symmetries
of A is precisely Γy. Next, suppose that A is a periodic orbit and
y ∈ A. Then all points in A have isotropy group Γy and the group of
instantaneous symmetries of A is equal to Γy. On the other hand, the
group of symmetries preserving A is a cyclic extension of Γy and so
may be strictly larger than the group of instantaneous symmetries of
A.

Suppose that A is an ω-limit set for f which is not a periodic or-
bit. In this case the dynamics of f |A are typically complicated and
it is known that the symmetry group of A may be much larger than
the group of instantaneous symmetries of A. (See Dellnitz, Golubitsky
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and Melbourne [10].) As the symmetry group of A reflects the aver-
age behavior of dynamics on A, we refer to this type of symmetry as
symmetry on average.

In recent work of Melbourne, Dellnitz and Golubitsky [22], it has
been shown that there are restrictions on symmetry on average. These
restrictions depend on the specific representation of the group of sym-
metries and, in particular, on group elements which act as reflections.

Under the assumption that there are only trivial instantaneous sym-
metries, Ashwin and Melbourne [5] proved that, for continuous maps,
the conditions obtained in [22, Section 4] are optimal. The ω-limit sets
arising out of the constructions in [5] possess many desirable proper-
ties including those of topological transitivity and asymptotic stability.
When there are nontrivial instantaneous symmetries, the restrictions
in [22] are not optimal. However, the methods of [22, 5] are easily gen-
eralized to give necessary and sufficient conditions (see Melbourne [21]).

From the point of view of applications, it is important to obtain
results on symmetry on average that apply to smooth invertible dy-
namical systems such as diffeomorphisms and flows. In addition, it is
natural to ask under what conditions there exist Axiom A attractors
with specified symmetry on average. We remark that in Field [11],
constructions are given for structurally stable equivariant Smale dif-
feomorphisms. However, this work is not concerned with attractors
supporting complex dynamics (but note [12]). Indeed, the hyperbolic
sets constructed in [11] support dynamics conjugate to subshifts of fi-
nite type and so cannot be attractors.

It is our aim to extend the results of [22, 5] to smooth invertible
dynamical systems and, where possible, construct Axiom A attractors.
We shall concentrate primarily (as in [5]) on the case when the instan-
taneous symmetry is trivial, and treat the case when there is nontrivial
instantaneous symmetry as a secondary issue. Throughout the remain-
der of the introduction, we shall assume that there are no nontrivial
instantaneous symmetries. We work throughout with finite groups.
The problems for continuous groups are somewhat different, see for
example [21, 14, 4].

It is convenient to introduce some new terminology. IfA is a nonempty
subset of Rn, we define the symmetry group of A by

ΣA = {γ ∈ Γ | γA = A}.

Note that ΣA is a subgroup of Γ. Given the subgroup Σ ⊂ Γ, we say
that A is Σ-symmetric if ΣA = Σ and there is at least one point in A
with trivial isotropy (the last condition abstracts our assumption that
there are no instantaneous symmetries).
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Suppose that Σ is a subgroup of Γ. We say that Σ is admissible
for continuous maps if there exists a continuous Γ-equivariant map
f : Rn → Rn with a Σ-symmetric ω-limit set. The results of [22, 5]
give necessary and sufficient conditions for admissibility of subgroups
in terms of the representation of Γ (under the additional requirement
that the ω-limit set be Liapunov stable). It is a consequence of the
constructions in this paper that at least some of the admissibility results
in [5] extend to smooth (C∞) maps (see Remarks 4.2(2)).

On the other hand, it was shown in [21] that the restrictions given
in [22] are not optimal for invertible dynamical systems. Our aim
is to obtain necessary and sufficient conditions for admissibility for
invertible equivariant dynamical systems. We start by describing our
results for equivariant flows. We shall say that a subgroup Σ ⊂ Γ is
admissible for flows if there is a smooth Γ-equivariant flow on Rn with
a Σ-symmetric ω-limit set A. Recall that an (n−1)-dimensional linear
subspace V of Rn is called a reflection hyperplane of Γ if Γ contains a
reflection with fixed point space V . We let L denote the union of all
the reflection hyperplanes of Γ. The connected components of Rn \ L
are permuted by elements of Γ. Obviously, an equivariant flow on Rn
fixes the components of Rn \ L. Hence, a Σ-symmetric ω-limit set A
must lie in (the closure of) a single connected component C of Rn \L.
In particular, C is fixed by the subgroup Σ. It follows that a necessary
condition for Σ to be admissible for flows is that Σ fixes a connected
component of Rn \ L.

We prove that in high enough dimensions this condition is also suf-
ficient and that admissibility can be realized by Axiom A attractors.

Definition 1.1. A subgroup Σ ⊂ Γ is of class I if Σ fixes a connected
component of Rn \ L.

Theorem 1.2. Suppose that Γ is a finite subgroup of O(n). If n ≥ 3,
a subgroup Σ is admissible for flows if and only if Σ is of class I. The
ω-limit sets that realize admissibility can be taken to be asymptotically
stable. Moreover, if n ≥ 5 the ω-limit sets that realize admissibility can
be taken to be Axiom A attractors.

The problem of obtaining necessary and sufficient conditions for ad-
missibility of diffeomorphisms is more subtle than the problem for flows.
The difficulty occurs because ω-limits will generally not be contained in
the closure of a single component of Rn\L. The new class of subgroups
we consider is described in the following definition.

Definition 1.3. A subgroup Σ ⊂ Γ is of class II if

(i) Σ is not of class I.
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(ii) Σ contains an index two subgroup ∆ of class I (fixing a con-
nected component C ⊂ Rn \ L say).

(iii) There is a Γ-equivariant linear involution B : Rn → Rn such
that BC = σC for all σ ∈ Σ \∆.

Theorem 1.4. Suppose that Γ is a finite subgroup of O(n), n ≥ 1.
A subgroup Σ is admissible for diffeomorphisms if and only if Σ is of
class I or of class II. The ω-limit sets that realize admissibility can be
taken to be asymptotically stable. Moreover, if n ≥ 4 the ω-limit sets
that realize admissibility can be taken to be Axiom A attractors.

The heart of this paper concerns the proofs of the final statements
of Theorems 1.2, 1.4. The idea is to extend the methods of Williams [23]
to the equivariant context. We divide the paper into two parts. Roughly
speaking, Part I deals with subgroups of class I and Part II deals with
subgroups of class II. Thus in Part I we prove Theorem 1.2 and parts
of Theorem 1.4. The proof of Theorem 1.4 is completed in Part II.

We conclude this introduction by noting that in many applications
the representation of the group of symmetries Γ will contain no re-
flections. For example, in the infinite dimensional setting of a partial
differential equation (PDE), it is highly unlikely that there will be any
codimension one fixed-point spaces for the action. Hence for global
dynamics in PDEs there are generally no restrictions on admissibility
of subgroups and so any subgroup can be realized by an Axiom A at-
tractor. Nevertheless, even within the context of PDEs, there is the
likelihood that our results are relevant to the understanding of dynam-
ics on center manifolds corresponding to low codimension bifurcations.
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Part 1.

Let Γ ⊂ O(n) be a finite group. Our main aim in Part I is to prove
Theorem 1.2. Thus we shall show that if Σ ⊂ Γ is a subgroup of class I
and n ≥ 5, then there is a smooth Γ-equivariant flow on Rn with a Σ-
symmetric Axiom A attractor. If n < 5, we prove Theorem 1.2 using a
degenerate construction. We also obtain a classification of admissible
subgroups for flows for all n ≥ 1.

The Axiom A attractors we construct for flows are obtained by
suspending Σ-symmetric solenoids for Γ-equivariant diffeomorphisms.
Thus we start by proving the following special case of Theorem 1.4.

Theorem 1.5. Suppose that Γ is a finite subgroup of O(n). If n ≥ 3
and Σ ⊂ Γ is of class I, then there exists a Γ-equivariant diffeomor-
phism φ : Rn → Rn with a connected asymptotically stable Σ-symmetric
ω-limit set. Moreover, if n ≥ 4 the ω-limit set can be taken to be an
Axiom A attractor.

Part I is divided into five sections. Some basic results on equivariant
extensions of smooth mappings are reviewed in Section 2. In Section 3,
we define a smooth version of the Σ-graphs introduced in Ashwin and
Melbourne [5]. Smooth Σ-graphs are the equivariant analogue of the
branched 1-manifolds of [23]. By passing to the inverse limit we obtain
Σ-solenoids.

In Section 4, we show that provided Σ ⊂ Γ is a subgroup of class I
with n ≥ 4 it is possible to construct an Axiom A Γ-equivariant diffeo-
morphism Rn → Rn having a Σ-solenoid as an attractor. When n ≥ 5,
we use a construction based on suspension to prove the corresponding
result for flows. We briefly indicate how our main theorems extend to
smooth Γ-manifolds.

The remaining low-dimensional cases n ≤ 4 (n ≤ 3 for diffeomor-
phisms) are considered briefly in Section 5. Thus Theorem 1.2 holds
trivially when n = 1, fails when n = 2, and can be proved when n = 3
and n = 4 (though by a rather unsatisfactory degenerate construction
when Σ is not cyclic). In addition we complete the proof of Theo-
rem 1.5.

Finally, in Section 6, we generalize our results for flows to the case
where there are nontrivial instantaneous symmetries.

2. Background on equivariant extensions

We start by listing some well-known results about smooth Γ-equivariant
extensions that we shall make frequent use of later. We continue to as-
sume that Γ ⊂ O(n). If U is a set we write Γ(U) =

⋃

γ∈Γ γU .
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If U ⊂ Rn and f : U→Rm, we say that f is smooth if we can find
an open neighborhood V of U and smooth map f̃ : V→Rm such that
f̃ |U = f . Of course, we may take V = Rn.

Lemma 2.1. Let A be a closed subset of Rn. Suppose that there is a
(closed) subgroup Σ of Γ such that for all γ ∈ Γ,

(a) A ∩ γA = A, (γ ∈ Σ).
(b) A ∩ γA = ∅, (γ /∈ Σ).

Then every smooth Σ-equivariant map f : A→Rn extends uniquely to
a smooth Γ-equivariant map f : Γ(A)→Rn.

Theorem 2.2. Suppose that f : U → Rn is a smooth Γ-equivariant
map defined on an open Γ-invariant subset U ⊂ Rn. Let A ⊂ U be
compact. Then there is a smooth Γ-equivariant map f̃ : Rn → Rn such
that f̃ and f agree on a neighborhood of A. A similar result holds for
smooth equivariant vector fields defined in U .

Theorem 2.3. Let M be a smooth Γ-manifold and let U be an open
Γ-invariant subset of M . Suppose that φ : U → M is a smooth Γ-
equivariant embedding. Let A ⊂ U be compact. Provided that φ is
Γ-equivariantly isotopic to the inclusion of U in M , there is a smooth
Γ-equivariant diffeomorphism φ̃ : M → M such that φ̃ and φ agree on
a neighborhood of A.

Proof: See [17, Chapter 8, Theorem 1.4] and [7, Chapter VI, Theorem
3.1]. �

3. Smooth Σ-graphs and Σ-solenoids

In this section, we introduce the smooth Σ-graphs and their inverse
limits which will form the basis for our construction of Σ-symmetric Ax-
iom A attractors. Smooth Σ-graphs combine the features of Williams’
branched 1-manifolds [23] and the (nonsmooth) Σ-graphs introduced
in Ashwin and Melbourne [5].

In Subsection 3.1, we define a smooth Σ-graph to be a Σ-graph with a
branched 1-manifold structure and obtain some elementary properties
of smooth Σ-graphs. Then, in Subsection 3.2, we define Σ-solenoids.
In particular, we show that there exists a Σ-solenoid for every finite
group Σ.

3.1. Smooth Σ-graphs.
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3.1.1. Some graph theory. We summarize the graph theory that we
require (see [6] for further details). A finite graph G consists of a finite
set of vertices and a finite set of edges that join pairs of vertices. In the
sequel, all graphs will be assumed finite. A subset J ⊂ G is a subgraph
of G if J is a graph and the vertices and edges of J are vertices and
edges of G. A path in G is a sequence of oriented edges where the initial
vertex of each edge is the final vertex of the previous edge. A graph is
connected if there is a path between any two vertices. If each pair of
vertices inG is joined by an edge, the graph is completely connected. We
say that a graph is a completely connected oriented graph if each pair
of distinct vertices is joined by two edges with opposite orientations.
The completely connected oriented graph on one vertex is defined to
be the graph consisting of one vertex and one edge.

Each edge of a graph G can be made into a metric space isometric
to the unit interval. Then the length of a path in G can be defined
in the obvious way, and the distance between any two points in the
same connected component is defined to be the length of the shortest
path between the points. Let D be the maximum of the diameters
of each component of G. If we define the distance between points in
distinct connected components to be D + 1, then G has the structure
of a compact metric space. Clearly, G is connected as a metric space
if and only if it is connected as a graph. Viewing the graph G as
a metric space, we shall regard each edge E as a (closed) subset of
G (so E ⊂ G). We adopt the convention that when we remove an
edge E from G, then the resulting set is, by definition, equal to the
closure of G \ E. It follows that in order to disconnect a completely
connected oriented graph it is necessary to remove at least eight edges.
In particular, a completely connected oriented graph with three or fewer
vertices cannot be disconnected by removing edges.

The degree of a vertex is the number of edges emanating from from
the vertex. A connected graph is said to be Eulerian if it has at least
one edge and each vertex has even degree. A completely connected
oriented graph is an example of an Eulerian graph.

The sum of the degrees of the vertices of a graph is even (twice
the number of edges). It follows that an Eulerian graph cannot be
disconnected by removing a single edge. It is well-known that Eulerian
graphs are characterized by the property that there exists an Eulerian
circuit. That is, there is a continuous path tracing through each edge
precisely once such that the initial vertex and the final vertex are equal.
More generally, there exists an Eulerian path tracing through each edge
of a graph precisely once if and only if the graph is connected and there
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are either two vertices or no vertices of odd degree. Any vertices of odd
degree lie at the endpoints of the path.

