INTERNATIONAL ISO/IEC
STANDARD 9899

Second edition
1999-12-01

Programming languages — C

Langages de programmation — C

Processed and adopted by ASC the National Committee for
Information Technology Standards (NCITS) and approved by
ANSI as an American National Standard.

Date of ANSI Approval: 5/22/2000

Published by American National Standards Institute,
11 West 42nd Street, New York, New York 10036

Copyright 2000 by Information Technology Industry Council
(ITT). All rights reserved.

These materials are subject to copyright claims of International
Standardization Organization (ISO), International Electrotechnical
Commission (IEC), American National Standards Institute (ANSI),
and Information Technology Industry Council (ITI). Not for resale.
No part of this publication may be reproduced in any form,
including an electronic retrieval system, without the prior written
permission of ITI. All requests pertaining to this standard should be
submitted to ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

Reference number
ISO/IEC 9899:1999(E)

© ISO/IEC 1999

ISO/IEC 9899:1999(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 7341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 1999 — All rights reserved

©ISO/IEC

Contents
Foreword

Introduction

1. Scope

2. Normative references .

3. Terms, definitions, and symbols.

4. Conformance

5. Environment

5.1 Conceptual models .
5.1.1 Translation environment .
5.1.2 Execution environments .

5.2 Environmental considerations .
5.2.1 Character sets . : .
5.2.2 Character display semantlcs
5.2.3 Signals and interrupts .
5.2.4 Environmental limits

6. Language .

6.1 Notatlon

6.2 Concepts .
6.2.1 Scopes of |dent|f|ers
6.2.2 Linkages of identifiers .
6.2.3 Name spaces of identifiers .
6.2.4 Storage durations of objects .
6.2.5 Types
6.2.6 Representatrons of types .o
6.2.7 Compatible type and composite type :

6.3 Conversions . Coe e .
6.3.1 Arithmetic operands
6.3.2 Other operands

6.4 Lexical elements .
6.4.1 Keywords .
6.4.2 Identifiers .
6.4.3 Universal character names.
6.4.4 Constants .
6.4.5 String literals
6.4.6 Punctuators .
6.4.7 Header names . .
6.4.8 Preprocessing numbers .
6.4.9 Comments

6.5 Expressions

Contents

ISO/IEC 9899:1999 (E)

ISO/IEC 9899:1999 (E)

6.6
6.7

6.8

6.9

6.10

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17

Primary expressions
Postfix operators .

Unary operators

Cast operators . .
Multiplicative operators .
Additive operators

Bitwise shift operators .
Relational operators.
Equality operators
BitwiseAND operator
Bitwise exclusiv®R operator
Bitwise inclusiv®©R operator
LogicalAND operator
LogicaloOR operator
Conditional operator
Assignment operators .
Comma operator .

Constant expressions.
Declarations

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8

Storage-class specifiers .
Type specifiers .

Type qualifiers .
Function specifiers .
Declarators

Type names .

Type definitions
Initialization

Statements and blocks .

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

Labeled statements .
Compound statement .

Expression and null statements.

Selection statements .
Iteration statements .
Jump statements .

External definitions

6.9.1
6.9.2

Function definitions .
External object definitions .

Preprocessing directives .

6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

Conditional inclusion .
Source file inclusion
Macro replacement .
Line control

Error directive .
Pragma directive .

Contents

©ISO/IEC

69

69

78

81

82

82

84

85

86

87

88

88

89

89

90

91

94

. 95
.97
98
.99

. . 108
. 112

. 114

.. 122
. 123

. 125

.. 131
. 131

.. 132
. 132

. 133

. 135

. 136

. . 140
.. 141
. 143

. . 145
. 147

. 149

. 151

. 158

. 159

. 159

©ISO/IEC

6.11

7. Library

7.1

7.2

7.3

7.4

7.5

7.6

7.7
7.8

6.10.7 Null directive

6.10.8 Predefined macro names
6.10.9 Pragma operator .
Future language directions .
6.11.1 Floating types . :
6.11.2 Linkages of identifiers .
6.11.3 External names :
6.11.4 Character escape sequences
6.11.5 Storage-class specifiers .
6.11.6 Function declarators
6.11.7 Function definitions .
6.11.8 Pragma directives

6.11.9 Predefined macro names

Introductlon :

7.1.1 Definitions of terms

7.1.2 Standard headers.

7.1.3 Reserved identifiers.

7.1.4 Use of library functions
Diagnosticxassert.h>

7.2.1 Program diagnostics

Complex arithmetiecomplex.h>

7.3.1 Introduction .

7.3.2 Conventions .

7.3.3 Branchcuts
7.3.4 TheCX_LIMITED RANGEpragma :
7.3.5 Trigonometric functions . :
7.3.6 Hyperbolic functions

7.3.7 Exponential and logarithmic functlons .

7.3.8 Power and absolute-value functions.
7.3.9 Manipulation functions

Character handlingctype.h>

7.4.1 Character classification functlons
7.4.2 Character case mapping functions
Errors<errno.h> .
Floating-point enV|ronmemfenv h>

7.6.1 TheFENV_ACCES$ragma

7.6.2 Floating-point exceptions

7.6.3 Rounding .

7.6.4 Environment :
Characteristics of floating typeﬁoat h>
Format conversion of integer typénttypes.h>
7.8.1 Macros for format specifiers .

7.8.2 Functions for greatest-width integer types .

Contents

ISO/IEC 9899:1999 (E)

. . 160
. 160
. 161
. 163
. . 163
. 163
. . 163
. 163
. 163
. 163
. 163
. 163
. 163

. .164
. .164
. 164

. 165

. . 166
. 166

. 169

. . 169
. 170

. 170
171
171
. 171

. 172

.. 174
. 176
177

. 178
.. 181
. 181

. 184

. . 186
. 187

. 189

. 190

. . 192
. . 194
. . 196
. 197
.. 197
. 198

ISO/IEC 9899:1999 (E)

Vi

7.9
7.10
7.11

7.12

7.13

7.14

7.15

7.16

7.17
7.18

7.19

Alternative spellingsiso646.h>
Sizes of integer typedimits.h>
Localizatiorzlocale.h>

7.11.1 Locale control .

7.11.2 Numeric formatting conventlon |an|ry.

Mathematicsmath.h> .
7.12.1 Treatment of error condltlons
7.12.2 ThdP_CONTRACpPragma
7.12.3 Classification macros .
7.12.4 Trigonometric functions .
7.12.5 Hyperbolic functions

7.12.6 Exponential and logarithmic functlons .

7.12.7 Power and absolute-value functions.
7.12.8 Error and gamma functions.

7.12.9 Nearest integer functions

7.12.10 Remainder functions .

7.12.11 Manipulation functions

7.12.12 Maximum, minimum, and posmve dlfference functlons

7.12.13 Floating multiply-add .
7.12.14 Comparison macros.
Nonlocal jumpssetjmp.h>

7.13.1 Save calling environment
7.13.2 Restore calling environment .
Signal handlingsignal.h> .
7.14.1 Specify signal handllng :
7.14.2 Send signal .

Variable argumentsstdarg.h>

7.15.1 Variable argument list access macros .

Boolean type and valusstdbool.h>
Common definitionsstddef.h>
Integer typesstdint.h>

7.18.1 Integer types

7.18.2 Limits of specified- Width mteger types ..

7.18.3 Limits of other integer types .
7.18.4 Macros for integer constants .
Input/outpukstdio.h>

7.19.1 Introduction .

7.19.2 Streams

7.19.3 Files :

7.19.4 Operations on flles .

7.19.5 File access functions . . .
7.19.6 Formatted input/output functlons .
7.19.7 Character input/output functions
7.19.8 Direct input/output functions .

Contents

©ISO/IEC

. 201

. 202

. 203

. . 204
. 205
.. 211
. 213

. 214

. 215

. 217

. . 220
. 222
. 227
. 229

. 230

. 234

. 235
237

. 238

.. 239
. 242

. 242

. 243

. 245

. 246

.. 247
. . 248
. 248
. 252

. 253

. 254

. . 254
. 256
. 258

. 259

. 261

. 261

. 263

. .265
. 267

. . 269
. 273

. 294

. 299

©ISO/IEC

7.20

7.21

71.22
7.23

7.24

7.25

7.26

7.19.9 File positioning functions

7.19.10 Error-handling functions .

General utilitiesstdlib.h>

7.20.1 Numeric conversion functlons

7.20.2 Pseudo-random sequence generation functlons
7.20.3 Memory management functions.

7.20.4 Communication with the environment .
7.20.5 Searching and sorting utilities.

7.20.6 Integer arithmetic functions

7.20.7 Multibyte/wide character conversion functlons
7.20.8 Multibyte/wide string conversion functions .
String handlingstring.h> :

7.21.1 String function conventions.

7.21.2 Copying functions

7.21.3 Concatenation functions.

7.21.4 Comparison functions .

7.21.5 Search functions . .

7.21.6 Miscellaneous functions .

Type-generic mattgmath.h>

Date and tims&time.h>

7.23.1 Components of time .

7.23.2 Time manipulation functions .

7.23.3 Time conversion functions . .

Extended multibyte and wide character utllmm:har h>
7.24.1 Introduction . .

7.24.2 Formatted wide character mput/output functlons
7.24.3 Wide character input/output functions .

7.24.4 General wide string utilities .
7.24.5 Wide character time conversion functlons .

7.24.6 Extended multibyte/wide character conversion utllltles .

Wide character classification and mapping utllﬁzwstype h>
7.25.1 Introduction .

7.25.2 Wide character cIaSS|f|cat|on utllltles

7.25.3 Wide character case mapping utilities .
Future library directions .

7.26.1 Complex arlthmetlccomplex h>

7.26.2 Character handlingctype.h>

7.26.3 Errorerrno.h> .

7.26.4 Format conversion of mteger typmsttypes h>
7.26.5 Localizatioxlocale.h> Coe e
7.26.6 Signal handlingsignal.h> .

7.26.7 Boolean type and valuestdbool. h>

7.26.8 Integer typesstdint.h>

7.26.9 Input/outputstdio.h>

Contents

ISO/IEC 9899:1999 (E)

. 300

. 303

. . 305
. . 306
. 311
.. 312
. 314

. 317

. . 319
. 320
. 322
. . 324
. 324

. . 324
. 326

. 327

. . 329
. 332

. 334

. 337

. . 337
. 338

. . 340
. 347
. . 347
. 348
. 366

. . 370
. 384

385
392

. . 392
. 393

. 398

. . 400
. 400

. 400

. . 400
. 400
. 400

. . 400
. 400
. 400

. 401

vii

ISO/IEC 9899:1999 (E)

7.26.10 General utilitiesstdlib.h>

7.26.11 String handlingstring.h> . .

7.26.12 Extended multibyte and wide character ut|I|t|es
<wchar.h> .

7.26.13 Wide character classmcatron and mapprng ut|I|t|es
<wctype.h>

Annex A (informative) Language syntax summary .

Al
A.2
A3

Lexical grammar
Phrase structure grammar
Preprocessing directives

Annex B (informative) Library summary

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24

Diagnosticsassert.h>
Complex<complex.h>

Character handlingctype.h>
Errors<errno.h> . .
Floating-point envwonmerrtfenv h>
Characteristics of floating typefioat.h>
Format conversion of integer typesttypes.h>
Alternative spellingsiso646.h> oo
Sizes of integer typedimits.h>
Localizatiorxlocale.h>
Mathematicsmath.h>

Nonlocal jumpssetjmp.h>

Signal handlingsignal.h>

Variable argumentsstdarg.h>

Boolean type and valugstdbool.h>
Common definitionsstddef.h>

Integer typesstdint.h>
Input/outpukstdio.h>

General utilitiesstdlib.h>

String handling:string.h>

Type-generic matitgmath.h>

Date and tim&time.h> :

Extended multibyte/wide character utllltmchar h>

Wide character classification and mapping utilkestype.h>

Annex C (informative) Sequence points.

Annex D (normative) Universal character names for identifiers.

Annex E (informative) Implementation limits

Annex F (normative) IEC 60559 floating-point arithmetic .

F.1
F.2
F.3

viii

Introduction
Types
Operators and functlons

Contents

©ISO/IEC

. 401
. 401

. 401

. 401

. 402
. . 402
. 408

. 415

. 417

. 417

. 417
. 419

. .419
. . 419
. . 420
. 420
. 421

. 421

. 421

.. 421
. 426

. . 426
. . 426
. 426

. 427

. 427

. 427
. 429

. . 431
. 432

. . 432
. 433
435

. 437
. 438
. 440

. 442
. 442

. .442
. 443

©ISO/IEC ISO/IEC 9899:1999 (E)
F.4 Floating to integer conversion . . 445
F.5 Binary-decimal conversion . 445
F.6 Contracted expressions. . . 446
F.7 Floating-point environment . . 446
F.8 Optimization . . .449
F.9 Mathematicszmath.h> . 452

Annex G (informative) IEC 60559-compatible complex arithmetic 465
G.1 Introduction e e e e e e e e . 465
G.2 Types . .465
G.3 Conventions . 465
G.4 Conversions Co . .466
G.5 Binary operators 466
G.6 Complex arithmetiecomplex.h> . 470
G.7 Type-generic matitgmath.h> . 478

Annex H (informative) Language independent arithmetic . . 479
H.1 Introduction .479
H.2 Types . .479
H.3 Notification .483

Annex | (informative) Common warnings . . 485

Annex J (informative) Portability issues. . 487
J.1 Unspecified behavior . . 487
J.2 Undefined behavior Coe . .490
J.3 Implementation-defined behavior. . . 503
J.4 Locale-specific behavior . 510
J.5 Common extensions . . 511

Bibliography .514

Index 517

Contents IX

ISO/IEC 9899:1999 (E) ©ISO/IEC

X Contents

©ISO/IEC ISO/IEC 9899:1999 (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with 1ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1)nformation technologySubcommittee SC 2Brogramming languages,

their environments and system software interfacBse Working Group responsible for

this standard (WG 14) maintains a site on the World Wide Web at
http://mww.dkuug.dk/JTC1/SC22/WG14/ containing additional information
relevant to this standard such as a Rationale for many of the decisions made during its
preparation and a log of Defect Reports and Responses.

This second edition cancels and replaces the first edition, ISO/IEC 9899:1990, as
amended and corrected by ISO/IEC 9899/COR1:1994, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996. Major changes from the previous edition include:

— restricted character set support via digraphs<ied646.h> (originally specified
in AMD1)

— wide character library support irkwchar.h> and <wctype.h> (originally
specified in AMD1)

— more precise aliasing rules via effective type

— restricted pointers

— variable-length arrays

— flexible array members

— static and type qualifiers in parameter array declarators
— complex (and imaginary) supports#tomplex.h>

— type-generic math macros sttgmath.h>

Foreword Xi

ISO/IEC 9899:1999 (E)

Xii

thelong long int type and library functions
increased minimum translation limits

additional floating-point characteristics<4float.h>
removeimplicit int

reliable integer division

universal character names (and\U)

extended identifiers

hexadecimal floating-point constants a¥d and %A printf
specifiers

compound literals

designated initializers

/[comments

extended integer types and library functionsiimttypes.h>
removeimplicit function declaration

preprocessor arithmetic doneiimmax_t /uintmax_t
mixed declarations and code

new block scopes for selection and iteration statements
integer constant type rules

integer promotion rules

macros with a variable number of arguments

thevscanf family of functions in<stdio.h> and<wchar.h>

additional math library functions kmath.h>
floating-point environment access<dfenv.h>

©ISO/IEC

/scanf conversion

and<stdint.h>

IEC 60559 (also known as IEC 559 or IEEE arithmetic) support

trailing comma allowed ienum declaration
%If conversion specifier allowed printf
inline functions

thesnprintf family of functions in<stdio.h>
boolean type irstdbool.h>

idempotent type qualifiers

empty macro arguments

Foreword

©ISO/IEC ISO/IEC 9899:1999 (E)

— new struct type compatibility rules (tag compatibility)
— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— __func_ _ predefined identifier

— VA _COPYmacro

— additionalstrftime conversion specifiers

— LIA compatibility annex

— deprecateingetc at the beginning of a binary file

— removedeprecation of aliased array parameters

— conversion of array to pointer not limited to Ivalues
— relaxed constraints on aggregate and union initialization
— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice
versa)

Annexes D and F form a normative part of this standard; annexes A, B, C, E, G, H, |, J,
the bibliography, and the index are for information only. In accordance with Part 3 of the
ISO/IEC Directives, this foreword, the introduction, notes, footnotes, and examples are
also for information only.

Foreword Xili

ISO/IEC 9899:1999 (E) ©ISO/IEC

Introduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features ar@bsolescent which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.26]) is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided to give advice or guidance to
implementors. Annexes provide additional information and summarize the information
contained in this International Standard. A bibliography lists documents that were
referred to during the preparation of the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based onl®®#4 /usr/group Standard

Xiv Introduction

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:1999 (E)

Programming languages — C

1. Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming langu&gé.specifies

— the representation of C programs;

— the syntax and constraints of the C language,;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs are invoked for use by a data-processing
system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

1) This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

81 General 1

ISO/IEC 9899:1999 (E) ©ISO/IEC

— the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2. Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

ISO 31-11:1992Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technalogy

ISO/IEC 646,Information technology —+SO 7-bit coded character set for information
interchange

ISO/IEC 2382-1:1993Information technology — Vocabulary — Part 1. Fundamental
terms

ISO 4217 Codes for the representation of currencies and funds

ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times

ISO/IEC 10646 (all parts)nformation technology — Universal Multiple-Octet Coded
Character Set (UCS)

IEC 60559:1989%inary floating-point arithmetic for microprocessor systépreviously
designated IEC 559:1989).

2 General 82

©ISO/IEC ISO/IEC 9899:1999 (E)

3. Terms, definitions, and symbols

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appeaitatic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382-1. Mathematical symbols not
defined in this International Standard are to be interpreted according to ISO 31-11.

3.1
access
[éxecution-time actidito read or modify the value of an object

NOTE 1 Where only one of these two actions is meant, “read” or “modify” is used.
NOTE 2 "Modify” includes the case where the new value being stored is the same as the previous value.

NOTE 3 Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.3

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

3.4
behavior
external appearance or action

34.1
implementation-defined behavior
unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

83.4.2 General 3

ISO/IEC 9899:1999 (E) ©ISO/IEC

EXAMPLE An example of locale-specific behavior is whetheridt@wver function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

behavior where this International Standard provides two or more possibilities and
imposes no further requirements on which is chosen in any instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.6

byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called kw-order bit the most significant bit is called theh-order

bit.

3.7

character

[Abstradil member of a set of elements used for the organization, control, or
representation of data

3.7.1

character

single-byte character

[Clbit representation that fits in a byte

4 General 83.7.1

©ISO/IEC ISO/IEC 9899:1999 (E)

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

NOTE The extended character set is a superset of the basic character set.

3.7.3

wide character

bit representation that fits in an object of typehar_t , capable of representing any
character in the current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.11

forward reference

reference to a later subclause of this International Standard that contains additional
information relevant to this subclause

3.12

implementation

particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of
functions in, a particular execution environment

3.13
implementation limit
restriction imposed upon programs by the implementation

3.14

object

region of data storage in the execution environment, the contents of which can represent
values

83.14 General 5

ISO/IEC 9899:1999 (E) ©ISO/IEC

NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.15

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.16

recommended practice

specification that is strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.17
value
precise meaning of the contents of an object when interpreted as having a specific type

3.17.1
implementation-defined value
unspecified value where each implementation documents how the choice is made

3.17.2
indeterminate value
either an unspecified value or a trap representation

3.17.3

unspecified value

valid value of the relevant type where this International Standard imposes no
requirements on which value is chosen in any instance

NOTE An unspecified value cannot be a trap representation.

3.18

XO
ceiling of x: the least integer greater than or equat to

EXAMPLE [2.40js 3,[32. 47jis —2.

3.19

X0
floor of x: the greatest integer less than or equad to

EXAMPLE (2. 40s 2,32. 4is —3.

6 General 83.19

©ISO/IEC ISO/IEC 9899:1999 (E)

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an
implementation or on a program; conversely, “shall not” is to be interpreted as a
prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior” or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
“behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a#error preprocessing directive unless it is part of a group skipped by
conditional inclusion.

A strictly conforming progranshall use only those features of the language and library
specified in this International Stand&tdlt shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

The two forms otonforming implementatioare hosted and freestanding.cénforming
hosted implementatioshall accept any strictly conforming program. cdnforming
freestanding implementaticghall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard headtrat.h>
<is0646.h> , <limits.h> |, <stdarg.h> , <stdbool.h> |, <stddef.h> , and
<stdint.h> . A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program®)

2) A strictly conforming program can use conditional features (such as those in annex F) provided the
use is guarded by#ifdef directive with the appropriate macro. For example:

#ifdef __STDC_IEC_559_ _ /* FE_UPWARD defined */
o
fesetround(FE_UPWARD);
o

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

84 General 7

ISO/IEC 9899:1999 (E) ©ISO/IEC

A conforming progranis one that is acceptable to a conforming implementétion.

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5),
characteristics of floating typedloat.h> (7.7), alternative spellingsiso646.h>
(7.9), sizes of integer typedimits.h> (7.10), variable argumentsstdarg.h>
(7.15), boolean type and valuesstdbool.h> (7.16), common definitions
<stddef.n> (7.17), integer typesstdint.h> (7.18).

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

8 General §4

©ISO/IEC ISO/IEC 9899:1999 (E)

5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be calledttéeslation environmenand

the execution environmer this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept
in units calledsource files (or preprocessing filgsin this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive#include is known as g@reprocessing translation unif\fter preprocessing, a
preprocessing translation unit is calletfamslation unit Previously translated translation

units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9),
preprocessing directives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following
phases)

1. Physical source file multibyte characters are mapped, in an implementation-
defined manner, to the source character set (introducing new-line characters for
end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

2. Each instance of a backslash charadtg¢rirfimediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part

5) Implementations shall behave as if these separate phases occur, even though many are typically folded
together in practice.

85.1.1.2 Environment 9

ISO/IEC 9899:1999 (E) ©ISO/IEC

of such a splice. A source file that is not empty shall end in a new-line character,
which shall not be immediately preceded by a backslash character before any such
splicing takes place.

3. The source file is decomposed into preprocessing tdkand sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and
_Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefinedinalude preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set member and escape sequence in character constants and
string literals is converted to the corresponding member of the execution character
set; if there is no corresponding member, it is converted to an implementation-
defined member other than the null (wide) chardéter.

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

6) As described in 6.4, the process of dividing a source file's characters into preprocessing tokens is
context-dependent. For example, see the handlirgnathin a#include preprocessing directive.

7) An implementation need not convert all non-corresponding source characters to the same execution
character.

10 Environment 8§5.1.1.2

©ISO/IEC ISO/IEC 9899:1999 (E)

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstanc®s.

EXAMPLE Animplementation shall issue a diagnostic for the translation unit:

char i;

inti;
because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.
5.1.2 Execution environments

Two execution environments are defindteestandingand hosted In both cases,
program startup occurs when a designated C function is called by the execution
environment. All objects with static storage duration shallirigalized (set to their
initial values) before program startup. The manner and timing of such initialization are
otherwise unspecified. Program termination returns control to the execution
environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.8).
5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilities available to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

8) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly translated. It may also successfully translate an invalid program.

85.1.2.2 Environment 11

ISO/IEC 9899:1999 (E) ©ISO/IEC

5.1.2.2.1 Program startup

The function called at program startup is nammadn . The implementation declares no
prototype for this function. It shall be defined with a return typenbf and with no
parameters:

int main(void) { /* o ¥}

or with two parameters (referred to hereaagc andargv , though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* o ¥}
or equivalenf or in some other implementation-defined manner.

If they are declared, the parameters to m&in function shall obey the following
constraints:

— The value ofargc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value ofargc is greater than zero, the array membargv[0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value ofargc is greater than zero, the string pointed to drgv[0]
represents therogram name argv[0][0] shall be the null character if the
program name is not available from the host environment. If the valagyof is
greater than one, the strings pointed to agv[1l] through argv[argc-1]
represent therogram parameters

— The parameterargc andargv and the strings pointed to by thegv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

9) Thus,int can be replaced by a typedef name definadtas or the type ofargv can be written as
char ** argv , and so on.

12 Environment 8§5.1.2.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

5.1.2.2.3 Program termination

If the return type of thenain function is a type compatible witht , a return from the
initial call to themain function is equivalent to calling thexit function with the value
returned by themain function as its argumen?) reaching the} that terminates the
main function returns a value of 0. If the return type is not compatible with, the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), thexit function (7.20.4.3).
5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations aresilé effects’) which are changes in the state of

the execution environment. Evaluation of an expression may produce side effects. At
certain specified points in the execution sequence csdl@dence pointsll side effects

of previous evaluations shall be complete and no side effects of subsequent evaluations
shall have taken place. (A summary of the sequence points is given in annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by
calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous accesses are
complete and subsequent accesses have not yet occurred.

10) In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declaad in
will have ended in the former case, even where they would not have in the latter.

11) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
values of floating-point operations. Implementations that support such floating-point state are
required to regard changes to it as side effects — see annex F for details. The floating-point
environment library<fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

85.1.2.3 Environment 13

10

11

ISO/IEC 9899:1999 (E) ©ISO/IEC

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in
7.19.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keywaalatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activateddigrthie function

would require explicit specification ofolatile storage, as well as other implementation-defined
restrictions.

EXAMPLE 2 In executing the fragment

char c1, c2;
|
cl=cl+c2;

the “integer promotions” require that the abstract machine promote the value of each variablesiae

and then add the twiat s and truncate the sum. Provided the addition ofdar s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;
rroo
fl=1f2*d;

the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for exdmple, if
were replaced by the constan® , which has typelouble).

14 Environment 85.1.2.3

12

13

14

©ISO/IEC ISO/IEC 9899:1999 (E)

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicispilling of a register is not permitted to alter the value. Also, an exptwie and load

is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

double d1, d2;

float f;

di=f= expression

d2 = (float) expressions

the values assigned #d andd2 are required to have been convertefidat

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, y, z;
roo*

Xx=Xx*y *z not equivalent tox *= y * z;
z=Xx-y)+y.l not equivalentta = x;
zZ =X+ X *y, I not equivalentta = x * (1.0 +vy);
y = x/ 5.0; I not equivalentty = x * 0.2;
EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment
int a, b;
I* *

a=a+ 32760 +b +5;
the expression statement behaves exactly the same as
a = (((a+32760) + b) +5);

due to the associativity and precedence of these operators. Thus, the result of (he 2760) is
next added td, and that result is then addedstevhich results in the value assignedatdOn a machine in
which overflows produce an explicit trap and in which the range of values representablénby isn
[-32768, +32767], the implementation cannot rewrite this expression as

a = ((a+b)+32765);

since if the values foa andb were, respectively, —32754 and -15, the sum b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

a = ((a+32765) + b);
or
a=(a+ (b + 32765));

since the values fa andb might have been, respectively, 4 and -8 or —17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above gpression statement can be rewritten by the implementation in any ofdbe adys because the

same result will occur.

85.1.2.3 Environment 15

15

ISO/IEC 9899:1999 (E) ©ISO/IEC

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>

int sum;

char *p;

*

sum =sum * 10 - '0' + (*p++ = getchar());

the expression statement is grouped as if it were written as
sum = (((sum * 10) - '0") + ((*(p++)) = (getchar())));

but the actual increment @f can occur at any time between the previous sequence point and the next
sequence point (thg), and the call t@etchar can occur at any point prior to the need of its returned
value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), the
signal function (7.14), files (7.19.3).

16 Environment 85.1.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written (tls®urce character sgtand the set interpreted in the
execution environment (thexecution character setEach set is further divided into a

basic character setwhose contents are given by this subclause, and a set of zero or more
locale-specific members (which are not members of the basic character set) called
extended charactersThe combined set is also called tweended character seThe

values of the members of the execution character set are implementation-defined.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set emcdpe
sequencesonsisting of the backslashfollowed by one or more characters. A byte with

all bits set to 0, called thaull character, shall exist in the basic execution character set; it

is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following
members: the 28ppercase lettersf the Latin alphabet

A B CDEF G H I J KL M
N O P Q R ST UV W X Y Z

the 26lowercase lettersf the Latin alphabet

a b c d e f g h i j k I m
n o p g r s tuv w Xy z

the 10 decimadligits
0 1.2 3 4 5 6 7 8 9
the following 29 graphic characters

Lot % & () o+, -
, < =>2 0 v~ _ {1} -

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source and execution basic
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character aftin the alovelist of decimal digits shall be one greater than

the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the basic execution character set, there shall be
control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never

85.2.1 Environment 17

ISO/IEC 9899:1999 (E) ©ISO/IEC

converted to a token), the behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this International
Standard the term does not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called
trigraph sequencé?)) are replaced with the corresponding single character.

27= # 2?)] 271 |
22(| 27" A 27>)
22/ \ 27< { 0o -

No other trigraph sequences exist. E&dhat does not begin one of the trigraphs listed
above ishot changed.

EXAMPLE The following source line
printf("Eh???/n");

becomes (after replacement of the trigraph sequepicg
printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The basic character set shall be present and each character shall be encoded as a
single byte.

— The presence, meaning, and representation of any additional members is locale-
specific.

— A multibyte character set may have state-dependent encodingvherein each
sequence of multibyte characters begins iniratal shift state and enters other
locale-specificshift stateswhen specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes

12) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment §5.2.1.2

©ISO/IEC ISO/IEC 9899:1999 (E)

in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state.

— A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

Theactive positions that location on a display device where the next character output by
thefputc function would appear. The intent of writing a printing character (as defined
by theisprint function) to a display device is to display a graphic representation of
that character at the active position and then advance the active position to the next
position on the current line. The direction of writing is locale-specific. If the active
position is at the final position of a line (if there is one), the behavior of the display device
is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspackMoves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior of the display
device is unspecified.

\f (form feed Moves the active position to the initial position at the start of the next
logical page.

\n (new lin@ Moves the active position to the initial position of the next line.
\r (carriage returr) Moves the active position to the initial position of the current line.

\t (horizontal tal) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior of the display device is unspecified.

\v (vertical ta) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior of the display device is unspecified.

85.2.2 Environment 19

ISO/IEC 9899:1999 (E) ©ISO/IEC

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a singtear object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: theisprint ~ function (7.4.1.8), thputc function (7.19.7.3).
5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outsidantteon

image (the instructions that compose the executable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the language-related
environmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following lffits:

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each universal character name
specifying a short identifier of 0000FFFF or less is considered 6 characters, each
universal character name specifying a short identifier of 00010000 or more is
considered 10 characters, and each extended source character is considered the same

13) Implementations should avoid imposing fixed translation limits whenever possible.

20 Environment 8§85.24.1

©ISO/IEC ISO/IEC 9899:1999 (E)

number of characters as the corresponding universal character name-*f any)
— 4095 external identifiers in one translation unit
— 511 identifiers with block scope declared in one block
— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition
— 127 arguments in one function call
— 127 parameters in one macro definition
— 127 arguments in one macro invocation
— 4095 characters in a logical source line
— 4095 characters in a character string literal or wide string literal (after concatenation)
— 65535 hytes in an object (in a hosted environment only)
— 15 nesting levels fottinclude d files

— 1023case labels for aswitch statement (excluding those for any nestedgtch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause,
which are specified in the headeisnits.h> and<float.h> . Additional limits are
specified in<stdint.h>

Forward references: integer typesstdint.h> (7.18).
5.2.4.2.1 Sizes of integer typedimits.h>

The values given below shall be replaced by constant expressions suitable fofifise in
preprocessing directives. Moreover, except @HAR_BIT and MB_LEN_MAXthe
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude
(absolute value) to those shown, with the same sign.

14) See “future language directions” (6.11.3).

8§5.2.4.2.1 Environment 21

ISO/IEC 9899:1999 (E) ©ISO/IEC

— number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

— minimum value for an object of tységned char
SCHAR_MIN 127 11 -(2"-1)

— maximum value for an object of tygegned char
SCHAR_MAX +127 /I 2"'-1

— maximum value for an object of typmsigned char
UCHAR_MAX 255 /| 22-1

— minimum value for an object of typdhar
CHAR_MIN see below

— maximum value for an object of typbar
CHAR_MAX see below

— maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_MAX 1

— minimum value for an object of typhort int
SHRT_MIN 32767 /I —-(2*-1)

— maximum value for an object of tyghort int
SHRT_MAX +32767 /| 2¥°-1

— maximum value for an object of typmsigned short int
USHRT_MAX 65535 // 2%-1

— minimum value for an object of typet
INT_MIN -32767 1/ -(2*-1)

— maximum value for an object of tyjo&
INT_MAX +32767 /I 2¥°-1

— maximum value for an object of typesigned int
UINT_MAX 65535 // 2°-1

— minimum value for an object of typeng int
LONG_MIN 2147483647 /I —(2%1-1)

— maximum value for an object of typeng int
LONG_MAX +2147483647 /| 2%'1-1

— maximum value for an object of typ@signed long int
ULONG_MAX 4294967295 /| 2%-1

— minimum value for an object of typeng long int
LLONG_MIN -9223372036854775807 // -(2%%-1)

22 Environment §5.24.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— maximum value for an object of typeng long int
LLONG_MAX +9223372036854775807 /I 2%-1

— maximum value for an object of typ@signed long long int
ULLONG_MAX 18446744073709551615 // 2%4-1

If the value of an object of typehar is treated as a signed integer when used in an
expression, the value @HAR_MINshall be the same as that ®CHAR_MINand the
value of CHAR_MAXhall be the same as thatSCHAR_MAXOtherwise, the value of
CHAR_MINshall be 0 and the value &@HAR_MAXshall be the same as that of
UCHAR_MA¥) The valueUCHAR_MAZXhall equal $*AR-BIT- 1.

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).
5.2.4.2.2 Characteristics of floating typesfloat.h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetl€ The following parameters are used to
define the model for each floating-point type:

sign @1)

base or radix of exponent representation (an integer > 1)
exponent (an integer between a minimeyp and a maximune,,,4,)
p precision (the number of babedigits in the significand)

fi nonnegative integers less tha(the significand digits)

® T W

A floating-point numbe(x) is defined by the following model:
P
x=sb®> fib™ en,<e<eny
k=1

In addition to normalized floating-point numbefg ® O if x # 0), floating types may be

able to contain other kinds of floating-point numbers, such as subnormal floating-point
numbers X#0, e=¢e,, f;=0) and unnormalized floating-point numberns #0,
e>enn f1 =0), and values that are not floating-point numbers, such as infinities and
NaNs. A NaN is an encoding signifying Not-a-Number. duiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a
signaling NaN generally raises a floating-point exception when occurring as an

15) See 6.2.5.

16) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

§5.2.4.2.2 Environment 23

ISO/IEC 9899:1999 (E) ©ISO/IEC

arithmetic operand?”

The accuracy of the floating-point operatiofis<(, *, /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation-
defined. The implementation may state that the accuracy is unknown.

All integer values in thefloat.h> header, excepELT_ROUNDSshall be constant
expressions suitable for use#if preprocessing directives; all floating values shall be
constant expressions. All excdpECIMAL_DIG FLT_EVAL_METHODFLT _RADIX,
andFLT_ROUNDSave separate names for all three floating-point types. The floating-
point model representation is provided for all values exeépt EVAL_METHOLRNd

FLT _ROUNDS

The rounding mode for floating-point addition is characterized by the implementation-
defined value oFLT_ROUNDS®)

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDScharacterize implementation-defined rounding
behavior.

The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized
by the implementation-defined valueFfT EVAL_METHOR?

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the
type;

17) IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support
IEC 60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with
similar behavior.

18) Evaluation ofFLT_ROUNDSo rrectly reflects any execution-time change of rounding mode through
the functionfesetround in <fenv.h>

19) The evaluation method determines evaluation formats of expressions involving all floating types, not
just real types. For example, FLT _EVAL METHODs 1, then the product of twdloat
_Complex operands is represented in ttmuble _Complex format, and its parts are evaluated to
double .

24 Environment 8§5.2.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

1 evaluate operations and constants of tfjpat and double to the
range and precision of thdouble type, evaluatelong double
operations and constants to the range and precision infp&ouble

type;
2 evaluate all operations and constants to the range and precision of the
long double type.

All other negative values fdfLT_EVAL_ METHOI2haracterize implementation-defined
behavior.

The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representatidn,
FLT_RADIX 2

— number of bas<_RADIX digits in the floating-point significang,

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT _DIG

— number of decimal digitsp, such that any floating-point number in the widest
supported floating type witlp,,., radix b digits can be rounded to a floating-point
number withn decimal digits and back again without change to the value,

U Pax |0y b if bis a power of 10
] A+ pmaxloglo bD otherwise

DECIMAL_DIG 10

— number of decimal digitg), such that any floating-point number wigtlecimal digits
can be rounded into a floating-point number wotihadix b digits and back again
without change to thg decimal digits,

Uplog,ob if bis a power of 10
0 [{p— 1) log,, b1 otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

85.2.4.2.2 Environment 25

10

ISO/IEC 9899:1999 (E) ©ISO/IEC

— minimum negative integer such tHdtT _RADIX raised to one less than that power is
a normalized floating-point numbex;,

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point number%og10 pemin-1L]

0
FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such th<_ RADIX raised to one less than that power is a
representable finite floating-point numbey,,

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbersiog,,((1 - b™P)b®=)

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; BLP)b%max

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

The values given in the following list shall be replaced by constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the
given floating point typeh*~?

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

26 Environment 8§5.2.4.2.2

11

©ISO/IEC ISO/IEC 9899:1999 (E)

— minimum normalized positive floating-point numbgfrn

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

Recommended practice

Conversion from (at leastjouble
should be the identity function.

to decimal withDECIMAL_DIG digits and back

12 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate valuedlaatah> header for type
float

6
x=s16° f,16% -31<e<+32
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

13 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in IEC 685&8d the appropriate values in a

<float.h>

24
X = s2¢ Z sz_k,
k=1

53
Xq = SZe z sz_k,
k=1

header for typeBoat

anddouble :

-125<e< +128

-1021< e< +1024

FLT_RADIX 2

DECIMAL_DIG 17

FLT_MANT_DIG 24

FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F /I hex constant
FLT_DIG 6

FLT_MIN_EXP -125

FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant

20) The floating-point model in that standard sums powebsfiafm zero, so the values of the exponent
limits are one less than shown here.

§5.2.4.2.2

Environment

27

ISO/IEC 9899:1999 (E)

FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F //
FLT_MAX OX1.fifffeP127F //
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E-16 //
DBL_EPSILON 0X1P-52 //
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 //
DBL_MIN 0X1P-1022 //
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 //

DBL_MAX OX 1 frfffffiffifP1023 //
DBL_MAX_10_EXP

+308

decimal constant
hex constant

decimal constant
hex constant

decimal constant
hex constant

decimal constant
hex constant

©ISO/IEC

If a type wider thandouble were supported, theDECIMAL_DIG would be greater than 17. For

example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of

precision), theECIMAL_DIGwould be 21.

Forward references: conditional

<complex.h> (7.3), floating-point environmenkfenv.h>

<math.h> (7.12).

inclusion

28 Environment

(6.10.1), complex

arithmetic

(7.6), mathematics

§5.2.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6. Language
6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated byitalic type and literal words and character set members (terminalsyldy

type . A colon () following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words “one of”. An
optional symbol is indicated by the subscript “opt”, so that

{ expressiogy: }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and
words are separated by spaces instead of hyphens.

A summary of the language syntax is given in annex A.
6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called aenumeration constantMacro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifisilde (i.e., can be

used) only within a region of program text calledsitepe Different entities designated

by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype.fu(ftion
prototypeis a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that Hasction scope It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by and a statement).

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifiefilbascope which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier hadock scopewhich terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears

86.2.1 Language 29

ISO/IEC 9899:1999 (E) ©ISO/IEC

within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier hainction prototype scop@vhich terminates at the end of the
function declarator. If an identifier designates two different entities in the same name
space, the scopes might overlap. If so, the scope of one entitpr{grescopég will be a

strict subset of the scope of the other entity ¢hieer scopg Within the inner scope, the
identifier designates the entity declared in the inner scope; the entity declared in the outer
scope ihidden(and not visible) within the inner scope.

Unless explicitly stated otherwise, where this International Standard uses the term
“identifier” to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
occurs.

Two identifiers have theame scopé& and only if their scopes terminate at the same
point.

Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions
(6.9.1), identifiers (6.4.2), name spaces of identifiers (6.2.3), macro replacement (6.10.3),
source file inclusion (6.10.2), statements (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process tiakede®? There are
three kinds of linkage: external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier wigxternal linkagedenotes the same object or
function. Within one translation unit, each declaration of an identifier inigrnal
linkage denotes the same object or function. Each declaration of an identifienavith
linkagedenotes a unigue entity.

If the declaration of a file scope identifier for an object or a function contains the storage-
class specifiestatic , the identifier has internal linkag®.

For an identifier declared with the storage-class speeifigrn in a scope in which a

21) There is no linkage between different identifiers.

22) A function declaration can contain the storage-class spestifiic only if it is at file scope; see
6.7.1.

30 Language 86.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

prior declaration of that identifier is visibf@if the prior declaration specifies internal or
external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class spexiéen . If

the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class speoitiem

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9),
statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a
translation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separat@me spacefor various categories of identifiers, as follows:

— label namegdisambiguated by the syntax of the label declaration and use);

— thetagsof structures, unions, and enumerations (disambiguated by followirf§ any
of the keywordstruct , union , orenum);

— the membersof structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the or-> operator);

— all other identifiers, calledrdinary identifiers(declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3), thgoto statement (6.8.6.1).

23) As specified in 6.2.1, the later declaration might hide the prior declaration.

24) There is only one name space for tags even though three are possible.

§6.2.3 Language 31

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.2.4 Storage durations of objects

An object has atorage durationthat determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, has a constant Zddaessretains

its last-stored value throughout its lifetiff@. If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when
the object it points to reaches the end of its lifetime.

An object whose identifier is declared with external or internal linkage, or with the
storage-class specifistatic ~ has static storage durationlts lifetime is the entire
execution of the program and its stored value is initialized only once, prior to program
startup.

An object whose identifier is declared with no linkage and without the storage-class
specifierstatic hasautomatic storage duration

For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends in
any way. (Entering an enclosed block or calling a function suspends, but does not end,
execution of the current block.) If the block is entered recursively, a new instance of the
object is created each time. The initial value of the object is indeterminate. If an
initialization is specified for the object, it is performed each time the declaration is
reached in the execution of the block; otherwise, the value becomes indeterminate each
time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from
the declaration of the object until execution of the program leaves the scope of the
declaratiorf”) If the scope is entered recursively, a new instance of the object is created
each time. The initial value of the object is indeterminate.

Forward references: statements (6.8), function calls (6.5.2.2), declarators (6.7.5), array
declarators (6.7.5.2), initialization (6.7.8).

25) The term “constant address” means that two pointers to the object constructed at possibly different
times will compare equal. The address may be different during two different executions of the same
program.

26) In the case of a volatile object, the last store need not be explicit in the program.

27) Leaving the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declaration, leaves the scope of the declaration.

32 Language 86.2.4

©ISO/IEC ISO/IEC 9899:1999 (E)

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned intmbject typegtypes that fully describe objectdynction typegtypes

that describe functions), andcomplete typegtypes that describe objects but lack
information needed to determine their sizes).

An object declared as typ®ool is large enough to store the values 0 and 1.

An object declared as typghar is large enough to store any member of the basic
execution character set. If a member of the basic execution character set is stored in a
char object, its value is guaranteed to be positive. If any other character is stored in a
char object, the resulting value is implementation-defined but shall be within the range
of values that can be represented in that type.

There are fivestandard signed integer typedesignated asigned char , short

int , int , long int , andlong long int . (These and other types may be
designated in several additional ways, as described in 6.7.2.) There may also be
implementation-define@xtended signed integer typ@s The standard and extended
signed integer types are collectively calféghed integer type?)

An object declared as tymigned char occupies the same amount of storage as a
“plain” char object. A “plain” int object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range
INT_MIN to INT_MAXas defined in the headelimits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keywardsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are thestandard unsigned integer typesThe unsigned integer types that
correspond to the extended signed integer types arexteeded unsigned integer types

The standard and extended unsigned integer types are collectivelyuredigded integer

types?)

28) Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

29) Therefore, any statement in this Standard about signed integer types also applies to the extended
signed integer types.

30) Therefore, any statement in this Standard about unsigned integer types also applies to the extended
unsigned integer types.

86.2.5 Language 33

10

11

12

13

14

ISO/IEC 9899:1999 (E) ©ISO/IEC

The standard signed integer types and standard unsigned integer types are collectively
called thestandard integer typesthe extended signed integer types and extended
unsigned integer types are collectively calledeakiended integer types

For any two integer types with the same signedness and different integer conversion rank
(see 6.3.1.1), the range of values of the type with smaller integer conversion rank is a
subrange of the values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the samé? A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting type.

There are threeeal floating types designated adloat , double , and long
double .32 The set of values of the tyflwat is a subset of the set of values of the
typedouble ; the set of values of the typluble is a subset of the set of values of the
typelong double

There are threecomplex types designated asfloat _Complex , double
_Complex , andlong double _Complex 33 The real floating and complex types
are collectively called th#éoating types

For each floating type there icarresponding real typewhich is always a real floating
type. For real floating types, it is the same type. For complex types, it is the type given
by deleting the keywordComplex from the type name.

Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

The typechar , the signed and unsigned integer types, and the floating types are
collectively called thédasic typesEven if the implementation defines two or more basic
types to have the same representation, they are nevertheless differeftypes.

31) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

32) See “future language directions” (6.11.1).
33) A specification for imaginary types is in informative annex G.

34) An implementation may define new keywords that provide alternative ways to designate a basic (or
any other) type; this does not violate the requirement that all basic types be different.
Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

34 Language 86.2.5

15

16

17

18

19

20

©ISO/IEC ISO/IEC 9899:1999 (E)

The three typeshar , signed char , andunsigned char are collectively called
the character typesThe implementation shall definghar to have the same range,
representation, and behavior as eiigned char or unsigned char .39

An enumerationcomprises a set of named integer constant values. Each distinct
enumeration constitutes a differamumerated type

The typechar , the signed and unsigned integer types, and the enumerated types are
collectively callednteger typesThe integer and real floating types are collectively called
real types

Integer and floating types are collectively calledhmetic typesEach arithmetic type
belongs to on¢ype domainthe real type domaircomprises the real types, themplex
type domaircomprises the complex types.

Thevoid type comprises an empty set of values; it is an incomplete type that cannot be
completed.

Any number ofderived typescan be constructed from the object, function, and
incomplete types, as follows:

— An array typedescribes a contiguously allocated nonempty set of objects with a
particular member object type, called trdement typé® Array types are
characterized by their element type and by the number of elements in the array. An
array type is said to be derived from its element type, and if its element Jpehis
array type is sometimes called “array©f. The construction of an array type from
an element type is called “array type derivation”.

— A structure typedescribes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

— A union typedescribes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function typedescribes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return typetie
function type is sometimes called “function returnifd. The construction of a
function type from a return type is called “function type derivation”.

35) CHAR_MINdefined in<limits.h> , will have one of the values 0 8CHAR_MINand this can be
used to distinguish the two options. Irrespective of the choice mhde, is a separate type from the
other two and is not compatible with either.

36) Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

86.2.5 Language 35

21

22

23

24

25

26

ISO/IEC 9899:1999 (E) ©ISO/IEC

— A pointer typemay be derived from a function type, an object type, or an incomplete
type, called thereferenced typeA pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from
the referenced typ@& is sometimes called “pointer td”. The construction of a
pointer type from a referenced type is called “pointer type derivation”.

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively cakedlar types Array and
structure types are collectively callaggregate types”)

An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internal or external linkage).
A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete
type. Itis completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope.

Array, function, and pointer types are collectively caliegived declarator typesA
declarator type derivatiorirom a typeT is the construction of a derived declarator type
from T by the application of an array-type, a function-type, or a pointer-type derivation to
T.

A type is characterized by itgpe categorywhich is either the outermost derivation of a
derived type (as noted ale inthe construction of derived types), or the type itself if the
type consists of no derived types.

Any type so far mentioned is amqualified type Each unqualified type has several
qualified versionsof its type3® corresponding to the combinations of one, two, or all
three of theconst , volatile , andrestrict qualifiers. The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have the
same representation and alignment requireniéhta.derived type is not qualified by the
qualifiers (if any) of the type from which it is derived.

A pointer tovoid shall have the same representation and alignment requirements as a
pointer to a character tyge. Similarly, pointers to qualified or unqualified versions of

compatible types shall have the same representation and alignment requirements. All
pointers to structure types shall have the same representation and alignment requirements
as each other. All pointers to union types shall have the same representation and
alignment requirements as each other. Pointers to other types need not have the same

37) Note that aggregate type does not include union type because an object with union type can only
contain one member at a time.

38) See 6.7.3 regarding qualified array and function types.

39) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

36 Language 86.2.5

27

28

©ISO/IEC ISO/IEC 9899:1999 (E)

representation or alignment requirements.

EXAMPLE 1 The type designated adldat* " has type “pointer tofloat ”. Its type category is
pointer, not a floating type. The const-qualified version of this type is designatdéidats “* const ”
whereas the type designated asrist float *” is not a qualified type — its type is “pointer to const-
qualifiedfloat " and is a pointer to a qualified type.

EXAMPLE 2 The type designated astfuct tag (*[5])(float) " has type “array of pointer to
function returningstruct tag ”. The array has length five and the function has a single parameter of type
float . Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).
6.2.6 Representations of types

6.2.6.1 General

The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number, order, and encoding of which are either explicitly specified or
implementation-defined.

Values stored in unsigned bit-fields and objects of typsigned char shall be
represented using a pure binary notaffén.

Values stored in non-bit-field objects of any other object type consisk @fHAR_BIT

bits, wheren is the size of an object of that type, in bytes. The value may be copied into
an object of typeinsigned char [n] (e.g., bymemcpy); the resulting set of bytes is

called theobject representationf the value. Values stored in bit-fields consistrobbits,

wherem is the size specified for the bit-field. The object representation is the set of

bits the bit-field comprises in the addressable storage unit holding it. Two values (other
than NaNs) with the same object representation compare equal, but values that compare
equal may have different object representations.

Certain object representations need not represent a value of the object type. If the stored
value of an object has such a representation and is read by an Ivalue expression that does
not have character type, the behavior is undefined. If such a representation is produced
by a side effect that modifies all or any part of the object by an Ivalue expression that
does not have character type, the behavior is undefihe&lich a representation is called

atrap representation

40) A positional representation for integers that uses the binary digits 0 and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted frolmgtiécan National
Dictionary for Information Processing Systen#\ byte containlCHAR_BIT bits, and the values of

typeunsigned char range from 0 t@“HARBIT — 1.

41) Thus, an automatic variable can be initialized to a trap representation without causing undefined
behavior, but the value of the variable cannot be used until a proper value is stored in it.

