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Abstract. Ricci curvature bounds in Riemannian geometry are known to be equivalent to
the weak convexity (convexity along at least one geodesic between any two points) of certain
functionals in the space of probability measures. We prove that the weak convexity can be
reinforced into strong (usual) convexity, thus solving a question left open in [4].

1. Introduction and main result

For the past few years, there has been ongoing research to study the links between Riemannian
geometry and optimal transport of measures [9, 10]. In particular, it was recently found that
lower bounds on the Ricci curvature tensor can be recast in terms of convexity properties of
certain nonlinear functionals defined on spaces of probability measures [1, 4, 5, 6, 7, 8]. In this
paper we solve a natural problem in this field by establishing the equivalence of several such
formulations.

Before explaining our results in more detail, let us give some notation and background. Let
(M, g) be a smooth complete connected n-dimensional Riemannian manifold, equipped with its
geodesic distance d and its volume measure vol. Let P (M) be the set of probability measures
on M . For any real number p ≥ 1, we denote by Pp(M) the set of probability measures µ such
that ∫

M
dp(x, x0) dµ(x) < ∞ for some x0 ∈ M .

The set P2(M) is equipped with the Wasserstein distance of order 2, denoted by W2: This is
the square root of the optimal transport cost functional, when the cost function c(x, y) coincides
with the squared distance d2(x, y); see for instance [10, Definition 6.1]. Then P2(M) is a metric
space, and even a length space; that is, any two probability measures in P2(M) are joined by
at least one geodesic curve (µt)0≤t≤1. (Here and in the sequel, by convention geodesics are
supposed to be globally minimizing and to have constant speed.)

A basic representation theorem (see [4, Proposition 2.10] or [10, Corollary 7.22]) states that
any Wasserstein geodesic curve necessarily takes the form µt = (et)∗Π, where Π is a probability
measure on the set Γ of minimizing geodesics [0, 1] → M , the symbol ∗ stands for push-forward,
and et : Γ → M is the evaluation at time t: et(γ) := γ(t). So the optimal transport problem
between two probability measures µ0 and µ1 produces three related objects:

- an optimal coupling π of µ0 and µ1, which is a probability measure on M × M whose
marginals are µ0 and µ1, achieving the lowest possible cost for the transport between these
measures;

- a path (µt)0≤t≤1 in the space of probability measures;
- a probability measure Π on the space of geodesics, such that (et)∗Π = µt and (e0, e1)∗Π = π.

Such a Π is called a dynamical optimal transference plan [10, Definition 7.20].
1
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The core of the studies in [1, 4, 5, 6, 7, 8] lies in the analysis of the convexity properties of
certain nonlinear functionals along geodesics in P2(M), defined below:

Definition 1.1 (Nonlinear functionals of probability measures). Let ν be a reference measure on
M , absolutely continuous with respect to the volume measure. Let U : R+ → R be a continuous
convex function with U(0) = 0; let U ′(∞) be the limit of U(r)/r as r →∞. Let µ be a probability
measure on M and let µ = ρν + µs be its Lebesgue decomposition with respect to ν.

(i) If U(ρ) is bounded below by a ν-integrable function, then the quantity Uν(µ) is defined by
the formula

Uν(µ) =
∫

M
U(ρ(x)) ν(dx) + U ′(∞) µs[M ].

(ii) If π is a probability measure on M × M , admitting µ as first marginal, β is a positive
function on M × M , and β U(ρ/β) is bounded below (as a function of x, y) by a ν-integrable
function of x, then the quantity Uβ

π,ν(µ) is defined by the formula

Uβ
π,ν(µ) =

∫

M×M
U

(
ρ(x)

β(x, y)

)
β(x, y)π(dy|x) ν(dx) + U ′(∞) µs[M ],

where π(dy|x) is the disintegration of π(dx dy) with respect to the x variable.

Remark 1.2. Sufficient conditions for Uν and Uβ
π,ν to be well-defined are discussed in [10,

Theorems 17.8 and 17.28, Application 17.29] and will not be addressed here.