3.1.2. Branched 1-manifolds and smooth graphs. We adapt the notion
of branched 1-manifold defined in Williams [23]. For our purposes, it
is sufficient to consider compact Hausdorff branched 1-manifolds.

We start by defining coordinate neighborhoods. Fix a C∞ function
φ : R→ R satisfying

φ(x) = 0, x ≤ 0

> 0, x > 0

For integers p ≥ 1, q ≥ 0, p ≥ q, we define the local branched 1-
manifold Yp,q ⊂ R2 by

Yp,q = {(x, y) ∈ R2 | y = iφ(x) or y = jφ(−x), i = 0, . . . , p−1, j = 0, . . . , q−1}.

A branched 1-manifold G will then consist of a Hausdorff topological
space together with a differential atlas of coordinate neighborhoods
each of which is diffeomorphic to some Yp,q. In the usual way, we may
define what it means for a continuous map between branched manifolds
to be smooth. In particular, if G,G′ are branched 1-manifolds which
are smoothly embedded in Rn, then f : G→G′ will be smooth if and
only if f extends smoothly to Rn.

We say that a point z ∈ G is a point of type (p, q) if there is a chart
ψ : U→Yp,q with ψ(z) = 0. We define the defect of z to be the positive
integer p− q. Points of type (p, q) with p ≥ 2 are called branch points.
Let B denote the set of branch points. The boundary of G, ∂G, consists
of all points of type (p, 0). If every point is of type (1, 1) and (1, 0),
that is B = ∅, then G is a 1-manifold (with boundary). Note that only
points of type (1, 1), (1, 0) and (2, 1) are allowed in [23]. Typically, we
will be working with smooth graphs all of whose vertices have defect
zero or one.

Suppose that G is a finite graph with vertex set V . Then it is easy to
give G the structure of a branched 1-manifold with branch set B ⊂ V.
Note, however, that we can generally give G many different structures
of a branched manifold (the structure depends on how we arrange the
edges at branch points).

Conversely, every branched 1-manifold determines (uniquely) a graph
with vertex set equal to the set of points of type not equal to (1, 1). In
particular, the vertex set will contain the branch set B.

We define a smooth graph to be a finite graph with a designated
branched 1-manifold structure.
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Remark 3.1. If G is a smooth graph then every branch point of G is
a vertex. Note, however, that vertices of G which are of types (1, 1)
or (1, 0), relative to the designated branched 1-manifold structure, are
not branch points.

3.1.3. Smooth Σ-graphs. The next definition is adapted from [5].

Definition 3.2. Let Σ be a finite group. A graph G is a Σ-graph if

(a) Σ acts isometrically on G, mapping vertices to vertices and
edges to edges.

(b) Σ acts freely on the set of edges in G. In particular, if E is an
edge, and σE = E for some σ ∈ Σ, then σ = 1.

Remark 3.3. Assumption (b) in the Definition 3.2 is equivalent to as-
suming the existence of a fundamental subgraph J ⊂ G satisfying

(a) G = Σ(J), and
(b) If E, σE ∈ J for some σ ∈ Σ, then σ = 1.

Example 3.4. An important example of a Σ-graph is provided by the
complete Σ-graph G(Σ) introduced in [5]. We recall that the graph
G(Σ) is the completely connected oriented graph with vertices σ ∈ Σ.
The action of Σ on the vertices of G(Σ) by left multiplication induces
(and uniquely determines) an orientation-preserving isometric action of
Σ on G(Σ). Thus, if Eτ,τ ′ denotes the oriented edge joining the vertex
τ to the vertex τ ′, τ 6= τ ′, and σ ∈ Σ, then σEτ,τ ′ = Eστ,στ ′ . If we
define Jσ = E1,σ, σ 6= 1, then a fundamental subgraph of G(Σ) is given
by J =

⋃

σ∈Σ Jσ. Of course, Σ acts freely on the set of vertices of G(Σ)
and so freely on G(Σ).

Definition 3.5. Let G be a smooth graph. We say that G is a smooth
Σ-graph if

(1) G is a Σ-graph.
(2) Σ acts smoothly on G.

Remark 3.6. Suppose that G is a smooth Σ-graph and that v is a
vertex of type (p, q) (relative to the designated branched 1-manifold
structure). Then for every σ ∈ Σ, σv is a vertex of type (p, q).

Definition 3.7. A smooth graph is balanced if the graph is connected
and every vertex has defect zero.

The following lemma will suffice for our needs.

Lemma 3.8. Suppose that Σ acts transitively on the set of vertices of
the Σ-graph G. Then G may be given the structure of a smooth balanced
Σ-graph. In particular, the complete Σ-graph G(Σ) has the structure
of a smooth balanced Σ-graph.
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Proof. It suffices to define coordinate neighborhoods at each vertex of
G. Denote the set of vertices of G by V = {v1, . . . , vp}. Since Σ
acts transitively on V , p divides |Σ| and we can choose a fundamental
subgraph J all of whose edges have the same initial vertex, say v1.
Suppose that J contains n edges, E1, . . . , En. It follows that each vertex
of G has degree 2n. We write the edge Ei ∈ J in the form Ei = E1,wi ,
where wi ∈ V, 1 ≤ i ≤ n. (We allow repetitions.) Every edge in G
can be written as σEi, for some σ ∈ Σ and i ∈ {1, . . . , n}, We demand
that the edge E corresponds to the branch (i − 1)φ in the coordinate
neighborhood at σvi and to the branch (i − 1)ψ in the coordinate
neighborhood at σwi. It is easy to verify that this assignment gives
G the structure of a smooth Σ-graph and that each vertex is of type
(n, n). �

Remark 3.9. In the sequel, we always regardG(Σ) as having the smooth
graph structure given by (the proof of) Lemma 3.8. Note that each
vertex of G(Σ) is a branch point of type (m−1,m−1), where |Σ| = m.

3.1.4. Twisted products. Suppose that Σ is a subgroup of the finite
group Γ and G is a Σ-graph. In the sequel, it is useful to associate a
Γ-graph to G. In order to do this, we start by noting that G × Γ has
the natural structure of a Γ-graph if we take the product of the trivial
Γ-action on G with the action by composition on Γ. We also have a
free action of Σ on G× Γ defined by

σ(γ, x) = (γσ−1, σx), (σ ∈ Σ, (γ, x) ∈ Γ×G)

We define the twisted product Γ×ΣG to be the orbit space (Γ×G)/Σ.
It is straightforward to check that Γ×ΣG inherits the natural structure
of a Γ-graph from that on Γ×G.

We omit the routine verification of the following properties of the
twisted product.

Lemma 3.10. Let Γ be a finite group and Σ be a subgroup of Γ. Sup-
pose that G is a Σ-graph.

(1) The mapping iG : G→Γ ×Σ G, x 7→ (1, x), Σ-equivariantly em-
beds G as a subgraph of Γ×Σ G.

(2) If G is connected, then Γ ×Σ G has |Γ|/|Σ| connected compo-
nents.

(3) If J is a fundamental subgraph for G, then J is a fundamental
subgraph for the Γ-graph Γ×Σ G.

(4) If G is a smooth Σ-graph, then Γ×ΣG has the natural structure
of a smooth Γ-graph and, with respect to these structures, iG
will be a smooth embedding.
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3.1.5. Smooth embeddings. We now consider the problem of finding a
smooth Σ-equivariant embedding of a smooth Σ-graph in a Σ-manifold.
Our methods are a straightforward extension of the continuous embed-
ding results given in [5].

With a view to our subsequent applications, we shall suppose Σ is a
subgroup of a finite group Γ and require that our embeddings extend
to Γ×Σ G.

Proposition 3.11. Suppose that Γ is a finite group and Σ is a subgroup
of Γ. Let G be a smooth Σ-graph and that Σ acts freely on G. Suppose
that M is a smooth Γ-manifold such that

(a) dim(M) ≥ 3.
(b) There is a connected open non-empty Σ-invariant subset M◦ of

M consisting of points of trivial Γ-isotropy.

Under these assumptions on M , there exists a smooth Σ-equivariant
embedding χ : G→M◦. Moreover, we may require that χ extends
uniquely to a smooth Γ-equivariant embedding of the twisted product
graph Γ×Σ G in M .

Proof. Let J be a fundamental subgraph of G. Choose a set of vertices
V ⊂ J such that every vertex of G lies on the Σ-orbit of exactly one
v ∈ V. For each v ∈ V, choose a point χ(v) ∈ M◦. Clearly we may
do this so that the Γ-orbits of the points χ(v) are disjoint. Associated
to each of the points v ∈ V, we have a local coordinate system defined
on a neighborhood Nv of v in G. In the obvious way, we may define a
corresponding coordinate system at χ(v) and extend χ to an embedding
of Nv into M◦. Further, we may require that the Γ-orbits of the sets
χ(Nv), v ∈ V are mutually disjoint. It follows that χ extends to a
smooth Σ-equivariant embedding of Σ(∪v∈VNv) in M◦. Next we extend
χ Σ-equivariantly to the edges. We do this by first defining χ on the
edges in J and then extending Σ-equivariantly. Since we are assuming
that dim(M) ≥ 3, it follows that we may always perturb χ so that χ is
a Σ-equivariant embedding. Finally, again using the assumption that
dim(M) ≥ 3, we may require that χ extends to the twisted product as
a Γ-equivariant embedding. �

Remark 3.12. In general, Proposition 3.11 fails when dim(M) = 2. For
example, if M = R2, Γ = Z4, Σ = Z2 and G is a smooth Σ-graph, there
is no smooth Γ-equivariant embedding of Γ×ΣG in R2. (If Γ = Σ = Zm,
then it is easy to find a smooth Σ-graph for which the conclusions of
the proposition hold.)

3.1.6. Smooth Eulerian paths. Suppose that G is a connected smooth
graph with at least one edge. If every vertex of G has even degree, there



SYMMETRIC ATTRACTORS 13

exists a continuous Eulerian circuit. It is natural to ask whether we can
choose this path to have a smooth parametrization. More precisely, we
define a smooth Eulerian circuit to be an Eulerian circuit with smooth
parametrization r : S1→G with non-vanishing derivative. Similarly, if
G contains precisely two vertices v0, v1 of odd degree, we may ask when
there exists a smooth Eulerian path r : [0, 1]→G joining v0 to v1.

Proposition 3.13. Let G be a connected smooth graph containing at
least one edge.

(1) There exists a smooth Eulerian circuit for G if and only if G is
balanced, that is, every vertex has defect zero.

(2) If there are precisely two vertices v0, v1 in G of odd degree, then
there is a smooth Eulerian path joining v0 to v1 if and only if
the vertices v0, v1 have defect one and the remaining vertices
have defect zero.

Proof. It is easy to see that the conditions in (1), (2) are necessary: any
smooth Eulerian path or circuit approaching a vertex ‘from one side’
must pass ‘out the other side’ in order to be smooth. Hence there must
be equally many branches on each side of any vertex. The exception
occurs in (2) where the vertices v0 and v1 each have one additional
branch – corresponding to the initial and final edges in the Eulerian
path.

It remains to prove that the conditions of (1) and (2) are sufficient.
Our proof goes by induction on the number of edges of G. Suppose
the graph G has vertex set V . We denote the degree of the vertex v by
deg(v). The result is obvious if G has one edge. So suppose we have
proved sufficiency of conditions (1), (2) for all graphs G with less than
n edges. It is obvious that the truth of (2) for graphs with (n−1) edges
implies the truth of (1) for graphs with n edges. Hence, it suffices to
prove that the conditions of (2) are sufficient if G has n edges.

We may assume that there is at least one v ∈ V such that deg(v) > 2.
(If not, G is a smooth arc with initial and terminal points of type (1, 0).)
It follows that there is a smooth arc through v consisting of two edges
E1, E2, with common center point v. Replace the edges E1, E2 by
a single edge E ′ which no longer passes through v. (Essentially, we
just ‘perturb’ E1 ∪ E2 off the vertex v and remove the vertex v from
E1 ∪ E2.) Denote the new graph by G′ and note that G′ has (n − 1)
edges. Suppose first that G′ is connected. We apply the inductive
hypothesis to G′ to obtain a smooth Eulerian path for G′ which in
turn determines a smooth Eulerian path for G (re-insert the vertex v).
If G′ is not connected, we may write G′ = G1 ∪ G2, where G1 and
G2 are connected smooth graphs with fewer than n edges. One of the
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graphs, say G1, must have all vertices with zero defect. The graph G2

will then contain the vertices v0, v1 (which will have defect one) and the
remaining vertices will have defect zero. We now apply our inductive
hypothesis to construct a smooth Eulerian circuit r : S1→G1 and an
Eulerian path in G2 joining v0 to v1. Re-inserting the vertex v, we may
combine the paths in the obvious way to obtain the required Eulerian
path in G. �

3.2. Σ-solenoids. Suppose that G is a smooth graph without bound-
ary and that f : G → G is a smooth map. We say that f satisfies
condition (W) if:

(W1) f is an expanding immersion and maps vertices to vertices.
(W2) We may find a positive integer p, such that fp(E) = G, for

every edge E ∈ G.
(W3) Every point of G has a neighborhood N such that f(N) is an

arc.

Remarks 3.14. (1) Conditions (W1 — W3) are modelled on Axioms 1,
2 and 3 of [23, §3] (see also Remark 3.16). Note, however, that our
definition of smooth graph is, a priori , more general than Williams’
definition of branched 1-manifold in that we allow branch points of
type (p, q), p > 2. We may also designate points of type (1, 1) as
vertices.
(2) Since f maps vertices to vertices it follows that the f -image of
an edge will always be a finite union of edges. If every vertex of G
has degree at least three, then an expanding immersion f : G→G will
automatically map vertices to vertices.

The next result follows from the Folklore Theorem of Adler and
Flatto [1] – see [5, Appendix].