86.2.6.1 Language 37

ISO/IEC 9899:1999 (E) ©ISO/IEC

When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take
unspecified value®) The values of padding bytes shall not affect whether the value of
such an object is a trap representation. Those bits of a structure or union object that are
in the same byte as a bit-field member, but are not part of that member, shall similarly not
affect whether the value of such an object is a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspecified values, but the value of the union object shall not thereby become a trap
representation.

Where an operator is applied to a value that has more than one object representation,
which object representation is used shall not affect the value of the“féswthere a

value is stored in an object using a type that has more than one object representation for
that value, it is unspecified which representation is used, but a trap representation shall
not be generated.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function
designators (6.3.2.1).

6.2.6.2 Integer types

For unsigned integer types other thansigned char , the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there ai value bits, each bit shall represent a different
power of 2 between 1 and“?Z, so that objects of that type shall be capable of
representing values from 0 td'2 1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unsfp@cified.

For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;
there shall be exactly one sign bit. Each bit that is a value bit shall have the same value as

42) Thus, for example, structure assignment may be implemented element-at-a-tinreemgjay.

43) It is possible for objects andy with the same effective typeto have the same value when they are
accessed as objects of typebut to have different values in other contexts. In particular=ifis
defined for typeT, thenx == y does not imply thatnemcmp(&x, &y, sizeof (T)) ==
Furthermorex == y does not necessarily imply thatandy have the same value; other operations
on values of typd may distinguish between them.

44) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow, and this cannot occur
with unsigned types. All other combinations of padding bits are alternative object representations of
the value specified by the value bits.

38 Language 86.2.6.2

©ISO/IEC ISO/IEC 9899:1999 (E)

the same bit in the object representation of the corresponding unsigned type (if there are
M value bits in the signed type ahdin the unsigned type, theWl < N). If the sign bit

is zero, it shall not affect the resulting value. If the sign bit is one, the value shall be
modified in one of the following ways:

— the corresponding value with sign bit 0 is negasggh(and magnitude
— the sign bit has the valug2™) (two’s complement
— the sign bit has the valug2™ - 1) (one’s complemept

Which of these applies is implementation-defined, as is whether the value with sign bit 1
and all value bits zero (for the first two), or with sign bit and all value bits 1 (for one’s
complement), is a trap representation or a normal value. In the case of sign and
magnitude and one’s complement, if this representation is a normal value it is called a
negative zero

If the implementation supports negative zeros, they shall be generated only by:
— the&, | , ", ~, <<, and>> operators with arguments that produce such a value;

— the+, -, *,/, and%operators where one argument is a negative zero and the result is
zero;

— compound assignment operators based on tineahases.

It is unspecified whether these cases actually generate a negative zero or a normal zero,
and whether a negative zero becomes a normal zero when stored in an object.

If the implementation does not support negative zeros, the behavior&f|the, ~, <<,
and>> operators with arguments that would produce such a value is undefined.

The values of any padding bits are unspecftféd. valid (non-trap) object representation
of a signed integer type where the sign bit is zero is a valid object representation of the
corresponding unsigned type, and shall represent the same value.

The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. Thedth of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same, while
for signed integer types the width is one greater than the precision.

45) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow. All other
combinations of padding bits are alternative object representations of the value specified by the value
bits.

86.2.6.2 Language 39

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.2.7 Compatible type and composite type

Two types havecompatible typeif their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.5 for declaraftsMoreover, two structure,

union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tag. If both are complete types, then the following
additional requirements apply: there shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared with compatible
types, and such that if one member of a corresponding pair is declared with a name, the
other member is declared with the same name. For two structures, corresponding
members shall be declared in the same order. For two structures or unions, corresponding
bit-fields shall have the same widths. For two enumerations, corresponding members
shall have the same values.

All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

A composite typean be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

— If one type is an array of known constant size, the composite type is an array of that
size; otherwise, if one type is a variable length array, the composite type is that type.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visibfé) if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite

type.

46) Two types need not be identical to be compatible.

47) As specified in 6.2.1, the later declaration might hide the prior declaration.

40 Language 86.2.7

©ISO/IEC

EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:
int f(int (*)(char *), double (*)[3]);

86.2.7 Language

ISO/IEC 9899:1999 (E)

41

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.3 Conversions

Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from sudmgplicit conversionas well as those

that result from a cast operation (@xplicit conversioh The list in 6.3.1.8 summarizes

the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

Every integer type has ameger conversion ranklefined as follows:

— No two signed integer types shall have the same rank, even if they have the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— The rank oflong long int shall be greater than the ranklofg int , which
shall be greater than the rankiof , which shall be greater than the rankshbrt
int , which shall be greater than the ranksmned char

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank ofthar shall equal the rank gigned char andunsigned char
— The rank of Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type
(see 6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer typed1, T2, andT3, if T1 has greater rank thah2 and T2 has
greater rank tham3, thenT1 has greater rank thars.

The following may be used in an expression whereventanor unsigned int may
be used:

42 Language 86.3.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— An object or expression with an integer type whose integer conversion rank is less
than the rank aoiht andunsigned int

— A bit-field of type_Bool , int ,signed int , orunsigned int

If anint can represent all values of the original type, the value is convertedrib an
otherwise, it is converted to auonsigned int . These are called thateger
promotions*®) All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a
“plain” char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted Bool , the result is O if the value compares equal
to O; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type otheBbah, if
the value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new typk.

Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of real floating type is converted to an integer type otheiBihah,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is urtfefined.

When a value of integer type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented

48) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unaryand~ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

49) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

50) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (Wiype MAX-1).

86.3.1.4 Language 43

ISO/IEC 9899:1999 (E) ©ISO/IEC

exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.5 Real floating types

When afloat is promoted talouble orlong double , or adouble is promoted
tolong double , its value is unchanged.

When adouble is demoted tdloat , along double is demoted tadouble or

float , or a value being represented in greater precision and range than required by its
semantic type (see 6.3.1.8) is explicitly converted to its semantic type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result
types in a similar way. The purpose is to determigeramon real typér the operands

and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operands if they are the same,
and complex otherwise. This pattern is calledubeal arithmetic conversions

First, if the corresponding real type of either operaridrig double , the other
operand is converted, without change of type domain, to a type whose
corresponding real type lisng double

44 Language 86.3.1.8

2

©ISO/IEC ISO/IEC 9899:1999 (E)

Otherwise, if the corresponding real type of either operamibuble , the other
operand is converted, without change of type domain, to a type whose
corresponding real type @ouble .

Otherwise, if the corresponding real type of either operaritbas , the other
operand is converted, without change of type domain, to a type whose
corresponding real type ftoat 5%

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are not
changed therel®f)

51) For example, addition of double Complex and afloat entails just the conversion of the
float operand talouble (and yields alouble Complex result).

52) The cast and assignment operators are still required to perform their specified conversions as
described in 6.3.1.4 and 6.3.1.5.

86.3.1.8 Language 45

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

An Ivalueis an expression with an object type or an incomplete type othevafthn®®

if an Ivalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the Ivalue used to
designate the object. modifiable Ivaluds an Ivalue that does not have array type, does
not have an incomplete type, does not have a const-qualified type, and if it is a structure
or union, does not have any member (including, recursively, any member or element of
all contained aggregates or unions) with a const-qualified type.

Except when it is the operand of thigeof operator, the unank operator, thet+
operator, the- operator, or the left operand of theoperator or an assignment operator,

an Ivalue that does not have array type is converted to the value stored in the designated
object (and is no longer an Ivalue). If the Ivalue has qualified type, the value has the
unqualified version of the type of the Ivalue; otherwise, the value has the type of the
Ivalue. If the Ivalue has an incomplete type and does not have array type, the behavior is
undefined.

Except when it is the operand of thigeof operator or the unar§ operator, or is a

string literal used to initialize an array, an expression that has type “arrgypdfis
converted to an expression with type “pointetytpe’ that points to the initial element of

the array object and is not an Ivalue. If the array object has register storage class, the
behavior is undefined.

A function designatois an expression that has function type. Except when it is the
operand of thesizeof operator® or the unary& operator, a function designator with
type “function returningtyp€’ is converted to an expression that has type “pointer to
function returningyp¥€'.

Forward references: address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions<stddef.h> (7.17), initialization (6.7.8), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), thesizeof operator (6.5.3.4), structure and union members (6.5.2.3).

53) The name “lvalue” comes originally from the assignment expresBibnE2 , in which the left
operancEl is required to be a (modifiable) Ivalue. It is perhaps better considered as representing an
object “locator value”. What is sometimes called “rvalue” is in this International Standard described
as the “value of an expression”.

An obvious example of an Ivalue is an identifier of an object. As a further examplé & unary
expression that is a pointer to an objéEt,is an Ivalue that designates the object to whigioints.

54) Because this conversion does not occur, the operand aizéh&f operator remains a function
designator and violates the constraint in 6.5.3.4.

46 Language 86.3.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.3.2.2 void

The (nonexistent) value ofvaid expressioifan expression that has typeid) shall not

be used in any way, and implicit or explicit conversions (excepbit) shall not be
applied to such an expression. If an expression of any other type is evaluated as a void
expression, its value or designator is discarded. (A void expression is evaluated for its
side effects.)

6.3.2.3 Pointers

A pointer tovoid may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a poinadto
and back again; the result shall compare equal to the original pointer.

For any qualifieq, a pointer to a non-qualified type may be converted to a pointer to
theg-qualified version of the type; the values stored in the original and converted pointers
shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type
void * , is called anull pointer constan®® If a null pointer constant is converted to a
pointer type, the resulting pointer, calledwl pointer, is guaranteed to compare unequal

to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to an
entity of the referenced type, and might be a trap represent&tion.

Any pointer type may be converted to an integer type. Except as previously specified, the
result is implementation-defined. If the result cannot be represented in the integer type,
the behavior is undefined. The result need not be in the range of values of any integer

type.

A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly aljfhdar the

pointed-to type, the behavior is undefined. Otherwise, when converted back again, the
result shall compare equal to the original pointer. When a pointer to an object is

55) The macrdNULL is defined incstddef.h> (and other headers) as a null pointer constant; see 7.17.

56) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to
be consistent with the addressing structure of the execution environment.

57) In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is
correctly aligned for a pointer to type C.

86.3.2.3 Language a7

ISO/IEC 9899:1999 (E) ©ISO/IEC

converted to a pointer to a character type, the result points to the lowest addressed byte of
the object. Successive increments of the result, up to the size of the object, yield pointers
to the remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types
capable of holding object pointers (7.18.1.4), simple assignment (6.5.16.1).

48 Language 86.3.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, or a punctuator.

Semantics

A tokenis the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing tokens are: header names,
identifiers, preprocessing numbers, character constants, string literals, punctuators, and
single non-white-space characters that do not lexically match the other preprocessing
token categorie®) If a' or a" character matches the last category, the behavior is
undefined. Preprocessing tokens can be separatedhlig space this consists of
comments (described later), white-space charactergspace, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in 6.10, in certain circumstances
during translation phase 4, white space (or the absence thereof) serves as more than
preprocessing token separation. White space may appear within a preprocessing token
only as part of a header name or between the quotation characters in a character constant
or string literal.

58) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot
occur in source files.

86.4 Language 49

ISO/IEC 9899:1999 (E) ©ISO/IEC

If the input stream has been parsed into preprocessing tokens up to a given character, the
next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token. There is one exception to this rule: a header name preprocessing
token is only recognized within#include preprocessing directive, and within such a
directive, a sequence of characters that could be either a header name or a string literal is
recognized as the former.

EXAMPLE 1 The program fragmeritEx is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessint) amkkes

might produce a valid expression (for exampldifwere a macro defined a4). Similarly, the program

fragmentlE1l is parsed as a preprocessing number (one that is a valid floating constant token), whether or
notE is a macro name.

EXAMPLE 2 The program fragment-++++y is parsed ag ++ ++ + y , which violates a constraint on
increment operators, even though the parse + ++y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing directives (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords

Syntax
keyword: one of

auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch
double long typedef
else register union

Semantics

The alove tolens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise.

50 Language 86.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.2 ldentifiers
6.4.2.1 General
Syntax
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

~a b c d e f g h i j k I m
n o p g r s tuwv w Xy z
A B C D EF G H I J K L M
N O P Q R ST UV W X Y Z

digit: one of
0O 1 2 3 45 6 7 8 9
Semantics

An identifier is a sequence of nondigit characters (including the underscdbe
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1. Lowercase and uppercase letters are distinct.
There is no specific limit on the maximum length of an identifier.

Each universal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 falls into one of the ranges specified in anné® the initial
character shall not be a universal character name designating a digit. An implementation
may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character
names is implementation-defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a

preprocessing token could be converted to either a keyword or an identifier, it is converted
to a keyword.

59) On systems in which linkers cannot accept extended characters, an encoding of the universal character
name may be used in forming valid external identifiers. For example, some otherwise unused
character or sequence of characters may be used to encode thea universal character name.
Extended characters may produce a long external identifier.

86.4.2.1 Language 51

ISO/IEC 9899:1999 (E) ©ISO/IEC

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for axternal namean identifier that has external
linkage) may be more restrictive than that foriaternal name(a macro name or an
identifier that does not have external linkage). The number of significant characters in an
identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).
6.4.2.2 Predefined identifiers
Semantics

The identifier __func_ _ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char __func_ [] =" function-namg
appeared, wherfeinction-names the name of the lexically-enclosing functf.

This name is encoded as if the implicit declaration had been written in the source
character set and then translated into the execution character set as indicated in translation
phase 5.

EXAMPLE Consider the code fragment:

#include <stdio.h>

void myfunc(void)

{
printf("%s\n", __func_)
|

}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.1).

60) Since the name func_ _ is reserved for any use by the implementation (7.1.3), if any other
identifier is explicitly declared using the namefunc_ _, the behavior is undefined.

52 Language 86.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.3 Universal character names
Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

Constraints

A universal character name shall not specify a character whose short identifier is less than
00AO other than 00243}, 0040 @, or 0060 {), nor one in the range D800 through
DFFF inclusive®?)

Description

Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the basic character set.

Semantics

The universal character narild nnnnnnnndesignates the character whose eight-digit
short identifier (as specified by ISO/IEC 10646himnnnnrf? Similarly, the universal
character name nnnndesignates the character whose four-digit short identifienns
(and whose eight-digit short identifier is 0OO@IN).

61) The disallowed characters are the characters in the basic character set and the code positions reserved
by ISO/IEC 10646 for control characters, the character DELETE, and the S-zone (reserved for use by
UTF-16).

62) Short identifiers for characters were first specified in ISO/IEC 10646-1/AMD9:1997.

86.4.3 Language 53

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.4.4 Constants
Syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

The value of a constant shall be in the range of representable values for its type.
Semantics

Each constant has a type, determined by its form and value, as detailed later.
6.4.4.1 Integer constants

Syntax

integer-constant:
decimal-constant integer-suffps
octal-constant integer-sufjx;
hexadecimal-constant integer-suffix

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix:one of
0x 0OX

nonzero-digit: one of
1 2 3 45 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

54 Language 86.4.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

hexadecimal-digit: one of
0O 1 2 3 45 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffy
unsigned-suffix long-long-suffix
long-suffix unsigned-suffy
long-long-suffix unsigned-suffj

unsigned-suffix:one of
u U

long-suffix: one of
| L

long-long-suffix: one of
Il LL

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the préfigptionally followed by a sequence of the
digits 0 through7 only. A hexadecimal constant consists of the préfixor 0X followed

by a sequence of the decimal digits and the lettds A) throughf (or F) with values

10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can
be represented.

86.4.4.1 Language 55

ISO/IEC 9899:1999 (E) ©ISO/IEC

Octal or Hexadecimal

Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int

unsigned long long int

uoru unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

| or L long int long int
long long int unsigned long int
long long int

unsigned long long int

Both u or U unsigned long int unsigned long int
and | or L unsigned long long int unsigned long long int
I or LL long long int long long int

unsigned long long int

Both u or U unsigned long long int unsigned long long int
and Il or LL

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned.

56 Language 86.4.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.4.2 Floating constants
Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-pgp; floating-suffiypt
digit-sequence exponent-part floating-syffix

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffix
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffix

fractional-constant:
digit-sequencg,; - digit-sequence
digit-sequence.

exponent-part:
e sigrppt digit-sequence
E signypt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
hexadecimal-fractional-constant:
hexadecimal-digit-sequengg .
hexadecimal-digit-sequence
hexadecimal-digit-sequence

binary-exponent-part:
p signypt digit-sequence
P signypt digit-sequence
hexadecimal-digit-sequence:

hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f I F L

86.4.4.2 Language 57

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

A floating constant hassagnificand partthat may be followed by agxponent parand a

suffix that specifies its type. The components of the significand part may include a digit
seqguence representing the whole-number part, followed by a pediotbljowed by a

digit sequence representing the fraction part. The components of the exponent part are an
e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled. For hexadecimal floating constants, the exponent indicates the power of 2
by which the significand part is to be scaled. For decimal floating constants, and also for
hexadecimal floating constants whHelnT _RADIX is not a power of 2, the result is either

the nearest representable value, or the larger or smaller representable value immediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants whiebhT _RADIX is a power of 2, the result is
correctly rounded.

An unsuffixed floating constant has tyg@uble . If suffixed by the lettef or F, it has
typefloat . If suffixed by the lettet orL, it has typdong double

Floating constants are converted to internal format as if at translation-time. The
conversion of a floating constant shall not raise an exceptional condition or a floating-
point exception at execution time.

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant
cannot be represented exactly in its evaluation format; the implementation should then
proceed with the translation of the program.

The translation-time conversion of floating constants should match the execution-time
conversion of character strings by library functions, sucktidsd , given matching
inputs suitable for both conversions, the same result format, and default execution-time

rounding®®

63) The specification for the library functions recommends more accurate conversion than required for
floating constants (see 7.20.1.3).

58 Language 86.4.4.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:
identifier

Semantics

An identifier declared as an enumeration constant hasritype
Forward references: enumeration specifiers (6.7.2.2).
6.4.4.4 Character constants

Syntax

character-constant:
' c-char-sequencé
L' c-char-sequencé

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequencene of
S S A\
\a \b \ff \n \r \t W

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

86.4.4.4 Language

59

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as iR . A wide character constant is the same, except prefixed by the
letter L. With a few exceptions detailed later, the elements of the sequence are any
members of the source character set; they are mapped in an implementation-defined
manner to members of the execution character set.

The single-quoté , the double-quoté', the question-mark?, the backslash , and
arbitrary integer values are representable according to the following table of escape
sequences:

single quoté \'

double quoté \"

guestion mark \?
backslash \\

octal character \ octal digits

hexadecimal character \x hexadecimal digits

The double-quote and question-marR are representable either by themselves or by the
escape sequenc®s and\? , respectively, but the single-quoteand the backslash
shall be represented, respectively, by the escape seqlenaas\\ .

The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the leitea hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, characters not in the basic character set are representable by universal
character names and certain nongraphic characters are representable by escape sequences
consisting of the backslashfollowed by a lowercase letteya , \b , \f ,\n , \r , \t ,

and\v .64

64) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash,
the result is not a token and a diagnostic is required. See “future language directions” (6.11.4).

60 Language 86.4.4.4

10

11

12
13

14

15

©ISO/IEC ISO/IEC 9899:1999 (E)

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the typesigned char ~ for an integer character constant, or
the unsigned type correspondingtohar_t for a wide character constant.

Semantics

An integer character constant has tyge . The value of an integer character constant
containing a single character that maps to a single-byte execution character is the
numerical value of the representation of the mapped character interpreted as an integer.
The value of an integer character constant containing more than one character (e.g.,
‘ab'), or containing a character or escape sequence that does not map to a single-byte
execution character, is implementation-defined. If an integer character constant contains
a single character or escape sequence, its value is the one that results when an object with
typechar whose value is that of the single character or escape sequence is converted to
typeint

A wide character constant has typechar t , an integer type defined in the
<stddef.h> header. The value of a wide character constant containing a single
multibyte character that maps to a member of the extended execution character set is the
wide character corresponding to that multibyte character, as defined bybtiog/c

function, with an implementation-defined current locale. The value of a wide character
constant containing more than one multibyte character, or containing a multibyte
character or escape sequence not represented in the extended execution character set, i
implementation-defined.

EXAMPLE 1 The constructioN0' is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have typdhar . In an implementation in which typehar has the same range of
values assigned char , the integer character constdmEF has the value-1; if type char has the

same range of values assigned char , the character constaitFF' has the value255.

EXAMPLE 3 Even if eight bits are used for objects that have g , the constructiorix123'

specifies an integer character constant containing only one character, since a hexadecimal escape sequence
is terminated only by a non-hexadecimal character. To specify an integer character constant containing the
two characters whose values &rd2' and'3' , the construction0223' may be used, since an octal

escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have wgbar t , the construction
L\1234' specifies the implementation-defined value that results from the combination of the values
0123 and'4'

Forward references: common definitionsstddef.h> (7.17), thembtowc function
(7.20.7.2).

86.4.4.4 Language 61

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.4.5 String literals
Syntax

string-literal:
" s-char-sequeneg; "
L" s-char-sequeneg; "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quot&, backslash , or new-line character
escape-sequence

Description

A character string literalis a sequence of zero or more multibyte characters enclosed in
double-quotes, as itxyz" . A wide string literalis the same, except prefixed by the
letterL.

The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an integer character constant or a wide
character constant, except that the single-quagerepresentable either by itself or by the
escape sequente , but the double-quoté shall be represented by the escape sequence

\" .

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and wide string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens are wide string literal tokens, the resulting
multibyte character sequence is treated as a wide string literal; otherwise, it is treated as a
character string literal.

In translation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or li€¥alEhe multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequence. For character string literals, the array elements have
type char , and are initialized with the individual bytes of the multibyte character
sequence; for wide string literals, the array elements have wgpar t , and are
initialized with the sequence of wide characters corresponding to the multibyte character

65) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in
it by a\0 escape sequence.

62 Language 86.4.5

©ISO/IEC ISO/IEC 9899:1999 (E)

sequence, as defined by théstowcs function with an implementation-defined current
locale. The value of a string literal containing a multibyte character or escape sequence
not represented in the execution character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the
appropriate values. If the program attempts to modify such an array, the behavior is
undefined.

EXAMPLE This pair of adjacent character string literals
Il\X12II Il3ll

produces a single character string literal containing the two characters whose vakxd2'are and'3'
because escape sequences are converted into single members of the execution character set just prior to
adjacent string literal concatenation.

Forward references: common definitions<stddef.h> (7.17), the mbstowcs
function (7.20.8.1).

6.4.6 Punctuators
Syntax

punctuator: one of

1 ¢y {4y . =

++ - & * + - ~ |

I % << > < > <= >= == 1= ~ | && ||
? o0

= *= /= 0%= += = <<= >>= &= N= |:

. H O OH#

< > <% %> % %:%:

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on context, it may specify an operation to be performed (which in turn may
yield a value or a function designator, produce a side effect, or some combination thereof)
in which case it is known as aperator (other forms of operator also exist in some
contexts). Aroperandis an entity on which an operator acts.

86.4.6 Language 63

ISO/IEC 9899:1999 (E) ©ISO/IEC

In all aspects of the language, the six tof€ns
< > <% %> %: %:%:

behave, respectively, the same as the six tokens
[1 { } # #

except for their spellin§?”

Forward references: expressions (6.5), declarations (6.7), preprocessing directives
(6.10), statements (6.8).

6.4.7 Header names
Syntax

header-name:
< h-char-sequence>
" g-char-sequencé'

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character arnd

g-char-sequence:
g-char
g-char-sequence q-char

g-char:
any member of the source character set except
the new-line character arid

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

If the characters,\ ,",// , or/* occur in the sequence between thand> delimiters,
the behavior is undefined. Similarly, if the characters\, // , or /* occur in the

66) These tokens are sometimes called “digraphs”.

67) Thus[and<: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely
interchanged.

64 Language 86.4.7

©ISO/IEC ISO/IEC 9899:1999 (E)

sequence between the delimiters, the behavior is undefinf®). A header name
preprocessing token is recognized only with#ireclude preprocessing directive.
EXAMPLE The following sequence of characters:

0x3<l/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited
by a{ on the left and & on the right).

{0x3H{<H1H/ HaH. HhH{>H1e2}

{#H{include } {<l/a.h> }

{#}{define } {const H.}{ member{@{$}
Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers

Syntax
pp-number:
digit
digit
pp-number digit
pp-number identifier-nondigit
pp-numbere sign
pp-number E sign
pp-numberp sign
pp-numberP sign
pp-number.
Description

A preprocessing humber begins with a digit optionally preceded by a pejiadd may
be followed by valid identifier characters and the character sequefces , E+, E-,
p+, p-, P+ orP-.

Preprocessing number tokens lexically include all floating and integer constant tokens.
Semantics

A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

68) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

86.4.8 Language 65

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters
introduce a comment. The contents of such a comment are examined only to identify
multibyte characters and to find the charactershat terminate i€

Except within a character constant, a string literal, or a comment, the characters
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

EXAMPLE
"allb" I four-character string literal
#include "//e" I undefined behavior
1* 1 comment, not syntax error
f = g/i**llh; 1 equivalenttd = g / h;
N
i(); 1 part of a two-line comment
N
1 j0; I part of a two-line comment
#define glue(x,y) x##ty
glue(/,)) k(); 1 syntax error, not comment
T*II*11(); I equivalent td();
m = n//**/o
+ p; /I equivalenttan = n + p;
69) Thus/* ... */ comments do not nest.

66 Language 86.4.9

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5 Expressions

An expressions a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof.

Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value
shall be read only to determine the value to be st®bed.

The grouping of operators and operands is indicated by the €yhtaxcept as specified
later (for the function-call) , && || ,?: , and comma operators), the order of evaluation
of subexpressions and the order in which side effects take place are both unspecified.

Some operators (the unary operatorand the binary operators<, >>, & ", and| ,
collectively described abitwise operators are required to have operands that have
integer type. These operators return values that depend on the internal representations of
integers, and have implementation-defined and undefined aspects for signed types.

If an exceptional conditioroccurs during the evaluation of an expression (that is, if the
result is not mathematically defined or not in the range of representable values for its
type), the behavior is undefined.

Theeffective typef an object for an access to its stored value is the declared type of the
object, if any’? If a value is stored into an object having no declared type through an
Ivalue having a type that is not a character type, then the type of the Ivalue becomes the
effective type of the object for that access and for subsequent accesses that do not modify

70) This paragraph renders undefined statement expressions such as
i = ++i+1;
afi++] = i;
while allowing
=1+ 1
afil =1

71) The syntax specifies the precedence of operators in the evaluation of an expression, which is the same
as the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the biraperator (6.5.6) are those expressions defined in
6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators
(6.5.3), and an operand contained between any of the following pairs of operators: grouping
parenthese§ (6.5.1), subscripting brackefls (6.5.2.1), function-call parenthes@s (6.5.2.2), and
the conditional operatdat: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

72) Allocated objects have no declared type.

86.5 Language 67

ISO/IEC 9899:1999 (E) ©ISO/IEC

the stored value. If a value is copied into an object having no declared type using
memcpy or memmove or is copied as an array of character type, then the effective type

of the modified object for that access and for subsequent accesses that do not modify the
value is the effective type of the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the effective type of the object is
simply the type of the Ivalue used for the access.

An object shall have its stored value accessed only by an Ivalue expression that has one of
the following types-3)

— atype compatible with the effective type of the object,
— a qualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the
object,

— a type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may lmntracted that is, evaluated as though it were an atomic
operation, thereby omitting rounding errors implied by the source code and the
expression evaluation meth6. The FP_CONTRACPragma inkmath.h> provides a

way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defin€d.

Forward references: theFP_CONTRACPragma (7.12.2), copying functions (7.21.2).

73) The intent of this list is to specify those circumstances in which an object may or may not be aliased.
74) A contracted expression might also omit the raising of floating-point exceptions.

75) This license is specifically intended to allow implementations to exploit fast machine instructions that
combine multiple C operators. As contractions potentially undermine predictability, and can even
decrease accuracy for containing expressions, their use needs to be well-defined and clearly
documented.

68 Language 86.5

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.1 Primary expressions
Syntax

primary-expression:
identifier
constant
string-literal
(expression)

Semantics

An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an Ivalue) or a function (in which case it is a function
designatory®

A constant is a primary expression. Its type depends on its form and value, as detailed in
6.4.4.

A string literal is a primary expression. Itis an Ivalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an Ivalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an Ivalue, a function
designator, or a void expression.

Forward references: declarations (6.7).

6.5.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postfix-expressior expression]
postfix-expressior(argument-expression-lig;)
postfix-expression identifier
postfix-expression> identifier
postfix-expressiont++
postfix-expression-
(type-name) { initializer-list }
(type-name) { initializer-list , }

76) Thus, an undeclared identifier is a violation of the syntax.

86.5.2 Language 69

ISO/IEC 9899:1999 (E) ©ISO/IEC

argument-expression-list:
assignment-expression
argument-expression-list assignment-expression

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to obypet, the other expression shall
have integer type, and the result has tyjpypé€.

Semantics

A postfix expression followed by an expression in square brafkets a subscripted
designation of an element of an array object. The definition of the subscript ojerator
is thatE1[E2] is identical to(*((E1)+(E2))) . Because of the conversion rules that
apply to the binary+ operator, ifE1 is an array object (equivalently, a pointer to the
initial element of an array object) ai® is an integerE1[E2] designates th&2-th
element ofE1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object.
If Eis ann-dimensional arrayn= 2) with dimensiong x j x---xk, thenE (used as

other than an Ivalue) is converted to a pointer to ran 1)-dimensional array with
dimensionsj x ---x k. If the unary* operator is applied to this pointer explicitly, or
implicitly as a result of subscripting, the result is the pointedttol)-dimensional array,

which itself is converted into a pointer if used as other than an Ivalue. It follows from this
that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration
int X[3][5];

Herex is a 3x 5 array ofint s; more precisely is an array of three element objects, each of which is an
array of fiveint s. In the expressiox[i] , which is equivalent t¢*((x)+(i))) , X is first converted to

a pointer to the initial array of fiiet s. Then is adjusted according to the typexgfwhich conceptually
entails multiplyingi by the size of the object to which the pointer points, namely an array dhfive
objects. The results are added and indirection is applied to yield an array iof fiseWhen used in the
expression[i][j] , that array is in turn converted to a pointer to the first ofinhes, sox[i][j]

yields anint .

Forward references: additive operators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.5.2).

70 Language 86.5.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.2.2 Function calls
Constraints

The expression that denotes the called funtfishall have type pointer to function
returningvoid or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a type such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

A postfix expression followed by parenthegescontaining a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argumeff)

If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call hasotgpe If

an attempt is made to modify the result of a function call or to access it after the next
sequence point, the behavior is undefined.

If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have typefloat are promoted tadouble . These are called thdefault argument
promotions If the number of arguments does not equal the number of parameters, the
behavior is undefined. If the function is defined with a type that includes a prototype, and
either the prototype ends with an ellipsjs.(.) or the types of the arguments after
promotion are not compatible with the types of the parameters, the behavior is undefined.
If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

77) Most often, this is the result of converting an identifier that is a function designator.

78) A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
adjusted to have a pointer type as described in 6.9.1.

86.5.2.2 Language 71

10

11

12

ISO/IEC 9899:1999 (E) ©ISO/IEC

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or
void .

If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes
argument type conversion to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

The order of evaluation of the function designator, the actual arguments, and
subexpressions within the actual arguments is unspecified, but there is a sequence point
before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain
of other functions.

EXAMPLE In the function call
(*pf[fLOD) (f20, f3() + f40))

the functiond1 , f2 , f3 , andf4 may be called in any order. All side effects have to be completed before
the function pointed to bpf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.5.3), function
definitions (6.9.1), theeturn statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the operator shall have a qualified or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the> operator shall have type “pointer to qualified or unqualified
structure” or “pointer to qualified or unqualified union”, and the second operand shall
name a member of the type pointed to.

72 Language 86.5.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

Semantics

A postfix expression followed by theoperator and an identifier designates a member of

a structure or union object. The value is that of the named member, and is an Ivalue if the
first expression is an lvalue. If the first expression has qualified type, the result has the
so-qualified version of the type of the designated member.

A postfix expression followed by the operator and an identifier designates a member
of a structure or union object. The value is that of the nhamed member of the object to
which the first expression points, and is an Ivdfldf the first expression is a pointer to

a qualified type, the result has the so-qualified version of the type of the designated
member.

One special guarantee is made in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence (see below), and if the union
object currently contains one of these structures, it is permitted to inspect the common
initial part of any of them anywhere that a declaration of the complete type of the union is
visible. Two structures sharecammon initial sequendé corresponding members have
compatible types (and, for bit-fields, the same widths) for a sequence of one or more
initial members.

EXAMPLE 1 If f is a function returning a structure or union, anés a member of that structure or
union,f().x is a valid postfix expression but is not an Ivalue.

EXAMPLE 2 In:

struct s { inti; constint ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:

S.i int

s.ci const int
cs.i const int
cs.ci const int
VS.i volatile int

vs.ci volatile const int

79) If &Eis a valid pointer expression (whefes the “address-of” operator, which generates a pointer to
its operand), the expressi@RE)->MOS is the same a&.MOS

86.5.2.3 Language 73

ISO/IEC 9899:1999 (E) ©ISO/IEC

8 EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
} oo
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
b
u.nf.type = 1;
u.nf.doublenode = 3.14;
r*

if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)
*

The following is not a valid fragment (because the union type is not visible within fufgtion

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 * p1, struct t2 * p2)

{
if (p1->m < Q)
p2->m = -p2->m;
return p1->m;
}
int g()
{
union {
struct t1 s1;
struct t2 s2;
P
*
return f(&u.s1, &u.s2);
}

Forward references: address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

74 Language 86.5.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The result of the postfix+ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the appropriate
type is added to it.) See the discussions of additive operators and compound assignment
for information on constraints, types, and conversions and the effects of operations on
pointers. The side effect of updating the stored value of the operand shall occur between
the previous and the next sequence point.

The postfix-- operator is analogous to the postfix operator, except that the value of

the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Constraints

The type name shall specify an object type or an array of unknown size, but not a variable
length array type.

No initializer shall attempt to provide a value for an object not contained within the entire
unnamed object specified by the compound literal.

If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is @mpound literal It provides an unnamed object whose
value is given by the initializer 1i€0)

If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.7.8, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either case, the result is an
Ivalue.

80) Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types
orvoid only, and the result of a cast expression is not an Ivalue.

86.5.2.5 Language 75

10

11

12

ISO/IEC 9899:1999 (E) ©ISO/IEC

The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs outside the body of a function, the object
has static storage duration; otherwise, it has automatic storage duration associated with
the enclosing block.

All the semantic rules and constraints for initializer lists in 6.7.8 are applicable to
compound literal§Y

String literals, and compound literals with const-qualified types, need not designate
distinct object$?
EXAMPLE 1 The file scope definition

int *p = (int [){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal are required to be constant. The unnamed object
has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)
{
int *p;
[* X
p = (int[2){*p}:
[* X
}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to byp and the second, zero. The expressions in this compound literal need not be constant. The
unnamed object has automatic storage duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointersduct point

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:
(const float []){1e0, 1el, 1e2, 1e3, 1le4, 1e5, 1e6}

81) For example, subobjects without explicit initializers are initialized to zero.

82) This allows implementations to share storage for string literals and constant compound literals with
the same or overlapping representations.

76 Language 86.5.2.5

13

14

15

16

17

©ISO/IEC ISO/IEC 9899:1999 (E)

EXAMPLE 5 The following three expressions have different meanings:

"tmp/file XXXXXX"
(char [){"tmp/ile XXXXXX"}
(const char [{"/tmp/file XXXXXX"}

The first always has static storage duration and has type archgrof but need not be modifiable; the last
two have automatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory
and can even be shared. For example,

(const char [[){"abc"} == "abc"
might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no way to write a self-referential compound literal that could be used
as the function argument in place of the named objediess _zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s {inti; };

int f (void)
{
struct s *p = 0, *q;
intj=0;
again:
q =p p = &(structs){j++});
if (j < 2) goto again;
return p == q && g->i == 1;
}

The functionf() always returns the value 1.

Note that if an iteration statement were used instead of an exgigit and a labeled statement, the
lifetime of the unnamed object would be the body of the loop only, and on entry next time pnoauott
have an indeterminate value, which would result in undefined behavior.

Forward references: type names (6.7.6), initialization (6.7.8).

86.5.2.5 Language 77

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ~ |

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The value of the operand of the prefix operator is incremented. The result is the new
value of the operand after incrementation. The expressi@ns equivalent tqE+=1) .

See the discussions of additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of operations on pointers.

The prefix-- operator is analogous to the prefix operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).
6.5.3.2 Address and indirection operators
Constraints

The operand of the una&operator shall be either a function designator, the result of a
[or unary* operator, or an Ivalue that designates an object that is not a bit-field and is
not declared with theegister storage-class specifier.

The operand of the unatyoperator shall have pointer type.
Semantics

The unary& operator returns the address of its operand. If the operand hastyyeg “

the result has type “pointer typ€'. If the operand is the result of a unatyoperator,
neither that operator nor th& operator is evaluated and the result is as if both were
omitted, except that the constraints on the operators still apply and the result is not an
Ivalue. Similarly, if the operand is the result of] a operator, neither th& operator nor

78 Language 86.5.3.2

©ISO/IEC ISO/IEC 9899:1999 (E)

the unary* that is implied by thg] is evaluated and the result is as if ta@perator
were removed and tHg¢ operator were changed toraoperator. Otherwise, the result is
a pointer to the object or function designated by its operand.

The unary* operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an Ivalue designating the
object. If the operand has type “pointer typ€’, the result has type typ€. If an

invalid value has been assigned to the pointer, the behavior of the *urgrgrator is
undefined®

Forward references: storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unatmyor - operator shall have arithmetic type; of theperator,
integer type; of thé operator, scalar type.

Semantics

The result of the unary operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the unary operator is the negative of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the- operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expregsisrequivalent

to the maximum value representable in that type nius

The result of the logical negation operators O if the value of its operand compares
unequal to 0, 1 if the value of its operand compares equal to 0. The result hia$ type
The expressiotE is equivalent tq0==E) .

83) Thus,&*E is equivalent tE (even ifE is a null pointer), an&(E1[E2]) to (E1)+(E2)) .ltis
always true that ifE is a function designator or an Ivalue that is a valid operand of the &nary
operator*&E is a function designator or an Ivalue equaktdf *P is an Ivalue and is the name of
an object pointer typ&(T)P is an Ivalue that has a type compatible with that to whipbints.

Among the invalid values for dereferencing a pointer by the uhargerator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an object after the
end of its lifetime.

§6.5.3.3 Language 79

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.3.4 Thesizeof operator
Constraints

Thesizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an expression that
designates a bit-field member.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array
type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an
integer constant.

When applied to an operand that has tper , unsigned char |, orsigned char

(or a qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the &YayWhen applied to an operand

that has structure or union type, the result is the total number of bytes in such an object,
including internal and trailing padding.

The value of the result is implementation-defined, and its type (an unsigned integer type)
issize t ,defined incstddef.h> (and other headers).

EXAMPLE 1 A principal use of theizeof operator is in communication with routines such as storage
allocators and 1/0 systems. A storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointertoid . For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of thalloc function should ensure that its return value is aligned suitably for
conversion to a pointer tdouble .

EXAMPLE 2 Another use of theizeof operator is to compute the number of elements in an array:
sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable-length array is computed and returned from a
function:

#include <stddef.h>

size_t fsize3(int n)

{
char b[n+3]; I variable length array
return sizeof b; 1l execution timeizeof

84) When applied to a parameter declared to have array or function tygeebe operator yields the
size of the adjusted (pointer) type (see 6.9.1).

80 Language 86.5.3.4

©ISO/IEC ISO/IEC 9899:1999 (E)

int main()

{ . .
size_t size;
size = fsize3(10); // fsize3 returns 13
return O;

}

Forward references: common definitions<stddef.h> (7.17), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.6), array declarators (6.7.5.2).

6.5.4 Cast operators
Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies a void type, the type name shall specify qualified or
unqualified scalar type and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

Semantics

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is caltes®® A cast that specifies
no conversion has no effect on the type or value of an expré§sion.

Forward references: equality operators (6.5.9), function declarators (including
prototypes) (6.7.5.3), simple assignment (6.5.16.1), type names (6.7.6).

85) A cast does not yield an Ivalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

86) If the value of the expression is represented with greater precision or range than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type.

§6.5.4 Language 81

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expressiort cast-expression
multiplicative-expression’ cast-expression
multiplicative-expressioro cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands %fojperator shall
have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.
The result of the binary operator is the product of the operands.

The result of thé operator is the quotient from the division of the first operand by the
second; the result of ti&operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

When integers are divided, the result of theperator is the algebraic quotient with any
fractional part discarde¥l) If the quotienta/b is representable, the expression
(a/b)*b + a%b shall equah.

6.5.6 Additive operators
Syntax

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

For subtraction, one of the following shall hold:

87) This is often called “truncation toward zero”.

82 Language 86.5.6

©ISO/IEC ISO/IEC 9899:1999 (E)

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer type.
(Decrementing is equivalent to subtracting 1.)
Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on
them.

The result of the binary operator is the sum of the operands.

The result of the binary operator is the difference resulting from the subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expRepsiats to

the i-th element of an array object, the expressi@)sN (equivalently,N+(P)) and

(P)-N (whereN has the valua) point to, respectively, thie-n-th andi—-n-th elements of

the array object, provided they exist. Moreover, if the expresBipoints to the last
element of an array object, the expresg@)*1 points one past the last element of the
array object, and if the expressiQpoints one past the last element of an array object,
the expressiofQ)-1 points to the last element of the array object. If both the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a uhargerator that is evaluated.

When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer typeptsdiff t defined in the<stddef.n> header.

If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressioRsaandQpoint to, respectively, thieth andj-th elements of

an array object, the expressii)-(Q) has the valué-j provided the value fits in an
object of typeptrdiff_t . Moreover, if the expression points either to an element of

86.5.6 Language 83

10

11

ISO/IEC 9899:1999 (E) ©ISO/IEC

an array object or one past the last element of an array object, and the exessns

to the last element of the same array object, the exprg$Qptil)-(P) has the same
value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has the value zero if the
expressionP points one past the last element of the array object, even though the
expressiorfQ)+1 does not point to an element of the array objct.

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
intn=4, m=3;
int a[n][m];
int *p)[m] =a; //p==&al0]
p += 1; Il p == &a[l]
(*p)[2] = 99; II'a[1][2] == 99
n=p-a, /I n == 1

}

If array a in the alove example were declared to be an array of known constant size, and foinéze
declared to be a pointer to an array of the same known constant size (poi)nghe results would be
the same.

Forward references: array declarators (6.7.5.2), common definiticrstddef.h>
(7.17).

6.5.7 Bitwise shift operators
Syntax

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

Constraints
Each of the operands shall have integer type.
Semantics

The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width of the promoted left operand, the behavior is undefined.

88) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In
this scheme the integer expression added to or subtracted from the converted pointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is
similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the “one past the last
element” requirements.

84 Language 86.5.7

©ISO/IEC ISO/IEC 9899:1999 (E)

The result ofE1<<E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. IfE1 has an unsigned type, the value of the resuftlis 252, reduced modulo
one more than the maximum value representable in the result tygd. hids a signed
type and nonnegative value, adl x 252 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

The result oE1 >> E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type

or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient oE1/ 252, If E1 has a signed type and a negative value, the
resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

Constraints
One of the following shall hold:
— both operands have real type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— both operands are pointers to qualified or unqualified versions of compatible
incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object or incomplete types both
point to the same object, or both point one past the last element of the same array object,
they compare equal. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript

86.5.8 Language 85

ISO/IEC 9899:1999 (E) ©ISO/IEC

values compare greater than pointers to elements of the same array with lower subscript
values. All pointers to members of the same union object compare equal. If the
expressiorP points to an element of an array object and the expre§spmints to the

last element of the same array object, the pointer expreQsiticompares greater than

P. In all other cases, the behavior is undefined.

Each of the operators (less than)> (greater than)<= (less than or equal to), and
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it i&¥alse.
The result has typat .

6.5.9 Equality operators
Syntax
equality-expression:
relational-expression

equality-expression== relational-expression
equality-expression= relational-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
gualified or unqualified version @bid ; or

— one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and!= (not equal to) operators are analogous to the relational
operators except for their lower precedetffeEach of the operators yields 1 if the
specified relation is true and O if it is false. The result has ityipe For any pair of
operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed. Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types from
different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal.

89) The expressiom<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
meanga<b)<c ;in other words, “ifa is less thatb, compare 1 ta; otherwise, compare 0 tJ'.

90) Because of the precedenaesh == c<d is 1 whenevea<b andc<d have the same truth-value.

86 Language 86.5.9

©ISO/IEC ISO/IEC 9899:1999 (E)

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a
null pointer constant, the null pointer constant is converted to the type of the pointer. If
one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ebid , the former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the
same object (including a pointer to an object and a subobject at its beginning) or function,
both are pointers to one past the last element of the same array object, or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different
array o)bject that happens to immediately follow the first array object in the address
space’!

6.5.10 BitwiseAND operator
Syntax

AND-expression:
equality-expression
AND-expression& equality-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binar& operator is the bitwisAND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in the converted operands is
set).

91) Two objects may be adjacent in memory because they are adjacent elements of a larger array or
adjacent members of a structure with no padding between them, or because the implementation chose
to place them so, even though they are unrelated. If prior invalid pointer operations (such as accesses
outside array bounds) produced undefined behavior, subsequent comparisons also produce undefined
behavior.

§6.5.10 Language 87

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.11 Bitwise exclusiv®©R operator
Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expressiof AND-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of thé operator is the bitwise exclusi@R of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

6.5.12 Bitwise inclusiveOR operator
Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expressiolh exclusive-OR-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of thé¢ operator is the bitwise inclusiv@r of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

88 Language 86.5.12

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.13 LogicalAND operator
Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression&& inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The && operator shall yield 1 if both of its operands compare unequal to O; otherwise, it
yields 0. The result has typet .

Unlike the bitwise binarg operator, the&& operator guarantees left-to-right evaluation;
there is a sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated.

6.5.14 LogicalOR operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression]| logical-AND-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The|| operator shall yield 1 if either of its operands compare unequal to O; otherwise, it
yields 0. The result has typet .

Unlike the bitwisd operator, thg| operator guarantees left-to-right evaluation; there is
a sequence point after the evaluation of the first operand. If the first operand compares
unequal to 0, the second operand is not evaluated.

86.5.14 Language 89

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.15 Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression? expression: conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version @bid .

Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to O; the third operand is evaluated
only if the first compares equal to O; the result is the value of the second or third operand

(whichever is evaluated), converted to the type described B@ldfvan attempt is made

to modify the result of a conditional operator or to access it after the next sequence point,

the behavior is undefined.

If both the second and third operands have arithmetic type, the result type that would be
determined by the usual arithmetic conversions, were they applied to those two operands,
is the type of the result. If both the operands have structure or union type, the result has
that type. If both operands have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types pointed-to by both operands. Furthermore, if both operands are pointers to
compatible types or to differently qualified versions of compatible types, the result type is

a pointer to an appropriately qualified version of the composite type; if one operand is a
null pointer constant, the result has the type of the other operand; otherwise, one operand
is a pointer tovoid or a qualified version ofoid , in which case the result type is a

92) A conditional expression does not yield an Ivalue.

90 Language 86.5.15

©ISO/IEC ISO/IEC 9899:1999 (E)

pointer to an appropriately qualified versiorvofd .

EXAMPLE The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the two
pointers have compatible types.

Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

volatile int *v_ip;

int *ip;

const char *c_cp;
the third column in the following table is the common type that is the result of a conditional expression in
which the first two columns are the second and third operands (in either order):

cvp c_ip const void*

vip O volatile int *

c ip v_ip const volatile int*
vp c cp constvoid *

ip c_ip constint*

vp ip void *
6.5.16 Assignment operators
Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operatorone of
= *= = %= += -= <<= >>= &= = |=
Constraints
An assignment operator shall have a modifiable Ivalue as its left operand.
Semantics

An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not an
Ivalue. The type of an assignment expression is the type of the left operand unless the
left operand has qualified type, in which case it is the unqualified version of the type of
the left operand. The side effect of updating the stored value of the left operand shall
occur between the previous and the next sequence point.

The order of evaluation of the operands is unspecified. If an attempt is made to modify
the result of an assignment operator or to access it after the next sequence point, the
behavior is undefined.

§6.5.16 Language 91

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.16.1 Simple assignment
Constraints

One of the following shall hol2f)

— the left operand has qualified or unqualified arithmetic type and the right has
arithmetic type;

— the left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right;

— both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by the
right;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
gualified or unqualified version ebid , and the type pointed to by the left has all
the qualifiers of the type pointed to by the right;

— the left operand is a pointer and the right is a null pointer constant; or
— the left operand has typd&ool and the right is a pointer.
Semantics

In simple assignmen(t), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is read from another object that overlaps in any way
the storage of the first object, then the overlap shall be exact and the two objects shall
have qualified or unqualified versions of a compatible type; otherwise, the behavior is
undefined.

EXAMPLE 1 In the program fragment

int f(void);

char c;

oo

if (¢ =1()) ==-1)
oo

theint value returned by the function may be truncated when stored déine, and then converted back

toint width prior to the comparison. In an implementation in which “plagivar has the same range of
values asunsigned char (and char is narrower tharint), the result of the conversion cannot be
negative, so the operands of the comparison can never compare equal. Therefore, for full portability, the

93) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.3.2.1) that changes Ivalues to “the value of the expression” which removes any type
qualifiers from the type category of the expression.

92 Language §6.5.16.1

©ISO/IEC ISO/IEC 9899:1999 (E)

variablec should be declared a# .
EXAMPLE 2 In the fragment:

char c;

int i;

long I;

I = (c =)

the value of is converted to the type of the assignment expressieni , that is,char type. The value
of the expression enclosed in parentheses is then converted to the type of the outer assignment expression,
thatis,longint type.

EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char ¢ ="A";

cpp = &p; I constraint violation
*cpp = &c¢; /1 valid
*p=0; I valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the
value of the const object

6.5.16.2 Compound assignment
Constraints

For the operators= and-= only, either the left operand shall be a pointer to an object
type and the right shall have integer type, or the left operand shall have qualified or
unqualified arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

Semantics

A compound assignmemtf the formE1 op= E2 differs from the simple assignment
expressiorel = E1 op(E2) only in that the Ivalu€&l is evaluated only once.

86.5.16.2 Language 93

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.17 Comma operator

Syntax
expression:
assignment-expression
expression, assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
seguence point after its evaluation. Then the right operand is evaluated; the result has its
type and valué® If an attempt is made to modify the result of a comma operator or to
access it after the next sequence point, the behavior is undefined.
EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions or lists
of initializers). On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2),)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.8).

94) A comma operator does not yield an Ivalue.

94 Language 86.5.17

©ISO/IEC ISO/IEC 9899:1999 (E)

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within a subexpression that is not
evaluated®

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great as if the expression were being evaluated in the execution
environment.