Remark 1.3. If U ′(∞) = ∞, then finiteness of Uν(µ) implies that µ is absolutely continuous
with respect to ν. This is not true if U ′(∞) < ∞.

The various notions of convexity that are considered in [4, 6, 7, 8] belong to the following
ones:

Definition 1.4 (Convexity properties). (i) Let U and ν be as in Definition 1.1, and let λ ∈ R.
We say that the functional Uν is λ-displacement convex if for all Wasserstein geodesics (µt)0≤t≤1

whose image lies in the domain of Uν ,

Uν(µt) ≤ (1− t) Uν(µ0) + t Uν(µ1)− 1
2

λ t(1− t)W 2
2 (µ0, µ1), ∀t ∈ [0, 1]. (1)

We say that the functional Uν is displacement convex with distortion β if for all Wasserstein
geodesics (µt)0≤t≤1 whose image lies in the domain of Uν , if π(dx dy) stands for the associated
optimal coupling between µ0 and µ1, and π̌ is obtained from π by exchanging the two variables
x and y, then

Uν(µt) ≤ (1− t) Uβ
π,ν(µ0) + t Uβ

π̌,ν(µ1), ∀t ∈ [0, 1]. (2)
(ii) We say that Uν is weakly λ-displacement convex (resp. weakly displacement convex with

distortion β) if for all µ0, µ1 in the domain of Uν , there is some Wasserstein geodesic from µ0

to µ1 along which (1) (resp. (2)) is satisfied.
(iii) We say that Uν is weakly λ-a.c.c.s. displacement convex (resp. weakly a.c.c.s. displace-

ment convex with distortion β) if condition (1) (resp. (2)) is satisfied along some Wasserstein
geodesic when we further assume that µ0, µ1 are absolutely continuous and compactly supported.

Remark 1.5. The Wasserstein geodesic in (ii) and (iii) above is implicitly assumed to have its
image entirely contained in the domain of the functional Uν .
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Remark 1.6. If Uν is a λ-displacement convex functional, then the function t 7→ Uν(µt) is
λ-convex on [0, 1], i.e. for all 0 ≤ s ≤ s′ ≤ 1 and t ∈ [0, 1],

Uν(µ(1−t)s+ts′) ≤ (1− t)Uν(µs) + tUν(µs′)− 1
2
λt(1− t)(s′ − s)2W2(µ0, µ1)2. (3)

This is not a priori the case if we only assume that Uν is weakly λ-displacement convex.

In short, weakly means that we require a condition to hold only for some geodesic between
two measures, as opposed to all geodesics, and a.c.c.s. means that we only require the condition
to hold when the two measures are absolutely continuous and compactly supported.

There are obvious implications (with or without distorsion)

λ-displacement convex
⇓

weakly λ-displacement convex
⇓

weakly λ-a.c.c.s. displacement convex.

Although the natural convexity condition is arguably the one appearing in (i), that is, holding
true along all Wasserstein geodesics, this condition is quite more delicate to study than the
weaker conditions appearing in (ii) and (iii), in particular for stability issues: See [4, 6, 7]. In
the same references the equivalence between (ii) and (iii) was established, at least for compact
spaces [4, Proposition 3.21]. But the implication (ii) ⇒ (i) remained open (and was listed as an
open problem in a preliminary version of [10]). In the present paper we shall fill this gap (at
least for the functionals defined above), thus answering a natural question about the notion of
displacement convexity. Here is our main result:

Theorem 1.7. Let U , ν and β be as in Definition 1.1. Assume that U is Lipschitz. For each
a > 0, define Ua(r) = U(ar)/a. Then

(i) If (Ua)ν is weakly λ-a.c.c.s. displacement convex for any a ∈ (0, 1], then Uν is λ-
displacement convex;

(ii) If (Ua)ν is weakly a.c.c.s. displacement convex with distortion β for any a ∈ (0, 1], then
Uν is displacement convex with distortion β.

Among the consequences of Theorem 1.7 is the following corollary:

Corollary 1.8. Let M be a smooth complete Riemannian manifold with nonnegative Ricci
curvature and dimension n. Let U(r) = −r1−1/n, and let ν be the volume measure on M . Then
Uν is displacement convex on Pp(M), where p = 2 if n ≥ 3, and p is any real number greater
than 2 if n = 2.