Proposition 3.15. Let G be a smooth graph without boundary and
f : G→ G be a smooth map satisfying (W1), (W2).

(a) All points of G are non-wandering under f . (That is, f satisfies
Axiom 2 of [23]).

(b) Periodic points of f are dense in G and f has sensitive depen-
dence on initial conditions.

(c) f is topologically mixing.
(d) There is a unique Lebesgue-equivalent f -invariant ergodic prob-

ability measure on G.

Remark 3.16. It can be shown that if f satisfies conditions (W1) and
(W3) and all points of G are non-wandering under f then f satisfies
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Figure 1. Maps of smooth Zm-graphs

condition (W2). Combined with Proposition 3.15, it follows that con-
ditions (W1), (W2) and (W3) are essentially equivalent to Axioms 1,
2 and 3 of [23, §3].

Example 3.17. Let Z2 act on R2 as multiplication by plus or minus
the identity map. In Figure 1(a), we show a Z2-graph G which is Z2-
equivariantly embedded in R2. The graph has two vertices and four
oriented edges, which we have denoted by a1, b1, a2 and b2. We may
define a smooth Z2-equivariant map f : G→G satisfying condition (W)
by the rules:

a1 7→ a1b2a
−1
2

b1 7→ b1a2b
−1
2

a2 7→ a2b1a
−1
1

b2 7→ b2a1b
−1
1

Note that the map f satisfies (W3) – we have highlighted the image of
arcs through both vertices.

In Figure 1(b), we show the corresponding picture for a Zm-graph.
The defining rules for f are given by ai 7→ aibi+1a

−1
i+1, bi 7→ biai+1b

−1
i+1,

1 ≤ i ≤ m (mod m).

Suppose that f : G→ G satisfies condition (W). Define the solenoid
S to be the inverse limit of the sequence

G
f← G

f← G
f← · · ·
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A typical point in S is a sequence a = (a0, a1, a2, . . .), where an ∈ G
and f(an) = an−1. Define the shift map h : S → S by the formula

h(a) = (f(a0), a0, a1, . . .).

Then h is a homeomorphism with inverse

h−1(a) = (a1, a2, a3, . . .).

Let Σ be a finite group, G be a smooth connected Σ-graph and
f : G → G be Σ-equivariant and satisfy condition (W). For σ ∈ Σ,
define σ · a = (σa0, σa1, σa2, . . .). This defines an action of Σ on the
solenoid S. Clearly, the shift map h is equivariant with respect to this
action. We call S a Σ-solenoid.

Lemma 3.18. Suppose that Σ is a finite group with complete smooth Σ-
graph G(Σ). Then there exists a smooth Σ-equivariant map f : G(Σ)→
G(Σ) satisfying condition (W).

Proof: We give the details when |Σ| ≥ 3. Our proof is similar to that
of [5, Theorem 4.3], except that now we have to ensure that condi-
tion(W3) is satisfied.

Choose a fundamental subgraph J consisting of edges with common
initial vertex 1 so that the edges do not all lie on the same side of 1.
We designate two edges in G(Σ) \ J that together form a smooth arc
a1 through 1. For definiteness, suppose that a1 = E1,η ∪ Eτ,1 for some
η, τ ∈ Σ. Since |Σ| ≥ 3 we can arrange things so that τ 6= η−1. By
equivariance, we have a ‘designated arc’ aσ = Eσ,ση ∪ Eστ,σ through
each vertex σ. Since τ 6= η−1, no pair of arcs has an edge in common.

Suppose that E = E1,σ ⊂ J . There is a unique choice of edges I ⊂ a1,
F ⊂ aσ and orientations on I, F such that IEF is a smooth arc. We
claim that, for each E ⊂ J we may construct a smooth Eulerian path
ρE : E→G(Σ)− E such that

(a) ρ fixes the vertices of E.
(b) The path begins in I−1 ⊂ a1 and ends in F−1 ⊂ aσ.
(c) ρ is an expanding immersion and the derivative of ρ near the

end-points 1, σ of E is independent of σ.

Granted the claim, equivariant extension of the set of paths defined on
J defines a smooth map f : G(Σ)→G(Σ) satisfying condition (W).

It remains to verify the claim. Suppose E ⊂ J and I, F are as defined
above. Set D = IEF . If D is not a loop, we can apply Proposition 3.13
to obtain a smooth Eulerian path P in G(Σ) − D. (Recall that it is
necessary to remove at least eight edges to disconnect a completely
connected oriented graph.) The path I−1PF−1 clearly satisfies (a,b).
If D is a loop, choose an edge H 6⊂ D so that HI is a smooth arc.
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Repeat the previous construction to obtain a path I−1H−1PF−1 which
again satisfies (a,b). Finally, reparametrizing P , we may assume that
condition (c) holds. �

4. Symmetric Axiom A attractors

In this section we prove the statements in Theorem 1.2 and Theo-
rem 1.5 concerning the realization of admissibility by Axiom A attrac-
tors. We suppose as usual that Γ ⊂ O(n) is a finite group acting on Rn.
Recall that Σ ⊂ Γ is a subgroup of class I if Σ fixes a connected compo-
nent of Rn \L. In Subsection 4.1, we construct Axiom A attractors for
diffeomorphisms when n ≥ 4. Then, in Subsection 4.2, we construct
Axiom A attractors for flows, n ≥ 5, using a method based on the
suspension construction. The model for our attractors is the solenoid
that arises as the inverse limit of a smooth Σ-graph. Our methods are
an extension of those in Williams [23].

4.1. Axiom A attractors for diffeomorphisms.

Theorem 4.1. Let Γ be a finite group acting on Rn, n ≥ 4. Sup-
pose that Σ is a subgroup of Γ and that there is a simply connected
Σ-invariant open subset V ⊂ Rn consisting of points of trivial isotropy.
Let h : S → S be the shift map on a Σ-solenoid (corresponding to a
smooth Σ-equivariant map f : G→ G satisfying condition (W)). Then
there exists a smooth Γ-equivariant diffeomorphism φ : Rn → Rn with
a Σ-symmetric attractor A such that

(a) A is a 1-dimensional Axiom A attractor for φ.
(b) φ : A→A is Σ-equivariantly topologically conjugate to h : S →
S.

Proof: Our proof is very similar to that of [23, Theorem C] and so we
shall only sketch the main details. Basically, we have to take account of
equivariance of maps and our more general definition of branch point.

Using Proposition 3.11, we may smoothly and Σ-equivariantly embed
the Σ-graph G as a subset G of V . Since n ≥ 3, we may assume the
embedding extends Γ-equivariantly to G×Σ Γ. In the obvious way, we
may regard f as inducing a smooth map f : G→G.

Using standard arguments, we construct a closed Σ-invariant tubular
neighborhood U ⊂ V of G such that U ∩ γU = ∅, all γ ∈ Γ \ Σ. Note
that near the branch points the picture differs from the usual one.
However, just as in [23], it is easy to construct smooth disk bundles,
with fibers normal to G along each branch, which merge in the vicinity
of branch points and separate away from branch points. If the branch
point is of type (p, p), p > 1, we may arrange to have p-disks touching
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Figure 2. Tubular neighborhood near a branch point
of type (2, 2).

simultaneously to form an (extended) solid ‘figure of eight’ and then
simultaneously separating on the other side of the branch point. The
tubular neighborhood near a branch point of type (2, 2) is shown in

Figure 2. Extend f smoothly and Σ-equivariantly to f̃ : U→U so that
f̃ is fiber preserving. For this we use the fact that we may choose a
neighborhood N of each vertex in G which is mapped by f to a smooth
arc. In fact, we can define f̃ simply by collapsing each fiber to a point
(the fiber through x is mapped onto the point f(x)).

Since n ≥ 3, it follows using general position arguments that we
may approximate f̃ by a smooth embedding φ : U→U . Indeed, we
can do this so that φ is fiber preserving and Σ-equivariant. For the
Σ-equivariance, we just have to observe that since Σ acts freely on
V , there are no obstructions caused by equivariance when we perturb
(equivalently, work on the image of a fundamental subgraph in the
orbit space). We may also assume that φ uniformly contracts fibers of
U and that φ is orientation preserving. Define A = ∩i≥0φ

i(U). Just as
in [23], it follows that A has the required properties (a,b).

It remains to extend φ to a diffeomorphism of Rn. Take the Γ-
equivariant extension of φ to Γ(U) ⊂ Rn. Since we are assuming n ≥ 4
and V simply connected, it follows that φ is Γ-equivariantly isotopic
to the inclusion map of Γ(U) in Rn and so, by Theorem 2.3, we may
extend φ to a Γ-equivariant diffeomorphism of Rn that agrees with φ
in a neighborhood of A. �
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Remarks 4.2. (1) Although our definition of smooth graph is more gen-
eral than Williams’ definition of one-dimensional branched manifold,
both definitions in fact lead to the same class of solenoids. This can
be seen in two ways. First of all, the diffeomorphism φ and attractor
A we construct in Theorem 4.1 satisfy the hypotheses of [23, Theorem
D]. Consequently, φ : A→A is conjugate to the shift map of a solenoid
obtained from a one-dimensional branched manifold. This may also be
seen directly by splitting branch points of type (p, p) into 2p−2 branch
points of the type allowed by Williams.
(2) Using the technique of the first part of the proof of Theorem 4.1,
it is easy to extend some of the results of [22, 5] to smooth maps. In
particular, the (strong) admissibility results of [5] extend to the smooth
context when the subgroup Σ does not contain any reflections.

Theorem 4.3. Suppose that Σ ⊂ Γ is a subgroup of class I and n ≥ 4.
Then there exists a Γ-equivariant diffeomorphism φ : Rn → Rn with a
connected Σ-symmetric Axiom A attractor.

Proof: If there exists a simply connected Σ-symmetric set V ⊂ Rn
of points of trivial isotropy then the theorem follows immediately from
Lemma 3.18 and Theorem 4.1. In particular, if there are no fixed-point
subspaces of codimension two then we are finished.

In general, there may exist ‘codimension two obstructions’ to the
equivariant isotopy step in the proof of Theorem 4.1. We can cir-
cumvent such obstructions by making a further modification to the
construction of f : G → G in Lemma 3.18. In place of G(Σ) we take
G = G(Σ)′ an ‘augmented’ complete complete smooth Σ-graph with
the same vertices as before but twice as many edges. Indeed, to each
edge E ⊂ G(Σ) we assign a new edge E ′ that has the same vertices as
E and such that EE′ forms a smooth loop. Note that we can regard
G(Σ) as a subgraph of G(Σ)′.

We make the conventions E ′′ = E and if P = E1E2 · · ·Ek is a path
then P ′ = E ′k · · ·E ′2E ′1. Then we define an equivalence relation on
paths in G(Σ)′ by setting IEE′F ∼ IF .

Next choose a fundamental subgraph J ′ as in the proof of Lemma 3.18
but with each edge replaced by the corresponding pair of edges. Con-
struct ‘designated arcs’ in G(Σ) as before. Suppose that E ⊂ J is an
edge with initial vertex 1 and final vertex σ. (Here E need not lie in
G(Σ).) We claim there is a smooth Eulerian path P in G(Σ)′ − E ′

that has same vertices as E, that begins and ends in the designated
arcs a1 and aσ and such that P ∼ E. We can then construct a smooth
Σ-equivariant map f : G(Σ)′ → G(Σ)′ satisfying condition (W). More-
over, we can embed G(Σ)′ in Rn in such a way that each loop EE′ is
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contractible to a constant in the set of points of trivial isotropy. It then
follows from our construction that the embedding φ : Γ(U)→ Γ(U) is
Γ-equivariantly isotopic to the inclusion map of Γ(U) in Rn.

It remains to verify the claim. Suppose first that E does not lie in
a1 or in aσ. Let I be the edge in a1 with initial vertex 1 and on the
same side of 1 as E. Similarly F is the edge in aσ with final vertex σ
and on the same side of σ as E. By construction II ′EF ′F is an arc.
Let ξ denote the set of edges I, I ′, F, F ′, E, E′. Then we may choose a
smooth Eulerian path Q in G(Σ) − ξ such that EQ is an arc. Then
P = II ′EQQ′F ′F is the required path.

Finally, if say E lies in a1, then we can dispense with the edges I, I ′.
So ξ consists of the edges F, F ′, E, E′ and P = EQQ′F ′F . �

Remark 4.4. It is important to note that the equivariant embedding
φ : U → U constructed in the proof of Theorem 4.3 is isotopic to the
identity within U (as opposed to Rn). We make use of this remark in
the next subsection.

If Σ is cyclic, we can reduce the dimension restriction in Theorem 4.3.

Lemma 4.5. Suppose that Γ ⊂ O(3) and Σ ⊂ Γ is a subgroup of class I.
Suppose further that Σ is cyclic. Then there exists a Γ-equivariant
diffeomorphism φ : R3 → R3 with a connected Σ-symmetric Axiom A
attractor.

Proof: In this case we use the graph G defined in Example 3.17 rather
than the augmented graph defined in the proof of Theorem 4.3. We let
f : G→G be the smooth map on G defined in Example 3.17. We embed
G in a component of R3\L just as above. The proof of Theorem 4.3 now
extends straightforwardly, granted the observation that we can perturb
f̃ : U→U to an Σ-equivariant embedding so that no links are generated
between images of edges. We omit the straightforward details. �

4.2. Symmetric Axiom A attractors for flows. Suppose that Σ ⊂
Γ is a subgroup of class I and n ≥ 5. Under these conditions, we shall
show that there exists a smooth Γ-equivariant flow on Rn which has an
Axiom A attractor with symmetry group Σ. Our construction is based
on the standard technique of suspending a diffeomorphism. Let C be
a connected component of Rn \ L fixed by Σ.