An integer constant expressith shall have integer type and shall only have operands
that are integer constants, enumeration constants, character consiaets,
expressions whose results are integer constants, and floating constants that are the
immediate operands of casts. Cast operators in an integer constant expression shall only
convert arithmetic types to integer types, except as part of an operandsiaethie

operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

— an arithmetic constant expression,

— a null pointer constant,

95) The operand ofsizeof operator is usually not evaluated (6.5.3.4).

96) An integer constant expression is used to specify the size of a bit-field member of a structure, the
value of an enumeration constant, the size of an array, or the valueasieaconstant. Further
constraints that apply to the integer constant expressions used in conditional-inclusion preprocessing
directives are discussed in 6.10.1.

86.6 Language 95

10
11

ISO/IEC 9899:1999 (E) ©ISO/IEC

— an address constant, or
— an address constant for an object type plus or minus an integer constant expression.

An arithmetic constant expressioshall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, andizeof expressions. Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as part of an operand to a
sizeof operator whose result is an integer constant.

An address constans a null pointer, a pointer to an Ivalue designating an object of static
storage duration, or a pointer to a function designator; it shall be created explicitly using
the unary& operator or an integer constant cast to pointer type, or implicitly by the use of
an expression of array or function type. The array-subsfgrippnd member-access

and-> operators, the addre&sand indirectiort unary operators, and pointer casts may

be used in the creation of an address constant, but the value of an object shall not be
accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressiofs.

Forward references: array declarators (6.7.5.2), initialization (6.7.8).

97) Thus, in the following initialization,
staticinti=2||1/0;

the expression is a valid integer constant expression with value one.

96 Language 86.6

©ISO/IEC ISO/IEC 9899:1999 (E)

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-lig; ;

declaration-specifiers:
storage-class-specifier declaration-specifigfs
type-specifier declaration-specifiggs
type-qualifier declaration-specifigys
function-specifier declaration-specifiggs

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

A declaration shall declare at least a declarator (other than the parameters of a function or
the members of a structure or union), a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
for tags as specified in 6.7.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifielesfinfion
of an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;
— for a function, includes the function bod%);

— for an enumeration constant or typedef name, is the (only) declaration of the
identifier.

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The init-
declarator-list is a comma-separated sequence of declarators, each of which may have

98) Function definitions have a different syntax, described in 6.9.1.

86.7 Language 97

ISO/IEC 9899:1999 (E) ©ISO/IEC

additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer; in the case of function arguments (including in prototypes), it is the adjusted
type (see 6.7.5.3) that is required to be complete.

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), initialization
(6.7.8).

6.7.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
auto
register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a
declaratior?”

Semantics

Thetypedef specifier is called a “storage-class specifier” for syntactic convenience
only; it is discussed in 6.7.7. The meanings of the various linkages and storage durations
were discussed in 6.2.2 and 6.2.4.

A declaration of an identifier for an object with storage-class specéugster
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-defif&4.

The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other thextern

99) See “future language directions” (6.11.5).

100) The implementation may treat amgister declaration simply as aauto declaration. However,
whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifieegister cannot be computed, either explicitly (by use of the urgary
operator as discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in
6.3.2.1). Thus, the only operator that can be applied to an array declared with storage-class specifier
register issizeof

98 Language 86.7.1

©ISO/IEC ISO/IEC 9899:1999 (E)

If an aggregate or union object is declared with a storage-class specifier other than
typedef |, the properties resulting from the storage-class specifier, except with respect to

linkage, also apply to the members of the object, and so on recursively for any aggregate
or union member objects.

Forward references: type definitions (6.7.7).

6.7.2 Type specifiers
Syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name. Each list of
type specifiers shall be one of the following sets (delimited by commas, when there is
more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short , signed short , short int , or signed short int

— unsigned short , orunsigned short int

86.7.2 Language 99

ISO/IEC 9899:1999 (E) ©ISO/IEC

— int , signed , orsigned int

— unsigned , orunsigned int

— long ,signedlong ,longint , orsigned long int
— unsigned long , orunsigned long int

— longlong , signed long long , long long int , or
signed long long int

— unsigned long long , orunsigned long long int
— float

— double

— long double

— _Bool

— float _Complex

— double _Complex

— long double _Complex
— float _Imaginary

— double _Imaginary

— long double _Imaginary
— struct or union specifier
— enum specifier

— typedef name

The type specifiersComplex and_Imaginary shall not be used if the
implementation does not provide those typ&s.

Semantics

Specifiers for structures, unions, and enumerations are discussed in 6.7.2.1 through
6.7.2.3. Declarations of typedef names are discussed in 6.7.7. The characteristics of the
other types are discussed in 6.2.5.

Each of the comma-separated sets designates the same type, except that for bit-fields, it is
implementation-defined whether the speciirgr designates the same typesagned
int or the same type amsigned int

101) Implementations are not required to provide imaginary types. Freestanding implementations are not
required to provide complex types.

100 Language 86.7.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1), tags (6.7.2.3), type definitions (6.7.7).

6.7.2.1 Structure and union specifiers
Syntax

struct-or-union-specifier:
struct-or-union identifie§p; { struct-declaration-list}
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list

specifier-qualifier-list:
type-specifier specifier-qualifier-ligk
type-qualifier specifier-qualifier-lig

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

struct-declarator:
declarator
declaratogpt : constant-expression

Constraints

A structure or union shall not contain a member with incomplete or function type (hence,
a structure shall not contain an instance of itself, but may contain a pointer to an instance
of itself), except that the last member of a structure with more than one named member
may have incomplete array type; such a structure (and any union containing, possibly
recursively, a member that is such a structure) shall not be a member of a structure or an
element of an array.

The expression that specifies the width of a bit-field shall be an integer constant
expression that has nonnegative value that shall not exceed the number of bits in an object
of the type that is specified if the colon and expression are omitted. If the value is zero,
the declaration shall have no declarator.

86.7.2.1 Language 101

10

11

ISO/IEC 9899:1999 (E) ©ISO/IEC

A bit-field shall have a type that is a qualified or unqualified versioiBobl , signed
int , unsigned int , or some other implementation-defined type.

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of members whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. If the struct-declaration-list contains no named
members, the behavior is undefined. The type is incomplete until aftey that
terminates the list.

A member of a structure or union may have any object type other than a variably
modified type'®® In addition, a member may be declared to consist of a specified
number of bits (including a sign bit, if any). Such a member is callsitaeld; 1% its

width is preceded by a colon.

A bit-field is interpreted as a signed or unsigned integer type consisting of the specified
number of bits®® If the value 0 or 1 is stored into a nonzero-width bit-field of type
_Bool , the value of the bit-field shall compare equal to the value stored.

An implementation may allocate any addressable storage unit large enough to hold a bit-
field. If enough space remains, a bit-field that immediately follows another bit-field in a
structure shall be packed into adjacent bits of the same unit. If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is
implementation-defined. The order of allocation of bit-fields within a unit (high-order to
low-order or low-order to high-order) is implementation-defined. The alignment of the
addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field®® As a special case, a bit-field structure member with a width of 0
indicates that no further bit-field is to be packed into the unit in which the previous bit-

102) A structure or union can not contain a member with a variably modified type because member names
are not ordinary identifiers as defined in 6.2.3.

103) The unary (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

104) As specified in 6.7.2 above, if the actual type specifier uset i®r a typedef-name definedias ,
then it is implementation-defined whether the bit-field is signed or unsigned.

105) An unnamed bit-field structure member is useful for padding to conform to externally imposed
layouts.

102 Language 86.7.2.1

12

13

14

15
16

17

©ISO/IEC ISO/IEC 9899:1999 (E)

field, if any, was placed.

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to a
structure object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa. There may be unnamed
padding within a structure object, but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably converted, points to each of its members (or if a member is a bit-
field, then to the unit in which it resides), and vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last element of a structure with more than one named member may
have an incomplete array type; this is calledflexible array memberWith two
exceptions, the flexible array member is ignored. First, the size of the structure shall be
equal to the offset of the last element of an otherwise identical structure that replaces the
flexible array member with an array of unspecified ledffthSecond, when a (or ->)

operator has a left operand that is (a pointer to) a structure with a flexible array member
and the right operand names that member, it behaves as if that member were replaced
with the longest array (with the same element type) that would not make the structure
larger than the object being accessed; the offset of the array shall remain that of the
flexible array member, even if this would differ from that of the replacement array. If this
array would have no elements, it behaves as if it had one element but the behavior is
undefined if any attempt is made to access that element or to generate a pointer one past
it.

EXAMPLE Assuming that all array members are aligned the same, after the declarations:

struct s { int n; double d[]; };
struct ss { int n; double d[1]; };

the three expressions:

sizeof (struct s)
offsetof(struct s, d)
offsetof(struct ss, d)

have the same value. The structsireict s has a flexible array member

106) The length is unspecified to allow for the fact that implementations may give array members different
alignments according to their lengths.

86.7.2.1 Language 103

18

19

20

ISO/IEC 9899:1999 (E) ©ISO/IEC

If sizeof (double) is 8, then after the following code is executed:

struct s *s1,
struct s *s2;
s1 = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls fmalloc succeed, the objects pointed to &y ands2 behave as if the
identifiers had been declared as:

struct { int n; double d[8]; } *s1,;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

s1 = malloc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:
struct { int n; double d[1]; } *s1, *s2;

and:

double *dp;

dp = &(s1->d[0]); // valid

*dp = 42; 1 valid

dp = &(s2->d[0]); // valid

*dp = 42; 1 undefined behavior
The assignment:

*sl = *s2;

only copies the membearand not any of the array elements. Similarly:

structs t1={0} I valid

structs t2={2} I valid

structsstt={1,{4.2}};/ valid

structs t3={1,{4.2}};// invalid: there is nothing for thd.2 to initialize
tl.n = 4; I valid

t1.d[0] = 4.2; 1 undefined behavior

Forward references: tags (6.7.2.3).
6.7.2.2 Enumeration specifiers
Syntax

enum-specifier:
enum identifielpp; { enumerator-list }
enum identifieppe { enumerator-list, }
enum identifier

enumerator-list:
enumerator
enumerator-list, enumerator

104 Language 86.7.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

enumerator:
enumeration-constant
enumeration-constant constant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representablards an

Semantics

The identifiers in an enumerator list are declared as constants that hava typed

may appear wherever such are permitf¥d. An enumerator with= defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no
defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (The use of enumerators with
= may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

Each enumerated type shall be compatible whhr , a signed integer type, or an
unsigned integer type. The choice of type is implementation-deffietut shall be
capable of representing the values of all the members of the enumeration. The
enumerated type is incomplete until after thehat terminates the list of enumerator
declarations.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = &caol;
if (*cp != burgundy)
ro*

makeshue the tag of an enumeration, and then declaots as an object that has that type apdas a
pointer to an object that has that type. The enumerated values are in the set {0, 1, 20, 21}.

Forward references: tags (6.7.2.3).

107) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from
each other and from other identifiers declared in ordinary declarators.

108) An implementation may delay the choice of which integer type until all enumeration constants have
been seen.

86.7.2.2 Language 105

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.2.3 Tags
Constraints
A specific type shall have its content defined at most once.
A type specifier of the form
enum identifier
without an enumerator list shall only appear after the type it specifies is complete.
Semantics

All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. The type is incofiPlenél the closing brace
of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or
use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union identifiegy { struct-declaration-list}
or

enum identifier { enumerator-list}
or

enum identifier { enumerator-list, }

declares a structure, union, or enumerated type. The list definegubtire content
union contentor enumeration contentf an identifier is provided:? the type specifier
also declares the identifier to be the tag of that type.

A declaration of the form
struct-or-union identifier;

specifies a structure or union type and declares the identifier as a tag of th&btype.

109) An incomplete type may only by used when the size of an object of that type is not needed. It is not
needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types
in 6.2.5.) The specification has to be complete before such a function is called or defined.

110) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration
of which it is a part. Of course, when the declaration is of a typedef name, subsequent declarations
can make use of that typedef name to declare objects having the specified structure, union, or
enumerated type.

111) A similar construction witenum does not exist.

106 Language 86.7.2.3

10

11

©ISO/IEC ISO/IEC 9899:1999 (E)

If a type specifier of the form
struct-or-union identifier

occurs other than as part of one of thevaforms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that 3.

If a type specifier of the form

struct-or-union identifier
or
enum identifier

occurs other than as part of one of thevasorms, and a declaration of the identifier as a
tag is visible, then it specifies the same type as that other declaration, and does not
redeclare the tag.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;
%
specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declaress to be an object of the given type aspl to be a pointer to an object of the given type. With
these declarations, the expressgm>left refers to the lefstructtnode pointer of the object to
which sp points; the expressiogiright->count designates theount member of the righstruct

tnode pointed to froms.

The following alternative formulation uses tiypedef mechanism:

typedef struct tnode TNODE;
struct tnode {
int count;
TNODE *left, *right;
2
TNODE s, *sp;
EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct sl { struct s2 *s2p; /* .. *1}; /I D1
struct s2 { struct s1 *s1p; /* oo *1} 11 D2

specify a pair of structures that contain pointers to each other. Note, however, shatvéfre already
declared as a tag in an enclosing scope, the declaitiovould refer toit, not to the tag?2 declared in
D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead Bfl. This declares a new tegf in the inner scope; the declarati®® then

86.7.2.3 Language 107

ISO/IEC 9899:1999 (E) ©ISO/IEC

completes the specification of the new type.

Forward references: declarators (6.7.5), array declarators (6.7.5.2), type definitions
(6.7.7).

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
restrict
volatile

Constraints

Types other than pointer types derived from object or incomplete types shall not be
restrict-qualified.

Semantics

The properties associated with qualified types are meaningful only for expressions that
are Ivalues?

If the same qualifier appears more than once in the spewfier-qualifier-list either
directly or via one or morgypedef s, the behavior is the same as if it appeared only
once.

If an attempt is made to modify an object defined with a const-qualified type through use
of an Ivalue with non-const-qualified type, the behavior is undefined. If an attempt is
made to refer to an object defined with a volatile-qualified type through use of an Ivalue
with non-volatile-qualified type, the behavior is undefihEd.

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring
to such an object shall be evaluated strictly according to the rules of the abstract machine,
as described in 5.1.2.3. Furthermore, at every sequence point the value last stored in the
object shall agree with that prescribed by the abstract machine, except as modified by the

112) The implementation may placecanst object that is nowolatile in a read-only region of
storage. Moreover, the implementation need not allocate storage for such an object if its address is
never used.

113) This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

108 Language 86.7.3

©ISO/IEC ISO/IEC 9899:1999 (E)

unknown factors mentioned previoudk) What constitutes an access to an object that
has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association, defined in 6.7.3.1 below, requires that all accesses to
that object use, directly or indirectly, the value of that particular poilteThe intended

use of therestrict qualifier (like the register storage class) is to promote
optimization, and deleting all instances of the qualifier from all preprocessing translation
units composing a conforming program does not change its meaning (i.e., observable
behavior).

If the specification of an array type includes any type qualifiers, the element type is so-
gualified, not the array type. If the specification of a function type includes any type
qualifiers, the behavior is undefin&§)

For two qualified types to be compatible, both shall have the identically qualified version
of a compatible type; the order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

EXAMPLE 1 An object declared
extern const volatile int real_time_clock;
may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

conststructs{intmem; }cs={1};

structs ncs; /I the objecihcs is modifiable

typedef int A[2][3];

const Aa={{4,5,6},{7,8,9}};/ array of array of const int
int *pi;

const int *pci;

ncs = cs; I valid

CS = NCSs; I violates modifiable Ivalue constraint for
pi = &ncs.mem; // valid

pi = &cs.mem; [/ violates type constraints for

pci = &cs.mem; // valid

pi = a[0]; 1 invalid: a[0] has type tonst int *

114) A volatile declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be “optimized out” by an implementation or reordered except as
permitted by the rules for evaluating expressions.

115) For example, a statement that assigns a value returnedllog to a single pointer establishes this
association between the allocated object and the pointer.

116) Both of these can occur through the usypddef s.

86.7.3 Language 109

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.3.1 Formal definition ofrestrict

Let D be a declaration of an ordinary identifier that provides a means of designating an
objectP as a restrict-qualified pointer to tyje

If D appears inside a block and does not have storageenttss |, let B denote the
block. If D appears in the list of parameter declarations of a function definitioB, let
denote the associated block. OtherwiseBleenote the block amain (or the block of
whatever function is called at program startup in a freestanding environment).

In what follows, a pointer expressidhis said to bebasedon objectP if (at some
sequence point in the executionBprior to the evaluation dE) modifying P to point to
a copy of the array object into which it formerly pointed would change the vaEé'éf

Note that “based” is defined only for expressions with pointer types.

During each execution d, let L be any Ivalue that ha&L based orP. If L is used to
access the value of the objecthat it designates, arXlis also modified (by any means),
then the following requirements apply:shall not be const-qualified. Every other Ivalue
used to access the value Xfhall also have its address basedPortvery access that
modifiesX shall be considered also to modiyfor the purposes of this subclause PIf

is assigned the value of a pointer expres&dhat is based on another restricted pointer
objectP2, associated with blocB2, then either the execution 82 shall begin before
the execution oB, or the execution oB2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

Here an execution d means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration
associated witlB.

A translator is free to ignore any or all aliasing implications of usesstrfict
EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int cf];

assert that if an object is accessed using ore, bf or ¢, and that object is modified anywhere in the
program, then it is never accessed using either of the other two.

117) In other wordsk depends on the value Bfitself rather than on the value of an object referenced
indirectly throughP. For example, if identifiep has type(int **restrict) , then the pointer
expressiong and p+1 are based on the restricted pointer object designateul byt the pointer
expressiondp andp[l] are not.

110 Language 86.7.3.1

©ISO/IEC ISO/IEC 9899:1999 (E)

8 EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{
while (n-- > 0)
*pt+ = *Qtt;

}

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other.

9 The benefit of theestrict qualifiers is that they enable a translator to make an effective dependence
analysis of functiorf without examining any of the calls df in the program. The cost is that the
programmer has to examine all of those calls to ensure that none give undefined behavior. For example, the
second call of in g has undefined behavior because eact[Df throughd[49] is accessed through

bothp andq.
void g(void)
{
extern int d[100];
(50, d + 50, d); // valid
f(50,d+ 1,d);// undefined behavior
}

10 EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int * restrict g, int * restrict r)

{ . .
inti;
for (i=0;i<n;i++t)
p[i] = q[i] + r[i];
}
illustrate how an unmodified object can be aliased through two restricted pointers. In partieusard
are disjoint arrays, a call of the foring100, a, b, b) has defined behavior, because ataig not

modified within functiorh.

11 EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a
function call and an equivalent nested block. With one exception, only “outer-to-inner” assignments
between restricted pointers declared in nested blocks have defined behavior.

{
int * restrict p1;
int * restrict q1;
pl=ql;// undefined behavior
{
int * restrict p2 = p1; // valid
int * restrict g2 = q1; // valid
pl =q2; 1 undefined behavior
p2 = g2; 1 undefined behavior
}
}

86.7.3.1 Language 111

12

ISO/IEC 9899:1999 (E) ©ISO/IEC

The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permitsew_vector to return avector

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)

{
vector t;
t.n=n;
t.v = malloc(n * sizeof (float));
return t;
}
6.7.4 Function specifiers
Syntax

function-specifier:
inline
Constraints
Function specifiers shall be used only in the declaration of an identifier for a function.

An inline definition of a function with external linkage shall not contain a definition of a
modifiable object with static storage duration, and shall not contain a reference to an
identifier with internal linkage.

In a hosted environment, thdine function specifier shall not appear in a declaration
of main .

Semantics

A function declared with amnline function specifier is annline function The
function specifier may appear more than once; the behavior is the same as if it appeared
only once. Making a function an inline function suggests that calls to the function be as
fast as possiblE'®® The extent to which such suggestions are effective is
implementation-definet?

Any function with internal linkage can be an inline function. For a function with external
linkage, the following restrictions apply: If a function is declared withirdime

118) By using, for example, an alternative to the usual function call mechanism, such as “inline
substitution”. Inline substitution is not textual substitution, nor does it create a new function.
Therefore, for example, the expansion of a macro used within the body of the function uses the
definition it had at the point the function body appears, and not where the function is called; and
identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a
single address, regardless of the number of inline definitions that occur in addition to the external
definition.

119) For example, an implementation might never perform inline substitution, or might only perform inline
substitutions to calls in the scope ofialine declaration.

112 Language 86.7.4

©ISO/IEC ISO/IEC 9899:1999 (E)

function specifier, then it shall also be defined in the same translation unit. If all of the
file scope declarations for a function in a translation unit includentime function
specifier withoutextern , then the definition in that translation unit is arine
definition An inline definition does not provide an external definition for the function,
and does not forbid an external definition in another translation unit. An inline definition
provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the
function uses the inline definition or the external definith.

EXAMPLE The declaration of an inline function with external linkage can result in either an external

definition, or a definition available for use only within the translation unit. A file scope declaration with
extern creates an external definition. The following example shows an entire translation unit.

inline double fahr(double t)

{
return (9.0 *t) / 5.0 + 32.0;
}
inline double cels(double t)
{
return (5.0 * (t - 32.0)) / 9.0;
}
extern double fahr(double); 1 creates an external definition
double convert(int is_fahr, double temp)
{
/* Atranslator may perform inline substitutiorng
return is_fahr ? cels(temp) : fahr(temp);
}

Note that the definition dahr is an external definition becaufsdnr is also declared withxtern , but

the definition ofcels is an inline definition. Becauseels has external linkage and is referenced, an
external definition has to appear in another translation unit (see 6.9); the inline definition and the external
definition are distinct and either may be used for the call.

Forward references: function definitions (6.9.1).

120) Since an inline definition is distinct from the corresponding external definition and from any other
corresponding inline definitions in other translation units, all corresponding objects with static storage
duration are also distinct in each of the definitions.

86.7.4 Language 113

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.5 Declarators
Syntax

declarator:
pointeryp; direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator] type-qualifier-lisgp; assignment-expressigi |
direct-declaratoq static type-qualifier-lisgpt assignment-expressign
direct-declaratorq type-qualifier-list static assignment-expressign
direct-declarator{ type-qualifier-lisgp; *]
direct-declarator(parameter-type-lis}
direct-declarator(identifier-listyp)

pointer:
* type-qualifier-lisgpt
* type-qualifier-lisgp; pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list, ...

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaraggy

identifier-list:
identifier
identifier-list , identifier
Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. The end of a full
declarator is a sequence point. If the nested sequence of declarators in a full declarator
114 Language 86.7.5

©ISO/IEC ISO/IEC 9899:1999 (E)

contains a variable length array type, the type specified by the full declarator is said to be
variably modified

In the following subclauses, consider a declaration
T D1

whereT contains the declaration specifiers that specify a Tyfsaich asnt) andD1 is
a declarator that contains an identifidéent The type specified for the identifielentin
the various forms of declarator is described inductively using this notation.

If, in the declaration T D1”, D1 has the form
identifier
then the type specified fatentis T.
If, in the declaration T D17, D1 has the form
(D)
then ident has the type specified by the declaratioh D’. Thus, a declarator in

parentheses is identical to the unparenthesized declarator, but the binding of complicated
declarators may be altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and
function declarators that modify an arithmetic, structure, union, or incomplete type, either
directly or via one or morgypedef s.

Forward references: array declarators (6.7.5.2), type definitions (6.7.7).

6.7.5.1 Pointer declarators
Semantics

If, in the declaration T D1”, D1 has the form
* type-qualifier-lisgpt D

and the type specified fadentin the declaration T D" is “ derived-declarator-type-list
T”, then the type specified foident is “derived-declarator-type-list type-qualifier-list
pointer toT”. For each type qualifier in the listjentis a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall
be pointers to compatible types.

EXAMPLE The following pair of declarations demonstrates the difference between a “variable pointer
to a constant value” and a “constant pointer to a variable value”.

const int *ptr_to_constant;
int *const constant_ptr;

The contents of any object pointed tofiity to_constant shall not be modified through that pointer,

86.7.5.1 Language 115

ISO/IEC 9899:1999 (E) ©ISO/IEC

but ptr_to_constant itself may be changed to point to another object. Similarly, the contents of the
int pointed to byconstant_ptr may be modified, butonstant_ptr itself shall always point to the
same location.

The declaration of the constant pointenstant_ptr may be clarified by including a definition for the
type “pointer toint ".

typedef int *int_ptr;
const int_ptr constant_ptr;

declaresonstant_ptr as an object that has type “const-qualified pointénto”.
6.7.5.2 Array declarators
Constraints

In addition to optional type qualifiers and the keywstatic , the[and] may delimit

an expression or. If they delimit an expression (which specifies the size of an array), the
expression shall have an integer type. If the expression is a constant expression, it shall
have a value greater than zero. The element type shall not be an incomplete or function
type. The optional type qualifiers and the keywstdtic shall appear only in a
declaration of a function parameter with an array type, and then only in the outermost
array type derivation.

Only an ordinary identifier (as defined in 6.2.3) with both block scope or function
prototype scope and no linkage shall have a variably modified type. If an identifier is
declared to be an object with static storage duration, it shall not have a variable length
array type.

Semantics
If, in the declaration T D1”, D1 has one of the forms:

D[type-qualifier-lisgpe assignment-expressigh |

D[static type-qualifier-lispt assignment-expressign
D[type-qualifier-list static assignment-expressign
D[type-qualifier-lisgpt *]

and the type specified fadentin the declaration T D’ is “ derived-declarator-type-list
T”, then the type specified foident is “ derived-declarator-type-lisarray of T”. 121
(See 6.7.5.3 for the meaning of the optional type qualifiers and the kegtatod)

If the size is not present, the array type is an incomplete type. If the $izesiead of

being an expression, the array type is a variable length array type of unspecified size,
which can only be used in declarations with function prototype s&8psuch arrays are
nonetheless complete types. If the size is an integer constant expression and the element

121) When several “array of” specifications are adjacent, a multidimensional array is declared.

122) Thus;* can be used only in function declarations that are not definitions (see 6.7.5.3).

116 Language 86.7.5.2

©ISO/IEC ISO/IEC 9899:1999 (E)

type has a known constant size, the array type is not a variable length array type;
otherwise, the array type is a variable length array type.

If the size is an expression that is not an integer constant expression: if it occurs in a
declaration at function prototype scope, it is treated as if it were replac¢edmtherwise,

each time it is evaluated it shall have a value greater than zero. The size of each instance
of a variable length array type does not change during its lifetime. Where a size
expression is part of the operand ofizeof operator and changing the value of the

size expression would not affect the result of the operator, it is unspecified whether or not
the size expression is evaluated.

For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a context
which requires them to be compatible, it is undefined behavior if the two size specifiers
evaluate to unequal values.

EXAMPLE 1

float fa[11], *afp[17];
declares an array éibat numbers and an array of pointerdlamt numbers.
EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

The first declareg to be a pointer tint ; the second declargsto be an array aht of unspecified size
(an incomplete type), the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;

extern int m;

void fcompat(void)

{
int a[n][6][mM];
int (*p)[4][n+1];
int c[n][n][6][mM];
int (*r)[n][n][n+1];

p = a /I invalid: not compatible becauge !'= 6
r=c I compatible, but defined behavior only if
/I'n== andm == n+1

86.7.5.2 Language 117

10

ISO/IEC 9899:1999 (E) ©ISO/IEC

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or
function prototype scope. Array objects declared with dfadic or extern storage-class specifier
cannot have a variable length array (VLA) type. However, an object declared wiltatite storage-

class specifier can have a VM type (that is, a pointer to a VLA type). Finally, all identifiers declared with a
VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

extern int n;
int A[n]; 1 invalid: file scope VLA
extern int (*p2)[n]; I invalid: file scope VM
int B[100]; i valid: file scope but not VM
void fvla(int m, int C[m][m]); 1 valid: VLA with prototype scope
void fvla(int m, int C[m][m]) 1 valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; 1 valid: block scope typedef VLA
struct tag {
int (*y)[n]; 1 invalid: y not ordinary identifier
int z[n]; 1 invalid: z not ordinary identifier
%
int D[m]; 1 valid: auto VLA
static int E[m]; I invalid: static block scope VLA
extern int F[m]; I invalid: F has linkage and is VLA
int (*s)[m]; 1 valid: auto pointer to VLA
extern int (*r)[m]; I invalid: r has linkage and points to VLA
static int (*q)[m] = &B; I valid: g is a static block pointer to VLA

}

Forward references: function declarators (6.7.5.3), function definitions (6.9.1),
initialization (6.7.8).

6.7.5.3 Function declarators (including prototypes)
Constraints

A function declarator shall not specify a return type that is a function type or an array
type.
The only storage-class specifier that shall occur in a parameter declareggister

An identifier list in a function declarator that is not part of a definition of that function
shall be empty.

After adjustment, the parameters in a parameter type list in a function declarator that is
part of a definition of that function shall not have incomplete type.

Semantics
If, in the declaration T D1”, D1 has the form

D(parameter-type-lis}
or
D(identifier-listpt)

118 Language 86.7.5.3

10

11

12

13

14

©ISO/IEC ISO/IEC 9899:1999 (E)

and the type specified fadentin the declaration T D’ is “ derived-declarator-type-list

T”, then the type specified fadentis “ derived-declarator-type-listunction returning

T"

A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function.

A declaration of a parameter as “arraytype’ shall be adjusted to “qualified pointer to

typ€, where the type qualifiers (if any) are those specified within[thend] of the

array type derivation. If the keywomstatic also appears within thie and] of the

array type derivation, then for each call to the function, the value of the corresponding
actual argument shall provide access to the first element of an array with at least as many
elements as specified by the size expression.

A declaration of a parameter as “function returnipge’ shall be adjusted to “pointer to
function returningyp€’, as in 6.3.2.1.

If the list terminates with an ellipsis.(.), no information about the number or types
of the parameters after the comma is suppiféd.

The special case of an unnamed parameter ofugjge as the only item in the list
specifies that the function has no parameters.

In a parameter declaration, a single typedef name in parentheses is taken to be an abstraci
declarator that specifies a function with a single parameter, not as redundant parentheses
around the identifier for a declarator.

If the function declarator is not part of a definition of that function, parameters may have
incomplete type and may use ffig notation in their sequences of declarator specifiers
to specify variable length array types.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty

list in a function declarator that is part of a definition of that function specifies that the

function has no parameters. The empty list in a function declarator that is not part of a
definition of that function specifies that no information about the number or types of the
parameters is suppliéd®

123) The macros defined in thestdarg.h> header (7.15) may be used to access arguments that
correspond to the ellipsis.

124) See “future language directions” (6.11.6).

86.7.5.3 Language 119

15

16

17

18

19

ISO/IEC 9899:1999 (E) ©ISO/IEC

For two function types to be compatible, both shall specify compatible returntppes.
Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)

EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a functioh with no parameters returning ant , a functionfip with no parameter specification
returning a pointer to ant , and a pointepfi to a function with no parameter specification returning an

int . It is especially useful to compare the last two. The bindintfipf) is *(fip()) , SO that the
declaration suggests, and the same construction in an expression requires, the calling of &ifunction

and then using indirection through the pointer result to yielthan In the declarato(*pfi)() , the

extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returristan

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functiarsdfip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointgafi has block scope and no linkage.

EXAMPLE 2 The declaration
int (*apfi[3])(int *x, int *y);

declares an arragpfi of three pointers to functions returnimgt . Each of these functions has two
parameters that are pointersiid . The identifiersx andy are declared for descriptive purposes only and
go out of scope at the end of the declaratioapdif .

EXAMPLE 3 The declaration
int (*fpfi(int (*)(long), int))(int, ...);

declares a functiofpfi that returns a pointer to a function returningratn . The functionfpfi has two
parameters: a pointer to a function returningnan (with one parameter of tygeng int), and arint .
The pointer returned bfpfi points to a function that has oivg parameter and accepts zero or more
additional arguments of any type.

125) If both function types are “old style”, parameter types are not compared.

120 Language 86.7.5.3

©ISO/IEC ISO/IEC 9899:1999 (E)

20 EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()

double b[4][308];
addscalar(4, 2, b, 2.17);
return O;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (inti=0;i<n;i+t)
for (intj =0, k = n*m+300; j < k; j++)
/l'a is a pointer to a VLA with*m+300 elements
afilfi] +=x;
}

21 EXAMPLES5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[]J[*]);
double maximum(int n, int m, double a[][m]);

as are:

void f(double (* restrict a)[5]);

void f(double a[restrict][5]);

void f(double a[restrict 3][5]);

void f(double a[restrict static 3][5]);

(Note that the last declaration also specifies that the argument corresporalingatty call tof must be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.6).

86.7.5.3 Language 121

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.6 Type names
Syntax

type-name:
specifier-qualifier-list abstract-declaratgy

abstract-declarator:
pointer
pointeryp; direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratfy; [assignment-expressigg |
direct-abstract-declaratqyp; [*]
direct-abstract-declaratqfiy; (parameter-type-ligh)

Semantics
In several contexts, it is hecessary to specify a type. This is accomplished tigieg a

name which is syntactically a declaration for a function or an object of that type that
omits the identifiet2®)

EXAMPLE The constructions

(a) int
(b) int *
(©) int *[3]

(d) int (*)[3]
(e) int (*)[*]

V) int *()
(9) int (*)(void)
(h) int (*const [])(unsigned int, ...)

name respectively the types (@) , (b) pointer tant , (c) array of three pointers ot , (d) pointer to an

array of threent s, (e) pointer to a variable length array of an unspecified number o, (f) function

with no parameter specification returning a pointeinto, (g) pointer to function with no parameters
returning anint , and (h) array of an unspecified number of constant pointers to functions, each with one
parameter that has typeisigned int and an unspecified number of other parameters, returning an
int .

126) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no
parameter specification”, rather than redundant parentheses around the omitted identifier.

122 Language 86.7.6

©ISO/IEC ISO/IEC 9899:1999 (E)

6.7.7 Type definitions
Syntax

typedef-name:
identifier
Constraints
If a typedef name specifies a variably modified type then it shall have block scope.
Semantics

In a declaration whose storage-class specifi¢ypedef , each declarator defines an
identifier to be a typedef name that denotes the type specified for the identifier in the way
described in 6.7.5. Any array size expressions associated with variable length array
declarators are evaluated each time the declaration of the typedef name is reached in the
order of execution. Aypedef declaration does not introduce a new type, only a
synonym for the type so specified. That is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident Is defined as a typedef name with the type specified by the declaration
specifiers inT (known asT), and the identifier iD has the type derived-declarator-
type-list T" where thederived-declarator-type-ligs specified by the declarators@f A

typedef name shares the same name space as other identifiers declared in ordinary
declarators.

EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP *metricp;
range X;

range z, *zp;

are all valid declarations. The typeditance isint ,that ofmetricp is “pointer to function with no
parameter specification returniingg ", and that ofx andz is the specified structuregp is a pointer to
such a structure. The objadistance has a type compatible with any othetr object.

EXAMPLE 2 After the declarations

typedef struct sl {int x; } t1, *tp1;
typedef struct s2 { int x; } t2, *tp2;

typetl and the type pointed to dpl are compatible. Typé&l is also compatible with typstruct
s1, but not compatible with the typstruct s2 2 , the type pointed to bip2 , orint .

86.7.7 Language 123

ISO/IEC 9899:1999 (E) ©ISO/IEC

EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;
h
declare a typedef nantewith typesigned int , a typedef namelain with typeint , and a structure

with three bit-field members, one namedhat contains values in the range [0, 15], an unnamed const-
qualified bit-field which (if it could be accessed) would contain values in either the range [-15, +15] or
[-16, +15], and one namadthat contains values in one of the ranges [0, 31], [-15, +15], or [-16, +15].
(The choice of range is implementation-defined.) The first two bit-field declarations differ in that
unsigned is a type specifier (which forcésto be the name of a structure member), wbdaest is a

type qualifier (which modifies which is still visible as a typedef name). If these declarations are followed
in an inner scope by

tf(t (1))
long t;

then a functiorf is declared with type “function returningjgned int with one unnamed parameter
with type pointer to function returningigned int with one unnamed parameter with tygigned
int ", and an identifiett with typelong int

EXAMPLE 4 On the other hand, typedef names can be used tovexwde readability. All three of the
following declarations of theignal function specify exactly the same type, the first without making use
of any typedef names.

typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*)(int)))(int);

fv *signal(int, fv *);

pfv signal(int, pfv);
EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the
time the typedef name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; /B is n ints,n evaluated now
n += 1;
B a; /Il a isnints,n without+=1
int b[n]; Ila andb are different sizes
for (inti=1;i<n;i++)

a[i-1] = b[iJ;
}

124 Language 86.7.7

©ISO/IEC ISO/IEC 9899:1999 (E)

6.7.8 Initialization

Syntax
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
designatiogp; initializer
initializer-list , designatiogp; initializer
designation:

designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression
identifier

Constraints

No initializer shall attempt to provide a value for an object not contained within the entity
being initialized.

The type of the entity to be initialized shall be an array of unknown size or an object type
that is not a variable length array type.

All the expressions in an initializer for an object that has static storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression

then the current object (defined below) shall have array type and the expression shall be
an integer constant expression. If the array is of unknown size, any nonnegative value is
valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the
identifier shall be the name of a member of that type.
86.7.8 Language 125

10

11

12

13

14

15

16

17

ISO/IEC 9899:1999 (E) ©ISO/IEC

Semantics
An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static storage duration is not initialized explicitly,
then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;
— ifitis an aggregate, every member is initialized (recursively) according to these rules;

— if it is a union, the first named member is initialized (recursively) according to these
rules.

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression (after conversion); the same type
constraints and conversions as for simple assignment apply, taking the type of the scalar
to be the unqualified version of its declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union
type.

The initializer for a structure or union object that has automatic storage duration shall be
either an initializer list as described below, or a single expression that has compatible
structure or union type. In the latter case, the initial value of the object, including
unnamed members, is that of the expression.

An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

An array with element type compatible witlchar t may be initialized by a wide
string literal, optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of
unknown size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-
enclosed list of initializers for the elements or named members.

Each brace-enclosed initializer list has an associatagent object When no
designations are present, subobjects of the current object are initialized in order according
to the type of the current object: array elements in increasing subscript order, structure

126 Language 86.7.8

18

19

20

21

22

©ISO/IEC ISO/IEC 9899:1999 (E)

members in declaration order, and the first named member of a'dflidn. contrast, a
designation causes the following initializer to begin initialization of the subobject
described by the designator. Initialization then continues forward in order, beginning
with the next subobject after that described by the desigtt&tor.

Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that memB&? The current object that results at the end of the
designator list is the subobject to be initialized by the following initializer.

The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previously listed initializer for the same subobject; all
subobjects that are not initialized explicitly shall be initialized implicitly the same as
objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions,
these rules apply recursively to the subaggregates or contained unions. If the initializer of
a subaggregate or contained union begins with a left brace, the initializers enclosed by
that brace and its matching right brace initialize the elements or members of the
subaggregate or the contained union. Otherwise, only enough initializers from the list are
taken to account for the elements or members of the subaggregate or the first member of
the contained union; any remaining initializers are left to initialize the next element or
member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members
of an aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. At the end of its initializer list, the array no longer
has incomplete type.

127) If the initializer list for a subaggregate or contained union does not begin with a left brace, its
subobjects are initialized as usual, but the subaggregate or contained union does not become the
current object: current objects are associated only with brace-enclosed initializer lists.

128) After a union member is initialized, the next object is not the next member of the union; instead, it is
the next subobject of an object containing the union.

129) Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with
the surrounding brace pair. Note, too, that each separate designator list is independent.

86.7.8 Language 127

23

24

25

26

27

28

ISO/IEC 9899:1999 (E) ©ISO/IEC

The order in which any side effects occur among the initialization list expressions is
unspecified-3?

EXAMPLE 1 Provided thakcomplex.h> has bee#finclude d, the declarations

inti=3.5;
complexc=5+3*1;

define and initializé with the value 3 and with the valuéb. 0+i3. Q
EXAMPLE 2 The declaration
intx={1,3,5})

defines and initializes as a one-dimensional array object that has three elements, as no size was specified
and there are three initializers.

EXAMPLE 3 The declaration
int y[4][3] = {

{1 3, 5}
{2 46}
{385 7}

%
is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row @he array object
y[0]), namelyy[0][0] , y[O][1] , andy[0][2] . Likewise the next two lines initializg[1] and
y[2] . The initializer ends early, sg3] is initialized with zeros. Precisely the same effect could have
been achieved by

int y[4][3] = {
1,3,5,2,4,6,3,5,7
h

The initializer fory[0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are taken successivelyyd] andy[2] .

EXAMPLE 4 The declaration

int z[4][3] = {
\ {1rh{2}) {3} {4}

initializes the first column of as specified and initializes the rest with zeros.
EXAMPLE 5 The declaration
struct {inta[3], b; }wl] ={{1}, 2}

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structuresw[0].a[0] is 1 andw[1].a]0] is 2; all the other elements are zero.

130) In particular, the evaluation order need not be the same as the order of subobject initialization.

128 Language 86.7.8

29

30

31

©ISO/IEC ISO/IEC 9899:1999 (E)

EXAMPLE 6 The declaration
short q[4][3][2] = {
{1}
{2 3}
{ 4,5 6}
%
contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array
object: g[0][0][0] is 1, q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize

a[2][0][0] , q[2][0][1] , andq[2][1][0] , respectively; all the rest are zero. The initializer for
g[0][0] does not begin with a left brace, so up to six items from the current list may be used. There is
only one, so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for q[1][0] andq[2][0] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of the lists, a
diagnostic message would have been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {

1,0,0,0,0,0,
2,3,0,0,0,0,
4,5,6
3
or by:
short q[4][3][2] = {
{
{1}
h
{
{2 3}
h
{
{4 5}
{61}
}

h
in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to
cause confusion.

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[]; // OK - declared with block scope
the declaration

Aa={12}b={3 45}
is identical to

intal] ={1,2},b[1={3,4,5}

due to the rules for incomplete types.

86.7.8 Language 129

32

33

34

35

36

37

38

ISO/IEC 9899:1999 (E) ©ISO/IEC

EXAMPLE 8 The declaration
char s[] = "abc", {[3] = "abc";

defines “plain” char array objects andt whose elements are initialized with character string literals.
This declaration is identical to

chars[]={'a’,'b', 'c’, "\0'},
tu - { IaI, Ibl' |CI };
The contents of the arrays are modifiable. On the other hand, the declaration
char *p = "abc";

definesp with type “pointer tochar ” and initializes it to point to an object with type “array dfiar ”
with length 4 whose elements are initialized with a character string literal. If an attempt is made to use
modify the contents of the array, the behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member_one, member_two };
const char *nm[] = {
[member_two] = "member two",
[member_one] = "member one",

h
EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:
div_tanswer ={.quot=2, .rem=-1};

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists
might be misunderstood:

struct { int a[3], b; } w[] =
{ [0l.a={1}, [1].a[0] =2 };

EXAMPLE 12 Space can be “allocated” from both ends of an array by using a single designator:

int alMAX] = {
1,3,5,7,9 [MAX-5]=8,6,4,2,0
h
In the above, iMAXis greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 13 Any member of a union can be initialized:
union { /* .. *}Yu={.any_member =42},

Forward references: common definitionsstddef.h> (7.17).

130 Language 86.7.8

©ISO/IEC ISO/IEC 9899:1999 (E)

6.8 Statements and blocks
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statementspecifies an action to be performed. Except as indicated, statements are
executed in sequence.

A block allows a set of declarations and statements to be grouped into one syntactic unit.
The initializers of objects that have automatic storage duration, and the variable length
array declarators of ordinary identifiers with block scope, are evaluated and the values are
stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a
statement, and within each declaration in the order that declarators appear.

A full expressioris an expression that is not part of another expression or of a declarator.
Each of the following is a full expression: an initializer; the expression in an expression
statement; the controlling expression of a selection statenifeni(switch); the
controlling expression of @hile or do statement; each of the (optional) expressions of
afor statement; the (optional) expression imeturn statement. The end of a full
expression is a sequence point.

Forward references: expression and null statements (6.8.3), selection statements
(6.8.4), iteration statements (6.8.5), teurn statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

Constraints

A case or default label shall appear only in awitch statement. Further
constraints on such labels are discussed undemtibeh statement.

§6.8.1 Language 131

ISO/IEC 9899:1999 (E) ©ISO/IEC

Label names shall be unique within a function.
Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

Forward references: thegoto statement (6.8.6.1), tlssvitch statement (6.8.4.2).
6.8.2 Compound statement
Syntax

compound-statement:
{ block-item-lisgp; }

block-item-list;
block-item
block-item-list block-item

block-item:
declaration
statement
Semantics

A compound statemerg a block.

6.8.3 Expression and null statements
Syntax
expression-statement:
expressiogpt ;
Semantics

The expression in an expression statement is evaluated as a void expression for its side

effects3d)

A null statemen{consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void expression by means of
a cast:

int p(int);
%
(void)p(0);

131) Such as assignments, and function calls which have side effects.

132 Language 86.8.3

©ISO/IEC ISO/IEC 9899:1999 (E)

EXAMPLE 2 In the program fragment

char *s;
|
while (*s++ 1="0")

a null statement is used to supply an empty loop body to the iteration statement.

EXAMPLE 3 A null statement may also be used to carry a label just before the dlosfraycompound
statement.

while (loopl) {

*
while (loop2) {
L

if (want_out)
goto end_loop1;
ro*
}
ro*
end_loopl:;

}
Forward references: iteration statements (6.8.5).
6.8.4 Selection statements
Syntax

selection-statement:
if (expression) statement
if (expression) statementelse statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

A selection statement is a block whose scope is a strict subset of the scope of its
enclosing block. Each associated substatement is also a block whose scope is a strict
subset of the scope of the selection statement.

6.8.4.1 Thef statement

Constraints

The controlling expression of @ statement shall have scalar type.
Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0.
In theelse form, the second substatement is executed if the expression compares equal

86.8.4.1 Language 133

ISO/IEC 9899:1999 (E) ©ISO/IEC

to 0. If the first substatement is reached via a label, the second substatement is not
executed.

An else is associated with the lexically nearest precedingthat is allowed by the
syntax.

6.8.4.2 Theswitch statement
Constraints

The controlling expression ofsavitch statement shall have integer type.

If aswitch statement has an associatede ordefault label within the scope of an
identifier with a variably modified type, the entawitch statement shall be within the
scope of that identifiér?)

The expression of eadase label shall be an integer constant expression and no two of
thecase constant expressions in the sasmgtch statement shall have the same value
after conversion. There may be at most degault label in aswitch statement.
(Any enclosedswitch statement may have default label or case constant
expressions with values that duplicatase constant expressions in the enclosing
switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the
switch body depending on the value of a controlling expression, and on the presence of a
default label and the values of acgse labels on or in the switch body. @ase or

default label is accessible only within the closest enclosingch statement.

The integer promotions are performed on the controlling expression. The constant
expression in eaclbase label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matcbase label. Otherwise, if there is
adefault label, control jumps to the labeled statement. If no convedsd constant
expression matches and there is dedault label, no part of the switch body is
executed.

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the numbeaisegf values in a
switch statement.

132) That is, the declaration either precedes sivéich statement, or it follows the lastase or
default label associated with thevitch that is in the block containing the declaration.

134 Language 86.8.4.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7 EXAMPLE In the artificial program fragment

switch (expr)
{
inti=4;
f(i);
case 0:
i = 17,
/* falls through intodefault code */
default:
printf("%d\n", i);
}

the object whose identifier is exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the callpinthe function will
access an indeterminate value. Similarly, the call to the funtct@amnot be reached.

6.8.5 lteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statementwhile (expression) ;
for (expressiopn: ; expressiogp ; expressiogn:) statement
for (declaration expressiqp: ; expressiogy;) Statement

Constraints
The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of far statement shall only declare identifiers for objects having
storage clasauto orregister

Semantics

4 An iteration statement causes a statement callelddpebodyto be executed repeatedly
until the controlling expression compares equal to 0.

5 An iteration statement is a block whose scope is a strict subset of the scope of its
enclosing block. The loop body is also a block whose scope is a strict subset of the scope
of the iteration statement.

86.8.5 Language 135

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.8.5.1 Thewhile statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

6.8.5.2 Thedo statement

The evaluation of the controlling expression takes place after each execution of the loop
body.

6.8.5.3 Thefor statement
The statement
for (clause-1; expression-2; expression-3) statement

behaves as follows: The expressiexpression-2s the controlling expression that is
evaluated before each execution of the loop body. The expresgmmrssion-3is
evaluated as a void expression after each execution of the loop bodgudé-lis a
declaration, the scope of any variables it declares is the remainder of the declaration and
the entire loop, including the other two expressions; it is reached in the order of execution
before the first evaluation of the controlling expressiortldfise-1lis an expression, it is
evaluated as a void expression before the first evaluation of the controlling expté8sion.

Both clause-landexpression-Zan be omitted. An omitteekpression-2s replaced by a
nonzero constant.

6.8.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressioppt ;

Semantics

A jump statement causes an unconditional jump to another place.

133) Thusclause-1specifies initialization for the loop, possibly declaring one or more variables for use in
the loop; the controlling expressiosxpression-2specifies an evaluation made before each iteration,
such that execution of the loop continues until the expression compares equal t@Xprassion-3
specifies an operation (such as incrementing) that is performed after each iteration.

136 Language 86.8.6

©ISO/IEC ISO/IEC 9899:1999 (E)

6.8.6.1 Thegoto statement
Constraints

The identifier in goto statement shall name a label located somewhere in the enclosing
function. Agoto statement shall not jump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

EXAMPLE 1 Itis sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by
continue statements, for example.)
* o
goto first_time;
for (;;) {
/I determine next operation
A
if (need to reinitializi {
/I reinitialize-only code

A
first_time:
/I general initialization code
L
continue;
}
/I handle other operations
L

86.8.6.1 Language 137

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

goto lab3; 1 invalid: going INTO scope of VLA
{
double a[n];
afj] = 4.4,
lab3:
afj] = 3.3;
goto lab4; 1 valid: going WITHIN scope of VLA
afj] =5.5;
lab4:
afj] = 6.6;
}
goto lab4; 1 invalid: going INTO scope of VLA

6.8.6.2 Thecontinue statement
Constraints

1 Acontinue statement shall appear only in or as a loop body.
Semantics

2 A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* YR do { for (/*)R
[[* ...
continue; continue; continue;
A * * * ..

contin: ; contin: ; contin: ;

} } while (/* D) }

unless thecontinue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalegoto contin; .*3%

6.8.6.3 Thebreak statement
Constraints

1 Abreak statement shall appear only in or as a switch body or loop body.
Semantics

2 A break statement terminates execution of the smallest enclgsiiigh or iteration
statement.

134) Following thecontin: label is a null statement.

138 Language 86.8.6.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.8.6.4 Thereturn statement
Constraints

Areturn statement with an expression shall not appear in a function whose return type
is void . A return statement without an expression shall only appear in a function
whose return type igoid .

Semantics

A return statement terminates execution of the current function and returns control to
its caller. A function may have any numberefurn statements.

If areturn statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the furiction.