More generally, Theorem 1.7 makes it possible to drop the “weakly” in all displacement
convexity characterizations of Ricci curvature bounds.

Before turning to the proof of Theorem 1.7, let us explain a bit more about the difficulties
and the strategy of proof. Obviously, there are two problems to tackle: first, the possibility that
µ0 and/or µ1 do not have compact support; and secondly, the possibility that µ0 and/or µ1 are
singular with respect to the volume measure.

It was shown in [4, 6, 7] that inequalities such as (1) or (2) are stable under (weak) conver-
gence. Then it is natural to approximate µ0, µ1 by compactly supported, absolutely continuous
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measures, and pass to the limit. This scheme of proof is enough to show the implication (iii)
⇒ (ii) in Definition 1.4, but does not guarantee that we can attain all Wasserstein geodesics in
this way — unless of course we know that there is a unique Wasserstein geodesic between µ0

and µ1.
To treat the difficulty arising from the possible non-compactness, we use recent results by

Fathi and the first author [2], showing that the Wasserstein geodesic between any two absolutely
continuous probability measures on a Riemannian manifold M is unique, even if they are not
compactly supported. (This exact statement does not appear in [2], but it is a simple consequence
of the results there, and the reasoning in [3, Proposition 3.1]. See also [10, Corollary 7.23].)

The difficulty arising from the possible singularity of µ0, µ1 is less simple. If µ0 and µ1 are
both singular, then there are in general several Wasserstein geodesics joining them. A most
simple example is constructed by taking µ0 = δx0 and µ1 = δx1 , where δx stands for the Dirac
mass at x, and x0, x1 are joined by multiple geodesics. So it is part of the problem to regularize
µ0, µ1 into absolutely continuous measures µ0,k, µ1,k so that, as k →∞, the optimal transport
between µ0,k and µ1,k converges to a given optimal transport between µ0 and µ1.

We handle this by a rather nonstandard regularization procedure, which roughly goes as
follows. We start from a given dynamical optimal transference plan Π between µ0 and µ1, leave
intact that part Π(a) of Π which corresponds to the absolutely continuous part of µ0. Then we
let displacement occur for a very short time at the level of that part Π(s) of Π corresponding to
the singular part of µ0. Next we regularize the resulting contribution of Π(s).

Let us illustrate this in the most basic case when µ0 = δx0 and µ1 = δx1 . Let γ = (γt)0≤t≤1 be a
given geodesic between x0 and x1; we wish to approximate the Wasserstein geodesic (δγt)0≤t≤1.
Instead of directly regularizing µ0 and µ1, we shall first replace µ0 by µτ = δγτ , where τ is
positive but very small; and then regularize δγτ and δx1 into probability measures µτ,ε and µ1,ε.
What we have gained is that the geodesic joining γτ to x1 = γ1 is unique, so we may let τ → 0
and ε → 0 in such a way that the Wasserstein geodesic joining µτ,ε to µ1,ε does converge to
(δγt)0≤t≤1.

In a more general context, the procedure will be more tricky, and what will make it work is
the following important property [10, Theorem 7.29]: Geodesics in dynamical optimal transport
plans do not cross at intermediate times. In fact, if Π is a given dynamical optimal transport
plan, then for each t ∈ (0, 1) one can define a measurable map Ft : M → Γ by the requirement
that Ft ◦ et = Id, Π-almost surely. In understandable words, if γ is a geodesic along which there
is optimal transport, then the position of γ at time t determines the whole geodesic γ. This
property will ensure that Π(a) and Π(s) “do not overlap at intermediate times”.

Finally, we note that the results in this paper can be extended to more general situations
outside the category of Riemannian manifolds: It is sufficient that the optimal transport between
any two absolutely continuous probability measures be unique. In fact, there is a more general
framework where these results still hold true, namely the case of nonbranching locally compact,
complete length spaces. This extension will be established, by a slightly different approach,
in [10, Chapter 30].