4.2.1. Suspending a graph. Let S1 denote the unit circle. Let Z denote
the product of the complete smooth Σ-graph G(Σ) with S1. Taking the
trivial action of Σ on S1, we see that Σ acts on Z. We may extend the
smooth structure on G(Σ) to Z in the obvious way. In particular, if I
is an open arc in S1, then we view G(Σ)× I ⊂ Z as a ‘ribboned’ graph
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Figure 3. Neighborhood of {v} × S1 in Z.

with ribbons touching along a common arc at each vertex of G(Σ). If
v ∈ G(Σ) is a vertex, we refer to {v} × S1 as a vertex loop.

4.2.2. Embedding a suspended graph.

Lemma 4.6. Provided n ≥ 5, there exists a smooth Σ-equivariant
embedding χ of Z in C. Moreover, we may require that χ extends
Γ-equivariantly to a smooth Γ-equivariant embedding of Γ(Z) in Rn.

Proof: Choose a vertex v ∈ G(Σ) and a connected neighborhood V of
v in G(Σ) such that if σ ∈ Σ then σ(V ) ∩ V 6= ∅ if and only if σ = e.
We refer the reader to Figure 3.

Choose an embedding g : V × S1→C. (We can always construct
g provided that n ≥ 3.) The embedding extends uniquely to a Σ-
equivariant embedding g : Σ(V × S1)→C.

Let J be a fundamental subgraph for G(Σ). If E ⊂ J is an edge, we
have the corresponding tube E×S1 ⊂ Z. The map g is already defined
on E∩Σ(V ×S1). Since n ≥ 4, we may extend g to a smooth embedding
of E×S1 in C. (Note that the S1-fibers in E inherit an orientation from
the orientation of S1. If n = 3, it will not always be possible to extend
g as an embedding as we will not be able to match the orientations
induced from the S1-fibers.) Repeat the construction for all edges in
the fundamental subgraph J . Again g extends uniquely to a smooth
Σ-equivariant immersion χ : Z→C. Since n ≥ 5 and Σ act freely on
C, we can always equivariantly perturb χ so that if E,F are distinct
edges in G(Σ) then the embedded surfaces χ(E × S1), χ(F × S1) can
only intersect along vertex loops. In particular, we may require that χ
is a Σ-equivariant embedding. Finally, a further perturbation allows us
to require that if γ ∈ Γ then γχ(Z)∩χ(Z) 6= ∅ if and only if γ ∈ Σ. It
follows that χ extends to a Γ-equivariant embedding of Γ(Z) in Rn. �
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4.2.3. A tubular neighborhood of the embedded suspension. Let χ :
Z→C be the embedding given by Lemma 4.6 and set Z = χ(Z). The
natural projection from Z = G(Σ) × S1 onto S1 induces a smooth
Σ-equivariant map π : Z→S1. Observe that each fiber π−1(θ) is
(smoothly) diffeomorphic to G(Σ), θ ∈ S1. Let p : N→Z be the normal
bundle of Z and let U be a corresponding open and Σ-invariant tubular
neighborhood of Z. For each θ ∈ S1, let U(θ) ⊂ U be the union of p-
fibers over π−1(θ). We may think of each U(θ) as an (n−1)-dimensional
Σ-manifold containing the embedded graph χ(G(Σ)× {θ}).

4.2.4. Refining the graph. We continue with our previous assumptions.
Suppose now that we embed G(Σ) in the graph G(Σ)′ and consider the
corresponding embedding of Z ′ = G(Σ)′×S1 in Z. It is straightforward
to extend the embedding χ to a smooth Σ-equivariant embedding χ′ :
Z ′→C. Moreover, we may do this so that for each θ ∈ S1, χ′(G(Σ)′ ×
{θ}) ⊂ U(θ).

4.2.5. Constructing the flow. Since n ≥ 5 and so n − 1 ≥ 4, it fol-
lows from Remark 4.4 that we can construct a Σ-equivariant embed-
ding φ : U(0)→U(0) which is Σ-equivariantly smoothly isotopic to
the identity map within U(0) and is such that φ has an Axiom A Σ-
symmetric solenoid A(0) ⊂ U(0). We may spread the isotopy round
U = ∪0≤θ≤2πU(θ) and so construct a smooth Σ-equivariant flowX on U
with Axiom A attractor conjugate to the suspension of φ : A(0)→A(0).
Now extend X Γ-equivariantly to Rn. �

4.3. Extension to Γ-manifolds. It follows easily from our methods
and Proposition 3.11 that our main theorems extend to Γ-manifolds.

Suppose that M is a smooth connected Γ-manifold. We let M◦ de-
note the open subset of M consisting of points of trivial isotropy. Pro-
vided that M◦ 6= ∅, it is well-known (see [7]) that M◦ is open and dense
in M . If Γ contains no involutions with codimension one fixed point
spaces, then M◦ will be connected. (The converse may or may not
hold.)

Theorem 4.7. Let Γ be a finite group acting on the smooth connected
Γ-manifold M . Suppose that M◦ 6= ∅ and dim(M) ≥ 4. Suppose that Σ
is a subgroup of Γ which fixes a connected component of M◦. Then there
exists a Γ-equivariant diffeomorphism φ : M →M with a connected Σ-
symmetric Axiom A attractor. The analogous result holds for flows
when dim(M) ≥ 5.
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5. Symmetric attractors in low dimensions

In Section 4 we showed that the condition that a subgroup Σ ⊂ Γ
is of class I is sufficient as well as necessary for flows provided n ≥ 5
(and sufficient for diffeomorphisms provided n ≥ 4). A solution for the
low-dimensional cases n ≤ 4 (n ≤ 3) is given in this section. Unless Σ
is cyclic our construction is highly degenerate. Indeed in some cases,
such as when Γ = Σ = I is the 60 element icosahedral group acting on
R3, it seems unlikely that a reasonable construction is possible.

Proposition 5.1. Suppose that n ≥ 3 and that Σ ⊂ Γ is cyclic and of
class I. Then Σ is admissible for flows and admissibility can be realized
by a periodic sink. If Σ = 1 we require only n ≥ 1 and the sink can be
taken to be an equilibrium.

Proof. First suppose that Σ = 1. Choose a point y ∈ Rn with trivial
isotropy and a neighborhood U of y. Let X : U → Rn be a smooth
vector field with a sink at y. Shrink U if necessary so that γU ∩U = ∅
for nontrivial γ ∈ Γ. It follows from Lemma 2.1 and Theorem 2.2 that
X extends Γ-equivariantly to a smooth vector field on Rn.

Next suppose that n ≥ 3 and Σ is a cyclic subgroup of class I fixing
a connected component C say of Rn \L. Choose a smoothly embedded
Σ-symmetric circle A ⊂ C consisting of points with trivial isotropy.
Since n ≥ 3, we may perturb A so that γA∩A = ∅ for γ ∈ Γ\Σ. Then
we define a smooth Σ-equivariant flow on a neighborhood U of A for
which A is a periodic sink. Now extend as before to a Γ-equivariant
vector field on Rn. �

Corollary 5.2. If Γ ⊂ O(n) is a finite group generated by reflections,
then a subgroup Σ ⊂ Γ is admissible for flows if and only if Σ = 1.

Proof. Since Γ is generated by reflections, Γ acts freely on the compo-
nents of Rn \L. Hence, the only candidate for an admissible subgroup
is Σ = 1. In this case admissibility follows from Proposition 5.1. �

Corollary 5.3. (a) Suppose n = 1 and Γ = 1 or Γ = Z2. Then
Σ ⊂ Γ is admissible for flows if and only if Σ = 1.

(b) Suppose n = 2 and Γ = Dm or Γ = Zm, m ≥ 1. Then Σ ⊂ Dm
is admissible for flows if and only if Σ = 1. If Σ ⊂ Zm, then Σ
is admissible for flows if and only if Σ = Zm or Σ = 1.

Proof. Except for Γ = Zm in part (b), the groups Γ are generated by
reflections and Corollary 5.2 applies. If Γ = Zm, there are no reflections
and every subgroup of Σ is of class I. However, there is a topological
obstruction to admissibility of subgroups Σ = Zk for 1 < k < m, see
the argument in [5, Theorem 7.2(a)]. Finally, Σ = 1 can be realized by
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a sink and Σ = Zm can be realized by a periodic sink. For example,
the vector field

X(z) = (1− |z|2)z + ız,

on C = R2 is SO(2)-equivariant (hence Zm-equivariant) and has the
unit circle as a periodic sink. �

It still remains to consider admissibility of class I subgroups Σ ⊂ Γ
when the following conditions are satisfied:

• n = 3 or n = 4, and
• Σ is not cyclic.

In the remainder of this section, we show that such subgroups are in
fact admissible for flows and diffeomorphisms, thereby completing the
proof of Theorems 1.2, 1.5. At the same time, our construction is highly
degenerate and the resulting ω-limit set A is certainly not structurally
stable.

We only sketch the construction of a vector field X : Rn → Rn with
the required properties. The ω-limit set A is taken to be an embedded
complete Σ-graph. Choose a smooth path P in a neighborhood of
A that ‘spirals’ into A (tracking a smooth Eulerian circuit in A for
example). We can choose a neighborhood V of P satisfying A∩ V = ∅
and a vector field X on V such that

(i) P is a trajectory of X,
(ii) X|V has a nonnegative component in the direction of the path

P ,
(iii) X has support lying in V ,
(iv) As V approaches A, the vector field X and all its derivatives

approach zero.

The vector field X extends uniquely and Γ-equivariantly to Γ(V ). We
extend X to a Γ-equivariant vector field on Rn by setting X(x) = 0
for x ∈ Rn \ Γ(V ). It follows from property (iv) that X is smooth.
By construction, the Σ-symmetric set A is invariant and consists of
equilibria. Property (i) implies that A is an ω-limit set for X. It
follows from properties (ii) and (iii) that A is Liapunov stable.

With a little care, we can modify the construction so as to make A
asymptotically stable. Let Z ⊂ Rn be an embedded Eulerian ribbon,
isomorphic to G(Σ)× (−1, 1). Then we can choose a neighborhood U
of Z in Rn with fibers that are smooth discs away from branch points.
At branch points, fibers are finite unions of smooth discs meeting at
the branch point.

Given this local product structure, it is sufficient to construct a
smooth vector field X on Z for which A is asymptotically stable. We
may assume that the spiral path P and neighborhood V lie in Z and
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hence that there is a flow-invariant open spiral tube W ⊂ Z such that
every point in the spiral has ω-limit set A.

Now consider vector fields on Z of the form X+Y where Y contracts
along fibers of the ribbon Z towards A. If z ∈ Z\A, then the trajectory
of z will repeatedly cross the spiral W . We choose Y so small so that
every time a trajectory of X enters W , the trajectory traverses the
entire ribbon at least once before exiting W . It follows that the ω-limit
set of every point of Z \ A is equal to A.

Remark 5.4. The constructions in this section for flows yield symmetric
connected attractors for diffeomorphisms on passing to the time-one
map. In particular, Theorem 1.5 is proved. We require the degenerate
construction only when n = 3 and Σ is not cyclic. (If n = 3 and Σ
is cyclic, it follows from Lemma 4.5 that the attractor can be taken
to be an Axiom A solenoid. The only other case to consider is when
n = 2 and Γ = Σ = Zm, m ≥ 2 in Corollary 5.3. Here we can take the
attractor to be a normally hyperbolic irrational rotation on a circle.)

6. Attractors in fixed-point spaces

So far we have concentrated attention on attractors that have trivial
instantaneous symmetry. In this section we generalize our results to
attractors with nontrivial instantaneous symmetry. We largely follow
the argument of [21] for continuous maps.

Suppose as usual that Γ ⊂ O(n) is a finite group acting on Rn.
Recall that if A is a subset of Rn we define the symmetry group ΣA

to be the subgroup of Γ leaving A invariant. We define the group of
instantaneous symmetries TA to be the subgroup of Γ which fixes A
pointwise:

TA = {γ ∈ Γ | γx = x for all x ∈ A}.

Observe that A ⊂ Fix(TA). It is easily shown [21] that TA is an isotropy
subgroup of Γ and that TA ⊂ ΣA ⊂ N(TA). Hence we may restrict to
pairs of subgroups (Σ, T ) of Γ satisfying these properties. We generalize
the notion of a Σ-symmetric set by saying that a subset A ⊂ Rn is
(Σ, T )-symmetric if ΣA = Σ, TA = T and there is a point y ∈ A with
Γy = T .

Definition 6.1. Let Γ ⊂ O(n) be a finite group acting on Rn and let
(Σ, T ) be a pair of subgroups of Γ. We say that (Σ, T ) is admissible for
flows if there is a Γ-equivariant flow on Rn with a (Σ, T )-symmetric
Liapunov stable ω-limit set A.
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We impose the additional criterion of Liapunov stability in Defini-
tion 6.1 so that we can make use of the following result (but note
Remark 6.5).

Proposition 6.2. Suppose that A is a Liapunov stable ω-limit set and
that γ ∈ Γ. Either γA = A or γA ∩ A = ∅.

Proof. This was originally proved under slightly different hypotheses
by Chossat and Golubitsky [8, Proposition 1.1] and was reformulated
as stated here in [22, Proposition 4.8]. �

Just as in [21], we obtain a necessary condition for admissibility of
a pair of subgroups (Σ, T ) by restricting to Fix(T ). A Γ-equivariant
flow on Rn restricts to a N(T )/T -equivariant flow on Fix(T ). At the
same time, a (Σ, T )-symmetric attractor for the flow on Rn is a Σ/T -
symmetric attractor for the flow restricted to Fix(T ). As an immediate
consequence we have

Proposition 6.3. Let (Σ, T ) be a pair of subgroups of Γ and set Γ′ =
N(T )/T and Σ′ = Σ/T . If (Σ, T ) is admissible for flows then Σ′ is
admissible for flows as a subgroup of Γ′.

The conditions in Proposition 6.3 are not optimal (even if Fix(T ) is
of high dimension). This is due to the presence of hidden symmetries.
That is, elements γ ∈ Γ \ N(T ) with the property that γFix(T ) ∩
Fix(T ) 6= ∅, see [15, 16]. In the remainder of this section, we obtain
necessary and sufficient conditions for a pair (Σ, T ) to be admissible
for flows. As in the case of continuous maps [21], it suffices to take
account of ‘hidden reflections’. To this end, let KT denote the set of
elements τ ∈ Γ such that Fix(τ) intersects Fix(T ) in a codimension
one subspace. Define

LT =
⋃

τ∈KT

Fix(τ).