EXAMPLE In:
struct s { double i; } f(void);

union {
struct {
int f1;
struct s f2;
}ul;
struct {
struct s f3;
int f4;
} uz;
} o
struct s f(void)
{
return g.ul.f2;
}
A
g.u2.f3 =1();

there is no undefined behavior, although there would be if the assignment were done directly (without using
a function call to fetch the value).

135) Thereturn statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not
apply to the case of function return.

86.8.6.4 Language 139

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.9 External definitions
Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

The storage-class specifiaagto and register shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with
internal linkage in a translation unit. Moreover, if an identifier declared with internal
linkage is used in an expression (other than as a part of the operansizaof

operator whose result is an integer constant), there shall be exactly one external definition
for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as “external”
because they appear outside any function (and hence have file scope). As discussed in
6.7, a declaration that also causes storage to be reserved for an object or a function named
by the identifier is a definition.

An external definitionis an external declaration that is also a definition of a function
(other than an inline definition) or an object. If an identifier declared with external
linkage is used in an expression (other than as part of the operastzedfa operator

whose result is an integer constant), somewhere in the entire program there shall be
exactly) one external definition for the identifier; otherwise, there shall be no more than
onel3®

136) Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

140 Language 86.9

©ISO/IEC ISO/IEC 9899:1999 (E)

6.9.1 Function definitions
Syntax

function-definition:
declaration-specifiers declarator declaration-jjst compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints

The identifier declared in a function definition (which is the name of the function) shall
have a function type, as specified by the declarator portion of the function defifition.

The return type of a function shall beid or an object type other than array type.

The storage-class specifier, if any, in the declaration specifiers shall beegirer or
static

If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier, except for the special case of a parameter list consisting of a single
parameter of typgoid , in which case there shall not be an identifier. No declaration list
shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier otherréuaster and no
initializations.

137) The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); I typeF is “function with no parameters
I returningint "

F f, g; Il f andg both have type compatible with

Ff{r ..*} I WRONG: syntax/constraint error

FagO{r . ¥} I WRONG: declares thaf returns a function

int f(void) { /* . ¥} I RIGHT:f has type compatible with

intg() { /* . ¥} I RIGHT: g has type compatible with

F *e(void) { /* . ¥} Ile returns a pointer to a function

F *((e))(void) { /* . ¥} I same: parentheses irrelevant

int (*fp)(void); I fp points to a function that has type

F *Fp; /I Fp points to a function that has type

§6.9.1 Language 141

10

11

12

13

ISO/IEC 9899:1999 (E) ©ISO/IEC

Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier IfS® the types of the parameters shall be declared in a
following declaration list. In either case, the type of each parameter is adjusted as
described in 6.7.5.3 for a parameter type list; the resulting type shall be an object type.

If a function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration. Its identifier is an Ivalue, which is in

effect declared at the head of the compound statement that constitutes the function body
(and therefore cannot be redeclared in the function body except in an enclosed block).
The layout of the storage for parameters is unspecified.

On entry to the function, the size expressions of each variably modified parameter are
evaluated and the value of each argument expression is converted to the type of the
corresponding parameter as if by assignment. (Array expressions and function
designators as arguments were converted to pointers before the call.)

After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

If the} that terminates a function is reached, and the value of the function call is used by
the caller, the behavior is undefined.
EXAMPLE 1 In the following:

extern int max(int a, int b)

{
}

extern is the storage-class specifier aimd is the type specifiermax(int a, intb) is the
function declarator; and

returna>b?a:b;

{ retutna>b?a:b;}

is the function body. The following similar definition uses the identifier-list form for the parameter
declarations:

138) See “future language directions” (6.11.7).

142 Language 86.9.1

14

©ISO/IEC ISO/IEC 9899:1999 (E)

extern int max(a, b)
int a, b;

{
}

Hereint a, b; is the declaration list for the parameters. The difference between these two definitions is
that the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form does not.

returna>b ?a:b;

EXAMPLE 2 To pass one function to another, one might say

int f(void);
*
a(h);

Then the definition of might read
void g(int (*funcp)(void))
{
o
(*funcp)() * or funcp() e ¥

or, equivalently,

void g(int func(void))

{
L
func() /* or (*func)() e ¥
}
6.9.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class spetatier , constitutes a
tentative definitionlf a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then
the behavior is exactly as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation unit, with an initializer
equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

86.9.2 Language 143

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 EXAMPLE 1

intil=1; /1 definition, external linkage

staticintiz=2; // definition, internal linkage

externinti3=3; // definition, external linkage

int i4; i tentative definition, external linkage

static int i5; I tentative definition, internal linkage

intil; 1 valid tentative definition, refers to previous
inti2; 1 6.2.2 renders undefined, linkage disagreement
inti3; 1 valid tentative definition, refers to previous

int i4; 1 valid tentative definition, refers to previous

int i5; 1 6.2.2 renders undefined, linkage disagreement
extern int il; 1 refers to previous, whose linkage is external
extern int i2; 1 refers to previous, whose linkage is internal
extern int i3; 1 refers to previous, whose linkage is external
extern int i4; 1 refers to previous, whose linkage is external
extern int i5; 1 refers to previous, whose linkage is internal

5 EXAMPLE 2 If atthe end of the translation unit containing
int if];
the arrayi still has incomplete type, the implicit initializer causes it to have one element, which is set to
zero on program startup.

144 Language 86.9.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10 Preprocessing directives
Syntax

preprocessing-file:
groupypt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupgp; else-grougy: endif-line

if-group:
if constant-expression new-line grep
ifdef identifier new-line grough
ifndef identifier new-line groug

elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line gregp
else-group:
else new-line grouppt
endif-line:

endif new-line

86.10 Language 145

ISO/IEC 9899:1999 (E) ©ISO/IEC

control-line:
include pp-tokens new-line
define identifier replacement-list new-line

define identifier Iparen identifier-ligfy)
replacement-list new-line

define identifier Iparen ...) replacement-list new-line

define identifier Iparen identifier-list, ...)
replacement-list new-line

undef identifier new-line

line pp-tokens new-line

error pp-tokengp; new-line

pragma pp-tokengp; new-line

new-line

text-line:
pp-tokengpt new-line

non-directive:
pp-tokens new-line

Iparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokengpt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins with
a# preprocessing token that (at the start of translation phase 4) is either the first character
in the source file (optionally after white space containing no new-line characters) or that
follows white space containing at least one new-line character, and is ended by the next
new-line character®® A new-line character ends the preprocessing directive even if it
occurs within what would otherwise be an invocation of a function-like macro.

139) Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

146 Language §6.10

©ISO/IEC ISO/IEC 9899:1999 (E)

A text line shall not begin with # preprocessing token. A non-directive shall not begin
with any of the directive names appearing in the syntax.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any
sequence of preprocessing tokens to occur between the directive name and the following
new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducingreprocessing token through

just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in
translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are ped@dcessing
because conceptually they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.
EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second tioeaipreprocessing directive, because it does not
begin with a# at the start of translation phase 4, even though it will do so after the EE&dYhas been
replaced.

6.10.1 Conditional inclusion
Constraints

The expression that controls conditional inclusion shall be an integer constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to
keywords) are interpreted as described bétWand it may contain unary operator
expressions of the form

defined identifier
or
defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is

140) Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

86.10.1 Language 147

ISO/IEC 9899:1999 (E) ©ISO/IEC

predefined or if it has been the subject ¢idafine preprocessing directive without an
intervening#undef directive with the same subject identifier), O if it is not.

Semantics
Preprocessing directives of the forms

if constant-expression new-line greyp
elif constant-expression new-line greup

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defined unary operator), just as in normal text. If the toldefined is
generated as a result of this replacement process or used#fitned unary operator

does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion andefireed unary
operator have been performed, all remaining identifiers are replaced with the pp-number
0, and then each preprocessing token is converted into a token. The resulting tokens
compose the controlling constant expression which is evaluated according to the rules of
6.6, except that all signed integer types and all unsigned integer types act as if they have
the same representation as, respectively, the ipgpmax_ t anduintmax_t defined

in the headekstdint.h> . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical
character constant occurs in an expression (other than within ar #elif directive)

is implementation-definetf?) Also, whether a single-character character constant may
have a negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groug
ifndef identifier new-line grougy

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent t#ifdefined identifier and #if/defined identifier
respectively.

141) Thus, the constant expression in the follow#ifg directive andif statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z - 'a' == 25
if (' - 'a' == 25)

148 Language 86.10.1

©ISO/IEC ISO/IEC 9899:1999 (E)

Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and thetelsea directive, the

group controlled by théelse is processed; lacking #else directive, all the groups

until the#endif are skipped*?

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.18.1.5).

6.10.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics
A preprocessing directive of the form
include < h-char-sequence new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between<tand> delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

A preprocessing directive of the form
include" g-char-sequence new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between"thgelimiters. The named source file is searched

for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

include < h-char-sequence new-line

with the identical contained sequence (includingharacters, if any) from the original
directive.

142) As indicated by the syntax, a preprocessing token shall not foligsisa or #endif directive
before the terminating new-line character. However, comments may appear anywhere in a source file,
including within a preprocessing directive.

86.10.2 Language 149

ISO/IEC 9899:1999 (E) ©ISO/IEC

A preprocessing directive of the form
include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afterinclude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous form&*® The method by which a sequence of preprocessing tokens
between & and a> preprocessing token pair or a pair'otharacters is combined into a
single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or
more letters or digits (as defined in 5.2.1) followed by a perigcad a single letter.

The first character shall be a letter. The implementation may ignore the distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

A #include preprocessing directive may appear in a source file that has been read
because of &include directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses#ificlude preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

EXAMPLE 2 This illustrates macro-replacédhclude directives:

#if VERSION ==

#define INCFILE ‘"versl.h"
#elif VERSION ==

#define INCFILE ‘"vers2.h" /I and so on
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

143) Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

150 Language 86.10.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another
#define preprocessing directive unless the second definition is an object-like macro
definition and the two replacement lists are identical. Likewise, an identifier currently
defined as a function-like macro shall not be redefined by ancthefine
preprocessing directive unless the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are
identical.

There shall be white-space between the identifier and the replacement list in the definition
of an object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments (including those arguments consisting of no preprocessing tokens) in an
invocation of a function-like macro shall equal the number of parameters in the macro
definition. Otherwise, there shall be more arguments in the invocation than there are
parameters in the macro definition (excluding the). There shall exist @
preprocessing token that terminates the invocation.

The identifier VA _ARGS__ shall occur only in the replacement-list of a function-like
macro that uses the ellipsis notation in the arguments.

A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

The identifier immediately following th#efine is called themacro nameThere is one

name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

If a# preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

§6.10.3 Language 151

10

11

12

ISO/IEC 9899:1999 (E) ©ISO/IEC

defines arobject-like macrathat causes each subsequent instance of the macrd“fame
to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive.

A preprocessing directive of the form

define identifier Iparen identifier-ligfy;) replacement-list new-line
define identifier Iparen...) replacement-list new-line
define identifier Iparen identifier-list, ...) replacement-list new-line

defines dunction-like macrowvith arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminatekiédime
preprocessing directive. Each subsequent instance of the function-like macro name
followed by a(as the next preprocessing token introduces the sequence of preprocessing
tokens that is replaced by the replacement list in the definition (an invocation of the
macro). The replaced sequence of preprocessing tokens is terminated by the matching
preprocessing token, skipping intervening matched pairs of left and right parenthesis
preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space
character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within

the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives, the behavior is undefined.

If there is a.. in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:
the variable argumentsThe number of arguments so combined is such that, following
merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the..).

144) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they
are never scanned for macro names or parameters.

152 Language 86.10.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a# or ## preprocessing token or followed by## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

An identifier VA _ARGS __ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3.2 The# operator
Constraints

Each# preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded#opraprocessing

token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants:character is inserted before edch

and\ character of a character constant or string literal (including the deliniting
characters), except that it is implementation-defined whetherclaracter is inserted
before the\ character beginning a universal character name. If the replacement that
results is not a valid character string literal, the behavior is undefined. The character
string literal corresponding to an empty argumefit isThe order of evaluation &f and

operators is unspecified.

86.10.3.2 Language 153

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.10.3.3 The## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocessing tokens, the parameter is replaced fdgca@markerpreprocessing token
instead-*°)

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instanegtgéraprocessing token

in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non-placemarker preprocessing token results in the non-placemarker preprocessing token.
If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluatiBh aperators

is unspecified.

EXAMPLE In the following fragment:

#define hash_hash # ## #

#define mkstr(a) # a

#define in_between(a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
I/l char p[] = "x ## y";

The expansion produces, at various stages:
join(x, y)
in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## y)
"X ## y"

In other words, expandingash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not thé# operator.

145) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

154 Language §6.10.3.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substitutedt aamtt ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the
resulting preprocessing token sequence is rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file's preprocessing tokens), it is not replaced.
Furthermore, if any nested replacements encounter the name of the macro being replaced,
it is not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a correspo#dnuef
directive is encountered or (if none is encountered) until the end of the preprocessing
translation unit. Macro definitions have no significance after translation phase 4.

A preprocessing directive of the form
undef identifier new-line
causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.
EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in
#define TABSIZE 100
int table[TABSIZE];

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.

It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its
arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

86.10.3.5 Language 155

ISO/IEC 9899:1999 (E) ©ISO/IEC

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x

#define x 2
#define g f
#define z z[0]
#define h a(~
#define m(a) a(w)
#define w 0,1

#define t(a) a
#define p() int
#define q(x) X
#define r(x,y) x ##y
#define str(x) # x

f(y+1) + (f(z)) % t(t(9)(0) + t)(2);
g(x+(3,4)-w) | h5) &m

(H*m(m);
PO i[a0] = { a(1), r(2,3), r(4.), r(,5), r(.) };
char c[2][6] = { str(hello), str() };

results in

f(2* (y+1)) + (2 * (2 * (z[0])))) % (2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))"m(0,1);
inti={1,23,4,5, }

char c[2][6] = { "hello", ™ };

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the

sequence
#define str(s) #s
#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= %d, X" #t "= %s", \
X ## s, X ## 1)

#define INCFILE(n) vers ##n

#define glue(a,b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"

#define LOW LOW ", world"

debug(1, 2);

fputs(str(strncmp("abc\0d", "abc", \4") // this goes away

== 0) str(: @\n), S);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

156 Language 86.10.3.5

©ISO/IEC ISO/IEC 9899:1999 (E)

printf(llxn ||1|| n— %d, Xn ||2|| "n— %S”, Xl, X2),

fputs(

"strncmp(\"abc\\0d\", \"abc\", \\4") == 0" ": @\n",

s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"
or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", X1, X2);

fputs(
"strncmp(\"abc\\0d\", \"abc\", \\4") == 0: @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around théand## tokens in the macro definition is optional.
EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = {t(1,2,3), t(,4,5), 1(6,,7), 1(8,9,),
t(10,,), t(,11,), t(,,12), t(,,) };

results in
int j[] ={ 123, 45, 67, 89,
10,11,12, ¥
EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.
#define OBJ_LIKE (1-1)
#define OBJ_LIKE [* white space*/ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white spacé/ \
a /* other stuff on this line
*/)
But the following redefinitions are invalid:
#define OBJ_LIKE 0) 1 different token sequence
#define OBJ_LIKE @a-nu different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) /I different parameter spelling
EXAMPLE 7 Finally, to show the variable argument list macro facilities:
#define debug(...) fprintf(stderr, _ VA _ARGS_)
#define showlist(...) puts(#_ _VA _ARGS)

#define report(test, ...) ((test)?puts(#test):\
printf(C. ~ _VA_ARGS_))

debug("Flag");

debug("X = %d\n", x);

showlist(The first, second, and third items.);

report(x>y, "x is %d but y is %d", X, y);

86.10.3.5 Language 157

ISO/IEC 9899:1999 (E) ©ISO/IEC

results in

fprintf(stderr, "Flag");

fprintf(stderr, "X = %d\n", x);

puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", X, Y));
6.10.4 Line control
Constraints
The string literal of #&line directive, if present, shall be a character string literal.
Semantics

Theline numberof the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

A preprocessing directive of the form
line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than
2147483647.

A preprocessing directive of the form
line digit-sequence” s-char-sequengg;’ new-line
sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.
A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afteline on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

158 Language 86.10.4

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.5 Error directive

Semantics

A preprocessing directive of the form
error pp-tokengpt new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragma directive

Semantics

A preprocessing directive of the form
pragma pp-tokengp; new-line

where the preprocessing tok&TDC does not immediately followpragma in the
directive (prior to any macro replaceméfi®) causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation to fail or cause the
translator or the resulting program to behave in a non-conforming manner. Any such
pragma that is not recognized by the implementation is ignored.

If the preprocessing toke3TDCdoes immediately follovpragma in the directive (prior

to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following folfffd whose meanings are described
elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch one of
ON OFF DEFAULT

Forward references: the FP_CONTRACPragma (7.12.2), thEENV_ACCES$®ragma
(7.6.1), theCX_LIMITED_RANGEpragma (7.3.4).

146) An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (Wh&EDCimmediately followspragma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.

147) See “future language directions” (6.11.8).

86.10.6 Language 159

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.10.7 Null directive
Semantics
A preprocessing directive of the form
new-line
has no effect.
6.10.8 Predefined macro names
The following macro namé&¥) shall be defined by the implementation:

__DATE__ The date of translation of the preprocessing translation unit: a character
string literal of the form"Mmm dd yyyy" , where the names of the
months are the same as those generated astiiene function, and the
first character ofld is a space character if the value is less than 10. If the
date of translation is not available, an implementation-defined valid date
shall be supplied.

__FILE_ _ The presumed name of the current source file (a character string fit&al).

__LINE_ _ The presumed line number (within the current source file) of the current
source line (an integer constatft})

__STDC__ The integer constart, intended to indicate a conforming implementation.

__STDC_HOSTED_ The integer constantil if the implementation is a hosted
implementation or the integer constanif it is not.

__STDC_VERSION__ The integer constari99901L .50

__TIME_ _ The time of translation of the preprocessing translation unit: a character
string literal of the form'hh:mm:ss" as in the time generated by the
asctime function. If the time of translation is not available, an
implementation-defined valid time shall be supplied.

The following macro names are conditionally defined by the implementation:

__STDC_IEC_559 The integer constarit, intended to indicate conformance to the
specifications in annex F (IEC 60559 floating-point arithmetic).

148) See “future language directions” (6.11.9).
149) The presumed source file name and line number can be changedlmethedirective.

150) This macro was not specified in ISO/IEC 9899:1990 and was specifiel9®9L in
ISO/IEC 9899/AMD1:1995. The intention is that this will remain an integer constant ofagge
int that is increased with each revision of this International Standard.

160 Language 86.10.8

©ISO/IEC ISO/IEC 9899:1999 (E)

__STDC_IEC_559 COMPLEX _The integer constantl, intended to indicate
adherence to the specifications in informative annex G (IEC 60559
compatible complex arithmetic).

__STDC_ISO_10646_ _ An integer constant of the formyyymmL (for example,
199712L), intended to indicate that values of typehar t are the
coded representations of the characters defined by ISO/IEC 10646, along
with all amendments and technical corrigenda as of the specified year and
month.

The values of the predefined macros (except fdFILE_ _ and__LINE_) remain
constant throughout the translation unit.

None of these macro names, nor the identidieiined , shall be the subject of a
#define or a#undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

The implementation shall not predefine the macraplusplus , nor shall it define it
in any standard header.

Forward references: theasctime function (7.23.3.1), standard headers (7.1.2).

6.10.9 Pragma operator

Semantics

A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literaldisstringizedby deleting theL prefix, if

present, deleting the leading and trailing double-quotes, replacing each escape sequence
\" by a double-quote, and replacing each escape sequernmea single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they wer@ptekensin a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

EXAMPLE A directive of the form:
#pragma listing on "..\listing.dir"
can also be expressed as:

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

86.10.9 Language 161

ISO/IEC 9899:1999 (E) ©ISO/IEC

#define LISTING(x) PRAGMA(listing on #Xx)
#define PRAGMA(X) _Pragmaf(#x)

LISTING (..\listing.dir)

162 Language 86.10.9

©ISO/IEC ISO/IEC 9899:1999 (E)

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating-point types, including those with
greater range, precision, or both thamg double

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope withoutstaéic storage-
class specifier is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters
(considering each universal character name or extended source character as a single
character) is an obsolescent feature that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature.

6.11.6 Function declarators

The use of function declarators with empty parentheses (not prototype-format parameter
type declarators) is an obsolescent feature.

6.11.7 Function definitions

The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.11.8 Pragma directives
Pragmas whose first preprocessing tokeili®Care reserved for future standardization.
6.11.9 Predefined macro names

Macro names beginning with STDC_are reserved for future standardization.

86.11.9 Language 163

ISO/IEC 9899:1999 (E) ©ISO/IEC

7. Library

7.1 Introduction
7.1.1 Definitions of terms

A stringis a contiguous sequence of characters terminated by and including the first null
character. The ternmultibyte stringis sometimes used instead to emphasize special
processing given to multibyte characters contained in the string or to avoid confusion
with a wide string. Apointer to a stringis a pointer to its initial (lowest addressed)
character. Théength of a strings the number of bytes preceding the null character and
thevalue of a strings the sequence of the values of the contained characters, in order.

Thedecimal-point characteis the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequendg@¥d. It is represented in the text and examples by a period, but
may be changed by tlsetlocale function.

A null wide characteiis a wide character with code value zero.

A wide stringis a contiguous sequence of wide characters terminated by and including
the first null wide character. pointer to a wide strings a pointer to its initial (lowest
addressed) wide character. Tleagth of a wide strings the number of wide characters
preceding the null wide character and viadue of a wide strings the sequence of code
values of the contained wide characters, in order.

A shift sequencas a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a
corresponding wide character; it is instead taken to be an adjunct to an adjacent multibyte
charactet>?

Forward references: character handling (7.4), tisetlocale function (7.11.1.1).

151) The functions that make use of the decimal-point character are the numeric conversion functions
(7.20.1, 7.24.4.1) and the formatted input/output functions (7.19.6, 7.24.2).

152) For state-dependent encodings, the valueMBrCUR_MAXnd MB_LEN_ MAshall thus be large
enough to count all the bytes in any complete multibyte character plus at least one adjacent shift
sequence of maximum length. Whether these counts provide for more than one shift sequence is the
implementation’s choice.

164 Library §7.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototypeheader,
whose contents are made available by #ivclude preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional macros
needed to facilitate their use. Declarations of types described in this clause shall not
include type qualifiers, unless explicitly stated otherwise.

153)

The standard headers are

<assert.h> <inttypes.h> <signal.h> <stdlib.h>
<complex.h> <is0646.h> <stdarg.h> <string.h>
<ctype.h> <limits.h> <stdbool.h> <tgmath.h>
<errno.h> <locale.h> <stddef.h> <time.h>
<fenv.h> <math.h> <stdint.h> <wchar.h>
<float.h> <setjmp.h> <stdio.h> <wctype.h>

If a file with the same name as one of the abovaend > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are
searched for included source files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in
a given scope, with no effect different from being included only once, except that the
effect of including<assert.h> depends on the definition DEBUQsee 7.2). If

used, a header shall be included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the functions or objects it
declares, or to any of the types or macros it defines. However, if an identifier is declared
or defined in more than one header, the second and subsequent associated headers may b
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the
inclusion.

Any definition of an object-like macro described in this clause shall expand to code that is
fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in annex B.

Forward references: diagnostics (7.2).

153) A header is not necessarily a source file, nor are& tlied > delimited sequences in header names
necessarily valid source file names.

87.1.2 Library 165

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are always reserved either for any use or for use as file
scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is included;
unless explicitly stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the
future library directions) are always reserved for use as identifiers with external

linkage1®%

— Each identifier with file scope listed in any of the following subclauses (including the
future library directions) is reserved for use as a macro name and as an identifier with
file scope in the same name space if any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier in a
context in which it is reserved (other than as allowed by 7.1.4), or defines a reserved
identifier as a macro name, the behavior is undefined.

If the program removes (withundef) any macro definition of an identifier in the first
group listed above, the behavior is undefined.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow: If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program,
or a null pointer, or a pointer to non-modifiable storage when the corresponding
parameter is not const-qualified) or a type (after promotion) not expected by a function
with variable number of arguments, the behavior is undefined. If a function argument is
described as being an array, the pointer actually passed to the function shall have a value
such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid. Any function
declared in a header may be additionally implemented as a function-like macro defined in

154) The list of reserved identifiers with external linkage includeso , math_errhandling
setimp , andva_end .

166 Library §7.1.4

©ISO/IEC ISO/IEC 9899:1999 (E)

the header, so if a library function is declared explicitly when its header is included, one
of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as
a macro>® The use o#tundef to remove anynacro definition will also ensure that an
actual function is referred to. Any invocation of a library function that is implemented as

a macro shall expand to code that evaluates each of its arguments exactly once, fully
protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as argument§) Likewise, those function-like macros described in the
following subclauses may be invoked in an expression anywhere a function with a
compatible return type could be calf®d) All object-like macros listed as expanding to
integer constant expressions shall additionally be suitable for usé ipreprocessing
directives.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function and use it without including its
associated header.

There is a sequence point immediately before a library function returns.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duratibiy)

155) This means that an implementation shall provide an actual function for each library function, even if it
also provides a macro for that function.

156) Such macros might not contain the sequence points that the corresponding function calls do.

157) Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier
_BUILTIN_abs could be used to indicate generation of in-line code foaldsefunction. Thus, the
appropriate header could specify

#define abs(x) _BUILTIN_abs(x)
for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function saioch &sll be a genuine
function may write

#undef abs

whether the implementation’s header provides a macro implementaticabsof or a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also.

158) Thus, a signal handler cannot, in general, call standard library functions.

87.1.4 Library 167

ISO/IEC 9899:1999 (E)

EXAMPLE The functionatoi

— by use of its associated header (possibly generating a macro expansion)

— by use of its associated header (assuredly generating a true function reference)

or

#include <stdlib.h>
const char *str;
o

i = atoi(str);

#include <stdlib.h>
#undef atoi

const char *str;
T

i = atoi(str);

#include <stdlib.h>
const char *str;
o

i = (atoi)(str);

— by explicit declaration

168

extern int atoi(const char *);

const char *str;
L
i = atoi(str);

may be used in any of several ways:

Library

©ISO/IEC

§7.1.4

©ISO/IEC ISO/IEC 9899:1999 (E)

7.2 Diagnostics<assert.h>
The headexassert.h> defines thessert macro and refers to another macro,
NDEBUG

which is not defined by<assert.h> . If NDEBUGs defined as a macro name at the
point in the source file whereassert.h> s included, theassert macro is defined
simply as

#define assert(ignore) ((void)0)

Theassert macro is redefined according to the current stat¢DEBU&ach time that
<assert.h> isincluded.

Theassert macro shall be implemented as a macro, not as an actual function. If the
macro definition is suppressed in order to access an actual function, the behavior is
undefined.

7.2.1 Program diagnostics
7.2.1.1 Theassert macro
Synopsis
#include <assert.h>
void assert(scalar expression);
Description

Theassert macro puts diagnostic tests into programs; it expands to a void expression.
When it is executed, iéxpression (which shall have a scalar type) is false (that is,
compares equal to 0), tssert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file, the source line
number, and the name of the enclosing function — the latter are respectively the values of
the preprocessing macros _FILE_ _ and _ _LINE__ and of the identifier
__func_) on the standard error stream in an implementation-defined férfait

then calls thebort function.

Returns
Theassert macro returns no value.

Forward references: theabort function (7.20.4.1).

159) The message written might be of the form:

Assertion failed: expression function abg file xyz line nnn

§7.2.1.1 Library 169

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.3 Complex arithmetic<complex.h>
7.3.1 Introduction

The headexcomplex.h> defines macros and declares functions that support complex
arithmetic!®®) Each synopsis specifies a family of functions consisting of a principal
function with one or mordouble complex parameters anddouble complex or
double return value; and other functions with the same name butfwatid| suffixes
which are corresponding functions wifloat andlong double parameters and
return values.

The macro
complex

expands to Complex ; the macro
Complex|

expands to a constant expression of typest float Complex , with the value of
the imaginary unit®V

The macros
imaginary
and
Imaginary|

are defined if and only if the implementation supports imaginary f8e#; defined,
they expand to_Imaginary and a constant expression of typenst float
_Imaginary with the value of the imaginary unit.

The macro
I

expands to either Imaginary_| or _Complex_| . If _Imaginary_| iS not
defined, shall expand to Complex_| .

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then
redefine the macrasomplex , imaginary , andl .

Forward references: IEC 60559-compatible complex arithmetic (annex G).

160) See “future library directions” (7.26.1).

161) The imaginary unit is a numbgsuch thai? = —1.

162) A specification for imaginary types is in informative annex G.

170 Library §7.3.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation reaysetbut is
not required to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 60559
implementations) that follow the specifications of annex G, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part —0, maps to the negative imaginary axis.

Implementations that do not support a signed zero (see annex F) cannot distinguish the
sides of branch cuts. These implementations shall map a cut so the function is continuous
as the cut is approached coming around the finite endpoint of the cut in a counter
clockwise direction. (Branch cuts for the functions specified here have just one finite
endpoint.) For example, for the square root function, coming counter clockwise around
the finite endpoint of the cut along the negative real axis approaches the cut from above,
so the cut maps to the positive imaginary axis.

7.3.4 TheCX_ LIMITED RANGEpragma
Synopsis

#include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

The usual mathematical formulas for complex multiply, divide, and absolute value are
problematic because of their treatment of infinities and because of undue overflow and
underflow. The CX_ LIMITED _RANGE pragma can be used to inform the
implementation that (where the state is “on”) the usual mathematical formulas are
acceptablé®®) The pragma can occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When outside external

163) The purpose of the pragma is to allow the implementation to use the formulas:
(x+iy) x (U+iv) = (Xu—yv) +i(yu+ xv)
(x +iy) / (u+iv) = [(xu+ yv) +i(yu— xv)])/(u? + v?)
| X +iy | = VX2 +y?

where the programmer can determine they are safe.

§7.3.4 Library 171

ISO/IEC 9899:1999 (E) ©ISO/IEC

declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGEpragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until
another CX_LIMITED_RANGE pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the
compound statement. If this pragma is used in any other context, the behavior is
undefined. The default state for the pragma is “off”.

7.3.5 Trigonometric functions
7.3.5.1 Thecacos functions
Synopsis

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

Description

Thecacos functions compute the complex arc cosine pfvith branch cuts outside the
interval [-1,+1] along the real axis.

Returns

The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the intervgl dng the
real axis.

7.3.5.2 Thecasin functions
Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

Description

Thecasin functions compute the complex arc sinezofwith branch cuts outside the
interval [-1,+1] along the real axis.

Returns

The casin functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the intefwé2, fr7/2]
along the real axis.

172 Library §7.3.5.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.3.5.3 Thecatan functions
Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

Description

Thecatan functions compute the complex arc tangernt ofvith branch cuts outside the
interval [, +i] along the imaginary axis.

Returns

The catan functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interw#, f-7/2]
along the real axis.

7.3.5.4 Theccos functions
Synopsis

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Description

Theccos functions compute the complex cosinezof
Returns

Theccos functions return the complex cosine value.
7.3.5.5 Thecsin functions

Synopsis

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

Description
Thecsin functions compute the complex sinezof
Returns

Thecsin functions return the complex sine value.

87.3.5.5 Library 173

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.3.5.6 Thectan functions
Synopsis

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

Description

Thectan functions compute the complex tangentof
Returns

Thectan functions return the complex tangent value.
7.3.6 Hyperbolic functions

7.3.6.1 Thecacosh functions

Synopsis

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Description

Thecacosh functions compute the complex arc hyperbolic cosing,afith a branch
cut at values less than 1 along the real axis.

Returns

Thecacosh functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the intefivgl+H 7] along
the imaginary axis.

7.3.6.2 Thecasinh functions
Synopsis

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

Description

Thecasinh functions compute the complex arc hyperbolic sine ,ofvith branch cuts
outside the intervaH, +i] along the imaginary axis.

174 Library §7.3.6.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

Thecasinh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the intefivaR[+i /2]
along the imaginary axis.

7.3.6.3 Thecatanh functions
Synopsis

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

Description

The catanh functions compute the complex arc hyperbolic tangertt,ofith branch
cuts outside the intervat],+1] along the real axis.

Returns

Thecatanh functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the intefivaR[+i /2]
along the imaginary axis.

7.3.6.4 Theccosh functions
Synopsis

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

Description

Theccosh functions compute the complex hyperbolic cosine .of
Returns

Theccosh functions return the complex hyperbolic cosine value.
7.3.6.5 Thecsinh functions

Synopsis

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

87.3.6.5 Library 175

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

Thecsinh functions compute the complex hyperbolic sine of
Returns

Thecsinh functions return the complex hyperbolic sine value.
7.3.6.6 Thectanh functions

Synopsis

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

Description

Thectanh functions compute the complex hyperbolic tangert.of
Returns

Thectanh functions return the complex hyperbolic tangent value.
7.3.7 Exponential and logarithmic functions

7.3.7.1 Thecexp functions

Synopsis

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

Description

Thecexp functions compute the complex basexponential of.
Returns

Thecexp functions return the complex base@xponential value.
7.3.7.2 Theclog functions

Synopsis

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

176 Library §7.3.7.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Theclog functions compute the complex natural (baségarithm ofz, with a branch
cut along the negative real axis.

Returns

Theclog functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interival+i 7] along the
imaginary axis.

7.3.8 Power and absolute-value functions

7.3.8.1 Thecabs functions

Synopsis

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

Description

Thecabs functions compute the complex absolute value (also called norm, modulus, or
magnitude) otk .

Returns

Thecabs functions return the complex absolute value.
7.3.8.2 Thecpow functions

Synopsis

#include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,
long double complex y);

Description

Thecpow functions compute the complex power functioh with a branch cut for the
first parameter along the negative real axis.

Returns

Thecpow functions return the complex power function value.

§7.3.8.2 Library 177

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.3.8.3 Thecsqrt functions
Synopsis

#include <complex.h>

double complex csqgrt(double complex z);

float complex csqrtf(float complex z);

long double complex csqgrtl(long double complex z);

Description

Thecsqrt functions compute the complex square root pivith a branch cut along the
negative real axis.

Returns

Thecsqrt functions return the complex square root value, in the range of the right half-
plane (including the imaginary axis).

7.3.9 Manipulation functions
7.3.9.1 Thecarg functions
Synopsis

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

Description

Thecarg functions compute the argument (also called phase angte)vath a branch
cut along the negative real axis.

Returns

Thecarg functions return the value of the argument in the interva] .
7.3.9.2 Thecimag functions

Synopsis

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

178 Library §7.3.9.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Thecimag functions compute the imaginary partzof®4

Returns

Thecimag functions return the imaginary part value (as a real).
7.3.9.3 Theconj functions

Synopsis

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

Description

Theconj functions compute the complex conjugatezofby reversing the sign of its
imaginary part.

Returns

Theconj functions return the complex conjugate value.
7.3.9.4 Thecproj functions

Synopsis

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

Description

Thecproj functions compute a projection bfonto the Riemann spherz:projects to

z except that all complex infinities (even those with one infinite part and one NaN part)
project to positive infinity on the real axis. afhas an infinite part, thecproj(z) is
equivalent to

INFINITY + | * copysign(0.0, cimag(z))
Returns

Thecproj functions return the value of the projection onto the Riemann sphere.

164) For a variable of complex typez == creal(z) + cimag(z)*

§7.3.94 Library 179

ISO/IEC 9899:1999 (E)

7.3.9.5 Thecreal functions
Synopsis

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);
Description
Thecreal functions compute the real partzf%®
Returns

Thecreal functions return the real part value.

165) For a variable of complex typez == creal(z) + cimag(z)*

180 Library

©ISO/IEC

§7.3.9.5

©ISO/IEC ISO/IEC 9899:1999 (E)

7.4 Character handling<ctype.h>

The headekctype.h> declares several functions useful for classifying and mapping
characterd®® In all cases the argument is amt , the value of which shall be
representable as amsigned char or shall equal the value of the ma&OF If the
argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that
have locale-specific aspects only when not ir'@ie locale are noted below.

The termprinting characterrefers to a member of a locale-specific set of characters, each
of which occupies one printing position on a display device; the ¢emtrol character
refers to a member of a locale-specific set of characters that are not printing
characterd®”) All letters and digits are printing characters.

Forward references: EOF(7.19.1), localization (7.11).
7.4.1 Character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the
argument conforms to that in the description of the function.

7.4.1.1 Thesalnum function
Synopsis

#include <ctype.h>
int isalnum(int c);

Description

Theisalnum function tests for any character for whiglalpha orisdigit is true.
7.4.1.2 Thesalpha function

Synopsis

#include <ctype.h>
int isalpha(int c);

Description

Theisalpha function tests for any character for whislipper orislower s true,
or any character that is one of a locale-specific set of alphabetic characters for which

166) See “future library directions” (7.26.2).

167) In an implementation that uses the seven-bit US ASCII character set, the printing characters are those
whose values lie from 0x20 (space) through Ox7E (tilde); the control characters are those whose
values lie from 0 (NUL) through 0x1F (US), and the character Ox7F (DEL).

§7.4.1.2 Library 181

ISO/IEC 9899:1999 (E) ©ISO/IEC

none ofiscntrl , isdigit , ispunct , orisspace is truel®® In the"C" locale,
isalpha returns true only for the characters for whistnpper orislower s true.

7.4.1.3 Thesblank function
Synopsis

#include <ctype.h>
int isblank(int c);

Description

Theisblank function tests for any character that is a standard blank character or is one
of a locale-specific set of characters for whiskpace is true and that is used to
separate words within a line of text. The standard blank characters are the following:
space ("'), and horizontal tab\{). In the"C" locale,isblank returns true only

for the standard blank characters.

7.4.1.4 Thescntrl function
Synopsis

#include <ctype.h>
int iscntrl(int c);

Description
Theiscntrl function tests for any control character.
7.4.1.5 Theasdigit function
Synopsis
#include <ctype.h>
int isdigit(int c);
Description
Theisdigit function tests for any decimal-digit character (as defined in 5.2.1).
7.4.1.6 Thesgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

168) The functiondslower andisupper test true or false separately for each of these additional
characters; all four combinations are possible.

182 Library 8§7.4.1.6

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Theisgraph function tests for any printing character except space).
7.4.1.7 Theslower function

Synopsis

#include <ctype.h>
int islower(int c);

Description

Theislower function tests for any character that is a lowercase letter or is one of a
locale-specific set of characters for which nonésoftrl | isdigit , ispunct , or
isspace is true. In the"C" locale,islower returns true only for the lowercase
letters (as defined in 5.2.1).

7.4.1.8 Thesprint function
Synopsis

#include <ctype.h>
int isprint(int c);

Description

Theisprint function tests for any printing character including space §.
7.4.1.9 Thespunct function

Synopsis

#include <ctype.h>
int ispunct(int c);

Description

Theispunct function tests for any printing character that is one of a locale-specific set
of punctuation characters for which neitigspace norisalnum is true. In the'C"
locale,ispunct returns true for every printing character for which neiikspace
norisalnum s true.

7.4.1.10 Thdsspace function
Synopsis

#include <ctype.h>
int isspace(int c);

Description

Theisspace function tests for any character that is a standard white-space character or
is one of a locale-specific set of characters for wisalnum is false. The standard

§7.4.1.10 Library 183

ISO/IEC 9899:1999 (E) ©ISO/IEC

white-space characters are the following: spdce), form feed '), new-line
(\n"), carriage return’\¢'), horizontal tab'{t'), and vertical tab'{"). In the
"C" locale,isspace returns true only for the standard white-space characters.

7.4.1.11 Thdsupper function
Synopsis

#include <ctype.h>
int isupper(int c);

Description

Theisupper function tests for any character that is an uppercase letter or is one of a
locale-specific set of characters for which nonégsofitrl | isdigit , ispunct , or
isspace is true. In the"C" locale,isupper returns true only for the uppercase
letters (as defined in 5.2.1).

7.4.1.12 Thdsxdigit function
Synopsis

#include <ctype.h>
int isxdigit(int c);

Description

Theisxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.2).
7.4.2 Character case mapping functions

7.4.2.1 Thetolower function

Synopsis

#include <ctype.h>
int tolower(int c);

Description
Thetolower function converts an uppercase letter to a corresponding lowercase letter.
Returns

If the argument is a character for whiglupper is true and there are one or more
corresponding characters, as specified by the current locale, for isloisler s true,
thetolower function returns one of the corresponding characters (always the same one
for any given locale); otherwise, the argument is returned unchanged.

184 Library §7.4.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.4.2.2 Thetoupper function
Synopsis

#include <ctype.h>
int toupper(int c);

Description
Thetoupper function converts a lowercase letter to a corresponding uppercase letter.
Returns

If the argument is a character for whishower is true and there are one or more
corresponding characters, as specified by the current locale, for isinogder is true,
thetoupper function returns one of the corresponding characters (always the same one
for any given locale); otherwise, the argument is returned unchanged.

§7.4.2.2 Library 185

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.5 Errors <errno.h>

The headekerrno.h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with ityjpe distinct positive values, and
which are suitable for use #if preprocessing directives; and

errno

which expands to a modifiable Ival§® that has typént , the value of which is set to a
positive error number by several library functions. It is unspecified whethss is a

macro or an identifier declared with external linkage. If a macro definition is suppressed
in order to access an actual object, or a program defines an identifier with the name
errno , the behavior is undefined.

The value oferrno is zero at program startup, but is never set to zero by any library
function1’® The value oferrno may be set to nonzero by a library function call
whether or not there is an error, provided the userofo is not documented in the
description of the function in this International Standard.

Additional macro definitions, beginning with and a digit orE and an uppercase
letter!’Y may also be specified by the implementation.

169) The macrerrmo need not be the identifier of an object. It might expand to a modifiable Ivalue
resulting from a function call (for examplermo()).

170) Thus, a program that ussno for error checking should set it to zero before a library function call,
then inspect it before a subsequent library function call. Of course, a library function can save the
value oferrno on entry and then set it to zero, as long as the original value is restereabif 's
value is still zero just before the return.

171) See “future library directions” (7.26.3).

186 Library 87.5

©ISO/IEC ISO/IEC 9899:1999 (E)

7.6 Floating-point environment<fenv.h>

The headexfenv.h> declares two types and several macros and functions to provide
access to the floating-point environment. THeating-point environmerdfers
collectively to any floating-point status flags and control modes supported by the
implementation.’? A floating-point status flags a system variable whose value is set
(but never cleared) whenflaating-point exceptiors raised, which occurs as a side effect

of exceptional floating-point arithmetic to provide auxiliary informationflo&ting-point
control modeis a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

Certain programming conventions support the intended model of use for the floating-
point environment’®)

— a function call does not alter its caller’s floating-point control modes, clear its caller’s
floating-point status flags, nor depend on the state of its caller’s floating-point status
flags unless the function is so documented,;

— a function call is assumed to require default floating-point control modes, unless its
documentation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions,
unless its documentation promises otherwise.

The type

fenv_t
represents the entire floating-point environment.
The type

fexcept_t

represents the floating-point status flags collectively, including any status the
implementation associates with the flags.

172) This header is designed to support the floating-point exception status flags and directed-rounding
control modes required by IEC 60559, and other similar floating-point state information. Also it is
designed to facilitate code portability among all systems.

173) With these conventions, a programmer can safely assume default floating-point control modes (or be
unaware of them). The responsibilities associated with accessing the floating-point environment fall
on the programmer or program that does so explicitly.

§7.6 Library 187

ISO/IEC 9899:1999 (E) ©ISO/IEC

Each of the macros

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the floating-point exception by
means of the functions in 7.6.2. Additional implementation-defined floating-point
exceptions, with macro definitions beginning Wit and an uppercase letter, may also

be specified by the implementation. The defined macros expand to integer constant
expressions with values such that bitwixes of all combinations of the macros result in
distinct values.

The macro
FE_ALL_EXCEPT

is simply the bitwiseOR of all floating-point exception macros defined by the
implementation.

Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented
rounding direction by means of thegetround and fesetround functions.
Additional implementation-defined rounding directions, with macro definitions beginning
with FE_ and an uppercase letter, may also be specified by the implementation. The
defined macros expand to integer constant expressions whose values are distinct
nonnegative values’®

The macro
FE _DFL_ENV

represents the default floating-point environment — the one installed at program startup
— and has type “pointer to const-qualifieghv_t ”. It can be used as an argument to
<fenv.h> functions that manage the floating-point environment.

174) Even though the rounding direction macros may expand to constants corresponding to the values of
FLT_ROUNDSthey are not required to do so.

188 Library 87.6

©ISO/IEC ISO/IEC 9899:1999 (E)

Additional implementation-defined environments, with macro definitions beginning with
FE_ and an uppercase letter, and having type “pointer to const-qudéfiedt ”, may
also be specified by the implementation.

7.6.1 TheFENV_ACCES$ragma
Synopsis

#include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESSragma provides a means to inform the implementation when a
program might access the floating-point environment to test floating-point status flags or
run under non-default floating-point control mod&3. The pragma shall occur either
outside external declarations or preceding all explicit declarations and statements inside a
compound statement. When outside external declarations, the pragma takes effect from
its occurrence until anoth&tENV_ACCES$ragma is encountered, or until the end of

the translation unit. When inside a compound statement, the pragma takes effect from its
occurrence until anothefFENV_ACCESSragma is encountered (including within a
nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the
compound statement. If this pragma is used in any other context, the behavior is
undefined. If part of a program tests floating-point status flags, sets floating-point control
modes, or runs under non-default mode settings, but was translated with the state for the
FENV_ACCESSragma “off”, the behavior is undefined. The default state (“on” or
“off”) for the pragma is implementation-defined. (When execution passes from a part of
the program translated wittFENV_ACCESS“off” to a part translated with
FENV_ACCESSon”, the state of the floating-point status flags is unspecified and the
floating-point control modes have their default settings.)

175) The purpose of theENV_ACCES$ragma is to allow certain optimizations that could subvert flag
tests and mode changes (e.g., global common subexpression elimination, code motion, and constant
folding). In general, if the state #lENV_ACCESSs “off”, the translator can assume that default
modes are in effect and the flags are not tested.

87.6.1 Library 189

ISO/IEC 9899:1999 (E) ©ISO/IEC

3 EXAMPLE

#include <fenv.h>
void f(double x)

{
#pragma STDC FENV_ACCESS ON

void g(double);
void h(double);
*
g(x +1);
h(x + 1);
r

}

4 If the functiong might depend on status flags set as a side effect of the fitstl, or if the second
x + 1 might depend on control modes set as a side effect of the call to fugctizen the program shall
contain an appropriately placed invocatiodtpfagma STDC FENV_ACCESS ON.*7®

7.6.2 Floating-point exceptions

1 The following functions provide access to the floating-point status ‘ff&gdhe int
input argument for the functions represents a subset of floating-point exceptions, and can
be zero or the bitwis®R of one or more floating-point exception macros, for example
FE_OVERFLOW | FE_INEXACT. For other argument values the behavior of these
functions is undefined.

7.6.2.1 Thefeclearexcept function

Synopsis
1 #include <fenv.h>
void feclearexcept(int excepts);
Description
2 The feclearexcept function clears the supported floating-point exceptions

represented by its argument.

176) The side effects impose a temporal ordering that requires two evaluations of . On the other
hand, without thétpragma STDC FENV_ACCESS ON pragma, and assuming the default state is
“off”, just one evaluation oix + 1 would suffice.

177) The functionsfetestexcept , feraiseexcept , and feclearexcept support the basic
abstraction of flags that are either set or clear. An implementation may endow floating-point status
flags with more information — for example, the address of the code which first raised the floating-
point exception; the functionfegetexceptflag and fesetexceptflag deal with the full
content of flags.

190 Library §7.6.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.6.2.2 Thefegetexceptflag function
Synopsis

#include <fenv.h>
void fegetexceptflag(fexcept_t *flagp,
int excepts);

Description

The fegetexceptflag function stores an implementation-defined representation of
the states of the floating-point status flags indicated by the arguxespts in the
object pointed to by the argumdlagp

7.6.2.3 Theferaiseexcept function
Synopsis

#include <fenv.h>
void feraiseexcept(int excepts);

Description

The feraiseexcept function raises the supported floating-point exceptions
represented by its argumért) The order in which these floating-point exceptions are
raised is unspecified, except as stated in F.7.6. Whethé&erdiseexcept function
additionally raises the “inexact” floating-point exception whenever it raises the
“overflow” or “underflow” floating-point exception is implementation-defined.

7.6.2.4 Thefesetexceptflag function
Synopsis

#include <fenv.h>
void fesetexceptflag(const fexcept_t *flagp,
int excepts);

Description

The fesetexceptflag function sets the floating-point status flags indicated by the
argumentexcepts to the states stored in the object pointed tdldgyp . The value of

*flagp shall have been set by a previous calfeigetexceptflag whose second
argument represented at least those floating-point exceptions represented by the argument
excepts . This function does not raise floating-point exceptions, but only sets the state
of the flags.

178) The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations.
Hence, enabled traps for floating-point exceptions raised by this function are taken. The specification
in F.7.6 is in the same spirit.

§7.6.2.4 Library 191

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.6.2.5 Thefetestexcept function
Synopsis

#include <fenv.h>
int fetestexcept(int excepts);

Description

The fetestexcept function determines which of a specified subset of the floating-
point exception flags are currently set. Tdweepts argument specifies the floating-
point status flags to be querid)

Returns

Thefetestexcept function returns the value of the bitwiS®R of the floating-point
exception macros corresponding to the currently set floating-point exceptions included in

excepts
EXAMPLE Callf if “invalid” is set, theng if “overflow” is set:
#include <fenv.h>
ro*
{
#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
/I maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
ro*
}

7.6.3 Rounding

Thefegetround andfesetround functions provide control of rounding direction
modes.

7.6.3.1 Thefegetround function
Synopsis

#include <fenv.h>
int fegetround(void);

Description

Thefegetround function gets the current rounding direction.

179) This mechanism allows testing several floating-point exceptions with just one function call.

192 Library §7.6.3.1

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction or a negative value if there is no such
rounding direction macro or the current rounding direction is not determinable.

7.6.3.2 Thefesetround function
Synopsis

#include <fenv.h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its
argumentound . If the argument is not equal to the value of a rounding direction macro,
the rounding direction is not changed.

Returns

Thefesetround function returns a zero value if and only if the argument is equal to a
rounding direction macro (that is, if and only if the requested rounding direction was
established).

EXAMPLE Save, set, and restore the rounding direction. Report an error and abort if setting the
rounding direction fails.

#include <fenv.h>
#include <assert.h>

void f(int round_dir)

{
#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
L |
fesetround(save_round);
L |

§7.6.3.2 Library 193

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.6.4 Environment

The functions in this section manage the floating-point environment — status flags and
control modes — as one entity.

7.6.4.1 Thefegetenv function
Synopsis

#include <fenv.h>
void fegetenv(fenv_t *envp);

Description

The fegetenv function stores the current floating-point environment in the object
pointed to byenvp .