Acknowledgement: John Lott played a double role in the genesis of this paper, first because
some of the methods and results used here are taken from his joint work with the second
author [4], but also because it was him who explicitly asked whether displacement convexity
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inequalities would hold true along all displacement interpolations between two singular measures
on a Riemannian manifold.

2. Proofs

In the sequel, we shall use the notation Ua,ν for (Ua)ν . An important ingredient in the proof
of Theorem 1.7 will be the following lemma, which has interest on its own (and will be used for
different purposes in [10, Chapter 30]).

Lemma 2.1. Let U be a Lipschitz convex function with U(0) = 0. Let µ1, µ2 be any two
probability measures on M , and let Z1, Z2 be two positive numbers with Z1 + Z2 = 1. Then

(i) Uν(Z1µ1 + Z2µ2) ≥ Z1 UZ1,ν(µ1) + Z2 UZ2,ν(µ2), with equality if µ1 and µ2 are singular to
each other;

(ii) Let π1, π2 be two probability measures on M × M , and let β be a positive measurable
function on M ×M . Then

Uβ
Z1π1+Z2π2,ν(Z1µ1 + Z2µ2) ≥ Z1 Uβ

Z1,π1,ν(µ1) + Z2 Uβ
Z2,π2,ν(µ2),

with equality if µ1 and µ2 are singular to each other.

Proof of Lemma 2.1. We start by the following remark: If x, y are nonnegative numbers, then

U(x + y) ≥ U(x) + U(y). (4)

Inequality (4) follows at once from the fact that U(t)/t is a nondecreasing function of t, and
thus

U(x)
x

≤ U(x + y)
x + y

,
U(y)

y
≤ U(x + y)

x + y
=⇒ xU(x + y) + yU(x + y) ≥ (x + y)(U(x) + U(y)).

Next, with obvious notation,

Uν(Z1µ1 + Z2µ2) =
∫

U(Z1ρ1 + Z2ρ2) dν + U ′(∞)
(
Z1 µ1,s[M ] + Z2 µ2,s[M ]

)
;

UZ1,ν(µ1) =
1
Z1

∫
U(Z1ρ1) dν + U ′(∞)µ1,s[M ];

UZ2,ν(µ2) =
1
Z2

∫
U(Z2ρ2) dν + U ′(∞)µ2,s[M ];

so part (i) of the lemma follows immediately from (4). The claim about equality is obvious since
it amounts to say that U(x + y) = U(x) + U(y) as soon as either x or y is zero.

The proof of part (ii) is based on a similar type of reasoning. First note that (with the
conventions U(0)/0 = U ′(0), U(∞)/∞ = U ′(∞) and µs-almost surely, dµ/dν = +∞)

Uβ
Z1π1+Z2π2,ν(Z1µ1 + Z2µ2)

=
∫

M×M
U

(
Z1ρ1(x) + Z2ρ2(x)

β(x, y)

)
β(x, y)

Z1ρ1(x) + Z2ρ2(x)
(Z1π1 + Z2π2)(dx dy);

Uβ
Z1,π1,ν(µ1) =

∫
U

(
Z1ρ1(x)
β(x, y)

)
β(x, y)
Z1ρ1(x)

Z1π1(dx dy);

Uβ
Z2,π2,ν(µ2) =

∫
U

(
Z2ρ2(x)
β(x, y)

)
β(x, y)
Z2ρ2(x)

π2(dx dy).
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So the proof of the lemma will be complete if we can show that

U

(
Z1ρ1 + Z2ρ2

β

)
β

Z1ρ1 + Z2ρ2
(Z1π1 + Z2π2)

≥ U

(
Z1ρ1

β

)
β

Z1ρ1
(Z1π1) + U

(
Z2ρ2

β

)
β

Z2ρ2
(Z2π2). (5)

Since U(r)/r is a nondecreasing function of r, if X1, X2, p1, p2 are any four nonnegative num-
bers then

U(X1 + X2)
X1 + X2

(p1 + p2) ≥ U(X1)
X1

p1 +
U(X2)

X2
p2.