Note that the connected components of Fix(T ) \ LT are permuted by
elements of N(T ) and also by Γ-equivariant homeomorphisms.

Theorem 6.4. Suppose that Γ ⊂ O(n) is a finite group, T is an
isotropy subgroup of Γwith dim Fix(T ) ≥ 3, and Σ is a subgroup satis-
fying T ⊂ Σ ⊂ N(T ). Then (Σ, T ) is admissible for flows if and only
if Σ fixes a connected component of Fix(T ) \ LT . Admissibility can be
realized by an Axiom A attractor if dim Fix(T ) ≥ 5.

Proof. First, suppose that (Σ, T ) is admissible for flows. That is,
there exists a Γ-equivariant flow on Rn with a connected attractor
A ⊂ Fix(T ) and ΣA = Σ. It follows that A ∩ Fix(τ) = ∅ for any
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τ ∈ N(T ) that acts as a reflection on Fix(T ). Moreover, by Proposi-
tion 6.2, A ∩ Fix(τ) = ∅ for all τ ∈ Γ \Σ. Hence A ∩ LT = ∅ and so A
lies in a connected component C ⊂ Fix(T ) \LT . It follows that Σ fixes
the component C.

Next suppose that Σ fixes a connected component of Fix(T ) \ LT .
Let Γ′ = N(T )/T and Σ′ = Σ/T . By Proposition 6.3 and the results in
Section 5 (and Section 4) we can construct a Σ′-symmetric (Axiom A)
attractor A ⊂ C for a Γ′-equivariant flow on Fix(T ). Moreover, there
is no difficulty extending Γ-equivariantly to the whole of Rn provided
that

(6.1) γA ∩ A = ∅, for all γ ∈ Γ \N(T ).

Since A ⊂ C, condition (6.1) is satisfied for γ ∈ KT . Moreover,
Fix(γ)∩Fix(T ) has codimension greater than one in Fix(T ), γ 6∈ KT ∪
T , and we may assume that all points in A have isotropy precisely
T . Condition (6.1) holds unless A contains points x, γx with γ 6∈
N(T ) ∪ KT and γx = σx for some σ ∈ Σ. But then γ−1σ ∈ T and
γ ∈ N(T ). �

Remarks 6.5. (1) The necessary and sufficient condition for a pair
(Σ, T ) to be admissible for flows is also a sufficient condition for (Σ, T )
to be admissible for diffeomorphisms. Moreover, admissibility can be
realized by a connected Axiom A attractor provided dim Fix(T ) ≥ 4.
(2) Results of [2, 3] indicate that weaker notions of stability than Lia-
punov or asymptotic stability are appropriate for attractors in proper
invariant subspaces. As in [21] it is possible to generalize Theorem 6.4
to include such notions of stability.

Part 2.

We continue to assume that Γ ∈ O(n) is a finite group acting on Rn.
In Part I, we classified the admissible symmetries of ω-limit sets for
smooth Γ-equivariant flows on Rn. We also verified part of Theorem 1.4
by finding sufficient conditions for admissibility for Γ-equivariant dif-
feomorphisms. In Part II, we complete the proof of Theorem 1.4 as
well as the classification of admissible symmetries of ω-limit sets for
Γ-equivariant diffeomorphisms. The proof of Theorem 1.4 depends on
a number of results about finite reflection groups as well as extensions
of the techniques used in Part 1.

We also consider the question of strong admissibility, where we re-
quire that the ω-limit set is connected and Liapunov stable. Provided
n ≥ 3, the ω-limit sets in Theorem 1.4 can be taken to be connected
for class I subgroups and to have two connected components for class
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II subgroups. For certain class II subgroups, we can reduce the number
of connected components to one.

Proposition 6.6. Suppose that Γ is a finite subgroup of O(n), n ≥ 3,
and that Σ is a class II subgroup. Then Σ is strongly admissible for
diffeomorphisms if and only if Σ contains a reflection that lies in the
center of Γ. The ω-limit sets that realize strong admissibility can be
taken to be asymptotically stable but cannot be taken to be Axiom A
attractors.

We review background material on finite reflection groups in Sec-
tion 7 and give a reasonably computable characterization of subgroups
of class I and class II. In Section 8, we prove that admissible subgroups
are of class I and II and classify the admissible subgroups of finite
reflection groups.

The next two sections are concerned with the construction of Ax-
iom A attractors when n ≥ 4. In Section 9, we prove a result of
independent interest where a result of [22] on the symmetry of con-
nected components of an attractor is shown to be optimal. This result
is used in Section 10 where we construct symmetric Axiom A attrac-
tors for subgroups of class II. In particular, this completes the proof of
Theorem 1.4 when n ≥ 4.

In Section 11 we consider the low-dimensional cases where n ≤ 3
and so conclude the proof of Theorem 1.4. Finally, in Section 12, we
obtain the characterization of strong admissibility described in Propo-
sition 6.6.

7. Background from finite reflection groups

Suppose that Γ is a finite group. Let R denote the normal subgroup
of Γ generated by the set of reflections in Γ. The group R is (by defi-
nition) a finite reflection group and the questions we consider depend
crucially on the action of Γ on the fundamental domains of R. In Sub-
section 7.1, we recall and develop the ideas we need from the represen-
tation theory of finite reflection groups. In Subsection 7.2 we consider
the full group Γ and prove results about the action of Γ-equivariant
homeomorphisms on the fundamental domains ofR. Finally, in Subsec-
tion 7.3, we give a computable characterization of subgroups of class I
and class II.

7.1. Finite reflection groups. In this subsection, we recall the stan-
dard results about finite reflection groups that we need. In addition,
we obtain a useful characterization of central reflections.
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Proposition 7.1. Suppose that R is generated by reflections and that
L is the union of the reflection hyperplanes corresponding to reflections
in R. Then each connected component of Rn \ L is convex and a fun-
damental domain for the action of R. In particular, R acts transitively
and fixed-point freely on the set of connected components of Rn \ L.

Proof. This is a well-known fact about representations of finite reflec-
tion groups (see, for example, [18, Chapter 1]). �

Proposition 7.2. Suppose that R is a finite reflection group acting on
Rn. We may write Rn = V⊕W , V = V1⊕· · ·⊕Vp and R = R1×· · ·×Rp,
where V and W are R-invariant subspaces and, for each j ∈ {1, . . . , p},
we have

(a) (Vj, Rj) is a nontrivial irreducible finite reflection group.
(b) Rj acts trivially on (⊕i6=jVi)⊕W

Furthermore, if C is a fundamental domain for (Rn, R), then C =
C1 × · · · × Cp × W where Cj is a fundamental domain for (Vj, Rj),
j = 1, . . . , p.

Proof. Statements (a,b) are standard results in the classification theory
of finite reflection groups (see, for example, [18, Chapter 2, §2]). The
final assertion is an immediate consequence of the fact that R acts on
V as the product R1 × · · · ×Rp. �

Remarks 7.3. (1) The group R acts trivially on the subspace W in
Proposition 7.2.
(2) The linear maps that commute with the action of R leave each of
the subspaces V1, . . . , Vp,W invariant and are scalar multiples of the
identity on each Vj.

Let Z(R) denote the center of R. As an immediate consequence of
Proposition 7.2 and Remarks 7.3, we have

Corollary 7.4. Suppose τ ∈ R is a reflection. There exists a unique
j ∈ {1, . . . , p} and reflection τj ∈ Rj such that τ is induced from τj.
Moreover, if τ ∈ Z(R) then τj ∈ Z(Rj) and (Vj, Rj) ∼= (R,Z2).

Definition 7.5. Two fundamental domains C and C ′ are adjacent if
the closures C and C ′ have (n− 1)-dimensional intersection.

Lemma 7.6. Let C be a fundamental domain for R and suppose that
τ ∈ R is a reflection. Then τ ∈ Z(R) if and only if

(i) C and τC are adjacent, and
(ii) there is an R-equivariant involution B such that τC = BC.
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Proof. First we reduce to the case where R is a finite reflection group
acting irreducibly on Rn. Let Rn = V ⊕ W , V = V1 ⊕ · · · ⊕ Vp be
as in Proposition 7.2. It follows from Corollary 7.4 that we may iden-
tify τ with a reflection τj ∈ Rj. Moreover, τ ∈ Z(R) if and only if
τj ∈ Z(Rj). Observe that the fundamental domains C and τC are
adjacent if and only if Cj and τjCj are adjacent. An R-equivariant
involution B satisfying τC = BC restricts to an Rj-equivariant invo-
lution satisfying τjCj = BCj. Conversely, an Rj-equivariant involution
satisfying τjCj = BCj extends to an involution on Rn satisfying con-
dition (ii) by setting B to be the identity on (⊕i6=jVi) ⊕ W . Hence,
without loss of generality, we may suppose that R = Rj and Rn = Vj.

Now let R be a finite reflection group acting irreducibly on Rn. The
only equivariant involutions are ±I. If τ ∈ Z(R) then n = 1 so that
conditions (i) and (ii) are trivially valid. Conversely, suppose that the
reflection τ satisfies conditions (i) and (ii). Since B = −I it follows
that C and −C are adjacent. This is possible only when n = 1 in which
case R is abelian. �

If J ⊂ R is a maximal isotropy subgroup of R then Fix(J) is one-
dimensional. We shall call Fix(J) an axis of symmetry for R.

Proposition 7.7. Suppose that R is a finite reflection group acting
irreducibly on Rn and that C is a fundamental domain for R. Then C \
{0} intersects precisely n axes of symmetry, say A1 . . . , An. Moreover,
if C ′ \ {0} intersects A1 . . . , An then C ′ = ±C.

Proof. This result follows from standard facts about simple root sys-
tems. Again we refer to [18] for more details. �

We shall require one further basic fact about finite reflection groups.

Proposition 7.8. Suppose that J is an isotropy subgroup of R. Then
J is generated by reflections.

7.2. Groups that contain reflections. Throughout this subsection,
Γ denotes a finite group acting on Rn and R is the normal subgroup
generated by reflections. It follows from the definition of R and Propo-
sition 7.1 that Γ acts transitively on the set of fundamental domains
for R.

The decomposition in Proposition 7.2 holds for the subgroup R
but with the additional property that the subspaces V and W are
Γ-invariant.

Proposition 7.9. Let C denote a fundamental domain for R and let
ΓC be the subgroup of Γ that fixes the component C. Then

(a) ΓC is an isotropy subgroup of Γ.
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(b) Γ is the semi-direct product of R and ΓC.

Proof. Choose x ∈ C. Then y =
∑

γ∈ΓC γx lies in C since C is convex.

By construction, the isotropy subgroup Σy contains ΓC . Conversely, if
σ ∈ Σy, then σ fixes y and hence C so that σ ∈ ΓC . Statement (a)
follows.

Since C is a fundamental domain for R, each element of Γ can be
written uniquely as a product of elements of ΓC and R. Since R is
normal, it follows that Γ is the semi-direct product of R and ΓC . �

Proposition 7.10. Suppose that f : Rn → Rn is a Γ-equivariant home-
omorphism. Let C be a fundamental domain for the action of R on Rn
and let C = C1 × · · · × Cp × W be the decomposition of C given in
Proposition 7.2. Then

(a) f(C) = e1C1 × · · · × epCp × W , where ei ∈ {−1,+1}, i ∈
{1, . . . , p}.

(b) The subspaces V+ = ⊕ei=1Vi and V− = ⊕ei=−1Vi are Γ-invariant.

Proof. Write f(C) = C ′, C ′ = C ′1 × · · · × C ′p ×W . To prove (a) we
must show for example that C ′1 = ±C1. Let dimV1 = m and let
A1, . . . , Am be the axes of symmetry for R1 that intersect C1 \ {0} as
in Proposition 7.7. Since f is equivariant, f(Aj) = Aj for each j. It

follows that C ′1 intersects each of the axes Aj so that C ′1 = ±C1 as
required.

Next we prove (b). Suppose that γ ∈ Γ and that A is an axis of
symmetry for some Rj. Then γA is an axis of symmetry for γRjγ

−1. By
equivariance f preserves or reverses orientations on A and γA together.
Hence A and γA both lie either in V+ or V−. In particular, the axes
of symmetry in V+ and in V− are preserved by the action of Γ. The
result now follows from the fact that the axes of symmetry for Rj span
Vj. �

Lemma 7.11. Suppose that f : Rn → Rn is a Γ-equivariant homeo-
morphism and that C is a fundamental domain for R. Then there is
an equivariant involution B ∈ B such that f(C) = B(C).

Proof. We have shown that Rn = V+⊕Vi⊕W where V+, V− and W are
Γ-invariant subspaces. Hence we can define a Γ-equivariant involution
by B|V+ = IV+ , B|V− = −IV− , B|W = IW . Then BC = f(C) as
required. �

Remark 7.12. If we assume that f is a diffeomorphism, we may give
an elementary proof of Lemma 7.11. Indeed, df0 is an invertible linear
map commuting with Γ and satisfying df0(C) = f(C). Replace df0

by the linear map B which is the identity on W and equal to df0 on
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V . Note that B is Γ-equivariant and we still have BC = f(C). By
Remark 7.3(2), B|V is diagonal and we may scale so that B has entries
consisting of plus and minus one. Hence B2 = I as required.

7.3. Computation of subgroups of class I & II. The definitions
in Section 1 depend on explicit details about the action of Γ that may
be difficult to verify. In this subsection, we derive alternative char-
acterizations of class I and II subgroups that can be easily applied in
practice. We follow the viewpoint of [5] that the isotropy subgroups
and reflections in the representation of Γ are relatively computable and
seek characterizations of the class I and II subgroups in terms of this
information and group theory alone.