7.6.4.2 Thefeholdexcept function
Synopsis

#include <fenv.h>
int feholdexcept(fenv_t *envp);

Description

Thefeholdexcept function saves the current floating-point environment in the object
pointed to byenvp, clears the floating-point status flags, and then instafisrastop
(continue on floating-point exceptions) mode, if available, for all floating-point
exceptions:e0)

Returns

The feholdexcept function returns zero if and only if non-stop floating-point
exception handling was successfully installed.

7.6.4.3 Thefesetenv function
Synopsis

#include <fenv.h>
void fesetenv(const fenv_t *envp);

Description

Thefesetenv function establishes the floating-point environment represented by the
object pointed to benvp . The argumenenvp shall point to an object set by a call to

180) IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap
handling or aborting; if the system provides only the non-stop mode then installing it is trivial. For
such systems, thieholdexcept function can be used in conjunction with tfeeipdateenv
function to write routines that hide spurious floating-point exceptions from their callers.

194 Library §7.6.4.3

©ISO/IEC ISO/IEC 9899:1999 (E)

fegetenv orfeholdexcept , or equal a floating-point environment macro. Note that
fesetenv merely installs the state of the floating-point status flags represented through
its argument, and does not raise these floating-point exceptions.

7.6.4.4 Thefeupdateenv function
Synopsis

#include <fenv.h>
void feupdateenv(const fenv_t *envp);

Description

Thefeupdateenv function saves the currently raised floating-point exceptions in its
automatic storage, installs the floating-point environment represented by the object
pointed to byenvp, and then raises the saved floating-point exceptions. The argument
envp shall point to an object set by a callféholdexcept orfegetenv , or equal a
floating-point environment macro.

EXAMPLE Hide spurious underflow floating-point exceptions:

#include <fenv.h>

double f(double x)

{
#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
/[compute result
if (/* test spurious underflow/)

feclearexcept(FE_UNDERFLOW);

feupdateenv(&save_env);
return result;

§7.6.4.4 Library 195

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.7 Characteristics of floating types<float.h>

The headerfloat.h> defines several macros that expand to various limits and
parameters of the standard floating-point types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5.2.4.2.2.

196 Library 87.7

©ISO/IEC ISO/IEC 9899:1999 (E)

7.8 Format conversion of integer typesinttypes.h>

The headekinttypes.h> includes the headesstdint.h> and extends it with
additional facilities provided by hosted implementations.

It declares functions for manipulating greatest-width integers and converting numeric
character strings to greatest-width integers, and it declares the type

imaxdiv_t

which is a structure type that is the type of the value returned bméxeliv - function.
For each type declared #stdint.h> | it defines corresponding macros for conversion
specifiers for use with the formatted input/output functiéis.

Forward references: integer types<stdint.h> (7.18), formatted input/output
functions (7.19.6), formatted wide character input/output functions (7.24.2).

7.8.1 Macros for format specifiers

Each of the following object-like mac¥® expands to a character string literal
containing a conversion specifier, possibly modified by a length modifier, suitable for use
within the format argument of a formatted input/output function when converting the
corresponding integer type. These macro names have the general Rh @haracter
string literals for thdprintf andfwprintf family) or SCN(character string literals

for the fscanf and fwscanf family),'8% followed by the conversion specifier,
followed by a name corresponding to a similar type name in 7.18.1. In these hames,
represents the width of the type as described in 7.18.1. For exdREAST32 can

be used in a format string to print the value of an integer ofibgpfast32_t

Thefprintf macros for signed integers are:

PRIAN PRIALEASTN PRIAFASTN PRIAMAX PRIAPTR
PRIi N PRIILEAST N PRIIFAST N PRIIMAX PRIIPTR

181) See “future library directions” (7.26.4).

182) C++ implementations should define these macros only wh&fDC_FORMAT _MACR®@Slefined
before<inttypes.h> is included.

183) Separate macros are given for use fptimtf andfscanf functions because, in the general case,
different format specifiers may be required forintf andfscanf , even when the type is the
same.

8§7.8.1 Library 197

ISO/IEC 9899:1999 (E)

©ISO/IEC

Thefprintf macros for unsigned integers are:
PRIoN PRIOLEASTN PRIOFASTN PRIOMAX PRIOPTR
PRIuN PRIULEASTN PRIUFASTN PRIUMAX PRIUPTR
PRIX N PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
Thefscanf macros for signed integers are:
SCNAN SCNJLEASN SCNdFASN SCNdMAX SCNdPTR
SCNiIN SCNILEASTN SCNIFASTN SCNiIMAX SCNIPTR
Thefscanf macros for unsigned integers are:
SCNN SCNOLEASN SCNoFASN SCNoMAX SCNOPTR
SCNWN SCNULEASN SCNuFASN SCNuMAX SCNuPTR
SCNxXN SCNXLEASN SCNxFASN SCNxMAX SCNxPTR

For each type that the implementation provides<stdint.h>
fprintf macros shall be defined and the correspondiscgnf
defined unless the implementation does not have a suitaialief
the type.

EXAMPLE

, the corresponding
macros shall be
length modifier for

#include <inttypes.h>

#include <wchar.h>

int main(void)

{
uintmax_t i = UINTMAX_MAX; 1
wprintf(L"The largest integer value is %020"

PRIXMAX "\n", i);

return O;

this type always exists

}
7.8.2 Functions for greatest-width integer types
7.8.2.1 Themaxabs function
Synopsis

#include <inttypes.h>
intmax_t imaxabs(intmax_t j);

Description

Theimaxabs function computes the absolute value of an int¢gef the result cannot
be represented, the behavior is undeffiféd.

184) The absolute value of the most negative number cannot be represented in two’'s complement.

198 Library §7.8.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

Theimaxabs function returns the absolute value.
7.8.2.2 Themaxdiv function

Synopsis

#include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description

Theimaxdiv function computesumer / denom andnumer % denom in a single
operation.

Returns

The imaxdiv function returns a structure of typmaxdiv_t comprising both the
guotient and the remainder. The structure shall contain (in either order) the members
guot (the quotient) andem (the remainder), each of which has typgmax_t . If

either part of the result cannot be represented, the behavior is undefined.

7.8.2.3 Thestrtoimax and strtoumax functions
Synopsis

#include <inttypes.h>

intmax_t strtoimax(const char * restrict nptr,
char ** restrict endptr, int base);

uintmax_t strtoumax(const char * restrict nptr,
char ** restrict endptr, int base);

Description
Thestrtoimax andstrtoumax functions are equivalent to tlsértol |, strtoll ,
strtoul , and strtoull functions, except that the initial portion of the string is

converted tontmax_t anduintmax_t representation, respectively.
Returns

Thestrtoimax andstrtoumax functions return the converted value, if any. If no
conversion could be performed, zero is returned. If the correct value is outside the range
of representable valueB\TMAX_MAXINTMAX_MIN, or UINTMAX_MAXs returned
(according to the return type and sign of the value, if any), and the value of the macro
ERANGHs stored irerrno .

Forward references: the strtol , strtoll , strtoul , and strtoull functions
(7.20.1.4).

§7.8.2.3 Library 199

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.8.2.4 Thewcstoimax andwcstoumax functions
Synopsis

#include <stddef.h> /l for wchar _t

#include <inttypes.h>

intmax_t wcstoimax(const wchar _t * restrict nptr,
wchar_t ** restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

Description

Thewcstoimax andwcstoumax functions are equivalent to thecstol , wcstoll
wcstoul , andwcstoull functions except that the initial portion of the wide string is
converted tontmax_t anduintmax_t representation, respectively.

Returns

Thewcstoimax function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable
values,INTMAX_MAXINTMAX_MIN, or UINTMAX_MAXs returned (according to the
return type and sign of the value, if any), and the value of the rE&RANGEs stored in

errno .

Forward references: the wcstol , wcestoll |, westoul , and wcstoull functions
(7.24.4.1.2).

200 Library §7.8.2.4

©ISO/IEC ISO/IEC 9899:1999 (E)

7.9 Alternative spellings<iso646.h>

The headexiso646.h> defines the following eleven macros (on the left) that expand
to the corresponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not eq !=
or |
or_eq |=
xor A
Xor_eq "=

§7.9 Library 201

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.10 Sizes of integer typeslimits.h>

The headeklimits.h> defines several macros that expand to various limits and
parameters of the standard integer types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5.2.4.2.1.

202 Library §7.10

©ISO/IEC

7.11 Localization<locale.h>

The headexlocale.h> declares two functions, one type, and defines several macros.

The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall
contain at least the following members, in any order. The semantics of the members and
their normal ranges are explained in 7.11.2.1. In'@fe locale, the members shall have

the values specified in the comments.

char *decimal_point;

char *thousands_sep;
char *grouping;

char *mon_decimal_point;
char *mon_thousands_sep;
char *mon_grouping;

char *positive_sign;

char *negative_sign;

char *currency_symbol,
char frac_digits;

char p_cs_precedes;

char n_cs_precedes;

char p_sep_by space;
char n_sep_by space;
char p_sign_posn;

char n_sign_posn;

char *int_curr_symbol;
char int_frac_digits;

char int_p_cs_precedes;
char int_n_cs_precedes;
char int_p _sep_by space;
char int_n_sep_by space;
char int_p_sign_posn;
char int_n_sign_posn;

§7.11

ner
in
n

n
n
n

I/

/e
"
/| CHAR_MAX

/| CHAR_MAX
/Il CHAR_MAX
/| CHAR_MAX
/I CHAR_MAX
/Il CHAR_MAX
/Il CHAR_MAX

I/

/I CHAR_MAX

/| CHAR_MAX
/Il CHAR_MAX
/Il CHAR_MAX
/Il CHAR_MAX
/| CHAR_MAX
/I CHAR_MAX

Library

ISO/IEC 9899:1999 (E)

203

ISO/IEC 9899:1999 (E) ©ISO/IEC

The macros defined akJLL (described in 7.17); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the
first argument to theetlocale function® Additional macro definitions, beginning

with the characterd C_ and an uppercase lettéf) may also be specified by the
implementation.

7.11.1 Locale control
7.11.1.1 Thesetlocale function
Synopsis

#include <locale.h>
char *setlocale(int category, const char *locale);

Description

The setlocale function selects the appropriate portion of the program’s locale as
specified by theategory andlocale arguments. Theetlocale function may be
used to change or query the program'’s entire current locale or portions thereof. The value
LC_ALL for category names the program’s entire locale; the other values for
category name only a portion of the program’s localeC_COLLATEaffects the
behavior of thestrcoll andstrxfrm functions. LC_CTYPEaffects the behavior of

the character handling functidi® and the multibyte and wide character functions.
LC_MONETARYaffects the monetary formatting information returned by the
localeconv function. LC_NUMERICaffects the decimal-point character for the
formatted input/output functions and the string conversion functions, as well as the
nonmonetary formatting information returned by libealeconv function. LC_TIME
affects the behavior of the#rftime andwcsftime functions.

A value of"C" for locale specifies the minimal environment for C translation; a value
of ™ for locale specifies the locale-specific native environment. Other
implementation-defined strings may be passed as the second argusatiaicile

185) ISO/IEC 9945-2 specifies locale and charmap formats that may be used to specify locales for C.

186) See “future library directions” (7.26.5).

187) The only functions in 7.4 whose behavior is not affected by the current locateligie and
isxdigit

204 Library §7.11.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

At program startup, the equivalent of
setlocale(LC_ALL, "C");
is executed.
The implementation shall behave as if no library function callse¢tlecale function.
Returns

If a pointer to a string is given fdocale and the selection can be honored, the
setlocale function returns a pointer to the string associated with the specified
category for the new locale. If the selection cannot be honored,s#i®cale

function returns a null pointer and the program’s locale is not changed.

A null pointer forlocale causes theetlocale function to return a pointer to the
string associated with theategory for the program’s current locale; the program'’s
locale is not changet§®

The pointer to string returned by thetlocale function is such that a subsequent call
with that string value and its associated category will restore that part of the program’s
locale. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to datlocale function.

Forward references: formatted input/output functions (7.19.6), multibyte/wide
character conversion functions (7.20.7), multibyte/wide string conversion functions
(7.20.8), numeric conversion functions (7.20.1), steoll function (7.21.4.3), the
stritime function (7.23.3.5), thetrxfrm function (7.21.4.5).

7.11.2 Numeric formatting convention inquiry
7.11.2.1 Thdocaleconv function
Synopsis

#include <locale.h>
struct Iconv *localeconv(void);

Description

Thelocaleconv function sets the components of an object with stpect Iconv
with values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with tyglear* are pointers to strings, any of which
(exceptdecimal_point) can point td™ , to indicate that the value is not available in
the current locale or is of zero length. Apart frgrouping andmon_grouping , the

188) The implementation shall arrange to encode in a string the various categories due to a heterogeneous
locale whercategory has the valueC_ALL.

§7.11.2.1 Library 205

ISO/IEC 9899:1999 (E) ©ISO/IEC

strings shall start and end in the initial shift state. The members withchgre are
nonnegative numbers, any of which can@eAR_MAXo indicate that the value is not
available in the current locale. The members include the following:

char *decimal_point
The decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point
character in formatted nonmonetary quantities.

char *grouping
A string whose elements indicate the size of each group of digits in
formatted nonmonetary quantities.

char *mon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted
monetary quantities.

char *mon_grouping
A string whose elements indicate the size of each group of digits in
formatted monetary quantities.

char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char frac_digits
The number of fractional digits (those after the decimal-point) to be
displayed in a locally formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if thecurrency symbol respectively precedes or
succeeds the value for a nonnegative locally formatted monetary quantity.

char n_cs_precedes
Set to 1 or O if thecurrency_symbol respectively precedes or
succeeds the value for a negative locally formatted monetary quantity.

206 Library §7.11.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

char p_sep_bhy space

Set to a value indicating the separation of ¢heency_symbol , the
sign string, and the value for a nonnegative locally formatted monetary
quantity.

char n_sep_by space
Set to a value indicating the separation of ¢heency_symbol , the
sign string, and the value for a negative locally formatted monetary
quantity.

char p_sign_posn
Set to a value indicating the positioning of {hesitive_sign for a
nonnegative locally formatted monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of tiegative_sign for a
negative locally formatted monetary quantity.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The
first three characters contain the alphabetic international currency symbol
in accordance with those specified in 1ISO 4217. The fourth character
(immediately preceding the null character) is the character used to separate
the international currency symbol from the monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be
displayed in an internationally formatted monetary quantity.

char int_p_cs_precedes

Set to 1 or 0 if thent_currency_symbol respectively precedes or
succeeds the value for a nonnegative internationally formatted monetary
guantity.

char int_n_cs_precedes
Set to 1 or 0 if thent_currency_symbol respectively precedes or
succeeds the value for a negative internationally formatted monetary
guantity.

char int_p_sep_by space
Set to a value indicating the separation ofititecurrency_symbol ,
the sign string, and the value for a nonnegative internationally formatted
monetary quantity.

§7.11.2.1 Library 207

ISO/IEC 9899:1999 (E) ©ISO/IEC

char int_n_sep_by space
Set to a value indicating the separation ofithecurrency_symbol ,
the sign string, and the value for a negative internationally formatted
monetary quantity.

char int_p_sign_posn
Set to a value indicating the positioning of {hasitive_sign for a
nonnegative internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of tiegative_sign for a
negative internationally formatted monetary quantity.

The elements ofjrouping and mon_grouping are interpreted according to the
following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.
other The integer value is the number of digits that compose the current group.

The next element is examined to determine the size of the next group of
digits before the current group.

The values ofp_sep by space , n_sep by space , int_p_sep by space ,
andint_n_sep_by space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the
value; otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them;
otherwise, a space separates the sign string from the value.

The values of p_sign_posn , n_sign_posn , int_p_sign_posn , and
int_n_sign_posn are interpreted according to the following:

0 Parentheses surround the quantity and currency symbol.
The sign string precedes the quantity and currency symbol.
The sign string succeeds the quantity and currency symbol.

The sign string immediately precedes the currency symbol.

A WO DN BB

The sign string immediately succeeds the currency symbol.

The implementation shall behave as if no library function calls Itlcaleconv
function.

208 Library §7.11.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

The localeconv function returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be
overwritten by a subsequent call to thealeconv function. In addition, calls to the
setlocale function with categoriekC_ALL, LC_MONETARYr LC_NUMERIGnay
overwrite the contents of the structure.

EXAMPLE 1 The following table illustrates the rules which may well be used by four countries to format
monetary quantities.

Local format International format
Country Positive Negative Positive Negative
Finland 1.234,56 mk 11.234,56 mk FIM 1.234,56 FIM -1.234,56
Italy L.1.234 1L.1.234 ITL|1.234 -ITL 1.234
Netherlands| f 1.234,56 f -1.234,56 NLG 1.234,56 NLG 11.234,56
Switzerland || SFrs.1,234.56 Skrs.1,234.56C CHF [1,234.56 CHF 1,234.56C

For these four countries, the respective values for the monetary members of the structure returned by
localeconv are:

Finland Italy Netherlands Switzerland

mon_decimal_point
mon_thousands_sep . .
mon_grouping "\3" "\3" "\3' "\3"
positive_sign "
negative_sign "c"
currency_symbol "mkK" "L "\ug192" "SFrg."
frac_digits 2 D 2 2
p_cs_precedes 0
n_cs_precedes 0
p_sep_by space 1
n_sep_by space 1
p_sign_posn 1
n_sign_posn 1
int_curr_symbol 'FIM "NLG "CHF|"
int_frac_digits 2 0 2 2
int_p_cs_precedes
int_n_cs_precedes
int_ p_sep_by space
int_ n_sep_by space
int_p_sign_posn
int_n_sign_posn

TRrrookrPR
ERNPRP R RpPRPR
NP ook P

N ook Pr
PrrRroOoOOPRFPPRF
I N W W el)

NPFPookRPPE

§7.11.2.1 Library 209

ISO/IEC 9899:1999 (E) ©ISO/IEC

EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by space, and sign_posn members
affect the formatted value.

p_sep_by space
p_cs_precedes p_sign_posn 0 1 2
0 0 (1.259%) (1.25 %) (1.259%)
1 +1.25% +1.25 $ + 1.25%
2 1.25%+ 1.25 $+ 1.25% +
3 1.25+$ 1.25 +$ 1.25+ $
4 1.25%+ 1.25 $+ 1.25% +
1 0 ($1.25) ($ 1.25) ($1.25)
1 +$1.25 +$ 1.25 + $1.25
2 $1.25+ $ 1.25+ $1.25 +
3 +$1.25 +$ 1.25 + $1.25
4 $+1.25 $+ 1.25 $ +1.25

210 Library §7.11.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12 Mathematics<math.h>

The headexmath.h> declares two types and many mathematical functions and defines
several macros. Most synopses specify a family of functions consisting of a principal
function with one or mor@ouble parameters, aouble return value, or both; and
other functions with the same name but Witland| suffixes, which are corresponding
functions withfloat and long double parameters, return values, or b&tR.
Integer arithmetic functions and conversion functions are discussed later.

The types

float_t
double t

are floating types at least as wideflaat anddouble , respectively, and such that
double_t is at least as wide afloat t . If FLT _EVAL METHODequals O,
float_t and double_t are float and double , respectively; if
FLT_EVAL_METHOI2quals 1, they are bottouble ; if FLT _EVAL_METHOI[Rquals
2, they are botlhong double ; and for other values &fLT_EVAL_METHO[they are
otherwise implementation-definéd?

The macro
HUGE_VAL

expands to a positivdouble constant expression, not necessarily representable as a
float . The macros

HUGE_VALF
HUGE_VALL

are respectivelfloat andlong double analogs oHUGE_VAL*%Y
The macro
INFINITY

expands to a constant expression of tyjoat representing positive or unsigned
infinity, if available; else to a positive constant of tyfleat that overflows at

189) Particularly on systems with wide expression evaluatiemath.h> function might pass arguments
and return values in wider format than the synopsis prototype indicates.

190) The typesloat t anddouble_t are intended to be the implementation’s most efficient types at
least as wide aloat anddouble , respectively. FOFLT _EVAL_METHOI[Rqual O, 1, or 2, the
typefloat_ t is the narrowest type used by the implementation to evaluate floating expressions.

191)HUGE_VAL HUGE_VALF and HUGE_VALLcan be positive infinities in an implementation that
supports infinities.

§7.12 Library 211

ISO/IEC 9899:1999 (E) ©ISO/IEC

translation time-92)
The macro
NAN

is defined if and only if the implementation supports quiet NaNs folldhe type. It
expands to a constant expression of fyp& representing a quiet NaN.

The macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

are for number classification. They represent the mutually exclusive kinds of floating-
point values. They expand to integer constant expressions with distinct values.
Additional implementation-defined floating-point classifications, with macro definitions

beginning with FP_ and an uppercase letter, may also be specified by the

implementation.

The macro
FP_FAST_FMA

is optionally defined. If defined, it indicates that finea function generally executes
about as fast as, or faster than, a multiply and an adtbuifle operands®® The
macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectivelfloat andlong double analogs oFP_FAST_FMA
The macros

FP_ILOGBO
FP_ILOGBNAN

expand to integer constant expressions whose values are returiheghbly) if X is
zero or NaN, respectively. The value BP_ILOGBO shall be eithedNT_MIN or
-INT_MAX. The value ofFP_ILOGBNANshall be eithelNT_MAXor INT_MIN .

192) In this case, usinlFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

193) Typically, theFP_FAST _FMAmacro is defined if and only if thna function is implemented
directly with a hardware multiply-add instruction. Software implementations are expected to be
substantially slower.

212 Library §7.12

©ISO/IEC ISO/IEC 9899:1999 (E)

The macros

MATH_ERRNO
MATH_ERREXCEPT

expand to the integer constattand2, respectively; the macro
math_errhandling

expands to an expression that has typ¢ and the value MATH_ERRNO
MATH_ERREXCER®r the bitwiseOR of both. The value ofmath_errhandling is
constant for the duration of the program. It is unspecified whether

math_errhandling is a macro or an identifier with external linkage. If a macro
definition is suppressed or a program defines an identifier with the name
math_errhandling , the behavior is undefined. If the expression

math_errhandling & MATH_ERREXCEPT can be nonzero, the implementation
shall define the macro§E_DIVBYZERQ FE_INVALID, and FE_OVERFLOWh
<fenv.h>

7.12.1 Treatment of error conditions

The behavior of each of the functions<dmath.h> is specified for all representable
values of its input arguments, except where stated otherwise. Each function shall execute
as if it were a single operation without generating any externally visible exceptional
conditions.

For all functions, alomain erroroccurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any
required domain errors; an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of the futi¢tidbn a
domain error, the function returns an implementation-defined value; if the integer
expressiommath_errhandling & MATH_ERRNO is nonzero, the integer expression
errno acquires the valuEDOMIf the integer expressiomath_errhandling &
MATH_ERREXCEHRS nonzero, the “invalid” floating-point exception is raised.

Similarly, arange error occurs if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude.

A floating result overflows if the magnitude of the mathematical result is finite but so
large that the mathematical result cannot be represented without extraordinary roundoff
error in an object of the specified type. If a floating result overflows and default rounding
is in effect, or if the mathematical result is an exact infinity (for exahogi®.0)),

then the function returns the value of the ma¢tdGE_VAL HUGE_VALF or

194) In an implementation that supports infinities, this allows an infinity as an argument to be a domain
error if the mathematical domain of the function does not include the infinity.

§7.12.1 Library 213

ISO/IEC 9899:1999 (E) ©ISO/IEC

HUGE_VALlaccording to the return type, with the same sign as the correct value of the
function; if the integer expressionath_errhandling & MATH_ERRNO is nonzero,

the integer expressioarrno acquires the valuERANGEIf the integer expression
math_errhandling & MATH_ERREXCEPT Is nonzero, the *“divide-by-zero”
floating-point exception is raised if the mathematical result is an exact infinity and the
“overflow” floating-point exception is raised otherwise.

The result underflows if the magnitude of the mathematical result is so small that the
mathematical result cannot be represented, without extraordinary roundoff error, in an
object of the specified typ@® If the result underflows, the function returns an
implementation-defined value whose magnitude is no greater than the smallest
normalized positive number in the specified type; if the integer expression
math_errhandling & MATH_ERRNO iIs nonzero, whetheerrno acquires the
valuer ERANGE is implementation-defined; if the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero, whether the “underflow”
floating-point exception is raised is implementation-defined.

7.12.2 TheFP_CONTRACPragma
Synopsis

#include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description

TheFP_CONTRACPragma can be used to allow (if the state is “on”) or disallow (if the
state is “off”) the implementation to contract expressions (6.5). Each pragma can occur
either outside external declarations or preceding all explicit declarations and statements
inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until anotheP_ CONTRACPragma is encountered, or until

the end of the translation unit. When inside a compound statement, the pragma takes
effect from its occurrence until anothdfP_CONTRACTpragma is encountered
(including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the state for the pragma is restored to its
condition just before the compound statement. If this pragma is used in any other
context, the behavior is undefined. The default state (“on” or “off”) for the pragma is
implementation-defined.

195) The term underflow here is intended to encompass both “gradual underflow” as in IEC 60559 and
also “flush-to-zero” underflow.

214 Library §7.12.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.3 Classification macros

In the synopses in this subclaussl-floating indicates that the argument shall be an
expression of real floating type.

7.12.3.1 Thepclassify macro

Synopsis
#include <math.h>
int fpclassify(real-floating Xx);
Description
The fpclassify macro classifies its argument value as NaN, infinite, normal,

subnormal, zero, or into another implementation-defined category. First, an argument
represented in a format wider than its semantic type is converted to its semantic type.
Then classification is based on the type of the arguhi®nt.

Returns

The fpclassify macro returns the value of the number classification macro
appropriate to the value of its argument.

EXAMPLE Thefpclassify macro might be implemented in terms of ordinary functions as

#define fpclassify(x) \
((sizeof (x) == sizeof (float)) ? _ _fpclassifyf(x) : \
(sizeof (x) == sizeof (double)) ? __fpclassifyd(x) : \

__fpclassifyl(x))
7.12.3.2 Thasfinite macro
Synopsis
#include <math.h>
int isfinite(real-floating x);
Description
The isfinite macro determines whether its argument has a finite value (zero,

subnormal, or normal, and not infinite or NaN). First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then determination
is based on the type of the argument.

196) Since an expression can be evaluated with more range and precision than its type has, it is important to
know the type that classification is based on. For example, a ntntaldouble value might
become subnormal when converteditmble , and zero when convertedftoat

§7.12.3.2 Library 215

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

The sfinite macro returns a nonzero value if and only if its argument has a finite
value.

7.12.3.3 Thasinf macro
Synopsis

#include <math.h>
int isinf(real-floating x);

Description

Theisinf macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns

Theisinf macro returns a nonzero value if and only if its argument has an infinite
value.

7.12.3.4 Thasnan macro
Synopsis

#include <math.h>
int isnan(real-floating x);

Description

Theisnan macro determines whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argutfi@nt.

Returns

Theisnan macro returns a nonzero value if and only if its argument has a NaN value.
7.12.3.5 Thdsnormal macro

Synopsis

#include <math.h>
int isnormal(real-floating Xx);

197) For theisnan macro, the type for determination does not matter unless the implementation supports
NaNs in the evaluation type but not in the semantic type.

216 Library §7.12.35

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Theisnormal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type
of the argument.

Returns

Theisnormal macro returns a nonzero value if and only if its argument has a normal
value.

7.12.3.6 Thesignbit macro

Synopsis

#include <math.h>

int signbit(real-floating Xx);
Description

Thesignbit macro determines whether the sign of its argument value is nefi&tive.
Returns

Thesignbit macro returns a nonzero value if and only if the sign of its argument value
is negative.

7.12.4 Trigonometric functions
7.12.4.1 Theacos functions
Synopsis

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);

Description

Theacos functions compute the principal value of the arc cosine. @ domain error
occurs for arguments not in the interval [+1].

Returns

Theacos functions return arccas in the interval [07z] radians.

198) Thesignbit macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is
unsigned, it is treated as positive.

§7.12.4.1 Library 217

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.12.4.2 Theasin functions
Synopsis

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);

Description

Theasin functions compute the principal value of the arc sin&.of domain error
occurs for arguments not in the interval [+1].

Returns

Theasin functions return arcsir in the interval £7/2, +7/2] radians.
7.12.4.3 Theatan functions

Synopsis

#include <math.h>

double atan(double x);

float atanf(float x);

long double atani(long double x);

Description

Theatan functions compute the principal value of the arc tangert of
Returns

Theatan functions return arctar in the interval £77/2,+m/2] radians.
7.12.4.4 Theatan2 functions

Synopsis

#include <math.h>

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long double x);

Description

Theatan2 functions compute the value of the arc tangemt/»f using the signs of both
arguments to determine the quadrant of the return value. A domain error may occur if
both arguments are zero.

Returns

Theatan2 functions return arctay/x in the interval {7, +77] radians.

218 Library §7.12.4.4

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.4.5 Thecos functions
Synopsis

#include <math.h>

double cos(double x);

float cosf(float x);

long double cosl(long double x);

Description

Thecos functions compute the cosinexf{measured in radians).

Returns
Thecos functions return cos.
7.12.4.6 Thesin functions
Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);

Description

Thesin functions compute the sine »f(measured in radians).
Returns

Thesin functions return siR.

7.12.4.7 Theaan functions

Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);

Description
Thetan functions return the tangent »f(measured in radians).
Returns

Thetan functions return tan.

§7.12.4.7 Library

219

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.12.5 Hyperbolic functions
7.12.5.1 Theacosh functions
Synopsis

#include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);

Description

Theacosh functions compute the (nonnegative) arc hyperbolic cosine é&f domain
error occurs for arguments less than 1.

Returns

Theacosh functions return arcosk in the interval [Oi+oo].
7.12.5.2 Theasinh functions

Synopsis

#include <math.h>

double asinh(double x);

float asinhf(float x);

long double asinhl(long double x);

Description

Theasinh functions compute the arc hyperbolic sinexof
Returns

Theasinh functions return arsink.

7.12.5.3 Theatanh functions

Synopsis

#include <math.h>

double atanh(double x);

float atanhf(float x);

long double atanhl(long double x);

Description

Theatanh functions compute the arc hyperbolic tangenk oA domain error occurs
for arguments not in the intervat],+1]. A range error may occur if the argument
equals -1 or +1.

220 Library §7.12.5.3

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

Theatanh functions return artank.
7.12.5.4 Thecosh functions
Synopsis

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);

Description

The cosh functions compute the hyperbolic cosinexofA range error occurs if the
magnitude ok is too large.

Returns
Thecosh functions return cosk.
7.12.5.5 Thesinh functions
Synopsis

#include <math.h>

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);

Description

The sinh functions compute the hyperbolic sine xf A range error occurs if the
magnitude ok is too large.

Returns

Thesinh functions return sinR.
7.12.5.6 Thdaanh functions
Synopsis

#include <math.h>

double tanh(double x);

float tanhf(float x);

long double tanhl(long double x);

Description

Thetanh functions compute the hyperbolic tangenkof

§7.12.5.6 Library 221

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

Thetanh functions return tank.

7.12.6 Exponential and logarithmic functions
7.12.6.1 The=xp functions

Synopsis

#include <math.h>

double exp(double x);

float expf(float x);

long double expl(long double x);

Description

The exp functions compute the bageexponential ofx. A range error occurs if the
magnitude ok is too large.

Returns

Theexp functions returre*.
7.12.6.2 Theexp2 functions
Synopsis

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

Description

The exp2 functions compute the base-2 exponentiak oA range error occurs if the
magnitude ok is too large.

Returns

Theexp2 functions return 2
7.12.6.3 Theaxpml functions
Synopsis

#include <math.h>

double expm1(double x);

float expmlf(float x);

long double expm1i(long double x);

222 Library §7.12.6.3

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Theexpml functions compute the baseexponential of the argument, minus 1. A range
error occurs ik is too larget®?

Returns
Theexpm1 functions returre” — 1.
7.12.6.4 Thdrexp functions
Synopsis
#include <math.h>
double frexp(double value, int *exp);

float frexpf(float value, int *exp);
long double frexpl(long double value, int *exp);

Description

Thefrexp functions break a floating-point number into a normalized fraction and an
integral power of 2. They store the integer initite object pointed to bgxp .

Returns

If value is not a floating-point number, the results are unspecified. Otherwise, the
frexp functions return the value, such thak has a magnitude in the interval [1/2, 1) or
zero, andvalue equalsx x 2P . If value is zero, both parts of the result are zero.

7.12.6.5 Thdlogb functions
Synopsis

#include <math.h>

int ilogb(double x);

int ilogbf(float x);

int ilogbl(long double x);

Description

Theilogb functions extract the exponentxfas a signeiht value. Ifx is zero they
compute the valuBEP_ILOGBQ; if x is infinite they compute the valuRT_MAX if x is

a NaN they compute the vali# _ILOGBNAN otherwise, they are equivalent to calling
the correspondingpgb function and casting the returned value to tyge . A range
error may occur ik is 0.

199) For small magnitude, expm1(x) is expected to be more accurate tbap(x) - 1

§7.12.6.5 Library 223

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

Theilogb functions return the exponent:fas a signetht value.
Forward references: thelogb functions (7.12.6.11).

7.12.6.6 Thddexp functions

Synopsis

#include <math.h>

double Idexp(double x, int exp);

float Idexpf(float x, int exp);

long double Idexpl(long double X, int exp);

Description

Theldexp functions multiply a floating-point number by an integral power of 2. A
range error may occur.

Returns

Theldexp functions returrx x 2%,
7.12.6.7 Thdog functions
Synopsis

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);

Description

Thelog functions compute the basgnatural) logarithm ok. A domain error occurs if
the argument is negative. A range error may occur if the argument is zero.

Returns

Thelog functions return logx.
7.12.6.8 Thdogl1l0 functions
Synopsis

#include <math.h>

double log10(double x);

float log10f(float x);

long double log10Il(long double x);

224 Library §7.12.6.8

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Thelogl0 functions compute the base-10 (common) logarithr.oA domain error
occurs if the argument is negative. A range error may occur if the argument is zero.

Returns

Thelogl10 functions return log, x.
7.12.6.9 Thdoglp functions
Synopsis

#include <math.h>

double log1lp(double x);

float loglpf(float x);

long double loglpl(long double x);

Description

Theloglp functions compute the basgnatural) logarithm of 1 plus the arguméff)
A domain error occurs if the argument is less than —1. A range error may occur if the
argument equals —-1.

Returns

Theloglp functions return log1 + Xx).
7.12.6.10 Thdog2 functions
Synopsis

#include <math.h>

double log2(double x);

float log2f(float x);

long double log2l(long double x);

Description

Thelog2 functions compute the base-2 logarithmxofA domain error occurs if the
argument is less than zero. A range error may occur if the argument is zero.

Returns

Thelog2 functions return logx.

200) For small magnitude, loglp(x) is expected to be more accurate thag{l + x)

§7.12.6.10 Library 225

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.12.6.11 Thdogb functions
Synopsis

#include <math.h>

double logb(double x);

float logbf(float x);

long double logbl(long double x);

Description

Thelogb functions extract the exponentxfas a signed integer value in floating-point
format. If x is subnormal it is treated as though it were normalized; thus, for positive
finite X,

1< x x FLT_RADIX ™% ®) < FLT RADIX
A domain error may occur if the argument is zero.
Returns
Thelogb functions return the signed exponeniof
7.12.6.12 Themodf functions
Synopsis

#include <math.h>

double modf(double value, double *iptr);

float modff(float value, float *iptr);

long double modfl(long double value, long double *iptr);

Description

Themodf functions break the argumerdlue into integral and fractional parts, each of
which has the same type and sign as the argument. They store the integral part (in
floating-point format) in the object pointed to iipyr

Returns

Themodf functions return the signed fractional parvafue .

226 Library §7.12.6.12

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.6.13 Thescalbn andscalbln functions
Synopsis

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double X, int n);
double scalbln(double x, long int n);

float scalbInf(float x, long int n);

long double scalblnl(long double x, long int n);

Description

The scalbn and scalbln functions computex x FLT_RADIX" efficiently, not
normally by computingLT_RADIX" explicitly. A range error may occur.

Returns

Thescalbn andscalbln functions returrx x FLT_RADIX".
7.12.7 Power and absolute-value functions
7.12.7.1 Thecbrt functions

Synopsis

#include <math.h>

double cbrt(double x);

float cbrtf(float x);

long double cbrtl(long double x);

Description

Thecbrt functions compute the real cube rooxof
Returns

Thecbrt functions returrx’®.

7.12.7.2 Thdabs functions

Synopsis

#include <math.h>

double fabs(double x);

float fabsf(float x);

long double fabsl(long double x);

Description

Thefabs functions compute the absolute value of a floating-point number

§7.12.7.2 Library 227

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

Thefabs functions return |.
7.12.7.3 Theéhypot functions
Synopsis

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);

Description

The hypot functions compute the square root of the sum of the squaresandly,
without undue overflow or underflow. A range error may occur.

Returns

Thehypot functions return/x2 +y?2.
7.12.7.4 Theyow functions
Synopsis

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);

Description

Thepow functions compute raised to the power. A domain error occurs K is finite
and negative ang is finite and not an integer value. A domain error may occurisf
zero andy is less than or equal to zero. A range error may occur.

Returns

Thepow functions returrx?.
7.12.7.5 Thesqrt functions
Synopsis

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqgrtl(long double x);

Description

Thesgrt functions compute the nonnegative square roat & domain error occurs if
the argument is less than zero.

228 Library §7.12.7.5

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

Thesqgrt functions returi/x.

7.12.8 Error and gamma functions
7.12.8.1 Theerf functions

Synopsis

#include <math.h>

double erf(double x);

float erff(float x);

long double erfl(long double x);

Description
Theerf functions compute the error functionof

Returns

i 2 X
Theerf functions return erk = — [et dt.
Vv Jo

7.12.8.2 Theerfc functions
Synopsis

#include <math.h>

double erfc(double x);

float erfcf(float x);

long double erfcl(long double x);

Description

The erfc functions compute the complementary error functiorx ofA range error
occurs ifx is too large.

Returns
. 2 00 _t2
Theerfc functions return erfg =1-erfx = —I e dt.
VT Jx

7.12.8.3 Thdgamma functions
Synopsis

#include <math.h>

double lgamma(double x);

float lgammaf(float x);

long double Igammal(long double x);

87.12.8.3 Library 229

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

Thelgamma functions compute the natural logarithm of the absolute value of gamma of
X. A range error occurs i is too large. A range error may occurxifis a negative
integer or zero.

Returns

Thelgamma functions return log| I (x) |.
7.12.8.4 Thagamma functions
Synopsis

#include <math.h>

double tgamma(double x);

float tgammaf(float x);

long double tgammal(long double x);

Description

Thetgamma functions compute the gamma functionxofA domain error occurs i is
a negative integer or if the result cannot be represented xiezero. A range error
may occur if the magnitude &fis too large or too small.

Returns

Thetgamma functions returrf (x).
7.12.9 Nearest integer functions
7.12.9.1 Theceil functions
Synopsis

#include <math.h>

double ceil(double x);

float ceilf(float x);

long double ceill(long double x);

Description
Theceil functions compute the smallest integer value not lessxthan
Returns

Theceil functions returmxj expressed as a floating-point number.

230 Library §7.12.9.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.9.2 Thdloor functions
Synopsis

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double x);

Description

Thefloor functions compute the largest integer value not greaterxthan
Returns

Thefloor functions returnmx j expressed as a floating-point number.
7.12.9.3 Thenearbyint functions

Synopsis

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

long double nearbyintl(long double x);

Description

The nearbyint functions round their argument to an integer value in floating-point
format, using the current rounding direction and without raising the “inexact” floating-
point exception.

Returns

Thenearbyint functions return the rounded integer value.
7.12.9.4 Theint functions

Synopsis

#include <math.h>

double rint(double x);

float rintf(float x);

long double rintl(long double x);

Description

Therint functions differ from thenearbyint functions (7.12.9.3) only in that the
rint functions may raise the “inexact” floating-point exception if the result differs in
value from the argument.

§7.12.94 Library 231

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

Therint functions return the rounded integer value.
7.12.9.5 Thdrint and llrint functions
Synopsis

#include <math.h>

long int Irint(double x);

long int Irintf(float x);

long int Irintl(long double x);

long long int lirint(double x);

long long int lirintf(float x);

long long int lIrintl(long double x);

Description

Thelrint andllrint functions round their argument to the nearest integer value,
rounding according to the current rounding direction. If the rounded value is outside the
range of the return type, the numeric result is unspecified. A range error may occur if the
magnitude ok is too large.

Returns

Thelrint andllrint functions return the rounded integer value.
7.12.9.6 Theound functions

Synopsis

#include <math.h>

double round(double x);

float roundf(float x);

long double roundl(long double x);

Description

Theround functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding
direction.

Returns

Theround functions return the rounded integer value.

232 Library §7.12.9.6

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.9.7 Thdround andllround functions
Synopsis

#include <math.h>

long int I[round(double x);

long int Iroundf(float x);

long int Iroundl(long double x);

long long int liround(double x);

long long int llroundf(float x);
long long int liroundl(long double x);

Description

Thelround andllround functions round their argument to the nearest integer value,
rounding halfway cases away from zero, regardless of the current rounding direction. If
the rounded value is outside the range of the return type, the numeric result is unspecified.
A range error may occur if the magnitudexak too large.

Returns

Thelround andllround functions return the rounded integer value.
7.12.9.8 Thdrunc functions

Synopsis

#include <math.h>

double trunc(double x);

float truncf(float x);

long double truncl(long double x);

Description

The trunc functions round their argument to the integer value, in floating format,
nearest to but no larger in magnitude than the argument.

Returns

Thetrunc functions return the truncated integer value.

§7.12.9.8 Library 233

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.12.10 Remainder functions
7.12.10.1 Thdmod functions
Synopsis

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodi(long double x, long double y);

Description
Thefmod functions compute the floating-point remaindex bf.
Returns

Thefmod functions return the value — ny, for some integen such that, ify is nonzero,
the result has the same sigrxaand magnitude less than the magnitudg.df y is zero,
whether a domain error occurs or tfmeod functions return zero is implementation-
defined.

7.12.10.2 Thaemainder functions
Synopsis

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

Description

Theremainder functions compute the remaindeREM y required by IEC 60558°%
Returns

Theremainder functions returrxk REMy.

201) “When y # 0, the remainder = x REM vy is defined regardless of the rounding mode by the
mathematical relatiom = x — ny, wheren is the integer nearest the exact valuexbf; whenever
|n-x/y|=1/2, thennis even. Thus, the remainder is always exact. 410, its sign shall be that of
x.” This definition is applicable for all implementations.

234 Library §7.12.10.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.10.3 Thaemquo functions
Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y,
int *quo);

Description

Theremquo functions compute the same remainder asréingainder functions. In
the object pointed to bguo they store a value whose sign is the sign/gf and whose
magnitude is congruent moduld ® the magnitude of the integral quotienixd§, where
nis an implementation-defined integer greater than or equal to 3.

Returns
Theremquo functions returrxk REMy.
7.12.11 Manipulation functions
7.12.11.1 Thecopysign functions
Synopsis

#include <math.h>

double copysign(double x, double y);

float copysignf(float x, float y);

long double copysignl(long double x, long double y);

Description

Thecopysign functions produce a value with the magnitudexand the sign of.

They produce a NaN (with the sign g) if x is a NaN. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic
operations, theopysign functions regard the sign of zero as positive.

Returns

Thecopysign functions return a value with the magnitudexand the sign oy .

§7.12.11.1 Library 235

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.12.11.2 Thehan functions
Synopsis

#include <math.h>

double nan(const char *tagp);

float nanf(const char *tagp);

long double nanl(const char *tagp);

Description

The call nan(" n-char-sequen¢g is equivalent to strtod("NAN(n-char-

sequencg, (char**) NULL) ; the call nan(™) is equivalent to
strtod("NAN()", (char**) NULL) . If tagp does not point to an n-char

sequence or an empty string, the call is equivalerstrtod("NAN", (char**)
NULL). Calls tonanf andnanl are equivalent to the corresponding callstibof
andstrtold

Returns

Thenan functions return a quiet NaN, if available, with content indicated thréagh .
If the implementation does not support quiet NaNs, the functions return zero.

Forward references: thestrtod , strtof , andstrtold functions (7.20.1.3).
7.12.11.3 Thenextafter functions
Synopsis

#include <math.h>

double nextafter(double x, double y);

float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

Description

The nextafter functions determine the next representable value, in the type of the
function, afterx in the direction ofy, wherex andy are first converted to the type of the
function?%? Thenextafter functions returry if x equalsy. A range error may occur

if the magnitude of x is the largest finite value representable in the type and the result is
infinite or not representable in the type.

Returns

The nextafter functions return the next representable value in the specified format
afterx in the direction ofy.

202) The argument values are converted to the type of the function, even by a macro implementation of the
function.

236 Library §7.12.11.3

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.11.4 Thenexttoward functions
Synopsis

#include <math.h>

double nexttoward(double x, long double y);

float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);

Description

Thenexttoward functions are equivalent to timextafter ~ functions except that the
second parameter has tylomg double and the functions retum converted to the
type of the function ik equalsy 2%

7.12.12 Maximum, minimum, and positive difference functions
7.12.12.1 Thddim functions
Synopsis

#include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdimi(long double x, long double y);

Description

Thefdim functions determine thgositive differencéetween their arguments:
k -y if x>y
30 ifxsy

A range error may occur.

Returns

Thefdim functions return the positive difference value.

7.12.12.2 Thdmax functions

Synopsis

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

long double fmaxl(long double x, long double y);

203) The result of thaexttoward functions is determined in the type of the function, without loss of
range or precision in a floating second argument.

§7.12.12.2 Library 237

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

Thefmax functions determine the maximum numeric value of their argumi&Hhts.
Returns

Thefmax functions return the maximum numeric value of their arguments.
7.12.12.3 Thdmin functions

Synopsis

#include <math.h>

double fmin(double x, double y);

float fminf(float x, float y);

long double fminl(long double x, long double y);

Description
Thefmin functions determine the minimum numeric value of their argunf&its.
Returns

Thefmin functions return the minimum numeric value of their arguments.

7.12.13 Floating multiply-add
7.12.13.1 Thdma functions
Synopsis

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

long double fmal(long double X, long double vy,
long double z);

Description

Thefma functions computex(xy) +z, rounded as one ternary operation: they compute
the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the valu€loT_ROUNDS

Returns

Thefma functions returnX xy) +z, rounded as one ternary operation.

204) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, then the
fmax functions choose the numeric value. See F.9.9.2.

205) Thefmin functions are analogous to tireax functions in their treatment of NaNs.

238 Library §7.12.13.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.12.14 Comparison macros

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values exactly one of the
relationships —less greater, andequal— is true. Relational operators may raise the
“invalid” floating-point exception when argument values are NaNs. For a NaN and a
numeric value, or for two NaNs, just thaeorderedrelationship is trué®® The following
subclauses provide macros that quéet (non floating-point exception raising) versions

of the relational operators, and other comparison macros that facilitate writing efficient
code that accounts for NaNs without suffering the “invalid” floating-point exception. In
the synopses in this subclauseal-floating indicates that the argument shall be an
expression of real floating type.

7.12.14.1 Thasgreater =~ macro

Synopsis

#include <math.h>

int isgreater(real-floating x, real-floating y);
Description
Theisgreater macro determines whether its first argument is greater than its second
argument. The value adgreater(x, y) is always equal t¢x) > (y) ; however,
unlike (x) > (y) , Isgreater(x, y) does not raise the “invalid” floating-point

exception whex andy are unordered.
Returns

Theisgreater ~ macro returns the value ¢£) > (y)

7.12.14.2 Thasgreaterequal macro
Synopsis
#include <math.h>
int isgreaterequal(real-floating x, real-floating y);
Description
Theisgreaterequal macro determines whether its first argument is greater than or
equal to its second argument. The valuesgfeaterequal(X, y) is always equal
to (X) >= (y) ; however, unlike(x) >= (y) , iIsgreaterequal(Xx, y) does

not raise the “invalid” floating-point exception whenandy are unordered.

206) IEC 60559 requires that the built-in relational operators raise the “invalid” floating-point exception if
the operands compare unordered, as an error indicator for programs written without consideration of
NaNs; the result in these cases is false.

§7.12.14.2 Library 239

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns
Theisgreaterequal macro returns the value ©f) >= (y)
7.12.14.3 Thasless macro
Synopsis
#include <math.h>
int isless(real-floating x, real-floating y);
Description
The isless macro determines whether its first argument is less than its second
argument. The value abless(x, y) is always equal tdx) < (y) ; however,
unlike (x) < (y) , isless(x,y) does not raise the “invalid” floating-point

exception wherx andy are unordered.
Returns

Theisless macro returns the value) < (y)
7.12.14.4 Thaslessequal macro

Synopsis
#include <math.h>
int islessequal(real-floating x, real-floating y);
Description
Theislessequal macro determines whether its first argument is less than or equal to
its second argument. The value @flessequal(x,y) is always equal to
x) <=(y) : however, unlikgx) <= (y) , islessequal(x, y) does not raise

the “invalid” floating-point exception wher andy are unordered.
Returns

Theislessequal macro returns the value ©f) <= (y)

7.12.14.5 Thaslessgreater macro
Synopsis

#include <math.h>

int islessgreater(real-floating x, real-floating y);
Description
The islessgreater macro determines whether its first argument is less than or
greater than its second argument. T$lessgreater(x, y) macro is similar to
< || X > (y) ; however,islessgreater(x, y) does not raise

the “invalid” floating-point exception wher andy are unordered (nor does it evaluate
andy twice).

240 Library §7.12.14.5

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

Theislessgreater macro returns the value ©f) < (y) || (X) > (y)
7.12.14.6 Thasunordered macro

Synopsis

#include <math.h>
int isunordered(real-floating x, real-floating y);

Description
Theisunordered macro determines whether its arguments are unordered.
Returns

Theisunordered macro returns 1 if its arguments are unordered and O otherwise.

§7.12.14.6 Library 241

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.13 Nonlocal jumps<setjmp.h>

The headeksetjmp.h> defines the macrsetimp , and declares one function and
one type, for bypassing the normal function call and return discifiiihe.

The type declared is
jmp_buf

which is an array type suitable for holding the information needed to restore a calling
environment. The environment of a call to g&tjmp macro consists of information
sufficient for a call to théongjmp function to return execution to the correct block and
invocation of that block, were it called recursively. It does not include the state of the
floating-point status flags, of open files, or of any other component of the abstract
machine.

It is unspecified whethesetimp is a macro or an identifier declared with external
linkage. If a macro definition is suppressed in order to access an actual function, or a
program defines an external identifier with the naetgmp , the behavior is undefined.

7.13.1 Save calling environment
7.13.1.1 Thesetjimp macro
Synopsis

#include <setjmp.h>
int setimp(jmp_buf env);

Description

Thesetjimp macro saves its calling environment injitgo_buf argument for later use
by thelongjmp function.

Returns

If the return is from a direct invocation, teetjmp macro returns the value zero. If the
return is from a call to theongjmp function, thesetimp macro returns a nonzero
value.

Environmental limits
An invocation of thesetimp macro shall appear only in one of the following contexts:

— the entire controlling expression of a selection or iteration statement;

207) These functions are useful for dealing with unusual conditions encountered in a low-level function of
a program.

242 Library §7.13.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— one operand of a relational or equality operator with the other operand an integer
constant expression, with the resulting expression being the entire controlling
expression of a selection or iteration statement;

— the operand of a unary operator with the resulting expression being the entire
controlling expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly vasd td.

If the invocation appears in any other context, the behavior is undefined.
7.13.2 Restore calling environment

7.13.2.1 Thdongjmp function

Synopsis

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Description

Thelongjmp function restores the environment saved by the most recent invocation of
the setimp macro in the same invocation of the program with the corresponding
jmp_buf argument. If there has been no such invocation, or if the function containing
the invocation of theetjimp macro has terminated execui8flin the interim, or if the
invocation of thesetimp macro was within the scope of an identifier with variably
modified type and execution has left that scope in the interim, the behavior is undefined.

All accessible objects have values, and all other components of the abstract #i#chine
have state, as of the time tlmgjmp function was called, except that the values of
objects of automatic storage duration that are local to the function containing the
invocation of the correspondirggtimp macro that do not have volatile-qualified type
and have been changed between #egmp invocation andlongimp call are
indeterminate.

Returns

After longijmp is completed, program execution continues as if the corresponding
invocation of thesetimp macro had just returned the value specifiedvAly . The
longjmp function cannot cause tleetjimp macro to return the value O;vAl is O,
thesetjimp macro returns the value 1.

208) For example, by executingraturn statement or because anothengjmp call has caused a
transfer to a&etjmp invocation in a function earlier in the set of nested calls.

209) This includes, but is not limited to, the floating-point status flags and the state of open files.

§7.13.2.1 Library 243

5

ISO/IEC 9899:1999 (E)

EXAMPLE Thelongjmp

244

#include <setjmp.h>
jmp_buf buf;

void g(int n);

void h(int n);

intn =6;

void f(void)

{
int x[n];
setjmp(buf);
g(n);

}

void g(int n)

{
int a[n];
h(n);

}

void h(int n)

{
int b[n];

function that returns control back to the point of #etimp
might cause memory associated with a variable length array object to be squandered.

1

b

longjmp(buf, 2); /I

valid: f is not terminated

may remain allocated

may remain allocated

might cause memory loss

Library

©ISO/IEC

invocation

§7.13.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.14 Signal handling<signal.h>

The headeksignal.h> declares a type and two functions and defines several macros,
for handling variousignals(conditions that may be reported during program execution).

The type defined is
sig_atomic _t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as
an atomic entity, even in the presence of asynchronous interrupts.

The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with
the second argument to, and the return value okigmal function, and whose values
compare unequal to the address of any declarable function; and the following, which
expand to positive integer constant expressions withitgpeand distinct values that are

the signal numbers, each corresponding to the specified condition:

SIGABRT abnormal termination, such as is initiated bydbert function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation
resulting in overflow

SIGILL detection of an invalid function image, such as an invalid instruction
SIGINT receipt of an interactive attention signal

SIGSEGYV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit
calls to theraise function. Additional signals and pointers to undeclarable functions,
with macro definitions beginning, respectively, with the let®l& and an uppercase
letter or with SIG_ and an uppercase lettéf) may also be specified by the
implementation. The complete set of signals, their semantics, and their default handling
is implementation-defined; all signal numbers shall be positive.

210) See “future library directions” (7.26.9). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation,
and termination.

§7.14 Library 245

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.14.1 Specify signal handling
7.14.1.1 Thesignal function
Synopsis

#include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description

Thesignal function chooses one of three ways in which receipt of the signal number
sig is to be subsequently handled. If the valuduoic is SIG_DFL, default handling

for that signal will occur. If the value déinc is SIG_IGN, the signal will be ignored.
Otherwise,func shall point to a function to be called when that signal occurs. An
invocation of such a function because of a signal, or (recursively) of any further functions
called by that invocation (other than functions in the standard library), is cadigaa
handler.

When a signal occurs arfdnc points to a function, it is implementation-defined
whether the equivalent ofsignal(sig, SIG_DFL); is executed or the
implementation prevents some implementation-defined set of signals (at least including
sig) from occurring until the current signal handling has completed; in the case of
SIGILL , the implementation may alternatively define that no action is taken. Then the
equivalent of(*func)(sig); is executed. If and when the function returns, if the
value ofsig is SIGFPE, SIGILL , SIGSEGV or any other implementation-defined
value corresponding to a computational exception, the behavior is undefined; otherwise
the program will resume execution at the point it was interrupted.

If the signal occurs as the result of calling #imrt or raise function, the signal
handler shall not call theaise function.

If the signal occurs other than as the result of callingbioet or raise function, the
behavior is undefined if the signal handler refers to any object with static storage duration
other than by assigning a value to an object declaredlasle sig_atomic_t , or

the signal handler calls any function in the standard library other thambidwe

function, the_Exit function, or thesignal function with the first argument equal to

the signal number corresponding to the signal that caused the invocation of the handler.
Furthermore, if such a call to tleggnal function results in &1G_ERR return, the

value oferrno is indeterminaté?)

At program startup, the equivalent of
signal(sig, SIG_IGN);

211) If any signal is generated by an asynchronous signal handler, the behavior is undefined.

246 Library §7.14.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

may be executed for some signals selected in an implementation-defined manner; the
equivalent of

signal(sig, SIG_DFL);
is executed for all other signals defined by the implementation.
The implementation shall behave as if no library function callsiteal function.
Returns

If the request can be honored, gignal function returns the value déinc for the
most recent successful calldignal for the specified signalg . Otherwise, a value of
SIG_ERRIs returned and a positive value is storedrmo .

Forward references: theabort function (7.20.4.1), thexit function (7.20.4.3), the
_Exit function (7.20.4.4).

7.14.2 Send signal
7.14.2.1 Theaise function
Synopsis

#include <signal.h>
int raise(int sig);

Description

Theraise function carries out the actions described in 7.14.1.1 for the Ssgnallf a
signal handler is called, thhaise function shall not return until after the signal handler
does.

Returns

Theraise function returns zero if successful, nonzero if unsuccessful.

§7.14.2.1 Library 247

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.15 Variable arguments<stdarg.h>

The headerxstdarg.h> declares a type and defines four macros, for advancing
through a list of arguments whose number and types are not known to the called function
when it is translated.

A function may be called with a variable number of arguments of varying types. As
described in 6.9.1, its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will be deggnaitsch

this description.

The type declared is
va_list

which is an object type suitable for holding information needed by the macros
va_start ,va_ arg , va_end, andva_copy . If access to the varying arguments is
desired, the called function shall declare an object (generally referredai iasthis
subclause) having typea_list . The objectap may be passed as an argument to
another function; if that function invokes tiva_arg macro with parameteap, the
value ofap in the calling function is indeterminate and shall be passed teathend

macro prior to any further referenceap.?'?

7.15.1 Variable argument list access macros

Theva _start andva _arg macros described in this subclause shall be implemented
as macros, not functions. It is unspecified whetlaeicopy andva_end are macros or
identifiers declared with external linkage. If a macro definition is suppressed in order to
access an actual function, or a program defines an external identifier with the same name,
the behavior is undefined. Each invocation of ¥estart andva_copy macros

shall be matched by a corresponding invocation ofviaeend macro in the same
function.

7.15.1.1 Theva_arg macro
Synopsis
#include <stdarg.h>
type va_arg(va_list ap, type;
Description
Theva_arg macro expands to an expression that has the specified type and the value of

the next argument in the call. The paramedpr shall have been initialized by the
va_start or va_copy macro (without an intervening invocation of tha_ end

212) It is permitted to create a pointer toa list and pass that pointer to another function, in which
case the original function may make further use of the original list after the other function returns.

248 Library §7.15.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

macro for the samap). Each invocation of thea_arg macro modifieap so that the

values of successive arguments are returned in turn. The paraypetshall be a type

name specified such that the type of a pointer to an object that has the specified type can
be obtained simply by postfixing*ato type If there is no actual next argument, or if
typeis not compatible with the type of the actual next argument (as promoted according
to the default argument promotions), the behavior is undefined, except for the following
cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer
type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.
Returns

The first invocation of thea_arg macro after that of thea_start macro returns the
value of the argument after that specifiedpaymN. Successive invocations return the
values of the remaining arguments in succession.

7.15.1.2 Theva_copy macro
Synopsis

#include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description

Theva_copy macro initializedest as a copy oérc , as if theva_start macro had
been applied talest followed by the same sequence of uses ofvthearg macro as
had previously been used to reach the present state ofNeither theva_copy nor

va_start macro shall be invoked to reinitializeest without an intervening
invocation of theva_end macro for the samdest .

Returns
Theva_copy macro returns no value.
7.15.1.3 Theva_end macro
Synopsis
#include <stdarg.h>
void va_end(va_list ap);
Description
The va_end macro facilitates a normal return from the function whose variable
argument list was referred to by the expansion ovthestart macro, or the function

containing the expansion of thha_copy macro, that initialized thea_list ap. The
va_end macro may modifyap so that it is no longer usable (without being reinitialized

§7.15.1.3 Library 249

ISO/IEC 9899:1999 (E) ©ISO/IEC

by theva_start orva_copy macro). If there is no corresponding invocation of the
va_start or va_copy macro, or if theva_end macro is not invoked before the
return, the behavior is undefined.

Returns
Theva_end macro returns no value.
7.15.1.4 Theva_start macro
Synopsis
#include <stdarg.h>
void va_start(va_list ap, parmN);
Description
Theva_start macro shall be invoked before any access to the unnamed arguments.

Theva_start macro initializesap for subsequent use by thha_arg andva_end
macros. Neither thea_start norva_copy macro shall be invoked to reinitializp
without an intervening invocation of tvla_end macro for the samap.

The parameteparmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the). If the parameter
parmNis declared with theegister storage class, with a function or array type, or
with a type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

Returns

Theva_start macro returns no value.

EXAMPLE The functionfl gathers into an array a list of arguments that are pointers to strings (but not
more tharlMAXARG&rguments), then passes the array as a single argument to fdactibime number of
pointers is specified by the first argumentito

#include <stdarg.h>
#define MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

250 Library §7.15.1.4

©ISO/IEC ISO/IEC 9899:1999 (E)

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}
Each call td1 is required to have visible the definition of the function or a declaration such as
void f1(int, ...);

The functionf3 is similar, but saves the status of the variable argument list after the indicated number of
arguments; aftef2 has been called once with the whole list, the trailing part of the list is gathered again
and passed to functida .

#include <stdarg.h>
#define MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{
va_list ap, ap_save;
char *array[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs) {
array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4_after)
va_copy(ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

/I Now process the saved copy.

n_ptrs -= f4_after;
ptr_no = 0;
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);

§7.15.1.4 Library 251

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.16 Boolean type and valuesstdbool.h>
The headexstdbool.h> defines four macros.
The macro

bool
expands to Bool .

The remaining three macros are suitable for uséfin preprocessing directives. They
are

true

which expands to the integer constant 1,
false

which expands to the integer constant 0, and
___bool _true false are defined

which expands to the integer constant 1.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then
redefine the macrdmool , true , andfalse .23

213) See “future library directions” (7.26.7).

252 Library 8§7.16

©ISO/IEC ISO/IEC 9899:1999 (E)

7.17 Common definitions<stddef.h>

The following types and macros are defined in the standard hestiddef.n> . Some
are also defined in other headers, as noted in their respective subclauses.

The types are
ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;
size t

which is the unsigned integer type of the result osiheof operator; and
wchar_t

which is an integer type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the supported locales; the
null character shall have the code value zero and each member of the basic character set
shall have a code value equal to its value when used as the lone character in an integer
character constant.

The macros are
NULL

which expands to an implementation-defined null pointer constant; and
offsetof(type member-designatdr

which expands to an integer constant expression that hasiggd , the value of
which is the offset in bytes, to the structure member (designategimper-designatgy
from the beginning of its structure (designatedypg. The type and member designator
shall be such that given

static type t;

then the expressiof(t. member-designatprevaluates to an address constant. (If the
specified member is a bit-field, the behavior is undefined.)

Forward references: localization (7.11).

§7.17 Library 253

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.18 Integer types<stdint.h>

The headekstdint.h> declares sets of integer types having specified widths, and
defines corresponding sets of mactt®. It also defines macros that specify limits of
integer types corresponding to types defined in other standard headers.

Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

Corresponding macros specify limits of the declared types and construct suitable
constants.

For each type described herein that the implementation pré¢#estdint.h> shall

declare that typedef name and define the associated macros. Conversely, for each type
described herein that the implementation does not prowsigint.h> shall not
declare that typedef name nor shall it define the associated macros. An implementation
shall provide those types described as “required”, but need not provide any of the others
(described as “optional”).

7.18.1 Integer types

When typedef names differing only in the absence or presence of thauimteldefined,
they shall denote corresponding signed and unsigned types as described in 6.2.5; an
implementation providing one of these corresponding types shall also provide the other.

In the following descriptions, the symhdirepresents an unsigned decimal integer with
no leading zeros (e.g., 8 or 24, but not 04 or 048).

214) See “future library directions” (7.26.8).

215) Some of these types may denote implementation-defined extended integer types.

254 Library §7.18.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.18.1.1 Exact-width integer types

The typedef namat N_t designates a signed integer type with wibithno padding
bits, and a two’s complement representation. Timt8_t denotes a signed integer
type with a width of exactly 8 bits.

The typedef namaint N_t designates an unsigned integer type with wNthThus,
uint24_t denotes an unsigned integer type with a width of exactly 24 bits.

These types are optional. However, if an implementation provides integer types with
widths of 8, 16, 32, or 64 bits, it shall define the corresponding typedef names.

7.18.1.2 Minimum-width integer types

The typedef nammt_least N_t designates a signed integer type with a width of at
leastN, such that no signed integer type with lesser size has at least the specified width.
Thus,int_least32_t denotes a signed integer type with a width of at least 32 bits.

The typedef namaint_least N_t designhates an unsigned integer type with a width

of at leastN, such that no unsigned integer type with lesser size has at least the specified
width. Thus,uint_least16 t denotes an unsigned integer type with a width of at
least 16 bits.

The following types are required:

int_least8 t uint_least8_t

int_least16 _t uint_least16 _t
int_least32_t uint_least32_t
int_least64 _t uint_least64 t

All other types of this form are optional.
7.18.1.3 Fastest minimum-width integer types

Each of the following types designates an integer type that is usually¥$3testperate
with among all integer types that have at least the specified width.

The typedef namiat_fast N_t designates the fastest signed integer type with a width
of at leasN. The typedef nameint_fast N_t designates the fastest unsigned integer
type with a width of at lea$d.

216) The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear
grounds for choosing one type over another, it will simply pick some integer type satisfying the
signedness and width requirements.

§7.18.1.3 Library 255

ISO/IEC 9899:1999 (E) ©ISO/IEC

The following types are required:

int_fast8_t uint_fast8_t

int_fast16 t uint_fast16 t
int_fast32_t uint_fast32_t
int_fast64 t uint_fast64 t

All other types of this form are optional.
7.18.1.4 Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid
pointer tovoid can be converted to this type, then converted back to pointeido,
and the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer tovoid can be converted to this type, then converted back to pointeido,
and the result will compare equal to the original pointer:

uintptr_t
These types are optional.
7.18.1.5 Greatest-width integer types

The following type designates a signed integer type capable of representing any value of
any signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t
These types are required.
7.18.2 Limits of specified-width integer types

The following object-like macrés” specify the minimum and maximum limits of the
types declared imstdint.h> . Each macro name corresponds to a similar type name in
7.18.1.

Each instance of any defined macro shall be replaced by a constant expression suitable
for use in#if preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to

217) C++ implementations should define these macros only wh&TDC_LIMIT_MACROSSs defined
before<stdint.h> is included.

256 Library §7.18.2

©ISO/IEC ISO/IEC 9899:1999 (E)

the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign,
except where stated to be exactly the given value.

7.18.2.1 Limits of exact-width integer types

— minimum values of exact-width signed integer types
INTN_MIN exactly —(2N™)

— maximum values of exact-width signed integer types
INTN_MAX exactly 21 -1

— maximum values of exact-width unsigned integer types
UINTN_MAX exactly -1

7.18.2.2 Limits of minimum-width integer types

— minimum values of minimum-width signed integer types
INT_LEASTN_MIN -2Vt -1)

— maximum values of minimum-width signed integer types
INT_LEASTN_MAX 2N1-1

— maximum values of minimum-width unsigned integer types
UINT_LEASTN_MAX 2N -1

7.18.2.3 Limits of fastest minimum-width integer types

— minimum values of fastest minimum-width signed integer types
INT_FASTN_MIN -2N1-1)

— maximum values of fastest minimum-width signed integer types
INT_FASTN_MAX 2N 1-1

— maximum values of fastest minimum-width unsigned integer types
UINT_FASTN_MAX 2N -1

7.18.2.4 Limits of integer types capable of holding object pointers

— minimum value of pointer-holding signed integer type

INTPTR_MIN -2*-1)
— maximum value of pointer-holding signed integer type
INTPTR_MAX 215-1

§7.18.2.4 Library 257

ISO/IEC 9899:1999 (E) ©ISO/IEC

— maximum value of pointer-holding unsigned integer type
UINTPTR_MAX 2161

7.18.2.5 Limits of greatest-width integer types

— minimum value of greatest-width signed integer type
INTMAX_MIN -(2%2-1)

— maximum value of greatest-width signed integer type
INTMAX_MAX 2%-1

— maximum value of greatest-width unsigned integer type
UINTMAX_MAX 2%4-1

7.18.3 Limits of other integer types

The following object-like macrés® specify the minimum and maximum limits of
integer types corresponding to types defined in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for use
in #if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign.

— limits of ptrdiff_t

PTRDIFF_MIN -65535

PTRDIFF_MAX +65535
— limits of sig_atomic_t

SIG_ATOMIC_MIN see below

SIG_ATOMIC_MAX see below
— limit of size_t

SIZE_MAX 65535
— limits of wchar _t

WCHAR_MIN see below

WCHAR_MAX see below

218) C++ implementations should define these macros only wh&TDC_LIMIT_MACROSSs defined
before<stdint.h> is included.

258 Library §7.18.3

©ISO/IEC ISO/IEC 9899:1999 (E)

— limits of wint_t

WINT_MIN see below
WINT_MAX see below

If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of
SIG_ATOMIC_MiINshall be no greater than —127 and the valu8lGf ATOMIC_MAX
shall be no less than 127; otherwiskg,_atomic_t is defined as an unsigned integer
type, and the value ofSIG_ATOMIC MIN shall be 0 and the value of
SIG_ATOMIC_MAXshall be no less than 255.

If wchar_t (see 7.17) is defined as a signed integer type, the valWeCé{AR_MIN
shall be no greater than —127 and the valugV@HAR_MA3hall be no less than 127;
otherwise, wchar_t is defined as an unsigned integer type, and the value of
WCHAR_MiIshall be 0 and the value W{CHAR_MAshall be no less than 255

If wint t (see 7.24) is defined as a signed integer type, the vaM&NT_MIN shall
be no greater than —32767 and the valudNT_MAXshall be no less than 32767;
otherwisewint_t is defined as an unsigned integer type, and the valwdNT_MIN
shall be 0 and the value WINT_MAXshall be no less than 65535.

7.18.4 Macros for integer constants

The following function-like macrdd® expand to integer constants suitable for
initializing objects that have integer types corresponding to types defined in
<stdint.h> . Each macro name corresponds to a similar type name in 7.18.1.2 or
7.18.1.5.

The argument in any instance of these macros shall be a decimal, octal, or hexadecimal
constant (as defined in 6.4.4.1) with a value that does not exceed the limits for the
corresponding type.

7.18.4.1 Macros for minimum-width integer constants

Each of the following macros expands to an integer constant having the value specified
by its argument and a type with at least the specified #dith.

The macrdNT N_C(valug shall expand to a signed integer constant with the specified
value and typent least N_t. The macroUINTN_C(valug shall expand to an
unsigned integer constant with the specified value and uymeleast N _t. For

219) The value$VCHAR_MIMNndWCHAR_MAG6 not necessarily correspond to members of the extended
character set.

220) C++ implementations should define these macros only wh&TDC_CONSTANT_MACR@S
defined beforestdint.h> is included.

221) For each name described in 7.18.1.2 that the implementation provides, the corresponding macro in
this subclause is required.

§7.18.4.1 Library 259

ISO/IEC 9899:1999 (E) ©ISO/IEC

example, ifuint_least64 t is a name for the typensigned long long int ,
thenUINT64_C(0x123) might expand to the integer const@riL23ULL .

7.18.4.2 Macros for greatest-width integer constants

The following macro expands to an integer constant having the value specified by its
argument and the typetmax_t

INTMAX_C(value

The following macro expands to an integer constant having the value specified by its
argument and the typentmax_t

UINTMAX_C(value

260 Library §7.18.4.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19 Input/output <stdio.h>
7.19.1 Introduction

The headekstdio.h> declares three types, several macros, and many functions for
performing input and output.

The types declared aseze t (described in 7.17);
FILE

which is an object type capable of recording all the information needed to control a
stream, including its file position indicator, a pointer to its associated buffer (if any), an
error indicator that records whether a read/write error has occurred, amtdcof-file
indicator that records whether the end of the file has been reached; and

fpos_t

which is an object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.

The macros ardULL (described in 7.17);

_IOFBF
_IOLBF
_IONBF

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to theetvbuf function;

BUFSIZ

which expands to an integer constant expression that is the size of the buffer used by the
setbuf function;

EOF

which expands to an integer constant expression, withinypeand a negative value, that
is returned by several functions to indicated-of-file that is, no more input from a
stream;

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that
the implementation guarantees can be open simultaneously;

FILENAME_MAX

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold the longest file name string that the implementation

§7.19.1 Library 261

ISO/IEC 9899:1999 (E) ©ISO/IEC

guarantees can be operféd:
L_tmpnam

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated bymghream
function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to théseek function;

TMP_MAX

which expands to an integer constant expression that is the maximum number of unique
file names that can be generated byttlgnam function;

stderr
stdin
stdout

which are expressions of type “pointer ®&ILE ” that point to the FILE objects
associated, respectively, with the standard error, input, and output streams.

The headexwchar.h> declares a number of functions useful for wide character input
and output. The wide character input/output functions described in that subclause
provide operations analogous to most of those described here, except that the
fundamental units internal to the program are wide characters. The external
representation (in the file) is a sequence of “generalized” multibyte characters, as
described further in 7.19.3.

The input/output functions are given the following collective terms:

— Thewide character input functions- those functions described in 7.24 that perform
input into wide characters and wide strinfgetwc |, fgetws , getwc , getwchar
fwscanf ,wscanf , viwscanf , andvwscanf .

— Thewide character output functiors- those functions described in 7.24 that perform
output from wide characters and wide stringputwc , fputws , putwc ,
putwchar , fwprintf , wprintf | vfwprintf , andvwprintf

222) If the implementation imposes no practical limit on the length of file name strings, the value of
FILENAME_MAXshould instead be the recommended size of an array intended to hold a file name
string. Of course, file name string contents are subject to other system-specific constraints; therefore
all possible strings of lengfRILENAME_MAXannot be expected to be opened successfully.

262 Library §7.19.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— Thewide character input/output functiors the union of theingetwc function, the
wide character input functions, and the wide character output functions.

— The byte input/output functions— those functions described in this subclause that
perform input/output: fgetc , fgets , fprintt , fputc , fputs , fread ,
fscanf , fwrite , getc , getchar , gets , printf , putc , putchar , puts ,
scanf , ungetc , viprintf , viscanf ,vprintf | andvscanf .

Forward references: files (7.19.3), thdseek function (7.19.9.2), streams (7.19.2), the
tmpnam function (7.19.4.4)swchar.h> (7.24).

7.19.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into
logical datastreams whose properties are more uniform than their various inputs and
outputs. Two forms of mapping are supported, fext streamsand for binary
streams??®)

A text stream is an ordered sequence of characters composelinggoeach line
consisting of zero or more characters plus a terminating new-line character. Whether the
last line requires a terminating new-line character is implementation-defined. Characters
may have to be added, altered, or deleted on input and output to conform to differing
conventions for representing text in the host environment. Thus, there need not be a one-
to-one correspondence between the characters in a stream and those in the external
representation. Data read in from a text stream will necessarily compare equal to the data
that were earlier written out to that stream only if: the data consist only of printing
characters and the control characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a new-line character.
Whether space characters that are written out immediately before a new-line character
appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream shall compare equal to the data that were
earlier written out to that stream, under the same implementation. Such a stream may,
however, have an implementation-defined number of null characters appended to the end
of the stream.

Each stream has amientation After a stream is associated with an external file, but
before any operations are performed on it, the stream is without orientation. Once a wide
character input/output function has been applied to a stream without orientation, the

223) An implementation need not distinguish between text streams and binary streams. In such an
implementation, there need be no new-line characters in a text stream nor any limit to the length of a
line.

§7.19.2 Library 263

ISO/IEC 9899:1999 (E) ©ISO/IEC

stream becomeswide-oriented streamSimilarly, once a byte input/output function has
been applied to a stream without orientation, the stream becoby¢s-ariented stream
Only a call to thefreopen function or thefwide function can otherwise alter the
orientation of a stream. (A successful calfreopen removes any orientatiod3"

Byte input/output functions shall not be applied to a wide-oriented stream and wide

character input/output functions shall not be applied to a byte-oriented stream. The
remaining stream operations do not affect, and are not affected by, a stream’s orientation,
except for the following additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both
text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that
leaves the file position indicator prior to the end-of-file, a wide character output
function can overwrite a partial multibyte character; any file contents beyond the
byte(s) written are henceforth indeterminate.

Each wide-oriented stream has an associaestate t object that stores the current
parse state of the stream. A successful cafb&ipos stores a representation of the
value of thismbstate t object as part of the value of tifigos t object. A later
successful call tdsetpos using the same storddos_t value restores the value of
the associatethbstate t object as well as the position within the controlled stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the nBidfS1Z shall be at
least 256.

Forward references: thefreopen function (7.19.5.4), théwide function (7.24.3.5),
mbstate_ t (7.25.1), thefgetpos function (7.19.9.1), thefsetpos function
(7.19.9.3).

224) The three predefined streastdin , stdout , andstderr are unoriented at program startup.

264 Library §7.19.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.3 Files

A stream is associated with an external file (which may be a physical devicpgting

a file, which may involvereatinga new file. Creating an existing file causes its former
contents to be discarded, if necessary. If a file can support positioning requests (such as a
disk file, as opposed to a terminal), theffil@ position indicatorassociated with the
stream is positioned at the start (character number zero) of the file, unless the file is
opened with append mode in which case it is implementation-defined whether the file
position indicator is initially positioned at the beginning or the end of the file. The file
position indicator is maintained by subsequent reads, writes, and positioning requests, to
facilitate an orderly progression through the file.

Binary files are not truncated, except as defined in 7.19.5.3. Whether a write on a text
stream causes the associated file to be truncated beyond that point is implementation-
defined.

When a stream ignbuffered characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and
transmitted to or from the host environment as a block. When a strdalty isuffered
characters are intended to be transmitted to or from the host environment as a block when
a buffer is filled. When a stream ime buffered characters are intended to be
transmitted to or from the host environment as a block when a new-line character is
encountered. Furthermore, characters are intended to be transmitted as a block to the host
environment when a buffer is filled, when input is requested on an unbuffered stream, or
when input is requested on a line buffered stream that requires the transmission of
characters from the host environment. Support for these characteristics is
implementation-defined, and may be affected viss#tbuf andsetvbuf functions.

A file may be disassociated from a controlling streanslbgingthe file. Output streams

are flushed (any unwritten buffer contents are transmitted to the host environment) before
the stream is disassociated from the file. The value of a pointef~tbEa object is
indeterminate after the associated file is closed (including the standard text streams).
Whether a file of zero length (on which no characters have been written by an output
stream) actually exists is implementation-defined.

The file may be subsequently reopened, by the same or another program execution, and
its contents reclaimed or modified (if it can be repositioned at its start). héie

function returns to its original caller, or if thexit function is called, all open files are
closed (hence all output streams are flushed) before program termination. Other paths to
program termination, such as calling thbort function, need not close all files

properly.

The address of tHelLE object used to control a stream may be significant; a copy of a
FILE object need not serve in place of the original.

§7.19.3 Library 265

10

11

12

13

14

ISO/IEC 9899:1999 (E) ©ISO/IEC

At program startup, three text streams are predefined and need not be opened explicitly
— standard input (for reading conventional input)standard output(for writing
conventional output), andtandard error (for writing diagnostic output). As initially
opened, the standard error stream is not fully buffered; the standard input and standard
output streams are fully buffered if and only if the stream can be determined not to refer
to an interactive device.

Functions that open additional (nontemporary) files requite aame which is a string.
The rules for composing valid file names are implementation-defined. Whether the same
file can be simultaneously open multiple times is also implementation-defined.

Although both text and binary wide-oriented streams are conceptually sequences of wide
characters, the external file associated with a wide-oriented stream is a sequence of
multibyte characters, generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte
encodings valid for use internal to the program).

— Afile need not begin nor end in the initial shift stze.

Moreover, the encodings used for multibyte characters may differ among files. Both the
nature and choice of such encodings are implementation-defined.

The wide character input functions read multibyte characters from the stream and convert
them to wide characters as if they were read by successive callsfgetiie function.

Each conversion occurs as if by a call tontitatowc function, with the conversion state
described by the stream’s ownbstate t object. The byte input functions read
characters from the stream as if by successive calls fgatee function.

The wide character output functions convert wide characters to multibyte characters and
write them to the stream as if they were written by successive calls tiputvec

function. Each conversion occurs as if by a call towhetomb function, with the
conversion state described by the stream’s awstate t object. The byte output
functions write characters to the stream as if by successive callsfputte function.

In some cases, some of the byte input/output functions also perform conversions between
multibyte characters and wide characters. These conversions also occur as if by calls to
thembrtowc andwcrtomb functions.

An encoding error occurs if the character sequence presented to the underlying
mbrtowc function does not form a valid (generalized) multibyte character, or if the code
value passed to the underlyimgrtomb does not correspond to a valid (generalized)

225) Setting the file position indicator to end-of-file, as wihek(file, 0, SEEK_END) , has
undefined behavior for a binary stream (because of possible trailing null characters) or for any stream
with state-dependent encoding that does not assuredly end in the initial shift state.

266 Library §7.19.3

15

©ISO/IEC ISO/IEC 9899:1999 (E)

multibyte character. The wide character input/output functions and the byte input/output
functions store the value of the ma&t.SEQ in errno if and only if an encoding error
occurs.

Environmental limits

The value ofFOPEN_MAXshall be at least eight, including the three standard text
streams.

Forward references: theexit function (7.20.4.3), thégetc function (7.19.7.1), the
fopen function (7.19.5.3), thefputc function (7.19.7.3), thesetbuf function
(7.19.5.5), thesetvbuf function (7.19.5.6), thefgetwc function (7.24.3.1), the
fputwc function (7.24.3.3), conversion state (7.24.6), thdbrtowc function
(7.24.6.3.2), thevcrtomb function (7.24.6.3.3).

7.19.4 Operations on files
7.19.4.1 Theaemove function
Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

Theremove function causes the file whose name is the string pointed fiebgme

to be no longer accessible by that name. A subsequent attempt to open that file using that
name will fail, unless it is created anew. If the file is open, the behavior oérinave

function is implementation-defined.

Returns
Theremove function returns zero if the operation succeeds, nonzero if it fails.
7.19.4.2 Theaename function
Synopsis
#include <stdio.h>
int rename(const char *old, const char *new);
Description

Therename function causes the file whose name is the string pointed ¢ddbyto be
henceforth known by the name given by the string pointed toevy. The file named
old is no longer accessible by that name. If a file named by the string pointedéaby
exists prior to the call to thename function, the behavior is implementation-defined.

§7.19.4.2 Library 267

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

Therename function returns zero if the operation succeeds, nonzero if it*f&ilin
which case if the file existed previously it is still known by its original name.

7.19.4.3 Thampfile function
Synopsis

#include <stdio.h>
FILE *tmpfile(void);

Description

Thetmpfile function creates a temporary binary file that is different from any other

existing file and that will automatically be removed when it is closed or at program
termination. If the program terminates abnormally, whether an open temporary file is
removed is implementation-defined. The file is opened for updaté'wiith* mode.

Recommended practice

It should be possible to open at ledbMP_MAXemporary files during the lifetime of the
program (this limit may be shared witmpnam) and there should be no limit on the
number simultaneously open other than this limit and any limit on the number of open
files FOPEN_MA)X

Returns

Thetmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, timpfile function returns a null pointer.

Forward references: thefopen function (7.19.5.3).
7.19.4.4 Thampnam function
Synopsis

#include <stdio.h>
char *tmpnam(char *s);

Description

Thetmpnam function generates a string that is a valid file name and that is not the same
as the name of an existing fi#) The function is potentially capable of generating

226) Among the reasons the implementation may caugetlaene function to fail are that the file is open
or that it is necessary to copy its contents to effectuate its renaming.

227) Files created using strings generated bytriigam function are temporary only in the sense that
their names should not collide with those generated by conventional naming rules for the
implementation. It is still necessary to use thmove function to renove such files when their use
is ended, and before program termination.

268 Library §7.19.4.4

©ISO/IEC ISO/IEC 9899:1999 (E)

TMP_MAXlifferent strings, but any or all of them may already be in use by existing files
and thus not be suitable return values.

Thetmpnam function generates a different string each time it is called.
The implementation shall behave as if no library function callsnipmam function.
Returns

If no suitable string can be generated, thipnam function returns a null pointer.
Otherwise, if the argument is a null pointer, thgpnam function leaves its result in an
internal static object and returns a pointer to that object (subsequent call$nqiaen
function may modify the same object). If the argument is not a null pointer, it is assumed
to point to an array of at least tmpnam char s; thetmpnam function writes its result

in that array and returns the argument as its value.

Environmental limits
The value of the macfbMP_MAXhall be at least 25.
7.19.5 File access functions
7.19.5.1 Thdclose function
Synopsis
#include <stdio.h>
int fclose(FILE *stream);
Description

A successful call to thiglose function causes the stream pointed tcstrgam to be

flushed and the associated file to be closed. Any unwritten buffered data for the stream
are delivered to the host environment to be written to the file; any unread buffered data
are discarded. Whether or not the call succeeds, the stream is disassociated from the file
and any buffer set by theetbuf or setvbuf function is disassociated from the stream

(and deallocated if it was automatically allocated).

Returns

Thefclose function returns zero if the stream was successfully closedO&1if any
errors were detected.

7.19.5.2 Thdflush function
Synopsis

#include <stdio.h>
int filush(FILE *stream);

87.19.5.2 Library 269

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

If stream points to an output stream or an update stream in which the most recent
operation was not input, tHush function causes any unwritten data for that stream

to be delivered to the host environment to be written to the file; otherwise, the behavior is
undefined.

If stream is a null pointer, thdflush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

Thefflush function sets the error indicator for the stream and reta@®isif a write
error occurs, otherwise it returns zero.

Forward references: thefopen function (7.19.5.3).
7.19.5.3 Thdopen function
Synopsis

#include <stdio.h>
FILE *fopen(const char * restrict filename,
const char * restrict mode);

Description

Thefopen function opens the file whose name is the string pointed fdemame
and associates a stream with it.

The argumenimode points to a string. If the string is one of the following, the file is
open in the indicated mode. Otherwise, the behavior is undéfifled.

r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

w+ truncate to zero length or create text file for update

a+ append; open or create text file for update, writing at end-of-file

228) If the string begins with one of theoale sequences, the implementation might choose to ignore the
remaining characters, or it might use them to select different kinds of a file (some of which might not
conform to the properties in 7.19.2).

270 Library §7.19.5.3

©ISO/IEC ISO/IEC 9899:1999 (E)

r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mod&' (as the first character in timeode argument) fails if
the file does not exist or cannot be read.

Opening a file with append mod@’'(as the first character in thmode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to iseek function. In some implementations, opening

a binary file with append modé&/(as the second or third character in thevalist of

mode argument values) may initially position the file position indicator for the stream
beyond the last data written, because of null character padding.

When a file is opened with update mode (as the second or third character in the
abovelist of mode argument values), both input and output may be performed on the
associated stream. However, output shall not be directly followed by input without an
intervening call to thefflush function or to a file positioning functiorfsgek ,
fsetpos , orrewind), and input shall not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters end-
of-file. Opening (or creating) a text file with update mode may instead open (or create) a
binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

Thefopen function returns a pointer to the object controlling the stream. If the open
operation failsfopen returns a null pointer.

Forward references: file positioning functions (7.19.9).
7.19.5.4 Thdreopen function
Synopsis

#include <stdio.h>

FILE *freopen(const char * restrict filename,
const char * restrict mode,
FILE * restrict stream);

Description

Thefreopen function opens the file whose name is the string pointed fitelyame
and associates the stream pointed tetbyam with it. Themode argument is used just

§7.19.54 Library 271

ISO/IEC 9899:1999 (E) ©ISO/IEC

as in thefopen function?29)

If flename is a null pointer, théreopen function attempts to change the mode of

the stream to that specified byode, as if the name of the file currently associated with

the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances.

Thefreopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file is ignored. The error and end-of-file indicators for the
stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,
freopen returns the value aftream .

7.19.5.5 Thesetbuf function
Synopsis

#include <stdio.h>
void setbuf(FILE * restrict stream,
char * restrict buf);

Description

Except that it returns no value, tBetbuf function is equivalent to theetvbuf
function invoked with the valueslOFBF for mode andBUFSIZ for size , or (if buf
is a null pointer), with the valued ONBF for mode.

Returns

Thesetbuf function returns no value.

Forward references: thesetvbuf function (7.19.5.6).
7.19.5.6 Thesetvbuf function

Synopsis

#include <stdio.h>

int setvbuf(FILE * restrict stream,
char * restrict buf,
int mode, size_t size);

229) The primary use of tfeeopen function is to change the file associated with a standard text stream
(stderr ,stdin , orstdout), as those identifiers need not be modifiable Ivalues to which the value
returned by théopen function may be assigned.

272 Library §7.19.5.6

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

Thesetvbuf function may be used only after the stream pointed tstlgam has

been associated with an open file and before any other operation (other than an
unsuccessful call tsetvbuf) is performed on the stream. The argumembde
determines howtream will be buffered, as follows: IOFBF causes input/output to be

fully buffered; |IOLBF causes input/output to be line bufferedlONBF causes
input/output to be unbuffered. buf is not a null pointer, the array it points to may be
used instead of a buffer allocated by setvbuf functior’? and the argumersize
specifies the size of the array; otherwisge may determine the size of a buffer
allocated by thesetvbuf function. The contents of the array at any time are
indeterminate.

Returns

Thesetvbuf function returns zero on success, or nonzero if an invalid value is given
for mode or if the request cannot be honored.

7.19.6 Formatted input/output functions

The formatted input/output functions shall behave as if there is a sequence point after the
actions associated with each specfiét.

7.19.6.1 Thdprintf function
Synopsis

#include <stdio.h>
int fprintf(FILE * restrict stream,
const char * restrict format, ...);

Description

Thefprintf function writes output to the stream pointed tosbhgam , under control

of the string pointed to byormat that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored. fphetf function returns when

the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte
characters (no%9, which are copied unchanged to the output stream; and conversion

230) The buffer has to have a lifetime at least as great as the open stream, so the stream should be closed
before a buffer that has automatic storage duration is deallocated upon block exit.

231) Thefprintf functions perform writes to memory for thenspecifier.

§7.19.6.1 Library 273

ISO/IEC 9899:1999 (E) ©ISO/IEC

specifications, each of which results in fetching zero or more subsequent arguments,
converting them, if applicable, according to the corresponding conversion specifier, and
then writing the result to the output stream.

Each conversion specification is introduced by the char¥ctsiter the% the following
appear in sequence:

— Zero or moreflags (in any order) that modify the meaning of the conversion
specification.

— An optional minimuntield width If the converted value has fewer characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk(described later) or a decimal integ&?

— An optionalprecisionthat gives the minimum number of digits to appear fordthe,
0, U, X, and X conversions, the number of digits to appear after the decimal-point
character foma, A, e, E, f, andF conversions, the maximum number of significant
digits for theg andG conversions, or the maximum number of bytes to be written for
s conversions. The precision takes the form of a perigdidllowed either by an
asterisk* (described later) or by an optional decimal integer; if only the period is
specified, the precision is taken as zero. If a precision appears with any other
conversion specifier, the behavior is undefined.

— An optionallength modifietthat specifies the size of the argument.
— A conversion specifiectharacter that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, annt argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken #ag
followed by a positive field width. A negative precision argument is taken as if the
precision were omitted.

The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not

232) Note thab is taken as a flag, not as the beginning of a field width.

274 Library §7.19.6.1

©ISO/IEC ISO/IEC 9899:1999 (E)

space

specified 33%)

If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space is prefixed to the result. dptveand+ flags
both appear, thepaceflag is ignored.

The result is converted to an “alternative form”. Fwmiconversion, it increases

the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed)x Far X)
conversion, a nonzero result iéas (or 0X) prefixed to it. Fom, A e, E, f,F, g,

and G conversions, the result of converting a floating-point number always
contains a decimal-point character, even if no digits follow it. (Normally, a
decimal-point character appears in the result of these conversions only if a digit
follows it.) For g and G conversions, trailing zeros ar®t removed from the
result. For other conversions, the behavior is undefined.

Ford, i, 0, u, x, X a, A e, E f,F g, andG conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width rather
than performing space padding, except when converting an infinity or NaN. If the
0 and - flags both appear, th@ flag is ignored. Fod, i, 0, u, x, and X
conversions, if a precision is specified, tBeflag is ignored. For other
conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh

| (ell)

Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted tesigned char orunsigned char before printing); or that

a following n conversion specifier applies to a pointer tsigned char
argument.

Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted tshort int or unsigned short int before printing);

or that a followingn conversion specifier applies to a pointer tehart

int argument.

Specifies that a followingd, i , 0, u, X, or X conversion specifier applies to a
long int or unsigned long int argument; that a following
conversion specifier applies to a pointer twrg int argument; that a

233) The results of all floating conversions of a negative zero, and of negative values that round to zero,
include a minus sign.

§7.19.6.1 Library 275

ISO/IEC 9899:1999 (E) ©ISO/IEC

following ¢ conversion specifier applies tovant t argument; that a
following s conversion specifier applies to a pointer towahar t
argument; or has no effect on a followiagA, e, E, f , F, g, or Gconversion

specifier.

Il (ell-ell) Specifies that a followingd, i , 0, u, X, or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a
following n conversion specifier applies to a pointer toray long int
argument.

j Specifies that a following, i , 0, u, X, or X conversion specifier applies to

anintmax_t oruintmax_t argument; or that a following conversion
specifier applies to a pointer to mtmax_t argument.

z Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
size_ t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding tgize_t argument.

t Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer tgtediff t
argument.

L Specifies that a followin@, A, e, E, f, F, g, or G conversion specifier

applies to dong double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d,i Theint argument is converted to signed decimal in the $tyjéddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

o,u,x,X Theunsigned int argument is converted to unsigned octgl (insigned
decimal (1), or unsigned hexadecimal notationdr X) in the styledddd; the
letters abcdef are used forx conversion and the letteBCDEFfor X
conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

276 Library §7.19.6.1

©ISO/IEC ISO/IEC 9899:1999 (E)

f,F A double argument representing a floating-point number is converted to
decimal notation in the style-]ddd. ddd where the number of digits after
the decimal-point character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is zero and tlag is
not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to
the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[- Jinf or [-]infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[-]nan or [-]nan(n-char-sequenge — which style, and the meaning of
any n-char-sequencds implementation-defined. THe conversion specifier
producesINF, INFINITY , or NANinstead ofinf , infinity , Or nan,
respectively?34

e,E A double argument representing a floating-point number is converted in the
style [-]d. dddexdd, where there is one digit (which is nonzero if the
argument is nonzero) before the decimal-point character and the number of
digits after it is equal to the precision; if the precision is missing, it is taken as
6; if the precision is zero and theflag is not specified, no decimal-point
character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier produces a number wighinstead of e
introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the
value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

9,G A double argument representing a floating-point number is converted in
stylef ore (or in styleF or E in the case of & conversion specifier), with
the precision specifying the number of significant digits. If the precision is
zero, it is taken as 1. The style used depends on the value converted; style
(or E) is used only if the exponent resulting from such a conversion is less
than —4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional portion of the result unless theflag is specified; a
decimal-point character appears only if it is followed by a digit.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

234) When applied to infinite and NaN values, the, andspaceflag characters have their usual meaning;
the# andO flag characters have no effect.

§7.19.6.1 Library 277

ISO/IEC 9899:1999 (E) ©ISO/IEC

aA

A double argument representing a floating-point number is converted in the
style [-]Oxh. hhhhp+d, where there is one hexadecimal digit (which is
nonzero if the argument is a normalized floating-point number and is
otherwise unspecified) before the decimal-point charattend the number

of hexadecimal digits after it is equal to the precision; if the precision is
missing and=LT_RADIX is a power of 2, then the precision is sufficient for
an exact representation of the value; if the precision is missing and
FLT_RADIX is not a power of 2, then the precision is sufficient to
distinguist#3®) values of typedouble , except that trailing zeros may be
omitted; if the precision is zero and theflag is not specified, no decimal-
point character appears. The lettalxdef are used fom conversion and

the lettersABCDEHRor A conversion. Theé\ conversion specifier produces a
number withX and P instead ofx andp. The exponent always contains at
least one digit, and only as many more digits as necessary to represent the
decimal exponent of 2. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

If no | length modifier is present, that argument is converted to an
unsigned char , and the resulting character is written.

If an| length modifier is present, thent_t argument is converted as if by
anls conversion specification with no precision and an argument that points
to the initial element of a two-element arrayvathar_t , the first element
containing thewint_t argument to théc conversion specification and the
second a null wide character.

If nol length modifier is present, the argument shall be a pointer to the initial
element of an array of character ty3&. Characters from the array are
written up to (but not including) the terminating null character. If the
precision is specified, no more than that many bytes are written. If the
precision is not specified or is greater than the size of the array, the array shall
contain a null character.

If an| length modifier is present, the argument shall be a pointer to the initial

235) Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so

that subsequent digits align to nibble (4-bit) boundaries.

236) The precisionp is sufficient to distinguish values of the source typd @ > b" whereb is

FLT_RADIX andn is the number of badedigits in the significand of the source type. A smafler
might suffice depending on the implementation’s scheme for determining the digit to the left of the
decimal-point character.

237) No special provisions are made for multibyte characters.

278

Library §7.19.6.1

10

11

12

©ISO/IEC ISO/IEC 9899:1999 (E)

element of an array ofichar_t type. Wide characters from the array are
converted to multibyte characters (each as if by a call towidtréomb
function, with the conversion state described bynalostate t object
initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide
character. If a precision is specified, no more than that many bytes are
written (including shift sequences, if any), and the array shall contain a null
wide character if, to equal the multibyte character sequence length given by
the precision, the function would need to access a wide character one past the
end of the array. In no case is a partial multibyte character wfitten.

p The argument shall be a pointer Yoid . The value of the pointer is
converted to a sequence of printing characters, in an implementation-defined
manner.

n The argument shall be a pointer to signed integer into whiglriiten the
number of characters written to the output stream so far by this call to
fprintf . No argument is converted, but one is consumed. If the conversion
specification includes any flags, a field width, or a precision, the behavior is
undefined.

% A % character is written. No argument is converted. The complete

conversion specification shall B&%

If a conversion specification is invalid, the behavior is undefifiddf any argument is
not the correct type for the corresponding conversion specification, the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

Fora andA conversions, iFLT_RADIX is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

238) Redundant shift sequences may result if multibyte characters have a state-dependent encoding.
239) See “future library directions” (7.26.9).

§7.19.6.1 Library 279

13

14

15

16

17

18

ISO/IEC 9899:1999 (E) ©ISO/IEC

Fore, E, f, F, g, andGconversions, if the number of significant decimal digits is at most
DECIMAL_DIG, then the result should be correctly round®d. If the number of
significant decimal digits is more th&ECIMAL_DIG but the source value is exactly
representable withDECIMAL_DIG digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strinds< U, both havingDECIMAL_DIG significant digits; the value

of the resultant decimal stririgy should satisfy. < D < U, with the extra stipulation that

the error should have a correct sign for the current rounding direction.

Returns

Thefprintf function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

Environmental limits

The number of characters that can be produced by any single conversion shall be at least
4095.

EXAMPLE 1 To print a date and time in the form “Sunday, July 3, 10:02” followedrby five decimal
places:

#include <math.h>
#include <stdio.h>
*
char *weekday, *month; I pointers to strings
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5\n", 4 * atan(1.0));

EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the
members of the extended character set that consist of more than one byte each consist of exactly two bytes,
the first of which is denoted here bpa and the second by an uppercase letter.

Given the following wide string with length seven,
static wchar_t wstr[] = L" X Yabc Z W"p O g
the seven calls

fprintf(stdout, "|1234567890123|\n");
fprintf(stdout, "|%213Is|\n", wstr);
fprintf(stdout, "|%-13.9Is]\n", wstr);
fprintf(stdout, "|%13.10Is|\n", wstr);
fprintf(stdout, "|%13.11Is|\n", wstr);
fprintf(stdout, "|%13.15Is|\n", &wstr[2]);
fprintf(stdout, "|%213lc|\n", wstr[5]);

240) For binary-to-decimal conversion, the result format’s values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and in
the case of fixed-point conversion by the source value as well.

280 Library §7.19.6.1

©ISO/IEC ISO/IEC 9899:1999 (E)

will print the following seven lines:

[1234567890123|

| XoYabciZ W|
| XY abcd |
| X oYabcZ|
| XoYabciZ W|
| a bcZ W|
|]

Forward references: conversion state (7.24.6), tinertomb function (7.24.6.3.3).
7.19.6.2 Thdscanf function
Synopsis

#include <stdio.h>
int fscanf(FILE * restrict stream,
const char * restrict format, ...);

Description

Thefscanf function reads input from the stream pointed testsgam , under control

of the string pointed to biprmat that specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters, an ordinary multibyte character (neitfi@or a white-space character), or a
conversion specification. Each conversion specification is introduced by the ch#racter
After the% the following appear in sequence:

— An optional assignment-suppressing charatter

— An optional nonzero decimal integer that specifies the maximum field width (in
characters).

— An optionallength modifietthat specifies the size of the receiving object.
— A conversion specifietharacter that specifies the type of conversion to be applied.

Thefscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can

§7.19.6.2 Library 281

10

11

ISO/IEC 9899:1999 (E) ©ISO/IEC

be read.

A directive that is an ordinary multibyte character is executed by reading the next
characters of the stream. If any of those characters differ from the ones composing the
directive, the directive fails and the differing and subsequent characters remain unread.
Similarly, if end-of-file, an encoding error, or a read error prevents a character from being
read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

Input white-space characters (as specified bysgpgace function) are skipped, unless
the specification includes[a c, or n specifie?*!)