The characterization of subgroups of class I is straightforward thanks
to Proposition 7.9. Recall that ΓC is the subgroup of Γ that fixes a
connected component C ⊂ Rn \ L.

Proposition 7.13. The subgroup ΓC is a maximal reflection-free isotropy
subgroup of Γ and contains all subgroups of class I up to conjugacy.

Recall that the centralizer of Γ (in O(n)) is defined to be

C(Γ) = {ρ ∈ O(n), ργ = γρ for all γ ∈ Γ}.

We denote by B the set of all elements in C(Γ) of order two. Thus
B consists of nontrivial Γ-equivariant involutions. If B ∈ B, Z2(B)
denotes the two element group generated by B. (In general, we shall
use this notation Z2(B) even if B 6∈ C(Γ).)

Suppose that Σ is a class II subgroup of Γ. We recall that Σ contains
an index two subgroup ∆ (fixing a connected component C of Rn \ L)
and that there exists B ∈ B such that B(C) = σC, all σ ∈ Σ \∆. The
simplest case is when B ∈ Σ since we can easily list the subgroups of
Γ of the form Σ = ∆ ⊕ Z2(B) where ∆ is of class I and B ∈ B. We
now consider the remaining cases B ∈ Γ \ Σ and B /∈ Γ.

First of all, suppose that Σ and ∆ are subgroups of Γ and ∆ is of
index two in Σ. Given B ∈ B, B /∈ Σ, we may define a new group
ΣB ⊂ O(n) by

ΣB = ∆ ∪B(Σ \∆)

It is obvious that ∆ is of index two in ΣB and that (ΣB)B = Σ. More-
over, ΣB ⊂ Γ if and only if B ∈ Γ.

Proposition 7.14. Let Σ and ∆ be subgroups of Γ with ∆ of index
two in Σ and let B ∈ B be an equivariant involution with B ∈ Γ \ Σ.
Suppose further that Σ is not of class I but that ∆ is of class I. Then
Σ is of class II if and only if ΣB is of class I.
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Proof. Observe that ΣB fixes a connected component C of Rn \ L if
and only if ∆ fixes C and B(Σ \∆) fixes C. �

If the involutionB /∈ Γ, then ΣB is a subgroup of the group Γ⊕Z2(B).
Note that elements of Γ, C(Γ), and hence Γ ⊕ Z2(B), permute the
connected components of Rn \ L.

Proposition 7.15. Assume the same hypotheses as in Proposition 7.14
except that B 6∈ Γ. Then Σ is of class II if and only if there is an
isotropy subgroup J in Γ ⊕ Z2(B) such that ΣB ⊂ J and J ∩ Γ is
reflection-free.

Proof. As before, Σ is of class II if and only if ΣB fixes a connected
component C of Rn \ L. Suppose that ΣB fixes C. Let J = (Γ ⊕
Z2(B))C and R′ denote the normal subgroup of Γ ⊕ Z2(B) generated
by reflections. If R = R′, then Γ⊕Z2(B) is the semi-direct product of R
with J and it follows from Proposition 7.9(a) that J is an isotropy group
for the action of Γ ⊕ Z2(B). If R′ 6= R, then C is not a fundamental
domain for the action of R′ and J will be the isotropy of any point
in C which has Γ-isotropy ΓC and lies on a a reflection hyperplane of
R′ \ R. In either case, it is obvious that J ∩ Γ is reflection-free. The
converse is equally straightforward (see also [5, Theorem 3.2]). �

8. Admissible subgroups are of class I or II

In Subsection 8.1, we prove that the conditions for admissibility de-
scribed in Theorem 1.4 are necessary. In Subsection 8.2, we classify
the admissible subgroups of finite reflection groups.

8.1. Admissible subgroups for homeomorphisms. In this subsec-
tion, we show that admissible subgroups for homeomorphisms are of
class I or II. We begin by showing that an ω-limit set for an equi-
variant continuous one-to-one map intersects at most two connected
components of Rn \ L.

Proposition 8.1. Let Γ ⊂ O(n) be a finite group. Suppose that f :
Rn → Rn is a continuous one-to-one Γ-equivariant map. Then f 2 fixes
each connected component of Rn \ L.

Proof. Let τ ∈ Γ be a reflection. Since f is one-to-one and Γ-equivariant,
the subspace Fix(τ) is backward as well as forwards invariant under f ,
and hence f permutes the two connected component of Rn \ Fix(τ).
That is, f either fixes the connected components or interchanges them.
Hence the components are fixed by f 2.

Now suppose that C is a connected component of Rn \ L. We may
write L = Fix(τ1) ∪ · · · ∪ Fix(τk) and hence C = C1 ∩ · · · ∩ Ck, where
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Cj is a connected component of Rn \ Fix(τj). Then f 2(C) = f 2(C1) ∩
· · · ∩ f 2(Ck) = C1 ∩ · · · ∩ Ck = C as required. �

Corollary 8.2. Suppose that Γ and f are as in the proposition, and
that A is an ω-limit set for f . Then A intersects at most two connected
components of Rn \ L. Moreover, if A is Σ-symmetric, Σ a subgroup
of Γ, then Σ contains at most one reflection in which case A intersects
two connected components.

Let Σ be a subgroup of Γ. If A ⊂ Rn is a Σ-symmetric ω-limit set,
then γA is a γΣγ−1-symmetric ω-limit set. It follows that we need only
consider representatives of conjugacy classes of subgroups and orbits
of ω-limit sets. Since Γ acts transitively on the connected components
of Rn \ L, we may assume without loss of generality that A ∩ C 6= ∅
for some fixed component C. Recall that ΓC is the subgroup of Γ that
fixes C.

Theorem 8.3. Suppose that Γ ⊂ O(n), n ≥ 1. Let Σ be a subgroup of
Γ. Suppose that A is a Σ-symmetric ω-limit set for the Γ-equivariant
homeomorphism f : Rn → Rn. Let A ∩ C 6= ∅, where C is a connected
component of Rn \ L. Either Σ ⊂ ΓC or

(a) There is a unique involution r ∈ R ∩ C(ΓC) such that Σ ⊂
ΓC ⊕ Z2(r).

(b) ∆ = Σ ∩ ΓC is of index two in Σ.
(c) There exists an equivariant involution B ∈ B such that BC =

σC for all σ ∈ Σ \∆.

In particular, Σ is of class I or class II.

Proof. (a,b) Let σ ∈ Σ \ ΓC . Since A is an ω-limit set, it follows that
f(C) = σC and by equivariance of f that ΓC fixes the component σC
as well as the component C. By Proposition 7.9(b) there is a unique
element r ∈ R such that σC = rC. Moreover r−1σ fixes C and so lies
in ΓC . It follows that Σ lies in the group generated by ΓC and r and
that ∆ = Σ ∩ ΓC is of index two in Σ.

Next we claim that r2 = 1. We have f(C) ⊂ rC so by equivariance
f 2(C) ⊂ r2(C). But f 2(C) ⊂ C so that r2(C) = C. Hence r2 ∈ ΓC ∩R
and r2 = 1 as required. It remains to show that elements ω ∈ ΓC
commute with r. Since ΓC fixes C and rC, we have ω−1rωC = rC.
But R is a normal subgroup of Γ so ω−1rω ∈ R. The unique element
of R mapping C into rC is r so we have ω−1rω = r as required.
(c) We have f(C) = σC for σ ∈ Σ \ ∆. It follows from Lemma 7.11
that f(C) = BC for some B ∈ B, proving (c).

The final statement follows from the characterization of class I sub-
groups in Proposition 7.13 and the definition of class II subgroups. �
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8.2. Admissible subgroups of irreducible finite reflection groups.
In this subsection, we give a fairly explicit description of the class I and
class II subgroups of an irreducible finite reflection group. We use this
information to give a simple proof of Theorem 1.4 in the case when Γ
is an irreducible finite reflection group.

Proposition 8.4. Suppose that Γ is a finite reflection group acting
irreducibly on Rn, n ≥ 1. The subgroup 1 is the unique subgroup of
class I. If −I ∈ Γ, Z2(−I) is the unique class II subgroup. If −I 6∈ Γ,
then the class II subgroups are given by Z2(τ) where τ is a noncentral
involution (that is, τ 2 = 1, τ 6= ±I) such that Z2(−τ) is an isotropy
subgroup of Γ⊕ Z2(−I).

Proof. Isotropy subgroups of finite reflection groups are themselves gen-
erated by reflections (Proposition 7.8). It follows from Proposition 7.13
that 1 is the only class I subgroup. Moreover, class II subgroups have
order two.

Next observe that by irreducibility C(Γ) = {±I} and so B = {−I}.
Suppose that −I ∈ Γ. Every class II subgroup is of the form Σ =
Z2(τ), for some involution τ . It follows from Proposition 7.14 that
ΣB = Z2(−τ) is a class I subgroup. Hence Z2(−τ) = 1 and so τ = −I.
Hence the only class II subgroup is Z2(−I).

Finally, we apply Proposition 7.15 to obtain the class II subgroups
when B = −I 6∈ Γ. Again Σ = Z2(τ) and ΣB = Z2(−τ). If ΣB is an
isotropy subgroup, then we can take J = ΣB (note that J ∩ Γ = 1,
since τ ∈ Γ, −I 6∈ Γ, implies that −τ 6∈ Γ). Conversely, suppose that
J is an isotropy subgroup of Γ⊕ Z2(−I) such that ΣB ⊂ J and J ∩ Γ
is reflection-free. Since J ∩ Γ is an isotropy subgroup of Γ we have
J ∩ Γ = 1. Hence J has at most two elements. It follows that ΣB = J
as required. �

It is clear that the class I subgroup 1 is admissible and may be
realized by a sink. The following lemma takes care of the class II
subgroups.

Lemma 8.5. Suppose that n ≥ 1 and Σ = Z2(τ) is of class II (where
τ ∈ Γ is not necessarily central). Then Σ is admissible for diffeomor-
phisms and may be realized by a period two sink.

Proof. Let x ∈ C be a point of trivial isotropy. Observe that Bτx ∈ C.
Since the set of points in C of trivial isotropy is path connected it
follows form [7, Chapter 6, Theorem 3.1] that the map taking x to
Bτx is Γ-equivariantly isotopic to the inclusion. Hence there is an
extension to a Γ-equivariant diffeomorphism φ0 : Rn → Rn permuting
x and Bτx. Define φ = B ◦ φ0. It follows from our construction that
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x is a periodic point of period two. The corresponding periodic orbit
A consists of the points x and τx and is Σ-symmetric. The usual
perturbation arguments allow us to assume that A is a sink. �

Corollary 8.6. Suppose that Γ ⊂ O(n) is a finite reflection group,
n ≥ 1. A subgroup Σ ⊂ Γ is admissible for diffeomorphisms if and only
if Σ is of class I or of class II. Moreover, admissibility can be realized
by a sink or period two sink respectively.

Proof. By Theorem 8.3, an admissible subgroup must be of class I or
class II. The converse follows from Proposition 8.4 and Lemma 8.5. �

9. Attractors with symmetric connected components

Let Γ ⊂ O(n) be a finite group acting on Rn, n ≥ 4. Suppose that
Σ ⊂ Γ is of class I. By Theorem 1.5, Σ is admissible for diffeomorphisms
and can be realized by a connected Axiom A attractor.

Suppose instead that A is a disconnected Σ-symmetric ω-limit set
for a diffeomorphism φ. Let X be a closed and open nonempty proper
subset of A. Define ∆X = {σ ∈ Σ | σ(X) = X}. If we set Y = A \X,
then ∆X = ∆Y (since if X is fixed by σ ∈ Σ, so is Y ). Clearly ∆X is
a normal subgroup of ΣA.

In [22, Theorem 4.6], it was shown that, under the additional as-
sumption that A is Liapunov stable, ΣX is not arbitrary. Indeed the
quotient Σ/ΣX is cyclic so that Σ is a cyclic extension of ΣX . (If A
is assumed to have finitely many connected components, then this re-
sult is elementary and the assumption that A is Liapunov stable is not
required.)

In this section, we prove that the restriction in [22] is optimal.

Theorem 9.1. Suppose that n ≥ 4 and that Σ ⊂ Γ is of class I.
Suppose further that Σ is a cyclic extension of ∆ with Σ/∆ ∼= Zk.
Then there exists a Γ-equivariant diffeomorphism φ : Rn → Rn with a
Σ-symmetric Axiom A attractor consisting of k ∆-symmetric connected
components.

The proof of this result is similar to arguments in Section 4.1. The
new ingredient is contained in the following proposition.

Proposition 9.2. Suppose that n ≥ 3. Let Σ ⊂ Γ be of class I and
suppose that ∆ is a normal subgroup of Σ. Let G0 ⊂ Rn be a smoothly
embedded Σ-graph consisting of points of trivial isotropy. Let σ ∈ Σ \
∆. We may ∆-equivariantly perturb G0 to a smoothly embedded ∆-
graph G1 such that there exists a Γ-equivariant diffeomorphism h of Rn
mapping G1 to σG1.
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Proof. Let Rn0 denote the subset of Rn consisting of points of trivial
Γ-isotropy. Since n ≥ 3, we may find a ∆-equivariant isotopy φt :
G0→Rn0 , t ∈ [0, 1], such that if we set Gt = φt(G0) then

(a) γGt ∩Gt = ∅ for all γ ∈ Γ \ Σ, t ∈ [0, 1].
(b) γG1 ∩G1 = ∅ for all γ ∈ Γ \∆.