An input item is read from the stream, unless the specification includespacifier. An

input item is defined as the longest sequence of input characters which does not exceed
any specified field width and which is, or is a prefix of, a matching input seqtféhce.

The first character, if any, after the input item remains unread. If the length of the input
item is zero, the execution of the directive fails; this condition is a matching failure unless
end-of-file, an encoding error, or a read error prevented input from the stream, in which
case it is an input failure.

Except in the case of%specifier, the input item (or, in the case dadirective, the

count of input characters) is converted to a type appropriate to the conversion specifier. If
the input item is not a matching sequence, the execution of the directive fails: this
condition is a matching failure. Unless assignment suppression was indicatéd te a

result of the conversion is placed in the object pointed to by the first argument following
the format argument that has not already received a conversion result. If this object
does not have an appropriate type, or if the result of the conversion cannot be represented
in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a followind, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointersmned char orunsigned char

h Specifies that a followind, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer short int or unsigned short
int .

241) These white-space characters are not counted against a specified field width.

242)fscanf pushes back at most one input character onto the input stream. Therefore, some sequences
that are acceptable strtod , strtol , etc., are unacceptablefezanf .

282 Library §7.19.6.2

12

©ISO/IEC

| (ell)

Il (ell-ell)

ISO/IEC 9899:1999 (E)

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer tong int or unsigned long

int ; that a followinga, A, e, E, f, F, g, or Gconversion specifier applies to
an argument with type pointer tiouble ; or that a followingc, s, or [
conversion specifier applies to an argument with type pointechar t .

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer tong long int or unsigned
long long int

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointeritdtmax_t or uintmax_t

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer size t or the corresponding signed
integer type.

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer fardiff t or the corresponding
unsigned integer type.

Specifies that a followin@g, A, e, E, f, F, g, or G conversion specifier
applies to an argument with type pointetdog double

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d

§7.19.6.2

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofdfiwl function with the value 10

for the base argument. The corresponding argument shall be a pointer to
signed integer.

Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of thetol function with the value O for the
base argument. The corresponding argument shall be a pointer to signed
integer.

Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence ofdfnmul function with the value 8

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofstinwul function with the value 10

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Library 283

ISO/IEC 9899:1999 (E) ©ISO/IEC

a,ef,g

Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence oftitteul function with the value

16 for thebase argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence ofrtib
function. The corresponding argument shall be a pointer to floating.

Matches a sequence of characters of exactly the number specified by the field
width (1 if no field width is present in the directivéy)

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence. No null character is added.

If an| length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character in the
sequence is converted to a wide character as if by a call imkhewc
function, with the conversion state described bynalostate t object
initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of
wchar_t large enough to accept the resulting sequence of wide characters.
No null wide character is added.

Matches a sequence of non-white-space chargéfdrs.

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an| length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call tontsetowc function, with

the conversion state described bymabstate_t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an arrawdfar_t large enough

to accept the sequence and the terminating null wide character, which will be
added automatically.

243) No special provisions are made for multibyte characters in the matching rules used,tsy; tred|
conversion specifiers — the extent of the input field is determined on a byte-by-byte basis. The
resulting field is nevertheless a sequence of multibyte characters that begins in the initial shift state.

284

Library §7.19.6.2

©ISO/IEC ISO/IEC 9899:1999 (E)

[Matches a nonempty sequence of characters from a set of expected characters
(thescanser?*?

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an| length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call tontetowc function, with

the conversion state described byrabstate t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an arrawadfar_t large enough

to accept the sequence and the terminating null wide character, which will be
added automatically.

The conversion specifier includes all subsequent characters forthat

string, up to and including the matching right bracket The characters
between the brackets (tkeanlis) compose the scanset, unless the character
after the left bracket is a circumfleX)(in which case the scanset contains all
characters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins Wjth or [*] , the right
bracket character is in the scanlist and the next following right bracket
character is the matching right bracket that ends the specification; otherwise
the first following right bracket character is the one that ends the
specification. If & character is in the scanlist and is not the first, nor the
second where the first character ,aor the last character, the behavior is
implementation-defined.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced ¥p tuaversion of
the fprintf function. The corresponding argument shall be a pointer to a
pointer tovoid . The input item is converted to a pointer value in an
implementation-defined manner. If the input item is a value converted earlier
during the same program execution, the pointer that results shall compare
equal to that value; otherwise the behavior of9dpronversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of characters read from
the input stream so far by this call to fiseanf function. Execution of a
%n directive does not increment the assignment count returned at the
completion of execution of thiscanf function. No argument is converted,
but one is consumed. If the conversion specification includes an assignment-
suppressing character or a field width, the behavior is undefined.

§7.19.6.2 Library 285

13
14

15

16

17

18

ISO/IEC 9899:1999 (E) ©ISO/IEC

% Matches a singléb character; no conversion or assignment occurs. The
complete conversion specification shallb®o

If a conversion specification is invalid, the behavior is undefiffed.

The conversion specifiels, E, F, G and X are also valid and behave the same as,
respectivelya, e, f , g, andx.

Trailing white space (including new-line characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly
determinable other than via thendirective.

Returns

Thefscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

EXAMPLE 1 The call:

#include <stdio.h>

L |

int n, i; float x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:
25 54.32E-1 thompson

will assign ton the value 3, toi the value 25, tox the value 5.432, and toame the sequence
thompson\0 .

EXAMPLE 2 The call:

#include <stdio.h>

L |

int i; float x; char name[50];

fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, hame);
with input:

56789 0123 56a72

will assign toi the value 56 and ta the value 789.0, will ski123, and will assign taname the
sequenc®6\0 . The next character read from the input stream wili be

244) See “future library directions” (7.26.9).

286 Library §7.19.6.2

19

20

21

22

23

©ISO/IEC ISO/IEC 9899:1999 (E)

EXAMPLE 3 To accept repeatedly frostdin a quantity, a unit of measure, and an item name:

#include <stdio.h>

ro
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s", &quant, units, item);
fscanf(stdin,"%*[™\n]");

} while (!feof(stdin) && !ferror(stdin));

If the stdin stream contains the following lines:

2 quarts of oil

-12.8degrees Celsius

lots of luck

10.0LBS of

dirt

100ergs of energy

the execution of the ale xample will be analogous to the following assignments:

guant = 2; strcpy(units, "quarts"); strcpy(item, "oil");

count = 3;

quant = -12.8; strcpy(units, "degrees");

count=2; //"C" fails to match"o"

count=0; //"I" fails to match "%f"

quant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");
count = 3;

count =0; // "100e" fails to match "%f"

count = EOF;

EXAMPLE 4 In:

#include <stdio.h>

A

intdl, d2, n1, n2, i;

i = sscanf("123", "%d%n%n%d", &d1, &nl, &n2, &d2);

the value 123 is assignedd@ and the value 3 tol. Becaus@bncan never get an input failure the value
of 3 is also assigned t&®. The value ofi2 is not affected. The value 1 is assigned to

EXAMPLE 5 In these examples, multibyte characters do have a state-dependent encoding, and the
members of the extended character set that consist of more than one byte each consist of exactly two bytes,
the first of which is denoted here byza and the second by an uppercase letter, but are only recognized as
such when in the alternate shift state. The shift sequences are denotaddy, in which the first causes

entry into the alternate shift state.

After the call:

#include <stdio.h>
o

char str[50];
fscanf(stdin, "a%s", str);

with the input line:
atoXaYl bc

§7.19.6.2 Library 287

24

25

26

ISO/IEC 9899:1999 (E) ©ISO/IEC

str will contain 1oXoYi\0 assuming that none of the bytes of the shift sequences (or of the multibyte
characters, in the more general case) appears to be a single-byte white-space character.

In contrast, after the call:

#include <stdio.h>
#include <stddef.h>

r*

wchar_t wstr[50];
fscanf(stdin, "a%ls", wstr);

with the same input lineystr will contain the two vide characters that correspond§ andoY and a
terminating null wide character.

However, the call:

#include <stdio.h>

#include <stddef.h>

x

wchar_t wstr[50];

fscanf(stdin, "a 1 OX1 %Is", wstr);
with the same input line will return zero due to a matching failure against seguence in the format
string.
Assuming that the first byte of the multibyte charact¥ris the same as the first byte of the multibyte
characteny, after the call:

#include <stdio.h>

#include <stddef.h>

r*

wchar_t wstr[50];

fscanf(stdin, "a 1aY1 %Is", wstr);

with the same input line, zero will again be returned,dbdin will be left with a partially consumed
multibyte character.

Forward references: the strtod , strtof , andstrtold functions (7.20.1.3), the
strtol , strtoll , Strtoul , andstrtoull functions (7.20.1.4), conversion state
(7.24.6), thavcrtomb function (7.24.6.3.3).

7.19.6.3 Theprintf function
Synopsis

#include <stdio.h>
int printf(const char * restrict format, ...);

Description

Theprintf function is equivalent téprintf with the argumenstdout interposed
before the arguments pointf

Returns

Theprintf function returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

288 Library §7.19.6.3

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.6.4 Thescanf function
Synopsis

#include <stdio.h>

int scanf(const char * restrict format, ...);
Description

The scanf function is equivalent tdscanf with the argumenstdin interposed
before the arguments scanf .

Returns

Thescanf function returns the value of the ma&O®Fif an input failure occurs before

any conversion. Otherwise, thecanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

7.19.6.5 Thesnprintf function
Synopsis

#include <stdio.h>
int snprintf(char * restrict s, size_tn,
const char * restrict format, ...);

Description

Thesnprintf function is equivalent téprintf |, except that the output is written into

an array (specified by argumesjtrather than to a stream. rifis zero, nothing is written,

and s may be a null pointer. Otherwise, output characters beyondnthest are
discarded rather than being written to the array, and a null character is written at the end
of the characters actually written into the array. If copying takes place between objects
that overlap, the behavior is undefined.

Returns

Thesnprintf function returns the number of characters that would have been written
hadn been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less.than

7.19.6.6 Thesprintf function
Synopsis

#include <stdio.h>
int sprintf(char * restrict s,
const char * restrict format, ...);

§7.19.6.6 Library 289

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

Thesprintf function is equivalent téprintf , except that the output is written into

an array (specified by the argumseiptrather than to a stream. A null character is written

at the end of the characters written; it is not counted as part of the returned value. If
copying takes place between objects that overlap, the behavior is undefined.

Returns

The sprintf function returns the number of characters written in the array, not
counting the terminating null character, or a negative value if an encoding error occurred.

7.19.6.7 Thesscanf function
Synopsis

#include <stdio.h>
int sscanf(const char * restrict s,
const char * restrict format, ...);

Description

The sscanf function is equivalent tdscanf , except that input is obtained from a
string (specified by the argumesy rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for teeanf function. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thgcanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.8 Thevfprintf function
Synopsis
#include <stdarg.h>
#include <stdio.h>

int vfprintf(FILE * restrict stream,
const char * restrict format,

va_list arg);
Description
The viprintf function is equivalent tdprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). The vfprintf function does not invoke the

290 Library 8§7.19.6.8

©ISO/IEC ISO/IEC 9899:1999 (E)

va_end macro?*®)
Returns
The viprintf function returns the number of characters transmitted, or a negative

value if an output or encoding error occurred.
EXAMPLE The following shows the use of théprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)

{

va_list args;

va_start(args, format);

/I print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
/I print out remainder of message
vfprintf(stderr, format, args);

va_end(args);

}
7.19.6.9 Thevfscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int viscanf(FILE * restrict stream,
const char * restrict format,
va_list arg);

Description

The viscanf function is equivalent tdscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevfscanf function does not invoke the

va_end macro?*®

Returns

Thevfscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thiscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

245) As the functionsvfprintf , viscanf |, vprintf , vscanf , vsnprintf , vsprintf , and
vsscanf invoke theva_arg macro, the value airg after the return is indeterminate.

§7.19.6.9 Library 291

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.19.6.10 Thevprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char * restrict format,
va_list arg);

Description

The vprintf function is equivalent tgorintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). The vprintf function does not invoke the

va_end macro?*®)

Returns

Thevprintf function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

7.19.6.11 Thevscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vscanf(const char * restrict format,
va_list arg);

Description

Thevscanf function is equivalent tecanf , with the variable argument list replaced
by arg , which shall have been initialized by tlva_start macro (and possibly
subsequentva_arg calls). Thevscanf function does not invoke thea end

macro?4®)

Returns

The vscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thgcanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

292 Library §7.19.6.11

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.6.12 Thevsnprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char * restrict s, size_t n,
const char * restrict format,
va_list arg);

Description

The vsnprintf function is equivalent tenprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevsnprintf function does not invoke the
va_end macro?®®) If copying takes place between objects that overlap, the behavior is
undefined.

Returns

Thevsnprintf function returns the number of characters that would have been written
hadn been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less.than

7.19.6.13 Thessprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char * restrict s,
const char * restrict format,
va_list arg);

Description

The vsprintf function is equivalent tesprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha _start macro (and
possibly subsequenta_arg calls). Thevsprintf function does not invoke the
va_end macro®*® If copying takes place between objects that overlap, the behavior is
undefined.

Returns

The vsprintf function returns the number of characters written in the array, not
counting the terminating null character, or a negative value if an encoding error occurred.

§7.19.6.13 Library 293

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.19.6.14 Thessscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsscanf(const char * restrict s,
const char * restrict format,
va_list arg);

Description

The vsscanf function is equivalent tosscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevsscanf function does not invoke the

va_end macro?*®)

Returns

Thevsscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thgcanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.7 Character input/output functions
7.19.7.1 Thdgetc function
Synopsis

#include <stdio.h>
int fgetc(FILE *stream));

Description

If the end-of-file indicator for the input stream pointed tosbyam is not set and a
next character is present, tigetc function obtains that character as wamsigned

char converted to annt and advances the associated file position indicator for the
stream (if defined).

Returns

If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-
of-file indicator for the stream is set and fgetc function return€EOF. Otherwise, the

fgetc function returns the next character from the input stream pointedstrdam .

If a read error occurs, the error indicator for the stream is set aridetfte function
returnsEOFR246)

246) An end-of-file and a read error can be distinguished by use fefotheandferror ~ functions.

294 Library §7.19.7.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.7.2 Thdgets function
Synopsis
#include <stdio.h>

char *fgets(char * restrict s, int n,
FILE * restrict stream);

Description

Thefgets function reads at most one less than the number of characters specified by
from the stream pointed to kstream into the array pointed to by. No additional
characters are read after a new-line character (which is retained) or after end-of-file. A
null character is written immediately after the last character read into the array.

Returns

The fgets function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and &
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

7.19.7.3 Thdputc function
Synopsis

#include <stdio.h>

int fputc(int ¢, FILE *stream);
Description

The fputc function writes the character specified ©y(converted to amunsigned

char) to the output stream pointed to Isyream , at the position indicated by the
associated file position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was opened
with append mode, the character is appended to the output stream.

Returns

The fputc function returns the character written. If a write error occurs, the error
indicator for the stream is set afpditc returnsEOF

7.19.7.4 Thdputs function
Synopsis

#include <stdio.h>
int fputs(const char * restrict s,
FILE * restrict stream);

§7.19.74 Library 295

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

The fputs function writes the string pointed to ks/ to the stream pointed to by
stream . The terminating null character is not written.

Returns

The fputs function returnsEOF if a write error occurs; otherwise it returns a
nonnegative value.

7.19.7.5 Theetc function
Synopsis

#include <stdio.h>
int getc(FILE *stream));

Description

Thegetc function is equivalent tégetc , except that if it is implemented as a macro, it
may evaluatestream more than once, so the argument should never be an expression
with side effects.

Returns

The getc function returns the next character from the input stream pointed to by
stream . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getc returnsEOF If a read error occurs, the error indicator for the stream is set and
getc returnsEOF

7.19.7.6 Thegetchar function
Synopsis

#include <stdio.h>
int getchar(void);

Description
Thegetchar function is equivalent tgetc with the argumenstdin
Returns

Thegetchar function returns the next character from the input stream pointed to by
stdin . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getchar returnseOF If a read error occurs, the error indicator for the stream is set and
getchar returnsEOF

296 Library §7.19.7.6

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.7.7 Theyets function
Synopsis

#include <stdio.h>
char *gets(char *s);

Description

Thegets function reads characters from the input stream pointed sbdoy , into the

array pointed to by, until end-of-file is encountered or a new-line character is read.
Any new-line character is discarded, and a null character is written immediately after the
last character read into the array.

Returns

The gets function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

7.19.7.8 Theputc function
Synopsis

#include <stdio.h>
int putc(int ¢, FILE *stream);

Description

Theputc function is equivalent tfputc , except that if it is implemented as a macro, it
may evaluatestream more than once, so that argument should never be an expression
with side effects.

Returns

The putc function returns the character written. If a write error occurs, the error
indicator for the stream is set apdtc returnseOF

7.19.7.9 Theputchar function
Synopsis

#include <stdio.h>
int putchar(int c);

Description
Theputchar function is equivalent tputc with the second argumesidout
Returns

The putchar function returns the character written. If a write error occurs, the error
indicator for the stream is set apdtchar returnsEOF

§7.19.7.9 Library 297

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.19.7.10 Theputs function
Synopsis

#include <stdio.h>
int puts(const char *s);

Description

Theputs function writes the string pointed to Byto the stream pointed to lsydout
and appends a new-line character to the output. The terminating null character is not
written.

Returns

Theputs function return€EOFif a write error occurs; otherwise it returns a nonnegative
value.

7.19.7.11 Theaungetc function
Synopsis

#include <stdio.h>
int ungetc(int ¢, FILE *stream));

Description

Theungetc function pushes the character specifiedchigonverted to amnsigned

char) back onto the input stream pointed todbseam . Pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed tstbgam) to a file positioning
function fseek , fsetpos , or rewind) discards any pushed-back characters for the
stream. The external storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. Ifutigeetc function is called too many
times on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

If the value ofc equals that of the macEOF, the operation fails and the input stream is
unchanged.

A successful call to thengetc function clears the end-of-file indicator for the stream.

The value of the file position indicator for the stream after reading or discarding all
pushed-back characters shall be the same as it was before the characters were pushed
back. For a text stream, the value of its file position indicator after a successful call to the
ungetc function is unspecified until all pushed-back characters are read or discarded.
For a binary stream, its file position indicator is decremented by each successful call to
the ungetc function; if its value was zero before a call, it is indeterminate after the

298 Library §7.19.7.11

©ISO/IEC ISO/IEC 9899:1999 (E)

call 247

Returns

Theungetc function returns the character pushed back after conversi&@QBif the
operation fails.

Forward references: file positioning functions (7.19.9).
7.19.8 Direct input/output functions

7.19.8.1 Thdread function

Synopsis

#include <stdio.h>

size_t fread(void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

Description

Thefread function reads, into the array pointed to fiily , up to nmembelements
whose size is specified lgize , from the stream pointed to kstream . For each
object,size calls are made to thigetc function and the results stored, in the order
read, in an array afinsigned char exactly overlaying the object. The file position
indicator for the stream (if defined) is advanced by the number of characters successfully
read. If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate. If a partial element is read, its value is indeterminate.

Returns

Thefread function returns the number of elements successfully read, which may be
less thammembif a read error or end-of-file is encounteredsife or nmembis zero,

fread returns zero and the contents of the array and the state of the stream remain
unchanged.

7.19.8.2 Thdwrite function
Synopsis

#include <stdio.h>

size_t fwrite(const void * restrict ptr,

size_t size, size_t nmemb,
FILE * restrict stream);

247) See “future library directions” (7.26.9).

§7.19.8.2 Library 299

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

Thefwrite function writes, from the array pointed to pir , up tonmembelements
whose size is specified lsjze , to the stream pointed to sgream . For each object,

size calls are made to tHfputc function, taking the values (in order) from an array of
unsigned char exactly overlaying the object. The file position indicator for the
stream (if defined) is advanced by the number of characters successfully written. If an
error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

Returns

Thefwrite function returns the number of elements successfully written, which will be
less thannmembonly if a write error is encountered. #ize or nmembis zero,
fwrite returns zero and the state of the stream remains unchanged.

7.19.9 File positioning functions
7.19.9.1 Thdgetpos function
Synopsis

#include <stdio.h>
int fgetpos(FILE * restrict stream,
fpos_t * restrict pos);

Description

The fgetpos function stores the current values of the parse state (if any) and file
position indicator for the stream pointed todigeam in the object pointed to byos .

The values stored contain unspecified information usable bfsetyos function for
repositioning the stream to its position at the time of the call tig#tpos function.

Returns

If successful, thégetpos function returns zero; on failure, tHgetpos function
returns nonzero and stores an implementation-defined positive varaan .

Forward references: thefsetpos function (7.19.9.3).
7.19.9.2 Thdseek function
Synopsis

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description

Thefseek function sets the file position indicator for the stream pointed &irbgm .
If a read or write error occurs, the error indicator for the stream is sé&demid fails.

300 Library §7.19.9.2

©ISO/IEC ISO/IEC 9899:1999 (E)

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by addingffset to the position specified byhence. The specified
position is the beginning of the filewthence is SEEK_SET the current value of the file
position indicator ifSEEK_CURor end-of-file f SEEK_ENDA binary stream need not
meaningfully supportseek calls with awhence value ofSEEK_END

For a text stream, eitheffset shall be zero, ooffset shall be a value returned by
an earlier successful call to tfiell function on a stream associated with the same file
andwhence shall beSEEK_SET

After determining the new position, a successful call tofgbkek function undoes any
effects of theungetc function on the stream, clears the end-of-file indicator for the
stream, and then establishes the new position. After a succesesfil call, the next
operation on an update stream may be either input or output.

Returns

Thefseek function returns nonzero only for a request that cannot be satisfied.
Forward references: theftell ~ function (7.19.9.4).

7.19.9.3 Thdsetpos function

Synopsis

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description

Thefsetpos function sets thenbstate t object (if any) and file position indicator

for the stream pointed to kstream according to the value of the object pointed to by
pos, which shall be a value obtained from an earlier successful call tiyeh@os

function on a stream associated with the same file. If a read or write error occurs, the
error indicator for the stream is set dadtpos fails.

A successful call to thisetpos function undoes any effects of th@getc function

on the stream, clears the end-of-file indicator for the stream, and then establishes the new
parse state and position. After a succestdatpos call, the next operation on an
update stream may be either input or output.

Returns

If successful, thdsetpos function returns zero; on failure, thisetpos function
returns nonzero and stores an implementation-defined positive varaan .

§7.19.9.3 Library 301

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.19.9.4 Thdtell function
Synopsis

#include <stdio.h>
long int ftell(FILE *stream);

Description

Theftell function obtains the current value of the file position indicator for the stream
pointed to bystream . For a binary stream, the value is the number of characters from
the beginning of the file. For a text stream, its file position indicator contains unspecified
information, usable by thiseek function for returning the file position indicator for the
stream to its position at the time of tfiell call; the difference between two such
return values is not necessarily a meaningful measure of the number of characters written
or read.

Returns
If successful, thétell ~ function returns the current value of the file position indicator
for the stream. On failure, thédtell function returns -1L and stores an

implementation-defined positive valuedrrno .
7.19.9.5 Theaewind function
Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to

(void)fseek(stream, OL, SEEK_SET)
except that the error indicator for the stream is also cleared.
Returns

Therewind function returns no value.

302 Library §7.19.95

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.10 Error-handling functions
7.19.10.1 Theclearerr function
Synopsis

#include <stdio.h>
void clearerr(FILE *stream);

Description

Theclearerr function clears the end-of-file and error indicators for the stream pointed
to bystream .

Returns

Theclearerr function returns no value.
7.19.10.2 Thdeof function
Synopsis

#include <stdio.h>
int feof(FILE *stream);

Description
Thefeof function tests the end-of-file indicator for the stream pointed &iregm .
Returns

The feof function returns nonzero if and only if the end-of-file indicator is set for
stream .

7.19.10.3 Thderror function
Synopsis

#include <stdio.h>
int ferror(FILE *stream);

Description

Theferror function tests the error indicator for the stream pointed t&tigyam .
Returns

The ferror function returns nonzero if and only if the error indicator is set for
stream .

§7.19.10.3 Library 303

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.19.10.4 Theperror function
Synopsis

#include <stdio.h>
void perror(const char *s);

Description

The perror function maps the error number in the integer expressiomo to an

error message. It writes a sequence of characters to the standard error stream thus: first
(if s is not a null pointer and the character pointed t® liy not the null character), the

string pointed to bys followed by a colon:() and a space; then an appropriate error
message string followed by a new-line character. The contents of the error message
strings are the same as those returned bgttkeror ~ function with argumengrrmo .

Returns
Theperror function returns no value.

Forward references: thestrerror function (7.21.6.2).

304 Library §7.19.10.4

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20 General utilities<stdlib.h>

The headexstdlib.h> declares five types and several functions of general utility, and
defines several macré&)

The types declared aseze t andwchar_t (both described in 7.17),
div_t
which is a structure type that is the type of the value returned loypwthé&unction,
[div_t
which is a structure type that is the type of the value returned ligithe function, and
lIdiv_t
which is a structure type that is the type of the value returned liigithe function.
The macros defined akJLL (described in 7.17);
EXIT_FAILURE
and
EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the
exit function to return unsuccessful or successful termination status, respectively, to the
host environment;

RAND_MAX

which expands to an integer constant expression that is the maximum value returned by
therand function; and

MB_CUR_MAX

which expands to a positive integer expression with gype t that is the maximum
number of bytes in a multibyte character for the extended character set specified by the
current locale (categotyC_CTYPBH, which is never greater th&tB_LEN_MAX

248) See “future library directions” (7.26.10).

§7.20 Library 305

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.20.1 Numeric conversion functions

The functionsatof , atoi , atol , andatoll need not affect the value of the integer
expressionerrno on an error. If the value of the result cannot be represented, the
behavior is undefined.

7.20.1.1 Theatof function
Synopsis

#include <stdlib.h>
double atof(const char *nptr);

Description

The atof function converts the initial portion of the string pointed torptr to
double representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)
Returns
Theatof function returns the converted value.
Forward references: thestrtod , strtof , andstrtold functions (7.20.1.3).
7.20.1.2 Theatoi , atol ,andatoll functions
Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

long int atol(const char *nptr);

long long int atoll(const char *nptr);

Description

Theatoi , atol , andatoll functions convert the initial portion of the string pointed
to by nptr toint ,long int , andlong long int representation, respectively.
Except for the behavior on error, they are equivalent to

atoi: (int)strtol(nptr, (char *)NULL, 10)
atol: strtol(nptr, (char **)NULL, 10)
atoll: strtoll(nptr, (char *)NULL, 10)

Returns
Theatoi , atol , andatoll functions return the converted value.

Forward references: the strtol , strtoll , strtoul |, and strtoull functions
(7.20.1.4).

306 Library §7.20.1.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20.1.3 Thestrtod , strtof , and strtold functions
Synopsis

#include <stdlib.h>

double strtod(const char * restrict nptr,
char ** restrict endptr);

float strtof(const char * restrict nptr,
char ** restrict endptr);

long double strtold(const char * restrict nptr,
char ** restrict endptr);

Description

Thestrtod , strtof , andstrtold functions convert the initial portion of the string
pointed to bynptr to double , float , and long double representation,
respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified ligspaee function), a
subject sequence resembling a floating-point constant or representing an infinity or NaN;
and a final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, they attempt to convert the subject sequence to a
floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of
the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point
character, then an optional exponent part as defined in 6.4.4.2;

— aOx or 0X, then a nonempty sequence of hexadecimal digits optionally containing a
decimal-point character, then an optional binary exponent part as defined in 6.4.4.2;

— one ofINF or INFINITY , ignoring case
— one ofNANor NAN(n-char-sequenggy , ignoring case in thBlANpart, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs
first) is interpreted as a floating constant according to the rules of 6.4.4.2, except that the

87.20.1.3 Library 307

ISO/IEC 9899:1999 (E) ©ISO/IEC

decimal-point character is used in place of a period, and that if neither an exponent part
nor a decimal-point character appears in a decimal floating point number, or if a binary
exponent part does not appear in a hexadecimal floating point number, an exponent part
of the appropriate type with value zero is assumed to follow the last digit in the string. If
the subject sequence begins with a minus sign, the sequence is interpreted ag4iegated.

A character sequendBIF or INFINITY is interpreted as an infinity, if representable in

the return type, else like a floating constant that is too large for the range of the return
type. A character sequenB&ANor NAN(n-char-sequenggy , is interpreted as a quiet

NaN, if supported in the return type, else like a subject sequence part that does not have
the expected form; the meaning of the n-char sequences is implementation-t&ired.
pointer to the final string is stored in the object pointed temgyptr , provided that

endptr is not a null pointer.

If the subject sequence has the hexadecimal forrFBRMdRADIX is a power of 2, the
value resulting from the conversion is correctly rounded.

In other than théC" locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value aifptr is stored in the object pointed to byndptr , provided
thatendptr is not a null pointer.

Recommended practice

If the subject sequence has the hexadecimal fornFaMdRADIX is not a power of 2,

the result should be one of the two numbers in the appropriate internal format that are
adjacent to the hexadecimal floating source value, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at DE&6StMAL_DIG (defined in
<float.h>) significant digits, the result should be correctly rounded. If the subject
sequenceD has the decimal form and more thBECIMAL_DIG significant digits,
consider the two bounding, adjacent decimal stringsand U, both having
DECIMAL_DIGsignificant digits, such that the valuesLoiD, andU satisfyL <D < U.

The result should be one of the (equal or adjacent) values that would be obtained by
correctly rounding. and U according to the current rounding direction, with the extra
stipulation that the error with respect Bbshould have a correct sign for the current

249) It is unspecified whether a minus-signed sequence is converted to a negative number directly or by
negating the value resulting from converting the corresponding unsigned sequence (see F.5); the two
methods may yield different results if rounding is toward positive or negative infinity. In either case,
the functions honor the sign of zero if floating-point arithmetic supports signed zeros.

250) An implementation may use the n-char sequence to determine extra information to be represented in
the NaN's significand.

308 Library §7.20.1.3

10

©ISO/IEC ISO/IEC 9899:1999 (E)

rounding directiorf>?
Returns

The functions return the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VALHUGE_VALFor HUGE_VALLIs returned (according to the return

type and sign of the value), and the value of the mB&ANGEHSs stored inerrno . If

the result underflows (7.12.1), the functions return a value whose magnitude is no greater
than the smallest normalized positive number in the return type; wiegther acquires

the valueERANGHs implementation-defined.

7.20.1.4 Thestrtol , strtoll , Strtoul , and strtoull functions
Synopsis

#include <stdlib.h>

long int strtol(
const char * restrict nptr,
char ** restrict endptr,
int base);

long long int strtoll(
const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long int strtoul(
const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long long int strtoull(
const char * restrict nptr,
char ** restrict endptr,

int base);
Description
The strtol , strtoll , strtoul , and strtoull functions convert the initial
portion of the string pointed to mptr tolong int ,long long int , unsigned
long int , andunsigned long long int representation, respectively. First,

they decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by iflspace function), a subject sequence
resembling an integer represented in some radix determined by the vhhsegfand a

251) DECIMAL_DIG, defined in<float.h> , should be sufficiently large thatandU will usually round
to the same internal floating value, but if not will round to adjacent values.

8§7.20.1.4 Library 309

ISO/IEC 9899:1999 (E) ©ISO/IEC

final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, they attempt to convert the subject sequence to an
integer, and return the result.

If the value ofbase is zero, the expected form of the subject sequence is that of an
integer constant as described in 6.4.4.1, optionally preceded by a plus or minus sign, but
not including an integer suffix. If the value ledise is between 2 and 36 (inclusive), the
expected form of the subject sequence is a sequence of letters and digits representing an
integer with the radix specified tase , optionally preceded by a plus or minus sign,

but not including an integer suffix. The letters fran(or A) throughz (or Z) are
ascribed the values 10 through 35; only letters and digits whose ascribed values are less
than that obase are permitted. If the value dfase is 16, the charactefx or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter
or digit.

If the subject sequence has the expected form and the vddaseois zero, the sequence

of characters starting with the first digit is interpreted as an integer constant according to
the rules of 6.4.4.1. If the subject sequence has the expected form and the bakes of

is between 2 and 36, it is used as the base for conversion, ascribing to each letter its value
as given above. If the subject sequence begins with a minus sign, the value resulting from
the conversion is negated (in the return type). A pointer to the final string is stored in the
object pointed to bendptr , provided thaendptr is not a null pointer.

In other than théC" locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value afptr is stored in the object pointed to byndptr , provided
thatendptr is not a null pointer.

Returns

The strtol , strtoll , strtoul , and strtoull functions return the converted
value, if any. If no conversion could be performed, zero is returned. If the correct value
is outside the range of representable vall€3NG MIN LONG_MAXLLONG_MIN
LLONG_MAXULONG_MAXor ULLONG_MAXs returned (according to the return type
and sign of the value, if any), and the value of the mBEYANGHEs stored irerrno .

310 Library §7.20.1.4

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20.2 Pseudo-random sequence generation functions
7.20.2.1 Theand function
Synopsis

#include <stdlib.h>
int rand(void);

Description

Therand function computes a sequence of pseudo-random integers in the range O to
RAND_MAX

The implementation shall behave as if no library function callsethé function.
Returns
Therand function returns a pseudo-random integer.
Environmental limits
The value of th&®@AND_MAXnhacro shall be at least 32767.
7.20.2.2 Thesrand function
Synopsis
#include <stdlib.h>
void srand(unsigned int seed);
Description

Thesrand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calland . If srand is then called with the

same seed value, the sequence of pseudo-random numbers shall be repeatdd.isif

called before any calls rand have been made, the same sequence shall be generated
as whersrand is first called with a seed value of 1.

The implementation shall behave as if no library function callsréwed function.
Returns

Thesrand function returns no value.
EXAMPLE The following functions define a portable implementatioreofi andsrand .
static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767

{
next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

§7.20.2.2 Library 311

ISO/IEC 9899:1999 (E) ©ISO/IEC

void srand(unsigned int seed)

{

}
7.20.3 Memory management functions

next = seed;

The order and contiguity of storage allocated by successive calls toallbe

malloc , andrealloc functions is unspecified. The pointer returned if the allocation
succeeds is suitably aligned so that it may be assigned to a pointer to any type of object
and then used to access such an object or an array of such objects in the space allocated
(until the space is explicitly deallocated). The lifetime of an allocated object extends
from the allocation until the deallocation. Each such allocation shall yield a pointer to an
object disjoint from any other object. The pointer returned points to the start (lowest byte
address) of the allocated space. If the space cannot be allocated, a null pointer is
returned. If the size of the space requested is zero, the behavior is implementation-
defined: either a null pointer is returned, or the behavior is as if the size were some
nonzero value, except that the returned pointer shall not be used to access an object.

7.20.3.1 Thecalloc function
Synopsis

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description

Thecalloc function allocates space for an arraynaiembobjects, each of whose size
is size . The space is initialized to all bits z&)

Returns
Thecalloc function returns either a null pointer or a pointer to the allocated space.
7.20.3.2 Thdree function
Synopsis
#include <stdlib.h>
void free(void *ptr);
Description
Thefree function causes the space pointed topby to be deallocated, that is, made

available for further allocation. Iftr is a null pointer, no action occurs. Otherwise, if
the argument does not match a pointer earlier returned bgattee , malloc , or

252) Note that this need not be the same as the representation of floating-point zero or a null pointer
constant.

312 Library §7.20.3.2

©ISO/IEC ISO/IEC 9899:1999 (E)

realloc function, or if the space has been deallocated by a cli#do orrealloc ,
the behavior is undefined.

Returns
Thefree function returns no value.
7.20.3.3 Thamalloc function
Synopsis

#include <stdlib.h>

void *malloc(size_t size);
Description

Themalloc function allocates space for an object whose size is specifieddy and
whose value is indeterminate.

Returns
Themalloc function returns either a null pointer or a pointer to the allocated space.
7.20.3.4 Theealloc function
Synopsis
#include <stdlib.h>
void *realloc(void *ptr, size_t size);
Description

Therealloc function deallocates the old object pointed todily and returns a
pointer to a new object that has the size specifiediby . The contents of the new
object shall be the same as that of the old object prior to deallocation, up to the lesser of
the new and old sizes. Any bytes in the new object beyond the size of the old object have
indeterminate values.

If ptr is a null pointer, theealloc function behaves like thenalloc function for the
specified size. Otherwise, ffitr does not match a pointer earlier returned by the
calloc , malloc , orrealloc function, or if the space has been deallocated by a call
to thefree orrealloc function, the behavior is undefined. If memory for the new
object cannot be allocated, the old object is not deallocated and its value is unchanged.

Returns

Therealloc function returns a pointer to the new object (which may have the same
value as a pointer to the old object), or a null pointer if the new object could not be
allocated.

8§7.20.34 Library 313

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.20.4 Communication with the environment
7.20.4.1 Theabort function
Synopsis

#include <stdlib.h>
void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal
SIGABRTIs being caught and the signal handler does not return. Whether open streams
with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed is implementation-defined. An implementation-defined form of the status
unsuccessful terminatiois returned to the host environment by means of the function
call raise(SIGABRT)

Returns

Theabort function does not return to its caller.
7.20.4.2 Theatexit function

Synopsis

#include <stdlib.h>
int atexit(void (*func)(void));

Description

Theatexit function registers the function pointed to tanc , to be called without
arguments at normal program termination.

Environmental limits

The implementation shall support the registration of at least 32 functions.
Returns

Theatexit function returns zero if the registration succeeds, nonzero if it fails.
Forward references: theexit function (7.20.4.3).

7.20.4.3 Theexit function

Synopsis

#include <stdlib.h>
void exit(int status);

Description

Theexit function causes normal program termination to occur. If more than one call to
theexit function is executed by a program, the behavior is undefined.

314 Library §7.20.4.3

©ISO/IEC ISO/IEC 9899:1999 (E)

First, all functions registered by thagexit function are called, in the reverse order of
their registratiorf>® except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to
any such function, a call to thengjmp function is made that would terminate the call

to the registered function, the behavior is undefined.

Next, all open streams with unwritten buffered data are flushed, all open streams are
closed, and all files created by tinapfile function are removed.

Finally, control is returned to the host environment. If the valustaitis is zero or
EXIT_SUCCESS an implementation-defined form of the stasuscessful terminatiois
returned. If the value ddtatus is EXIT_FAILURE, an implementation-defined form
of the statusunsuccessful terminatiors returned. Otherwise the status returned is
implementation-defined.

Returns

Theexit function cannot return to its caller.
7.20.4.4 The Exit function

Synopsis

#include <stdlib.h>

void _Exit(int status);
Description
The Exit function causes normal program termination to occur and control to be
returned to the host environment. No functions registered bwtthet function or
signal handlers registered by tsignal function are called. The status returned to the
host environment is determined in the same way as foexlie function (7.20.4.3).

Whether open streams with unwritten buffered data are flushed, open streams are closed,
or temporary files are removed is implementation-defined.

Returns

The_Exit function cannot return to its caller.

253) Each function is called as many times as it was registered, and in the correct order with respect to
other registered functions.

§7.20.4.4 Library 315

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.20.4.5 Thegetenv function
Synopsis

#include <stdlib.h>
char *getenv(const char *name);

Description

Thegetenv function searches aenvironment list provided by the host environment,
for a string that matches the string pointed tonbyne. The set of environment names
and the method for altering the environment list are implementation-defined.

The implementation shall behave as if no library function callgétenv function.
Returns

The getenv function returns a pointer to a string associated with the matched list
member. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to titenv function. If the specifiechame cannot

be found, a null pointer is returned.

7.20.4.6 Thesystem function
Synopsis

#include <stdlib.h>
int system(const char *string);

Description

If string is a null pointer, thesystem function determines whether the host
environment has aommand processolf string is not a null pointer, theystem

function passes the string pointed to &tying to that command processor to be
executed in a manner which the implementation shall document; this might then cause the
program callingsystem to behave in a non-conforming manner or to terminate.

Returns

If the argument is a null pointer, trgystem function returns nonzero only if a
command processor is available. If the argument is not a null pointer, argsteen
function does return, it returns an implementation-defined value.

316 Library §7.20.4.6

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20.5 Searching and sorting utilities

These utilities make use of a comparison function to search or sort arrays of unspecified
type. Where an argument declaredsee_t nmemb specifies the length of the array

for a function,nmembcan have the value zero on a call to that function; the comparison
function is not called, a search finds no matching element, and sorting performs no
rearrangement. Pointer arguments on such a call shall still have valid values, as described
in7.1.4.

The implementation shall ensure that the second argument of the comparison function
(when called frombsearch), or both arguments (when called frogsort), are
pointers to elements of the arf@) The first argument when called frobsearch

shall equakey .

The comparison function shall not alter the contents of the array. The implementation
may reorder elements of the array between calls to the comparison function, but shall not
alter the contents of any individual element.

When the same objects (consistingsize bytes, irrespective of their current positions

in the array) are passed more than once to the comparison function, the results shall be
consistent with one another. That is, fmort they shall define a total ordering on the
array, and fobsearch the same object shall always compare the same way with the
key.

A sequence point occurs immediately before and immediately after each call to the
comparison function, and also between any call to the comparison function and any
movement of the objects passed as arguments to that call.

7.20.5.1 Theébsearch function
Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base,
size_t nmemb, size t size,
int (*compar)(const void *, const void *));

Description

Thebsearch function searches an arrayrmhembobjects, the initial element of which
is pointed to bybase, for an element that matches the object pointed t&dyy. The

254) That is, if the value passedisthen the following expressions are always nonzero:

((char *)p - (char *)base) % size ==
(char *)p >= (char *)base
(char *)p < (char *)base + nmemb * size

§7.20.5.1 Library 317

ISO/IEC 9899:1999 (E) ©ISO/IEC

size of each element of the array is specifiediby .

The comparison function pointed to bympar is called with two arguments that point

to thekey object and to an array element, in that order. The function shall return an
integer less than, equal to, or greater than zero ifkéhe object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array
shall consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater theythebject, in that orde®®

Returns

The bsearch function returns a pointer to a matching element of the array, or a null
pointer if no match is found. If two elements compare as equal, which element is
matched is unspecified.

7.20.5.2 Theysort function
Synopsis

#include <stdlib.h>
void gsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description

Thegsort function sorts an array afmembobjects, the initial element of which is
pointed to bybase . The size of each object is specifiedsme .

The contents of the array are sorted into ascending order according to a comparison
function pointed to bycompar , which is called with two arguments that point to the
objects being compared. The function shall return an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively less than, equal to,
or greater than the second.

If two elements compare as equal, their order in the resulting sorted array is unspecified.
Returns

Thegsort function returns no value.

255) In practice, the entire array is sorted according to the comparison function.

318 Library §7.20.5.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20.6 Integer arithmetic functions
7.20.6.1 Theabs,labs andllabs functions
Synopsis

#include <stdlib.h>

int abs(int j);

long int labs(long int j);

long long int llabs(long long int j);
Description

Theabs, labs , andllabs functions compute the absolute value of an intggédithe
result cannot be represented, the behavior is undefified.

Returns

Theabs, labs , andllabs , functions return the absolute value.
7.20.6.2 Thdiv ,Idiv ,andlldiv functions

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

Idiv_t Idiv(long int numer, long int denom);

lIdiv_t lldiv(long long int numer, long long int denom);

Description

Thediv , Idiv , andlidiv , functions computeaumer / denom and numer %
denom in a single operation.

Returns

Thediv , Idiv , andlldiv functions return a structure of typev_t ,Idiv_.t , and

lldiv_t , respectively, comprising both the quotient and the remainder. The structures
shall contain (in either order) the membgu®t (the quotient) andem (the remainder),

each of which has the same type as the argumemter anddenom. If either part of

the result cannot be represented, the behavior is undefined.

256) The absolute value of the most negative number cannot be represented in two’s complement.

87.20.6.2 Library 319

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.20.7 Multibyte/wide character conversion functions

The behavior of the multibyte character functions is affected byGh€TYPEcategory

of the current locale. For a state-dependent encoding, each function is placed into its
initial conversion state by a call for which its character pointer arguraerns, a null

pointer. Subsequent calls wishas other than a null pointer cause the internal conversion
state of the function to be altered as necessary. A callsvdak a null pointer causes

these functions to return a nonzero value if encodings have state dependency, and zero
otherwise?®”) Changing theLC_CTYPEcategory causes the conversion state of these
functions to be indeterminate.

7.20.7.1 Thamblen function
Synopsis

#include <stdlib.h>

int mblen(const char *s, size_t n);
Description

If s is not a null pointer, thenblen function determines the number of bytes contained
in the multibyte character pointed to Isy Except that the conversion state of the
mbtowc function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);
The implementation shall behave as if no library function callsnibien function.
Returns

If s is a null pointer, thenblen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodsgs. If
not a null pointer, thenblen function either returns 0 (8 points to the null character),

or returns the number of bytes that are contained in the multibyte character (if the next
or fewer bytes form a valid multibyte character), or returns -1 (if they do not form a valid
multibyte character).

Forward references: thembtowc function (7.20.7.2).

257) If the locale employs special bytes to change the shift state, these bytes do not produce separate wide
character codes, but are grouped with an adjacent multibyte character.

320 Library §7.20.7.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20.7.2 Thanbtowc function
Synopsis

#include <stdlib.h>

int mbtowc(wchar _t * restrict pwc,
const char * restrict s,
size_tn);

Description

If s is not a null pointer, thenbtowc function inspects at most bytes beginning with

the byte pointed to by to determine the number of bytes needed to complete the next
multibyte character (including any shift sequences). If the function determines that the
next multibyte character is complete and valid, it determines the value of the
corresponding wide character and themvifc is not a null pointer, stores that value in
the object pointed to bypwc. If the corresponding wide character is the null wide
character, the function is left in the initial conversion state.

The implementation shall behave as if no library function callsni@wc function.
Returns

If s is a null pointer, thenbtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodmgs. If

not a null pointer, thenbtowc function either returns O (& points to the null character),

or returns the number of bytes that are contained in the converted multibyte character (if
the nextn or fewer bytes form a valid multibyte character), or returns -1 (if they do not
form a valid multibyte character).

In no case will the value returned be greater tham the value of thélB_ CUR_MAX
macro.

7.20.7.3 Thewctomb function
Synopsis

#include <stdlib.h>

int wctomb(char *s, wchar_t wc);
Description

Thewctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the wide character givenwy (including any shift
sequences), and stores the multibyte character representation in the array whose first
element is pointed to by (if s is not a null pointer). At mos¥iB_ CUR_MAharacters

are stored. Ifwc is a null wide character, a null byte is stored, preceded by any shift
sequence needed to restore the initial shift state, and the function is left in the initial
conversion state.

§7.20.7.3 Library 321

ISO/IEC 9899:1999 (E) ©ISO/IEC

The implementation shall behave as if no library function callsvttiemb function.
Returns

If s is a null pointer, thevctomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodsgs. If
not a null pointer, thevctomb function returns -1 if the value @fc does not correspond

to a valid multibyte character, or returns the number of bytes that are contained in the
multibyte character corresponding to the valuevof

In no case will the value returned be greater than the value Bh€UR_MAMNacro.

7.20.8 Multibyte/wide string conversion functions

The behavior of the multibyte string functions is affected byLtheCTYPEcategory of
the current locale.

7.20.8.1 Thembstowcs function
Synopsis

#include <stdlib.h>

size_t mbstowcs(wchar_t * restrict pwcs,
const char * restrict s,
size_t n);

Description

Thembstowcs function converts a sequence of multibyte characters that begins in the
initial shift state from the array pointed to byinto a sequence of corresponding wide
characters and stores not more thamide characters into the array pointed toplycs .

No multibyte characters that follow a null character (which is converted into a null wide
character) will be examined or converted. Each multibyte character is converted as if by
a call to thembtowc function, except that the conversion state ofrtitdowc function is

not affected.

No more tham elements will be modified in the array pointed topwcs. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, thbstowcs function returns
(size_t)(-1) . Otherwise, thembstowcs function returns the number of array
elements modified, not including a terminating null wide character, #&hy.

258) The array will not be null-terminated if the value returned is

322 Library §7.20.8.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.20.8.2 Thewcstombs function
Synopsis

#include <stdlib.h>

size_t wcstombs(char * restrict s,
const wchar_t * restrict pwcs,
size_tn);

Description

Thewcstombs function converts a sequence of wide characters from the array pointed
to by pwcs into a sequence of corresponding multibyte characters that begins in the
initial shift state, and stores these multibyte characters into the array pointedsto by
stopping if a multibyte character would exceed the liminaiotal bytes or if a null
character is stored. Each wide character is converted as if by a call vectirab
function, except that the conversion state ofviisgedomb function is not affected.

No more tham bytes will be modified in the array pointed tosyif copying takes place
between objects that overlap, the behavior is undefined.

Returns

If a wide character is encountered that does not correspond to a valid multibyte character,
the wcstombs function returngsize_t)(-1) . Otherwise, thavcstombs function
returns the number of bytes modified, not including a terminating null character, if

any?258)

§7.20.8.2 Library 323

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.21 String handling<string.h>
7.21.1 String function conventions

The headekstring.h> declares one type and several functions, and defines one
macro useful for manipulating arrays of character type and other objects treated as arrays
of character typé®® The type issize t and the macro i®NULL (both described in

7.17). Various methods are used for determining the lengths of the arrays, but in all cases
achar* orvoid* argument points to the initial (lowest addressed) character of the
array. If an array is accessed beyond the end of an object, the behavior is undefined.

Where an argument declared sige tn specifies the length of the array for a
function, n can have the value zero on a call to that function. Unless explicitly stated
otherwise in the description of a particular function in this subclause, pointer arguments
on such a call shall still have valid values, as described in 7.1.4. On such a call, a
function that locates a character finds no occurrence, a function that compares two
character sequences returns zero, and a function that copies characters copies zero
characters.

7.21.2 Copying functions
7.21.2.1 Thamemcpyfunction
Synopsis

#include <string.h>

void *memcpy(void * restrict s1,
const void * restrict s2,
size_tn);

Description

The memcpy function copiesn characters from the object pointed to &% into the
object pointed to bgl. If copying takes place between objects that overlap, the behavior
is undefined.

Returns

Thememcpyfunction returns the value efl.

259) See “future library directions” (7.26.11).

324 Library §7.21.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.21.2.2 Theamemmovedunction
Synopsis

#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description

The memmovefunction copiesn characters from the object pointed to 48 into the
object pointed to bysl. Copying takes place as if the characters from the object
pointed to bys2 are first copied into a temporary arrayrofcharacters that does not
overlap the objects pointed to 81 and s2, and then then characters from the
temporary array are copied into the object pointed telhy

Returns

Thememmoveunction returns the value ofl.
7.21.2.3 Thestrcpy function

Synopsis

#include <string.h>
char *strcpy(char * restrict s1,
const char * restrict s2);

Description

Thestrcpy function copies the string pointed to % (including the terminating null
character) into the array pointed to &Y. If copying takes place between objects that
overlap, the behavior is undefined.