We remark that (a) implies that the isotopy extends, as a Γ-equivariant
map, to Γ(G0). Condition (b) implies that G1 is a smoothly embedded
∆-graph. Since σ ∈ N(∆), σG1 is ∆-invariant. In particular, the
isotopy φt induces a ∆-equivariant isotopy ψt = σφtσ

−1 moving G0 to
σG1. Obviously ψt satisfies (a,b) and is supported in Rn0 . Let ρt =
ψt ◦φ−1

t . Then ρ0 is the inclusion of G0 in Rn and ρ1 : G1→σG1 is a ∆-
equivariant diffeomorphism. Let h denote the Γ-equivariant extension
of ρ1 to Γ(G1). Since h is Γ-equivariantly isotopic to the inclusion
map it follows that h extends to a Γ-equivariant diffeomorphism of Rn.
Obviously, h(G1) = σG1. �
Proof of Theorem 9.1: Let G0 ⊂ Rn be a smoothly embedded bal-
anced Σ-graph consisting of points of trivial isotropy. Let σ ∈ Σ \ ∆
generate Σ/∆ and G1 ⊂ Rn, h : Rn → Rn satisfy the conclusions
of Proposition 9.2. Let f1 : G1 → G1 be a smooth ∆-equivariant map
satisfying condition (W). In particular, f1 will be an expanding immer-
sion. Set G = Σ(G1) and note that G is a smooth Σ-graph consisting
of k connected components each of which is a smooth ∆-graph. The
map f : G1→G1 extends Σ-equivariantly to G and so we may define
χ = h ◦ f : G→G. Clearly χ continues to satisfy condition (W). Pass-
ing to the inverse limit yields a (topologically transitive) Σ-symmetric
solenoid S consisting of k connected ∆-symmetric solenoids. This will
provide the model for our Axiom A attractor A.

Following Williams [23], we thicken G1 to a tubular neighborhood
U1, extend f1 to a map f1 : U1 → G1 and perturb to an embedding
φ1 of U1→U1, all the time preserving fibers of U1 and equivariance.
Extend φ1 to a Γ-equivariant embedding φ1 : U → U where U =
Γ(U1). As in the proof of Theorem 4.3, we can choose G1 and f1 so
that φ1 is Γ-equivariantly isotopic to the inclusion in Rn. In addition,
we may require that h|U : U→U and preserves fibers. Since φ1 is
Γ-equivariantly isotopic to the inclusion, we may extend φ1 to a Γ-
equivariant diffeomorphism φ1 of Rn. Define φ = h ◦φ1. It follows just
as in Section 4.1 that φ has an attractor A with the required properties.
The dynamics on A is topologically conjugate to the shift dynamics on
the solenoid S. �

In Section 10 we shall require the following straightforward general-
ization of Theorem 9.1.
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Lemma 9.3. Suppose that n ≥ 4 and that ∆ ⊂ Γ is of class I, fix-
ing a connected component C ⊂ Rn \ L. Let Σ ⊂ O(n) be a finite
cyclic extension of ∆ that fixes C. (We no longer require that Σ ⊂ Γ.)
Suppose that Σ/∆ has order k. Then there exists a Γ-equivariant dif-
feomorphism φ : Rn → Rn with a Σ ∩ Γ-symmetric Axiom A attractor
consisting of k ∆-symmetric connected components.

Proof. We can proceed along similar lines to the proof of Proposi-
tion 9.2 and Theorem 9.1. The only difference is that if G0 is a smooth
balanced Σ-graph, it may not be possible to Σ-equivariantly embed G0

in Rn. However, we may ∆-equivariantly embed G0 as a Σ-symmetric
subset of C and then we proceed just as before. �

10. Symmetric Axiom A attractors for diffeomorphisms

Suppose that Γ ⊂ O(n) is a finite group acting on Rn with n ≥ 4.
If Σ ⊂ Γ is of class I, then by Theorem 1.5 there exists a Γ-equivariant
diffeomorphism φ : Rn → Rn with a connected Σ-symmetric Axiom A
attractor.

In this section we prove the analogous result for subgroups Σ of class
II. Recall that Σ has an index two subgroup ∆ which is of class I and
fixes a connected component C ⊂ Rn \ L. Let B be the Γ-equivariant
involution satisfying BC = σC for σ ∈ Σ \∆.

Theorem 10.1. Suppose that Γ ⊂ O(n) is a finite group and n ≥ 4.
Let Σ ⊂ Γ be of class II. Then there exists a Γ-equivariant diffeomor-
phism φ : Rn → Rn with a Σ-symmetric Axiom A attractor. The
attractor has two connected components, one of which lies in C, the
other in BC.

Proof. Let ΣB denote the group ΣB = ∆∪B(Σ \∆) ⊂ O(n). Observe
that ΣB is a subgroup of Γ if and only if B ∈ Γ but in any case ΣB fixes
the connected component C. Moreover, ∆ is an index two subgroup of
ΣB so that the hypotheses of Lemma 9.3 are satisfied with k = 2. It
follows from the lemma that there is a Γ-equivariant diffeomorphism
φ0 : Rn → Rn with an Axiom A attractor A consisting of two connected
components, both of which are ∆-symmetric. If A0 denotes one of the
components then the other component is BσA0, where σ is any element
of Σ \ ∆. Let φ = B ◦ φ0. Then φ is a Γ-equivariant diffeomorphism
and A = A0 ∪ σA0 is a Σ-symmetric Axiom A attractor. �

Remark 10.2. A simpler proof of Theorem 10.1 that does not rely on
Lemma 9.3 is possible when B ∈ Σ. In this case Σ = ∆ ⊕ Z2(B).
Since ∆ is of class I, it follows from Theorem 4.3 that we can find
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a Γ-equivariant diffeomorphism φ0 : Rn→Rn with a connected ∆-
symmetric Axiom A attractor A0 ⊂ C. We define φ = B ◦φ0. Since A0

is topologically transitive for φ2 = φ2
0, it follows that A = A0∪BA0 is an

Axiom A attractor for the Γ-equivariant diffeomorphism φ. Moreover
ΣA = Σ.

Remark 10.3. For certain class II subgroups Σ, we can relax the con-
dition that n ≥ 4.

(i) Suppose that Σ = Z2(τ). By Lemma 8.5, Σ is admissible for
diffeomorphisms and may be a realized by a period two sink for
all n ≥ 1.

(ii) Suppose that B ∈ Σ and ∆ is cyclic. Combining the construc-
tion above for the case B ∈ Σ with Lemma 4.5, we see that the
conclusion of Theorem 10.1 is valid for n = 3.

(iii) Again, suppose that ∆ is cyclic and that n ≥ 3. Suppose further
that Σ \∆ contains an element σ lying in the center of Γ. Ap-
plying Lemma 4.5 once more, we may construct a Γ-equivariant
diffeomorphism φ0 with a ∆-symmetric Axiom A attractor A0.
Define φ = σ ◦ φ0. Since σ is central, φ is Γ-equivariant. More-
over, just as in Section 9, the Σ-symmetric set A = A0 ∪ σA0

is an Axiom A attractor for φ. (Here, σ plays the role of the
extension h.)

11. Admissibility for diffeomorphisms in low dimensions

We continue to assume that Γ ⊂ O(n) is a finite group. In Section 8
we proved that admissible subgroups are of class I or class II for all
n ≥ 1. To this point we have proved the converse statement for n ≥ 4
and for some special cases when n ≤ 3. In this section, we give a
complete treatment of the cases n ≤ 3 and so complete the proof of
Theorem 1.4. Our approach is to compute the subgroups of class I and
class II explicitly (using the methods of 7.3) and to verify admissibility
on a case by case basis.

11.0.1. n = 1. The only cases to consider are Γ = 1 and Γ = Z2 both of
which are irreducible finite reflection groups. We can apply the results
of 8.2 but it is clear anyhow that 1 is of class I in both cases and that
Z2 is a class II subgroup of Γ = Z2. Moreover all subgroups are realized
by (periodic) sinks.

11.0.2. n = 2. The finite subgroups of O(2) are Zm and Dm, m ≥ 1.
The subgroups of class I and class II are listed in Table 1. We note that
all these subgroups are cyclic and can be realizable by periodic sinks.
When Γ = Dm, the relevant subgroups are of order one and two and
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we can apply Lemma 8.5. When Γ = Zm and Σ = Zk, any generator
of Zk is a Zm-equivariant diffeomorphism with Zk-symmetric periodic
orbits. Using a standard perturbation argument, we can ensure that
one of these periodic orbits is a periodic sink. Hence Theorem 1.4 is
valid when n = 2.

Next we verify the entries in Table 1. The group Zm contains no
reflections and hence all subgroups are of class I. The group Dm is gen-
erated by reflections so 1 is the unique subgroup of class I. Subgroups of
class II must have order two. The groups D1 and D2 are abelian and all
order two subgroups are of class II. When m = 3, Dm is an irreducible
finite reflection group and we may apply Proposition 8.4. When m is
even, −I ∈ Γ and the conclusion is immediate. When m is odd, there
is up to conjugacy a single order two subgroup D1 = Z2(τ) ⊂ Dm. The
element τ is a reflection and it follows (since we are working in R2)
that −τ is a reflection. In particular, Z2(−τ) is an isotropy subgroup
of the group Dm ⊕ Z2(−I) (or D2m) as required.

Zm, m ≥ 1 Class I Zk
Dm, m ≥ 1 odd Class I 1

Class II D1

Dm, m ≥ 4 even Class I 1
Class II Z2

D2 Class I 1
Class II D1, Z2

Table 1. Admissible subgroups when n = 2 (k divides m)

11.0.3. n = 3. In this subsection we compute the class I and class II
subgroups of the finite subgroups of O(3). It follows from the degener-
ate construction in Section 5 that the class I subgroups are admissible
for diffeomorphisms. We verify that the class II subgroups are admis-
sible and hence complete the proof of Theorem 1.4. We will assume
some familiarity with the notation for subgroups of O(3) employed
in [5, 9, 16, 19]. (However note that class I, II (and III) subgroups have
a completely different meaning in these references.) The group Z2(−I)
is denoted by Zc2.

The subgroups of O(3) can be divided into the so called planar sub-
groups and exceptional subgroups. The planar subgroups are denoted
by

Dd2m, D
z
m, Dm ⊕ Zc2, Dm, Z−2m, Zm ⊕ Zc2, Zm,
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where m ≥ 1. We note that certain pairs of subgroups are conjugate,
namely Dd2 and Dz2, Dz1 and Z−2 , D1 ⊕ Zc2 and Z2 ⊕ Zc2, D1 and Z2. The
exceptional subgroups are

I, O, T, I⊕ Zc2, O⊕ Zc2, T⊕ Zc2, O−.

The exceptional subgroups are easier to work with and we describe
our results for these groups first. The results appear in Table 2. We
begin with some general observations. Since each exceptional group Γ
acts absolutely irreducibly, the centralizer C(Γ) consists always of ±I.
The groups I, O and T contain no reflections so that all subgroups are
of class I. At the other extreme, the groups I ⊕ Zc2, O ⊕ Zc2 and O−
are generated by reflections so that there are nontrivial subgroups of
class I. The first two of these groups contain −I so by Proposition 8.4
the only subgroup of class II is Zc2. In the case of O− we must search for
subgroups of the form Z2(τ) such that Z2(−τ) is an isotropy subgroup
of O ⊕ Zc2. The latter is a finite reflection group, so this condition
is equivalent to asking that −τ is a reflection. Hence Z2(τ) ⊂ O− ∩
SO(3) = T. Up to conjugacy, there is a single subgroup of order two
in T, denoted simply by Z2 in the references listed above.

The one remaining exceptional subgroup is Γ = T⊕Zc2. The reflection-
free isotropy subgroups of Γ are 1, Z3 and hence these are the subgroups
of class I. By the general remarks above, B consists of −I. Taking
products with the class I subgroups yields the class II subgroups Zc2
and Z3 ⊕ Zc2. It remains to rule out further subgroups of class II by
virtue of Proposition 7.14. It is enough to observe that there are no
class I subgroups of even order, hence no candidates for ΣB.

Finally, we observe that all subgroups of class II in Table 2 fall into
type (i) or (ii) in Remark 10.3 and hence are admissible (even by an
Axiom A attractor). Hence Theorem 1.4 is valid for Γ an exceptional
subgroup of O(3).

Next we consider the planar subgroups of O(3). The details are
quite tedious, and we restrict ourselves here to a sketch of the general
procedure to be followed. The full details for the group Γ = Dd2m are
given in an appendix.

First, recall [5] that the groups Dm, Zm, Zm ⊕ Zc2 (m odd) and Z−2m
(m even) contain no reflections. Hence all subgroups are of class I.
In Table 3 we exhibit the remaining planar subgroups as a semi-direct
product of the subgroup R generated by reflections and a maximal
refection-free isotropy subgroup ΓC , cf Proposition 7.13. The class I
subgroups are then the subgroups of ΓC .

Next we observe that R3 splits into two irreducible subspaces (R2

and R) under the action of most of the planar subgroups Γ. (This is
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O− Class I 1
Class II Z2

I⊕ Zc2 Class I 1
Class II Zc2

O⊕ Zc2 Class I 1
Class II Zc2

T⊕ Zc2 Class I Z3, 1
Class II Z3 ⊕ Zc2, Zc2

I Class I all subgroups
O Class I all subgroups
T Class I all subgroups

Table 2. Admissible subgroups of the exceptional sub-
groups of O(3)

Γ R ΓC Class I

Dd2m,m odd Dd2m 1 1
Dd2m,m even Dzm D1 D1, 1
Dzm Dzm 1 1
Z−2m,m odd Z−2 Zm Zk
Dm ⊕ Zc2,m odd Dzm D1 D1, 1
Dm ⊕ Zc2,m even Dm ⊕ Zc2 1 1
Zm ⊕ Zc2,m even Z−2 Zm Zk

Table 3. Class I subgroups for the planar subgroups of
O(3) that contain reflections (k divides m)

true for all the planar subgroups that contain at least one reflection,
except for the subgroups Dz2, D2 ⊕ Zc2, Z−2 and Z2 ⊕ Zc2, which must
be treated individually.) Each irreducible subspace yields a unique
equivariant involution, and the product of these yields a third, −I.
Hence B = {−I, ±J} where J is the involution coming from the two-
dimensional irreducible. It is now an easy matter to decide which
involutions lie in Γ and to compute the corresponding class II subgroups
of the form ∆⊕Z2(B) where B ∈ B∩Γ. This information is contained
in Table 4. Again we observe that the class II subgroups are of type (i)
or (ii) in Remark 10.3 so that these subgroups are indeed admissible.
(Note that when k is odd, Z−2k is isomorphic to Zm ⊕ Z−2 .)