Returns

Thestrcpy function returns the value efl.
7.21.2.4 Thestrncpy function
Synopsis

#include <string.h>

char *strncpy(char * restrict s1,
const char * restrict s2,
size_tn);

Description

Thestrncpy function copies not more thancharacters (characters that follow a null
character are not copied) from the array pointed ts2yto the array pointed to by

§7.21.2.4 Library 325

ISO/IEC 9899:1999 (E) ©ISO/IEC

s1.2%0) |f copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to bg2 is a string that is shorter thancharacters, null characters
are appended to the copy in the array pointed telhyuntil n characters in all have been
written.

Returns

Thestrncpy function returns the value efl .
7.21.3 Concatenation functions
7.21.3.1 Thestrcat function

Synopsis

#include <string.h>
char *strcat(char * restrict s1,
const char * restrict s2);

Description

The strcat function appends a copy of the string pointed tosBy (including the
terminating null character) to the end of the string pointed t®lbyThe initial character
of s2 overwrites the null character at the endsaf. If copying takes place between
objects that overlap, the behavior is undefined.

Returns

Thestrcat function returns the value efl.
7.21.3.2 Thestrncat function
Synopsis

#include <string.h>
char *strncat(char * restrict s1,
const char * restrict s2,
size_tn);
Description
The strncat function appends not more than characters (a null character and
characters that follow it are not appended) from the array pointed<2 Iy the end of

the string pointed to byl . The initial character a2 overwrites the null character at the
end ofs1. A terminating null character is always appended to the ré8diltf copying

260) Thus, if there is no null character in the firstharacters of the array pointed to$8, the result will
not be null-terminated.

261) Thus, the maximum number of characters that can end up in the array pointedsio iby
strlen(s1)+n+1

326 Library §7.21.3.2

©ISO/IEC ISO/IEC 9899:1999 (E)

takes place between objects that overlap, the behavior is undefined.
Returns

Thestrncat function returns the value ofl.

Forward references: thestrlen function (7.21.6.3).

7.21.4 Comparison functions

The sign of a nonzero value returned by the comparison functienecmp strcmp
andstrncmp is determined by the sign of the difference between the values of the first
pair of characters (both interpretedusssigned char) that differ in the objects being
compared.

7.21.4.1 Thamemcmgunction
Synopsis

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmpfunction compares the first characters of the object pointed to gy to
the firstn characters of the object pointed togd#/.2%2)

Returns

The memcmpfunction returns an integer greater than, equal to, or less than zero,
accordingly as the object pointed todly is greater than, equal to, or less than the object
pointed to bys2.

7.21.4.2 Thestrcmp function
Synopsis

#include <string.h>
int strcmp(const char *s1, const char *s2);

Description

Thestrcmp function compares the string pointed to ddy to the string pointed to by
S2.

Returns

The strcmp function returns an integer greater than, equal to, or less than zero,
accordingly as the string pointed to §¥ is greater than, equal to, or less than the string

262) The contents of “holes” used as padding for purposes of alignment within structure objects are
indeterminate. Strings shorter than their allocated space and unions may also cause problems in
comparison.

§7.21.4.2 Library 327

ISO/IEC 9899:1999 (E) ©ISO/IEC

pointed to bys2.
7.21.4.3 Thestrcoll function
Synopsis

#include <string.h>
int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed toddy to the string pointed to by

s2, both interpreted as appropriate to ki COLLATEcategory of the current locale.
Returns

The strcoll function returns an integer greater than, equal to, or less than zero,

accordingly as the string pointed to §¥ is greater than, equal to, or less than the string
pointed to bys2 when both are interpreted as appropriate to the current locale.

7.21.4.4 Thestrncmp function
Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);
Description

Thestrncmp function compares not more thancharacters (characters that follow a
null character are not compared) from the array pointed &by the array pointed to
bys2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero,
accordingly as the possibly null-terminated array pointed telbjs greater than, equal
to, or less than the possibly null-terminated array pointed &2 by

7.21.4.5 Thestrxfrm function
Synopsis

#include <string.h>

size_t strxfrm(char * restrict s1,
const char * restrict s2,
size_tn);

Description

Thestrxfrm function transforms the string pointed to &% and places the resulting
string into the array pointed to ®i. The transformation is such that if teecmp
function is applied to two transformed strings, it returns a value greater than, equal to, or

328 Library §7.21.45

©ISO/IEC ISO/IEC 9899:1999 (E)

less than zero, corresponding to the result ostreoll function applied to the same

two original strings. No more than characters are placed into the resulting array
pointed to bys1, including the terminating null character.nlfis zero,s1 is permitted to

be a null pointer. If copying takes place between objects that overlap, the behavior is
undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the
terminating null character). If the value returnechisr more, the contents of the array
pointed to bysl are indeterminate.

EXAMPLE The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to y

1 + strxfrm(NULL, s, 0)
7.21.5 Search functions
7.21.5.1 Thamemchr function
Synopsis

#include <string.h>
void *memchr(const void *s, int c, size_t n);

Description

The memchr function locates the first occurrence of(converted to arunsigned
char) in the initial n characters (each interpretedwassigned char) of the object
pointed to bys.

Returns

The memchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the object.

7.21.5.2 Thestrchr function
Synopsis

#include <string.h>

char *strchr(const char *s, int ¢);
Description

The strchr function locates the first occurrence of(converted to ahar) in the
string pointed to bys. The terminating null character is considered to be part of the
string.

Returns

Thestrchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

87.21.5.2 Library 329

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.21.5.3 Thestrcspn function
Synopsis

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description

Thestrcspn function computes the length of the maximum initial segment of the string
pointed to bys1l which consists entirely of characterst from the string pointed to by
S2.

Returns

Thestrcspn function returns the length of the segment.
7.21.5.4 Thestrpbrk function

Synopsis

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description

Thestrpbrk function locates the first occurrence in the string pointed w®lbgf any
character from the string pointed to 8.

Returns

Thestrpbrk function returns a pointer to the character, or a null pointer if no character
froms2 occurs insl.

7.21.5.5 Thestrrchr function
Synopsis

#include <string.h>
char *strrchr(const char *s, int c);

Description

The strrchr function locates the last occurrencecof{converted to ahar) in the
string pointed to bys. The terminating null character is considered to be part of the
string.

Returns

Thestrrchr function returns a pointer to the character, or a null pointerdbes not
occur in the string.

330 Library §7.21.55

©ISO/IEC ISO/IEC 9899:1999 (E)

7.21.5.6 Thestrspn function
Synopsis

#include <string.h>
size_t strspn(const char *s1, const char *s2);

Description

Thestrspn function computes the length of the maximum initial segment of the string
pointed to bys1 which consists entirely of characters from the string pointed s2by

Returns

Thestrspn function returns the length of the segment.
7.21.5.7 Thestrstr function

Synopsis

#include <string.h>
char *strstr(const char *s1, const char *s2);

Description

Thestrstr function locates the first occurrence in the string pointed telbpf the
sequence of characters (excluding the terminating null character) in the string pointed to
bys2.

Returns

Thestrstr ~ function returns a pointer to the located string, or a null pointer if the string
is not found. Ifs2 points to a string with zero length, the function retwhs

7.21.5.8 Thestrtok function
Synopsis

#include <string.h>
char *strtok(char * restrict s1,
const char * restrict s2);

Description

A sequence of calls to thetrtok function breaks the string pointed to ¥ into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has a non-null first argument; subsequent calls in the
sequence have a null first argument. The separator string pointed 42 byay be
different from call to call.

The first call in the sequence searches the string pointedgb byr the first character
that isnot contained in the current separator string pointed teZhyif no such character
is found, then there are no tokens in the string pointed $i land thestrtok function

§7.21.5.8 Library 331

ISO/IEC 9899:1999 (E) ©ISO/IEC

returns a null pointer. If such a character is found, it is the start of the first token.

Thestrtok function then searches from there for a characterishaintained in the
current separator string. If no such character is found, the current token extends to the
end of the string pointed to sl , and subsequent searches for a token will return a null
pointer. If such a character is found, it is overwritten by a null character, which
terminates the current token. Th&tok function saves a pointer to the following
character, from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

The implementation shall behave as if no library function callstittek function.
Returns

Thestrtok function returns a pointer to the first character of a token, or a null pointer
if there is no token.
EXAMPLE

#include <string.h>
static char str[] = "?a???b,,#c";

char *t;

t = strtok(str, "?"); It points to the toker'a"

t = strtok(NULL, ","); //'t points to the tokeri'??b"
t = strtok(NULL, "#,"); // t points to the toker'c"

t = strtok(NULL, "?"); /It is a null pointer

7.21.6 Miscellaneous functions
7.21.6.1 Thanemset function
Synopsis

#include <string.h>
void *memset(void *s, int c, size_t n);

Description

The memset function copies the value af (converted to amnsigned char) into
each of the firsh characters of the object pointed today

Returns

Thememset function returns the value sf

332 Library §7.21.6.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.21.6.2 Thestrerror function
Synopsis

#include <string.h>
char *strerror(int errnum);

Description

The strerror function maps the number Brrnum to a message string. Typically,
the values foerrnum come fromerrno , butstrerror shall map any value of type
int to a message.

The implementation shall behave as if no library function callstifeeror ~ function.
Returns

Thestrerror function returns a pointer to the string, the contents of which are locale-
specific. The array pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to 8teerror function.

7.21.6.3 Thestrlen function
Synopsis

#include <string.h>
size_t strlen(const char *s);

Description
Thestrlen function computes the length of the string pointed ts by
Returns

Thestrlen function returns the number of characters that precede the terminating null
character.

87.21.6.3 Library 333

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.22 Type-generic math<tgmath.h>

The headektgmath.h> includes the headersmath.h> and <complex.h> and
defines several type-generic macros.

Of the<math.h> and<complex.h> functions without arf (float) or| (long

double) suffix, several have one or more parameters whose corresponding real type is
double . For each such function, excepiodf, there is a correspondirtgpe-generic
macra%®) The parameters whose corresponding real typdoisle in the function
synopsis aregeneric parameters Use of the macro invokes a function whose
corresponding real type and type domain are determined by the arguments for the generic
parameter$®?

Use of the macro invokes a function whose generic parameters have the corresponding
real type determined as follows:

— First, if any argument for generic parameters has tgpg double , the type
determined isong double

— Otherwise, if any argument for generic parameters hasdgpbkle or is of integer
type, the type determineddsuble .

— Otherwise, the type determinediizat

For each unsuffixed function irkmath.h> for which there is a function in
<complex.h> with the same name except forcaprefix, the corresponding type-
generic macro (for both functions) has the same name as the functioain.h> . The
corresponding type-generic macro fabs andcabs isfabs .

263) Like other function-like macros in Standard libraries, each type-generic macro can be suppressed to
make available the corresponding ordinary function.

264) If the type of the argument is not compatible with the type of the parameter for the selected function,
the behavior is undefined.

334 Library §7.22

©ISO/IEC

<math.h> <complex.h> type-generic
function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

ISO/IEC 9899:1999 (E)

If at least one argument for a generic parameter is complex, then use of the macro invokes
a complex function; otherwise, use of the macro invokes a real function.

For each unsuffixed function ikmath.h>

without a c-prefixed counterpart in

<complex.h> |, the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

atan2
cbrt

cell
copysign
erf

erfc
exp2
expml
fdim
floor

fma
fmax
fmin
fmod
frexp
hypot
ilogh
ldexp
lgamma
lIrint

llround
log10
loglp

log2

logb

[rint

lround
nearbyint
nextafter
nexttoward

remainder
remquo
rint

round
scalbn
scalbln
tgamma
trunc

If all arguments for generic parameters are real, then use of the macro invokes a real
function; otherwise, use of the macro results in undefined behavior.

For each unsuffixed function kcomplex.h>

that is not a-prefixed counterpart to a

function in<math.h> |, the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

§7.22

Library

335

ISO/IEC 9899:1999 (E)

carg
cimag

©ISO/IEC

creal

Use of the macro with any real or complex argument invokes a complex function.

7 EXAMPLE With the declarations

#include <tgmath.h>
int n;

float f;

double d;

long double Id;

float complex fc;
double complex dc;

long double complex Idc;

functions invoked by use of type-generic macros are shown in the following table:

macro use invokes
exp(n) exp(n) , the function
acosh(f) acoshf(f)
sin(d) sin(d) , the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)

remainder(n, n)
nextafter(d, f)
nexttoward(f, Id)
copysign(n, Id)
ceil(fc)

rint(dc)
fmax(ldc, Id)
carg(n)

cproj(f)
creal(d)
cimag(ld)
cabs(fc)
carg(dc)
cproj(ldc)

336

, the function
, the function

remainder(n, n)
nextafter(d, f)
nexttowardf(f, 1d)

copysignl(n, Id)
undefined behavior
undefined behavior
undefined behavior

carg(n) , the function
cprojf(f)
creal(d) , the function
cimagl(ld)
cabsf(fc)
carg(dc) , the function
cprojl(ldc)

Library 8§7.22

©ISO/IEC ISO/IEC 9899:1999 (E)

7.23 Date and time<time.h>
7.23.1 Components of time

The headextime.h> defines two macros, and declares several types and functions for
manipulating time. Many functions deal withcalendar timethat represents the current
date (according to the Gregorian calendar) and time. Some functions dedbaaith
time, which is the calendar time expressed for some specific time zone, aridiawiidht
Saving Timewhich is a temporary change in the algorithm for determining local time.
The local time zone and Daylight Saving Time are implementation-defined.

The macros defined aktJLL (described in 7.17); and
CLOCKS_PER_SEC

which expands to a constant expression with tjpek t (described below) that is the
number per second of the value returned byckbek function.

The types declared aseze t (described in 7.17);
clock t
and
time _t
which are arithmetic types capable of representing times; and
struct tm
which holds the components of a calendar time, calletrtiieen-down time

The range and precision of times representableclatk_t and time_t are
implementation-defined. Thten structure shall contain at least the following members,

in any order. The semantics of the members and their normal ranges are expressed in the
comments8)

int tm_sec; Il seconds after the minute — [0, 60]
int tm_min; Il minutes after the hour — [0, 59]
inttm_hour; // hours since midnight — [0, 23]
inttm_mday; // day of the month — [1, 31]
inttm_mon; // months since January — [0, 11]
inttm_year; // years since 1900

inttm_wday; // days since Sunday — [0, 6]
inttm_yday; // days since January 1 — [0, 365]
int tm_isdst; // Daylight Saving Time flag

265) The range [0, 60] fam_sec allows for a positive leap second.

8§7.23.1 Library 337

ISO/IEC 9899:1999 (E) ©ISO/IEC

The value otm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available.

7.23.2 Time manipulation functions
7.23.2.1 Theclock function
Synopsis

#include <time.h>
clock_t clock(void);

Description
Theclock function determines the processor time used.
Returns

Theclock function returns the implementation’s best approximation to the processor
time used by the program since the beginning of an implementation-defined era related
only to the program invocation. To determine the time in seconds, the value returned by
theclock function should be divided by the value of the maCt®CKS PER_SECf

the processor time used is not available or its value cannot be represented, the function
returns the valuéclock _t)(-1) 266)

7.23.2.2 Thdifftime function
Synopsis

#include <time.h>
double difftime(time_t timel, time_t time0);

Description

Thedifftime function computes the difference between two calendar titnesi -
timeO .

Returns

Thedifftime function returns the difference expressed in secondsiaskde .

266) In order to measure the time spent in a prograngltiel function should be called at the start of
the program and its return value subtracted from the value returned by subsequent calls.

338 Library §7.23.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.23.2.3 Thanktime function
Synopsis

#include <time.h>
time_t mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to byimeptr into a calendar time value with the same encoding as
that of the values returned by thme function. The original values of thten_wday
andtm_yday components of the structure are ignored, and the original values of the
other components are not restricted to the ranges indicated ZBbv@n successful
completion, the values of tiien_wday andtm_yday components of the structure are

set appropriately, and the other components are set to represent the specified calendar

time, but with their values forced to the ranges indicated above; the final value of
tm_mday is not set untitm_mon andtm_year are determined.

Returns

The mktime function returns the specified calendar time encoded as a value of type
time_t . If the calendar time cannot be represented, the function returns the value
(time_t)(-1)

EXAMPLE What day of the week is July 4, 20017

#include <stdio.h>

#include <time.h>

static const char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

3

struct tm time_str;

A |

267) Thus, a positive or zero value ton_isdst causes thenktime function to presume initially that
Daylight Saving Time, respectively, is or is not in effect for the specified time. A negative value
causes it to attempt to determine whether Daylight Saving Time is in effect for the specified time.

§7.23.2.3 Library 339

ISO/IEC 9899:1999 (E) ©ISO/IEC

time_str.tm_year = 2001 - 1900;
time_str.tm_mon =7 -1
time_str.tm_mday = 4;
time_str.tm_hour
time_str.tm_min
time_str.tm_sec
time_str.tm_isdst = -1;
if (mktime(&time_str) == (time_t)(-1))
time_str.tm_wday = 7,
printf("%s\n", wday[time_str.tm_wday]);

7.23.2.4 Thdime function
Synopsis

0;
0;
1;

#include <time.h>
time_t time(time_t *timer);

Description

Thetime function determines the current calendar time. The encoding of the value is
unspecified.

Returns

The time function returns the implementation’s best approximation to the current
calendar time. The valu@time t)(-1) is returned if the calendar time is not
available. Iftimer is not a null pointer, the return value is also assigned to the object it
points to.

7.23.3 Time conversion functions

Except for thestrftime function, these functions each return a pointer to one of two
types of static objects: a broken-down time structure or an arrelyaof. Execution of

any of the functions that return a pointer to one of these object types may overwrite the
information in any object of the same type pointed to by the value returned from any
previous call to any of them. The implementation shall behave as if no other library
functions call these functions.

7.23.3.1 Theasctime function
Synopsis

#include <time.h>
char *asctime(const struct tm *timeptr);

Description

The asctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

340 Library §7.23.3.1

©ISO/IEC ISO/IEC 9899:1999 (E)

using the equivalent of the following algorithm.

char *asctime(const struct tm *timeptr)

{
static const char wday_name[7][3] = {
"Sun”, "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
I3
static const char mon_name[12][3] ={
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul”, "Aug", "Sep", "Oct", "Nov", "Dec"
I3
static char result[26];
sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);
return result;
}
Returns

Theasctime function returns a pointer to the string.
7.23.3.2 Thectime function
Synopsis

#include <time.h>
char *ctime(const time_t *timer);

Description

Thectime function converts the calendar time pointed tditmer to local time in the
form of a string. It is equivalent to

asctime(localtime(timer))
Returns

The ctime function returns the pointer returned by #e&ctime function with that
broken-down time as argument.

Forward references: thelocaltime function (7.23.3.4).

§7.23.3.2 Library 341

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.23.3.3 Theggmtime function
Synopsis

#include <time.h>

struct tm *gmtime(const time_t *timer);
Description

Thegmtime function converts the calendar time pointed totinyer into a broken-
down time, expressed as UTC.

Returns

Thegmtime function returns a pointer to the broken-down time, or a null pointer if the
specified time cannot be converted to UTC.

7.23.3.4 Thdocaltime function
Synopsis

#include <time.h>
struct tm *localtime(const time_t *timer);

Description

The localtime function converts the calendar time pointed totioger into a
broken-down time, expressed as local time.

Returns

Thelocaltime function returns a pointer to the broken-down time, or a null pointer if
the specified time cannot be converted to local time.

7.23.3.5 Thestrftime function
Synopsis

#include <time.h>

size_t strftime(char * restrict s,
size_t maxsize,
const char * restrict format,
const struct tm * restrict timeptr);

Description

Thestrftime function places characters into the array pointed te &y controlled by

the string pointed to bformat . The format shall be a multibyte character sequence,
beginning and ending in its initial shift state. Tleemat string consists of zero or
more conversion specifiers and ordinary multibyte characters. A conversion specifier
consists of &ocharacter, possibly followed by @& or O modifier character (described
below), followed by a character that determines the behavior of the conversion specifier.
All ordinary multibyte characters (including the terminating null character) are copied

342 Library §7.23.3.5

©ISO/IEC ISO/IEC 9899:1999 (E)

unchanged into the array. If copying takes place between objects that overlap, the
behavior is undefined. No more thawaxsize characters are placed into the array.

Each conversion specifier is replaced by appropriate characters as described in the
following list. The appropriate characters are determined using@h&IME category

of the current locale and by the values of zero or more members of the broken-down time
structure pointed to byimeptr , as specified in brackets in the description. If any of

the specified values is outside the normal range, the characters stored are unspecified.

%a is replaced by the locale’s abbreviated weekday name.wday |

%A is replaced by the locale’s full weekday namin_[wday |

%b is replaced by the locale’s abbreviated month narme. rhon]

%B is replaced by the locale’s full month namén[mon]

%c is replaced by the locale’s appropriate date and time representation. [all specified
in 7.23.1]

%C is replaced by the year divided by 100 and truncated to an integer, as a decimal
number 00-99). [tm_year]

%d is replaced by the day of the month as a decimal nurghes3Q). [tm_mday]

%D is equivalent to %m/%d/%y. [tm_mon, tm_mday, tm_year]

%e is replaced by the day of the month as a decimal nunmb&1(); a single digit is
preceded by a spacetm_mday]

%F is equivalent to %Y-%m-%dthe ISO 8601 date format).trh_year , tm_mon,
tm_mday]

%g is replaced by the last 2 digits of the week-based year (see below) as a decimal
number 00-99). [tm_year ,tm_wday, tm_yday]

%G is replaced by the week-based year (see below) as a decimal number (e.g., 1997).
[tm_year ,tm_wday,tm_yday]

%h is equivalent to %W. [tm_mon]

%H is replaced by the hour (24-hour clock) as a decimal nur@bei2@). [tm_hour]

%l is replaced by the hour (12-hour clock) as a decimal nurGierlQ). [tm_hour]

%]j is replaced by the day of the year as a decimal nurGb&r366). [tm_yday]

%m is replaced by the month as a decimal num@&r{12). [tm_mon]

%M is replaced by the minute as a decimal numb@+$9). [tm_min]

%n is replaced by a new-line character.

%p is replaced by the locale’s equivalent of the AM/PM designations associated with a
12-hour clock. {m_hour]

%r is replaced by the locale’s 12-hour clock timém [hour ,tm_min ,tm_sec]

%R is equivalent to %H:%WM [tm_hour , tm_min]

%S is replaced by the second as a decimal nunti@erg0). [tm_sec]

%t is replaced by a horizontal-tab character.

%T is equivalent to %H:%M:%3S(the ISO 8601 time format). tin_hour , tm_min ,
tm_sec]

87.23.3.5 Library 343

ISO/IEC 9899:1999 (E) ©ISO/IEC

%u is replaced by the 1ISO 8601 weekday as a decimal nurbb&),(where Monday
is 1. tm_wday]

%U is replaced by the week number of the year (the first Sunday as the first day of week
1) as a decimal numbed@-53). [tm_year ,tm_wday, tm_yday |

%V is replaced by the ISO 8601 week number (see below) as a decimal number
(01-53). [tm_year ,tm_wday, tm_yday |

%w is replaced by the weekday as a decimal numbef) where Sunday is O.
[tm_wday |

%W is replaced by the week number of the year (the first Monday as the first day of
week 1) as a decimal numb@0E53). [tm_year ,tm_wday, tm_yday |

%x is replaced by the locale’s appropriate date representation. [all specified in 7.23.1]

%X is replaced by the locale’s appropriate time representation. [all specified in 7.23.1]

%y is replaced by the last 2 digits of the year as a decimal nundioer99).
[tm_year |

%Y is replaced by the year as a decimal number (987). [tm_year]

%z is replaced by the offset from UTC in the ISO 8601 form&®430 " (meaning 4
hours 30 minutes behind UTC, west of Greenwich), or by no characters if no time
zone is determinabletrh_isdst]

%Z is replaced by the locale’s time zone name or abbreviation, or by no characters if no
time zone is determinabletnj_isdst |

%% is replaced byo

Some conversion specifiers can be modified by the inclusion & @nO modifier
character to indicate an alternative format or specification. If the alternative format or
specification does not exist for the current locale, the modifier is ignored.

%Ec is replaced by the locale’s alternative date and time representation.

%ECis replaced by the name of the base year (period) in the locale’s alternative
representation.

%EX is replaced by the locale’s alternative date representation.

%EX is replaced by the locale’s alternative time representation.

%Ey is replaced by the offset froEC (year only) in the locale’s alternative
representation.

%EY is replaced by the locale’s full alternative year representation.

%0d is replaced by the day of the month, using the locale’s alternative numeric symbols
(filled as needed with leading zeros, or with leading spaces if there is no alternative
symbol for zero).

%0Oe is replaced by the day of the month, using the locale’s alternative numeric symbols
(filled as needed with leading spaces).

%OHis replaced by the hour (24-hour clock), using the locale’s alternative numeric
symbols.

344 Library §7.23.35

©ISO/IEC ISO/IEC 9899:1999 (E)

%0l is replaced by the hour (12-hour clock), using the locale’s alternative numeric
symbols.

%Omis replaced by the month, using the locale’s alternative numeric symbols.

%OMis replaced by the minutes, using the locale’s alternative numeric symbols.

%O0Sis replaced by the seconds, using the locale’s alternative numeric symbols.

%Ouis replaced by the ISO 8601 weekday as a number in the locale’s alternative
representation, where Monday is 1.

%OUis replaced by the week number, using the locale’s alternative numeric symbols.

%O0Vis replaced by the ISO 8601 week number, using the locale’s alternative numeric
symbols.

%Owis replaced by the weekday as a number, using the locale’s alternative numeric
symbols.

%OWIs replaced by the week number of the year, using the locale’s alternative numeric
symbols.

%0y is replaced by the last 2 digits of the year, using the locale’s alternative numeric
symbols.

%g %G and%Vgive values according to the ISO 8601 week-based year. In this system,
weeks begin on a Monday and week 1 of the year is the week that includes January 4th,
which is also the week that includes the first Thursday of the year, and is also the first
week that contains at least four days in the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year; thus,
for Saturday 2nd January 1998Gis replaced byl998 and%Vis replaced by3. If
December 29th, 30th, or 31st is a Monday, it and any following days are part of week 1 of
the following year. Thus, for Tuesday 30th December 198ds replaced by1998 and

%\Vis replaced by1.

If a conversion specifier is not one of the above, the behavior is undefined.

In the"C" locale, theE and O modifiers are ignored and the replacement strings for the
following specifiers are:

%a the first three characters @A

%A one of “Sunday ", “ Monday”, ..., “ Saturday ".
%b the first three characters @B
%B one of “January ", * February 7, ..., " December”.

%c equivalent to %a %b %e %T %Y”.
%p one of “AM or “ PM.

%r equivalent to %0l:%M:%S %p’.

%x equivalent to %m/%d/%y .

%X equivalent ta%T

%Z implementation-defined.

§7.23.3.5 Library 345

ISO/IEC 9899:1999 (E) ©ISO/IEC

Returns

If the total number of resulting characters including the terminating null character is not
more thanmaxsize , the strftime function returns the number of characters placed
into the array pointed to by not including the terminating null character. Otherwise,
zero is returned and the contents of the array are indeterminate.

346 Library §7.23.3.5

©ISO/IEC ISO/IEC 9899:1999 (E)

7.24 Extended multibyte and wide character utilities<wchar.h>
7.24.1 Introduction

The headexkwchar.h> declares four data types, one tag, four macros, and many

functions2%®

The types declared anechar t andsize t (both described in 7.17);
mbstate t

which is an object type other than an array type that can hold the conversion state
information necessary to convert between sequences of multibyte characters and wide
characters;

wint_t

which is an integer type unchanged by default argument promotions that can hold any
value corresponding to members of the extended character set, as well as at least one
value that does not correspond to any member of the extended character YEQd¥ee
below)?%% and

struct tm
which is declared as an incomplete structure type (the contents are described in 7.23.1).

The macros defined afdULL (described in 7.17)WCHAR_MINand WCHAR_MAX
(described in 7.18.3); and

WEOF

which expands to a constant expression of typet t whose value does not
correspond to any member of the extended charactéf®dt.is accepted (and returned)

by several functions in this subclause to indieatd-of-file that is, no more input from a
stream. Itis also used as a wide character value that does not correspond to any member
of the extended character set.

The functions declared are grouped as follows:

— Functions that perform input and output of wide characters, or multibyte characters,
or both;

— Functions that provide wide string numeric conversion;

268) See “future library directions” (7.26.12).
269)wchar_t andwint_t can be the same integer type.

270) The value of the macWWEOFnay differ from that oEOFand need not be negative.

8§7.24.1 Library 347

ISO/IEC 9899:1999 (E) ©ISO/IEC

— Functions that perform general wide string manipulation;
— Functions for wide string date and time conversion; and

— Functions that provide extended capabilities for conversion between multibyte and
wide character sequences.

Unless explicitly stated otherwise, if the execution of a function described in this
subclause causes copying to take place between objects that overlap, the behavior is
undefined.

7.24.2 Formatted wide character input/output functions

The formatted wide character input/output functions shall behave as if there is a sequence
point after the actions associated with each speéffier.

7.24.2.1 Thdwprintf function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict stream,
const wchar_t * restrict format, ...);

Description

The fwprintf function writes output to the stream pointed to dtkeam , under

control of the wide string pointed to ligrmat that specifies how subsequent arguments

are converted for output. If there are insufficient arguments for the format, the behavior
is undefined. If the format is exhausted while arguments remain, the excess arguments
are evaluated (as always) but are otherwise ignored. fWinentf function returns

when the end of the format string is encountered.

The format is composed of zero or more directives: ordinary wide character®),(not
which are copied unchanged to the output stream; and conversion specifications, each of
which results in fetching zero or more subsequent arguments, converting them, if
applicable, according to the corresponding conversion specifier, and then writing the
result to the output stream.

Each conversion specification is introduced by the wide char#ctafter the % the
following appear in sequence:

— Zero or moreflags (in any order) that modify the meaning of the conversion
specification.

271) Thefwprintf functions perform writes to memory for thenspecifier.

348 Library §7.24.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— An optional minimumfield width If the converted value has fewer wide characters
than the field width, it is padded with spaces (by default) on the left (or right, if the
left adjustment flag, described later, has been given) to the field width. The field
width takes the form of an asteriskdescribed later) or a decimal integé?

— An optionalprecisionthat gives the minimum number of digits to appear forcthe,
0, U, X, and X conversions, the number of digits to appear after the decimal-point
wide character fora, A, e, E, f, and F conversions, the maximum number of
significant digits for theg and G conversions, or the maximum number of wide
characters to be written fer conversions. The precision takes the form of a period
(.) followed either by an asterisk (described later) or by an optional decimal
integer; if only the period is specified, the precision is taken as zero. If a precision
appears with any other conversion specifier, the behavior is undefined.

— An optionallength modifietthat specifies the size of the argument.

— A conversion specifiewvide character that specifies the type of conversion to be
applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, annt argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken #ag
followed by a positive field width. A negative precision argument is taken as if the
precision were omitted.

The flag wide characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not
specified 373

space If the first wide character of a signed conversion is not a sign, or if a signed
conversion results in no wide characters, a space is prefixed to the result. If the
spaceand+ flags both appear, trepaceflag is ignored.

The result is converted to an “alternative form”. Kwmrconversion, it increases
the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed)x Kar X)

272) Note thab is taken as a flag, not as the beginning of a field width.

273) The results of all floating conversions of a negative zero, and of negative values that round to zero,
include a minus sign.

§7.24.2.1 Library 349

ISO/IEC 9899:1999 (E) ©ISO/IEC

conversion, a nonzero result Has (or 0X) prefixed to it. Fom, A, e, E, f,F, g,

and G conversions, the result of converting a floating-point number always
contains a decimal-point wide character, even if no digits follow it. (Normally, a
decimal-point wide character appears in the result of these conversions only if a
digit follows it.) Forg andGconversions, trailing zeros ametremoved from the
result. For other conversions, the behavior is undefined.

Ford, i, o0, u, x, X a, A e, E f,F g, andG conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width rather
than performing space padding, except when converting an infinity or NaN. If the
0 and - flags both appear, th@ flag is ignored. Fod, i, o, u, x, and X
conversions, if a precision is specified, tBeflag is ignored. For other
conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh

| (ell)

Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted tesigned char orunsigned char before printing); or that

a following n conversion specifier applies to a pointer tsigned char
argument.

Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted tghort int or unsigned short int before printing);

or that a followingn conversion specifier applies to a pointer tshart

int argument.

Specifies that a followingd, i , 0, u, X, or X conversion specifier applies to a
long int or unsigned long int argument; that a followingn
conversion specifier applies to a pointer ttorag int argument; that a
following ¢ conversion specifier applies tovant t argument; that a
following s conversion specifier applies to a pointer towahar t
argument; or has no effect on a followiagA, e, E, f , F, g, or Gconversion
specifier.

Il (ell-ell) Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a

350

long long int or unsigned long long int argument; or that a
following n conversion specifier applies to a pointer toray long int
argument.

Specifies that a following, i , 0, u, X, or X conversion specifier applies to
anintmax_t oruintmax_t argument; or that a following conversion

Library §7.24.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

specifier applies to a pointer to @mtmax_t argument.

z Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
size_ t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding tgize_t argument.

t Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer tgtediff_t
argument.

L Specifies that a followin@, A, e, E, f, F, g, or G conversion specifier

applies to dong double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d,i Theint argument is converted to signed decimal in the $tyjéddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no wide characters.

o,u,x,X Theunsigned int argument is converted to unsigned octgl (insigned
decimal (1), or unsigned hexadecimal notationdr X) in the styledddd; the
letters abcdef are used forx conversion and the letteBCDEFfor X
conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no wide characters.

f,F A double argument representing a floating-point number is converted to
decimal notation in the style-]ddd. ddd, where the number of digits after
the decimal-point wide character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is zero ard flag is
not specified, no decimal-point wide character appears. If a decimal-point
wide character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[- Jinf or [-]infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[-]nan or [-]nan(n-wchar-sequenge— which style, and the meaning of
any n-wchar-sequencge is implementation-defined. Thd= conversion

§7.24.2.1 Library 351

ISO/IEC 9899:1999 (E) ©ISO/IEC

e,E

9,G

A

specifier produceBNF , INFINITY , or NANinstead ofinf , infinity , or
nan, respectively’4

A double argument representing a floating-point number is converted in the
style [-]d. dddexdd, where there is one digit (which is nonzero if the
argument is nonzero) before the decimal-point wide character and the number
of digits after it is equal to the precision; if the precision is missing, it is taken
as 6; if the precision is zero and thdlag is not specified, no decimal-point
wide character appears. The value is rounded to the appropriate number of
digits. TheE conversion specifier produces a number Viitinstead ofe
introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the
value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

A double argument representing a floating-point number is converted in
stylef ore (or in styleF or E in the case of & conversion specifier), with

the precision specifying the number of significant digits. If the precision is
zero, it is taken as 1. The style used depends on the value converted; style
(or E) is used only if the exponent resulting from such a conversion is less
than —4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional portion of the result unless theflag is specified; a
decimal-point wide character appears only if it is followed by a digit.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

A double argument representing a floating-point number is converted in the
style [-]Oxh. hhhhp+d, where there is one hexadecimal digit (which is
nonzero if the argument is a normalized floating-point number and is
otherwise unspecified) before the decimal-point wide chafdetand the
number of hexadecimal digits after it is equal to the precision; if the precision
is missing and~LT_RADIX is a power of 2, then the precision is sufficient
for an exact representation of the value; if the precision is missing and
FLT_RADIX is not a power of 2, then the precision is sufficient to

274) When applied to infinite and NaN values, ther, andspaceflag wide characters have their usual

meaning; theét and0 flag wide characters have no effect.

275) Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide

352

character so that subsequent digits align to nibble (4-bit) boundaries.

Library §7.24.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

distinguistt’® values of typedouble , except that trailing zeros may be
omitted; if the precision is zero and theflag is not specified, no decimal-
point wide character appears. The letmisdef are used fom conversion

and the lettersABCDEFfor A conversion. TheA conversion specifier
produces a number witk and P instead ofx andp. The exponent always
contains at least one digit, and only as many more digits as necessary to
represent the decimal exponent of 2. If the value is zero, the exponent is
zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

c If no | length modifier is present, thiet argument is converted to a wide
character as if by callingtowc and the resulting wide character is written.

If an | length modifier is present, theint t argument is converted to
wchar_t and written.

S If nol length modifier is present, the argument shall be a pointer to the initial
element of a character array containing a multibyte character sequence
beginning in the initial shift state. Characters from the array are converted as
if by repeated calls to thenbrtowc function, with the conversion state
described by armbstate t object initialized to zero before the first
multibyte character is converted, and written up to (but not including) the
terminating null wide character. If the precision is specified, no more than
that many wide characters are written. If the precision is not specified or is
greater than the size of the converted array, the converted array shall contain a
null wide character.

If an| length modifier is present, the argument shall be a pointer to the initial
element of an array ofichar_t type. Wide characters from the array are
written up to (but not including) a terminating null wide character. If the
precision is specified, no more than that many wide characters are written. If
the precision is not specified or is greater than the size of the array, the array
shall contain a null wide character.

p The argument shall be a pointer ¥oid . The value of the pointer is
converted to a sequence of printing wide characters, in an implementation-
defined manner.

276) The precisionp is sufficient to distinguish values of the source typd & > b" whereb is
FLT_RADIX andn is the number of badedigits in the significand of the source type. A smafler
might suffice depending on the implementation’s scheme for determining the digit to the left of the
decimal-point wide character.

§7.24.2.1 Library 353

10

11

12

13

14

ISO/IEC 9899:1999 (E) ©ISO/IEC

n The argument shall be a pointer to signed integer into whiglriiten the
number of wide characters written to the output stream so far by this call to
fwprintt . No argument is converted, but one is consumed. If the
conversion specification includes any flags, a field width, or a precision, the
behavior is undefined.

% A %wide character is written. No argument is converted. The complete
conversion specification shall B&%

If a conversion specification is invalid, the behavior is undefih@df any argument is
not the correct type for the corresponding conversion specification, the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

Fora andA conversions, iFLT_RADIX is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

Fore, E, f , F, g, andGconversions, if the number of significant decimal digits is at most
DECIMAL_DIG then the result should be correctly round&d. If the number of
significant decimal digits is more th&ECIMAL_DIG but the source value is exactly
representable withDECIMAL_DIG digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings< U, both havingDECIMAL_DIG significant digits; the value

of the resultant decimal strirg should satisfy. < D < U, with the extra stipulation that

the error should have a correct sign for the current rounding direction.

Returns

Thefwprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

277) See “future library directions” (7.26.12).

278) For binary-to-decimal conversion, the result format's values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and in
the case of fixed-point conversion by the source value as well.

354 Library §7.24.2.1

15

16

©ISO/IEC ISO/IEC 9899:1999 (E)

Environmental limits

The number of wide characters that can be produced by any single conversion shall be at
least 4095.

EXAMPLE To print a date and time in the form “Sunday, July 3, 10:02" followednly five decimal
places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
oo
wchar_t *weekday, *month; // pointers to wide strings
int day, hour, min;
fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",
weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5\n", 4 * atan(1.0));

Forward references: the btowc function (7.24.6.1.1), thembrtowc function
(7.24.6.3.2).

7.24.2.2 Thdwscanf function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict stream,
const wchar_t * restrict format, ...);

Description

The fwscanf function reads input from the stream pointed todbseam , under

control of the wide string pointed to Hgrmat that specifies the admissible input
sequences and how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise
ignored.

The format is composed of zero or more directives: one or more white-space wide
characters, an ordinary wide character (neitfoaor a white-space wide character), or a
conversion specification. Each conversion specification is introduced by the wide
charactefb After the% the following appear in sequence:

— An optional assignment-suppressing wide chardcter

— An optional nonzero decimal integer that specifies the maximum field width (in wide
characters).

§7.24.2.2 Library 355

10

ISO/IEC 9899:1999 (E) ©ISO/IEC

— An optionallength modifietthat specifies the size of the receiving object.

— A conversion specifiewvide character that specifies the type of conversion to be
applied.

Thefwscanf function executes each directive of the format in turn. If a directive fails,

as detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

A directive composed of white-space wide character(s) is executed by reading input up to
the first non-white-space wide character (which remains unread), or until no more wide
characters can be read.

A directive that is an ordinary wide character is executed by reading the next wide

character of the stream. If that wide character differs from the directive, the directive

fails and the differing and subsequent wide characters remain unread. Similarly, if end-
of-file, an encoding error, or a read error prevents a wide character from being read, the
directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

Input white-space wide characters (as specified bistvepace function) are skipped,
unless the specification includep &, or n specifie”’?

An input item is read from the stream, unless the specification includespaaifier. An

input item is defined as the longest sequence of input wide characters which does not
exceed any specified field width and which is, or is a prefix of, a matching input
sequencé®) The first wide character, if any, after the input item remains unread. If the
length of the input item is zero, the execution of the directive fails; this condition is a
matching failure unless end-of-file, an encoding error, or a read error prevented input
from the stream, in which case it is an input failure.

Except in the case of%specifier, the input item (or, in the case o¥eadirective, the

count of input wide characters) is converted to a type appropriate to the conversion
specifier. If the input item is not a matching sequence, the execution of the directive fails:
this condition is a matching failure. Unless assignment suppression was indicated by a
the result of the conversion is placed in the object pointed to by the first argument
following theformat argument that has not already received a conversion result. If this

279) These white-space wide characters are not counted against a specified field width.

280)fwscanf pushes back at most one input wide character onto the input stream. Therefore, some
sequences that are acceptable¢stod , westol |, etc., are unacceptableftescanf .

356 Library §7.24.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

object does not have an appropriate type, or if the result of the conversion cannot be
represented in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointersmned char orunsigned char .

h Specifies that a followind, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer short int or unsigned short
int .

I (ell) Specifies that a following, i , 0, u, X, X, or n conversion specifier applies

to an argument with type pointer tong int or unsigned long

int ; that a followinga, A, e, E, f , F, g, or Gconversion specifier applies to
an argument with type pointer ttouble ; or that a followingc, s, dr
conversion specifier applies to an argument with type pointechar_t

Il (ell-ell) Specifies that a followind, i , 0, u, X, X, or n conversion specifier applies

to an argument with type pointer tong long int or unsigned
long long int

J Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointerittmax_t or uintmax_t

z Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer size t or the corresponding signed
integer type.

t Specifies that a following, i , 0, u, x, X, or n conversion specifier applies
to an argument with type pointer fardiff t or the corresponding

unsigned integer type.

L Specifies that a following, A, e, E, f, F, g, or G conversion specifier
applies to an argument with type pointetdog double

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofwestol function with the value 10
for the base argument. The corresponding argument shall be a pointer to
signed integer.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of tivestol function with the value O for the
base argument. The corresponding argument shall be a pointer to signed

§7.24.2.2 Library 357

ISO/IEC 9899:1999 (E) ©ISO/IEC

a,e,f,g

358

integer.

Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence ofvtlestoul function with the value 8

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofwtstoul function with the value 10

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence owitetoul function with the value

16 for thebase argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence wicsied
function. The corresponding argument shall be a pointer to floating.

Matches a sequence of wide characters of exactly the number specified by the
field width (1 if no field width is present in the directive).

If no | length modifier is present, characters from the input field are
converted as if by repeated calls to tivertomb function, with the
conversion state described by arbstate t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence. No null character is added.

If an | length modifier is present, the corresponding argument shall be a
pointer to the initial element of an arraywthar_t large enough to accept
the sequence. No null wide character is added.

Matches a sequence of non-white-space wide characters.

If no | length modifier is present, characters from the input field are
converted as if by repeated calls to tivertomb function, with the
conversion state described by arbstate t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

If an | length modifier is present, the corresponding argument shall be a
pointer to the initial element of an arraywthar_t large enough to accept

Library §7.24.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

the sequence and the terminating null wide character, which will be added
automatically.

[Matches a nonempty sequence of wide characters from a set of expected
characters (thecansek

If no | length modifier is present, characters from the input field are
converted as if by repeated calls to tivertomb function, with the
conversion state described by arbstate t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

If an | length modifier is present, the corresponding argument shall be a
pointer to the initial element of an arraywhar_t large enough to accept

the sequence and the terminating null wide character, which will be added
automatically.

The conversion specifier includes all subsequent wide characters in the
format string, up to and including the matching right bracket The wide
characters between the brackets @b@&nlis) compose the scanset, unless the
wide character after the left bracket is a circumflex (n which case the
scanset contains all wide characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with
[] or[?] , the right bracket wide character is in the scanlist and the next
following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is
the one that ends the specification. ¥ wide character is in the scanlist and

is not the first, nor the second where the first wide charactet is1ar the

last character, the behavior is implementation-defined.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced ¥p tuaversion of
thefwprintf function. The corresponding argument shall be a pointer to a
pointer tovoid . The input item is converted to a pointer value in an
implementation-defined manner. If the input item is a value converted earlier
during the same program execution, the pointer that results shall compare
equal to that value; otherwise the behavior of9dpronversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of wide characters read
from the input stream so far by this call to fimscanf function. Execution
of a %ndirective does not increment the assignment count returned at the
completion of execution of thdwscanf function. No argument is

§7.24.2.2 Library 359

13
14

15

16

17

18

ISO/IEC 9899:1999 (E) ©ISO/IEC

converted, but one is consumed. If the conversion specification includes an
assignment-suppressing wide character or a field width, the behavior is
undefined.

% Matches a singl&wide character; no conversion or assignment occurs. The
complete conversion specification shallbeo

If a conversion specification is invalid, the behavior is undefitiéd.

The conversion specifies, E, F, G and X are also valid and behave the same as,
respectivelya, e, f , g, andx.

Trailing white space (including new-line wide characters) is left unread unless matched
by a directive. The success of literal matches and suppressed assignments is not directly
determinable other than via thendirective.

Returns

Thefwscanf function returns the value of the madé®Fif an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

EXAMPLE 1 The call:

#include <stdio.h>

#include <wchar.h>

*

int n, i; float x; wchar_t name[50];

n = fwscanf(stdin, L"%d%f%Is", &i, &x, hame);

with the input line:
25 54.32E-1 thompson

will assign ton the value3, toi the value25, to x the value5.432 , and toname the sequence
thompson\0 .

EXAMPLE 2 The call:

#include <stdio.h>

#include <wchar.h>

|

int i; float x; double y;

fwscanf(stdin, L"%2d%f%*d %lf", &i, &%, &y);

with input:
56789 0123 56a72

will assign toi the values6 and tox the value789.0 , will skip past0123, and will assign ty the value
56.0 . The next wide character read from the input stream wil.be

281) See “future library directions” (7.26.12).

360 Library §7.24.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Forward references: thewcstod , westof , andwcestold functions (7.24.4.1.1), the
wcstol , westoll , westoul , andwecestoull functions (7.24.4.1.2), thecrtomb
function (7.24.6.3.3).

7.24.2.3 Theswprintf function
Synopsis

#include <wchar.h>
int swprintf(wchar_t * restrict s,
size_tn,
const wchar_t * restrict format, ...);

Description

The swprintf function is equivalent tdwprintf , except that the argumerst
specifies an array of wide characters into which the generated output is to be written,
rather than written to a stream. No more thawide characters are written, including a
terminating null wide character, which is always added (umlésszero).

Returns

Theswprintf function returns the number of wide characters written in the array, not
counting the terminating null wide character, or a negative value if an encoding error
occurred or iiln or more wide characters were requested to be written.

7.24.2.4 Theswscanf function
Synopsis

#include <wchar.h>
int swscanf(const wchar_t * restrict s,
const wchar _t * restrict format, ...);

Description

Theswscanf function is equivalent tbvscanf , except that the argumesntspecifies a

wide string from which the input is to be obtained, rather than from a stream. Reaching
the end of the wide string is equivalent to encountering end-of-file fofwtheanf
function.

Returns

The swscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

§7.24.2.4 Library 361

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.24.2.5 Thevfwprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int viwprintf(FILE * restrict stream,
const wchar _t * restrict format,
va_list arg);

Description

The viwprintf function is equivalent téwprintf |, with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and

possibly subsequenta_arg calls). Thevfwprintf function does not invoke the

va_end macro?8?

Returns

The viwprintf function returns the number of wide characters transmitted, or a
negative value if an output or encoding error occurred.

EXAMPLE The following shows the use of thdwprintf function in a general error-reporting
routine.

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, ...)

{

va_list args;

va_start(args, format);

/I print out name of function causing error
fwprintf(stderr, L"'ERROR in %s: ", function_name);
/I print out remainder of message
viwprintf(stderr, format, args);

va_end(args);

282) As the functionsfwprintf |, vswprintf | vfwscanf , vwprintf |, vwscanf , andvswscanf
invoke theva_arg macro, the value adrg after the return is indeterminate.

362 Library §7.24.2.5

©ISO/IEC ISO/IEC 9899:1999 (E)

7.24.2.6 Thevfwscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int viwscanf(FILE * restrict stream,
const wchar _t * restrict format,
va_list arg);

Description

The vfwscanf function is equivalent tdwscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha _start macro (and
possibly subsequenta_arg calls). Thevfwscanf function does not invoke the

va_end macro?8?

Returns

Thevfwscanf function returns the value of the mad&®Fif an input failure occurs
before any conversion. Otherwise, Wigvscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.7 Thevswprintf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vswprintf(wchar_t * restrict s,
size_tn,
const wchar _t * restrict format,
va_list arg);

Description

Thevswprintf function is equivalent tewprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevswprintf function does not invoke the

va_end macro?8?

Returns

Thevswprintf function returns the number of wide characters written in the array, not
counting the terminating null wide character, or a negative value if an encoding error
occurred or iiln or more wide characters were requested to be generated.

87.24.2.7 Library 363

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.24.2.8 Thevswscanf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vswscanf(const wchar_t * restrict s,
const wchar_t * restrict format,
va_list arg);

Description

The vswscanf function is equivalent teswscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevswscanf function does not invoke the

va_end macro?8?

Returns

Thevswscanf function returns the value of the mad&®Fif an input failure occurs
before any conversion. Otherwise, v@vscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.9 Thevwprintf function
Synopsis
#include <stdarg.h>
#include <wchar.h>

int vwprintf(const wchar_t * restrict format,
va_list arg);

Description

The vwprintf function is equivalent tavprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevwprintf function does not invoke the

va_end macro?8?

Returns

Thevwprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

364 Library §7.24.2.9

©ISO/IEC ISO/IEC 9899:1999 (E)

7.24.2.10 Therwscanf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vwscanf(const wchar_t * restrict format,
va_list arg);

Description

The vwscanf function is equivalent tonvscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha_start macro (and

possibly subsequenta_arg calls). Thevwscanf function does not invoke the

va_end macro?8?

Returns

The vwscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.11 Thewprintf function
Synopsis

#include <wchar.h>
int wprintf(const wchar_t * restrict format, ...);

Description

The wprintf function is equivalent tafwprintf with the argumentstdout
interposed before the argumentsvorintf

Returns

Thewprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

7.24.2.12 Thavscanf function
Synop