In Table 5 we list the planar subgroups that contain class II sub-
groups with B /∈ Σ. The subgroups where B ∈ Γ and B 6∈ Γ are listed
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Γ B ∩ Γ Σ

Dd2m,m ≥ 3 odd −J Z−2
Dd2m,m ≥ 2 even J D2, Z2

Dzm,m ≥ 3 odd — —
Dzm,m ≥ 4 even J Z2

Dm ⊕ Zc2,m ≥ 3 odd −I D1 ⊕ Zc2, Zc2
Dm ⊕ Zc2,m ≥ 4 even −I, ±J Z−2 , Z

c
2, Z2

Z−2m,m ≥ 3 odd −J Z−2k
Zm ⊕ Zc2,m ≥ 4 even −I, ±J Z−2k, k odd, Zk ⊕ Zc2
Dz2 Z−2 , Z2

D2 ⊕ Zc2 Z−2 , Z
c
2, Z2

Z−2 Z−2
Z2 ⊕ Zc2 Z−2 , Z2 ⊕ Zc2, Zc2

Table 4. Class II subgroups satisfying B ∈ Σ for the
planar subgroups of O(3) that contain reflections (k di-
vides m)

Γ B ∈ Γ B 6∈ Γ

Dd2m,m ≥ 3 odd Dz1, D1

Dd2m,m ≥ 2 even Dz1
Dzm,m ≥ 3 odd Dz1
Dm ⊕ Zc2,m ≥ 3 odd Dz1
Zm ⊕ Zc2,m ≥ 4 even Z−2k, k even

Table 5. Class II subgroups with B 6∈ Σ for the planar
subgroups of O(3) (k divides m)

separately and are obtained by applying Propositions 7.14 and 7.15 re-
spectively. The class II subgroups are of type (i) or (iii) in Remark 10.3
and hence are admissible. This completes the proof of Theorem 1.4.

The information in Tables 3, 4 and 5 is combined to produce in
Table 6 a list of the subgroups of class I and class II for the planar
subgroups of O(3).

12. Strong admissibility of class II subgroups

Let Σ be a subgroup of a finite group Γ ⊂ O(n). Recall that Σ is
strongly admissible for diffeomorphisms if there exists a Γ-equivariant
diffeomorphism φ : Rn → Rn with a connected Liapunov stable Σ-symmetric
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Dd2m,m ≥ 3 odd Class I 1
Class II Dz1, Z

−
2 , D1

Dd2m,m ≥ 2 even Class I D1, 1
Class II Dz1, D2, Z2

Dzm,m ≥ 3 odd Class I 1
Class II Dz1

Dzm,m ≥ 4 even Class I 1
Class II Z2

Dz2 Class I 1
Class II Z−2 , Z2

Dm ⊕ Zc2,m ≥ 3 odd Class I D1, 1
Class II Dz1, D1 ⊕ Zc2, Zc2

Dm ⊕ Zc2,m ≥ 2 even Class I 1
Class II Z−2 , Z

c
2, Z2

Dm,m ≥ 2 Class I Dk, Zk
Z−2m,m ≥ 1 odd Class I Zk

Class II Z−2k
Z−2m,m ≥ 2 even Class I Z−2k (m/k odd), Zk
Zm ⊕ Zc2,m ≥ 3 odd Class I Zk ⊕ Zc2, Zk
Zm ⊕ Zc2,m ≥ 2 even Class I Zk

Class II Z−2k, Zk ⊕ Z
c
2

Zm,m ≥ 1 Class I Zk
Table 6. Admissible subgroups of the planar subgroups
of O(3) (k divides m)

ω-limit set. By Theorem 1.5, subgroups Σ of class I are strongly ad-
missible for diffeomorphisms provided n ≥ 3. It remains to determine
which subgroups of class II are strongly admissible.

Proposition 12.1. Suppose that Γ ⊂ O(n) is a finite group acting on
Rn, n ≥ 3, and that Σ ⊂ Γ is a subgroup of class II. Then Σ is strongly
admissible for diffeomorphisms if and only if Σ = ∆⊕ Z2(τ) where ∆
is of class I and τ is a central reflection.

Proof. Let Σ be a class II subgroup. Then Σ has an index two class I
subgroup ∆ fixing a connected component C of Rn \ L. In addition,
there is a Γ-equivariant involution B ∈ B such that BC = σC for all
σ ∈ Σ \∆.

Now suppose that Σ is strongly admissible and that A is a connected
Liapunov stable Σ-symmetric ω-limit set. We show that Σ contains a
reflection τ lying in the center of Γ. (In particular, we can take B = τ .)
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First observe that A intersects two connected components of Rn \
L and hence A ∩ L 6= ∅. In particular, A ∩ Fix(τ) 6= ∅ for some
reflection τ ∈ Σ. By Proposition 6.2, Σ contains the reflection τ . It
follows from Theorem 8.3(a) that Σ = ∆⊕Z2(τ). Since Σ contains no
further reflections, the connected components C and τC are adjacent.
It follows from Lemma 7.6 that τ is central in R. By Theorem 8.3(a),
τ commutes with elements of ΓC . It follows from Proposition 7.9 that
τ lies in the center of Γ.

Next we prove the converse. Suppose that Σ is of class II and has the
form ∆ ⊕ Z2(τ) where τ is a central reflection and ∆ ⊂ ΓC is of class
I. We describe the construction of a connected Liapunov stable ω-limit
point set. Our construction involves minor modifications to the “rib-
boned graph” construction of Section 5. First, note that the complete
smooth Σ-graph G(Σ) cannot be embedded in Rn: each point in G(Σ)
has trivial isotropy but the embedded graph must intersect Fix(τ). In-
stead, we start with the ∆-graph G(∆). Choose any nontrivial element
δ ∈ ∆ and introduce a new vertex v of degree two bisecting the edge Jδ
that joins 1 to δ. If we consider all points {vi} in the orbit ∆ · v to be
vertices then the resulting graph G(∆)0 is a balanced smooth ∆-graph.

The idea is to embed the ∆-graph G(∆)0 in Rn as a set A0 with
the image of the vertices {vi} lying in Fix(τ) and the remaining points
in the connected component C. Since τ is central, it follows from
Lemma 7.6 that dim(C ∩Fix(τ)) = n−1 and hence that G(∆)0 can be
embedded in the required manner. We identify the image of each vertex
under the embedding with the vertex itself. In particular, vi ∈ A0 for
each i. Construct the ribboned graph Z = G(∆)0 × (−1, 1) as in
Section 5. As before, the embedding of G(∆)0 in C extends to an
immersion of Z in C. If Ei is the edge of G(∆) containing vi then
we require that the ribbon Zi = Ei × (−1, 1) is embedded so that
Zi \{vi} ⊂ C and so that Zi has infinite order of tangency with Fix(τ)
at vi.

Now we proceed as in Section 5 to define a vector field X on C with
A0 as a connected ∆-symmetric Liapunov stable ω-limit set consist-
ing entirely of equilibria. Since X together with all of its derivatives
approaches zero at the boundary of C, X extends to a smooth vector
field on Rn. Passing to the time one map as in the previous subsection
yields a Γ-equivariant diffeomorphism φ0 with A0 as a Liapunov stable
ω-limit set. Moreover A0 is also a Liapunov stable ω-limit set for φ2

0. It
follows that the connected Σ-symmetric set A = A0∪τA0 is a Liapunov
stable ω-limit set for the composition φ = τ◦φ0. Since τ is central, φ
is a Γ-equivariant diffeomorphism. �
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Remark 12.2. We have found only degenerate constructions of con-
nected ω-limit sets for subgroups of class II regardless of the size of
n. This raises the question of whether there exist Γ-structurally sta-
ble equivariant diffeomorphisms which have connected ω-limit sets or
attractors with class II symmetry groups. One way of attempting to
construct such diffeomorphisms would be to allow the presence of Γ-
transversal non-transversal intersections of invariant manifolds in the
ω-limit sets. However, such intersections are likely to lead to moduli
(see [13]). On account of this, we think it unlikely that there exist Γ-
structurally stable equivariant diffeomorphisms which have connected
attractors with class II symmetry groups. On the other hand, it should
be noted that Labarca & Pacifico have constructed an example of a
structurally stable non-Axiom A vector field on a manifold with bound-
ary [20]. It follows easily from their construction that there exists a
Z2-structurally stable vector field which is not Axiom A.

Whatever the situation for structural stability, it is simple to show
that connected Axiom A attractors do not exist for subgroups of class II.
Indeed, suppose that A is a connected Axiom A attractor (or more
generally a connected basic set) for the equivariant diffeomorphism φ.
Then A is topologically mixing under φ. In particular, A is transitive
under all powers of φ. Suppose that A is Σ-symmetric, where Σ is of
class II and contains the central reflection τ , then A intersects C and
τC. Obviously, f 2(A ∩ C) ⊂ A ∩ C contradicting transitivity.

Remark 12.3. Proposition 12.1 is stated for n ≥ 3, but the restriction
on strongly admissible subgroups of class II holds for all n ≥ 1. In
the reverse direction, there are some anomalous cases when n = 1 and
n = 2. When n = 1 and Γ = Z2, then Z2 is of class II but is not
strongly admissible for diffeomorphisms. (Note that diffeomorphisms
of the line have ω-limit sets consisting of at most two points. Of course,
the origin does not satisfy our definition for a Z2-symmetric set as there
are no points with nontrivial isotropy.)

The remaining anomalous case arises when n = 2 and Γ = Zm. Since
Γ contains no reflections, all subgroups are of class I. However, only
the subgroups Zm and 1 are strongly admissible (admissibility being
realized by an irrational rotation on a normally hyperbolic circle and by
a sink). As was the case for flows, Corollary 5.3, there is a topological
obstruction for strong admissibility of the remaining subgroups Zk,
1 < k < m, k dividing m.
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Appendix A. Appendix

In Section 11, we sketched the derivation of the class I and class II
subgroups for the planar subgroups of O(3). As promised we give the
details when Γ = Dd2m.

The group Dd2m is generated by −I · π/m and κ where π/m, κ ∈
SO(3) have the matrix representations

π/m =





cosπ/m − sinπ/m 0
sinπ/m cosπ/m 0

0 0 1



 , κ =





−1 0 0
0 1 0
0 0 −1



 .

The index two subgroup generated by 2π/m and −I ·π/m ·κ is denoted
by Dzm and acts as Dm on the (x, y)-plane and trivially on the z-axis.
In particular, Dzm is generated by reflection. It follows that Dd2m is
generated by reflections if and only if Dd2m \ Dzm contains a reflection.
Excluding elements of SO(3) the remaining elements of Dd2m are given
by −I · jπ/m for j odd. Such an element is a reflection only for j = m.
hence if m is odd, Dd2m is generated by reflections and there are no
nontrivial class I subgroups. If m is even, the subgroup R ⊂ Dd2m
generated by reflections is Dzm.

Next observe that Dd2m is isomorphic to D2m and hence contains up
to conjugacy three subgroups of order two. These are generated by
(−I)m ·π, −I ·π/m ·κ and κ. the first subgroup is denoted by Z−2 if m
is odd and by Z2 if m is even. The remaining subgroups are Dz1 and D1

respectively. Although some of these subgroups are conjugate in O(3),
they are not conjugate in Dd2m.

The reflection-free subgroup D1 fixes the y-axis in R3 and is easily
checked to be an isotropy subgroup when m is even. Hence for m
even, the class I subgroups are given by D1 and 1. This completes the
verifications of the entries in Table 3.

Sincem ≥ 2 we have the set of equivariant involutions B = {−I, ±J}
where J = π. The unique central involution is (−1)mJ . The subgroups
of class II in Table 4 are easily computed as direct sums of the form
∆⊕ Z2((−1)mJ).

Finally, we verify the entries in Table 5. First we show using Propo-
sition 7.14 that there are subgroups of class II with B ∈ Γ. This
is immediate when m is odd since there are no class I subgroups of
even order. When m is even, we are forced to choose B = π and
ΣB = D1 = Z2(κ). Hence Σ = Z2(πκ) which is conjugate to the class I
subgroup D1.

It remains to compute the subgroups of class II for whichB 6∈ Γ using
Proposition 7.15. For all choices of B we have Γ⊕ Z2(B) = D2m ⊕ Zc2.
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The nontrivial isotropy subgroups J ⊂ D2m⊕Zc2 are listed for example
in [5] and are

D2m ⊕ Zc2, Dzm, Dd2, Dz1, Z−2 .
We need only consider those isotropy subgroups J that contain no re-
flections in Dd2m, hence we can discard D2m⊕Zc2 and Dzm. The subgroups
Dd2 and Z−2 contain the reflection −I · π which lies in Dc2m when m is
odd. Hence, when m is odd we must take ΣB = Dz1 = Z2(−κ). The
involutions B ∈ B that do not lie in Dd2m are B = −I and B = π. The
corresponding subgroups Σ = (ΣB)B are

Σ = Z2(κ) = D1, Σ = Z2(−πκ) = Dz1.
This yields the required subgroups of class II.

It is easily checked that the isotropy subgroups J = Dz1 and J = Z−2
yield no new class II subgroups when m is even. This leaves the case
J = Dd2 which is generated by −I · π and κ.Since we have already
discarded the possibilities ΣB = Dz1 and ΣB = Z−2 the only subgroups
ΣB ⊂ J to consider are

ΣB = Dd2, ΣB = D1 = Z2(κ).

In the second case the choices B = −I and B = −I ·π yield Σ = Z2(−κ)
and Σ = Z2(−πκ) both of which are conjugate to Dz1. When ΣB = Dd2
we must take ∆ = Z2(κ) = D1. If B = −I, Σ is generated by κ and π
so we obtain Σ = D1. Nothing is obtained by taking B = −I · π.
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