To recover (5), it suffices to apply the latter inequality with

X1 =
Z1ρ1(x)
β(x, y)

, X2 =
Z2ρ2(x)
β(x, y)

,

p1 =
d(Z1π1)

d(Z1π1 + Z2π2)
(x, y), p2 =

d(Z2π2)
d(Z1π1 + Z2π2)

(x, y)

and to integrate against (Z1π1 + Z2π2)(dx dy). ¤
Proof of Theorem 1.7. First we observe that Uν is well-defined on P2(M) since, if µ = ρν + µs

is the Lebesgue decomposition of a probability measure µ ∈ P (M), then

U(ρ) ≥ −‖U‖Lip ρ ∈ L1(M,ν).

In fact, there is also an upper bound, so Uν is well-defined on the whole of P2(M) with values in
R. Moreover, by an approximation argument, we may replace the assumptions of weak a.c.c.s.
displacement convexity by weak displacement convexity on the whole of P2(M). (The proof is
the same as in [4, Proposition 3.21] (in the compact case) or [10, Theorem 30.5].)

Let µ0, µ1 be any two measures in P2(M), and let Π be an optimal dynamical transference
plan between µ0 and µ1. Let further

µ0 = ρ0 ν + µ0,s

be the Lebesgue decomposition of µ0 with respect to ν. Let E(a) and E(s) be two disjoint
Borel subsets of M such that ρ0 ν is concentrated on E(a) and µ0,s is concentrated on E(s). We
decompose Π as

Π = Π(a) + Π(s), (6)
where

Π(a) := Πx
{

γ ∈ Γ | γ(0) ∈ E(a)
}

, Π(s) := Πx
{

γ ∈ Γ | γ(0) ∈ E(s)
}

.

Taking the marginals at time t in (6) we get

µt = µ
(a)
t + µ

(s)
t .

In the end, we renormalize µ
(a)
t and µ

(s)
t into probability measures: we define

Z(a) = Π(a)[Γ] = µ
(a)
0 [M ] = µ

(a)
t [M ]; Z(s) = Π(s)[Γ],

and

Π̂(a) :=
Π(a)

Z(a)
, µ̂

(a)
t :=

µ
(a)
t

Z(a)
; Π̂(s) :=

Π(s)

Z(s)
, µ̂

(s)
t :=

µ
(s)
t

Z(s)
.
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So

µt = Z(a)µ̂
(a)
t + Z(s)µ̂

(s)
t . (7)

We remark that by the results in [2] µ
(a)
t is absolutely continuous for any t ∈ [0, 1), but µ

(s)
t is

not necessarly completely singular.
It follows from [10, Theorem 7.29 (v)] that for any t ∈ (0, 1) there is a Borel map Ft such

that Ft(γt) = γ0, Π(dγ)-almost surely. Then µ
(s)
t is concentrated on F−1

t (E(s)), while µ
(a)
t is

concentrated on F−1
t (E(a)); so these measures are singular to each other. Then by Lemma 2.1

and (7), for any t ∈ (0, 1),

Uν(µt) = Z(a)UZ(a),ν(µ̂
(a)
t ) + Z(s)UZ(s),ν(µ̂

(s)
t ). (8)

In the sequel, we focus on part (i) of Theorem 1.7, since the reasoning is quite the same for part
(ii). By construction and the restriction property of optimal transport [10, Theorem 7.29], Π̂(a)

is an optimal dynamical transference plan between µ̂
(a)
0 and µ̂

(a)
1 , and the associated Wasserstein

geodesic is (µ̂(a)
t )0≤t≤1. Since by construction µ̂

(a)
0 is absolutely continuous, by the results in [2]

(or by [3, Proposition 3.1] or by [10, Corollary 7.23]) (µ̂(a)
t ) is the unique Wasserstein geodesic

joining µ̂
(a)
0 to µ̂

(a)
1 . Then we can apply the displacement convexity inequality of the functional

UZ(a),ν along that geodesic:

UZ(a),ν(µ̂
(a)
t ) ≤ (1− t)UZ(a),ν(µ̂

(a)
0 ) + t UZ(a),ν(µ̂

(a)
1 )− λ

2
t (1− t) W 2

2 (µ̂(a)
0 , µ̂

(a)
1 ). (9)

Next, let εk → 0 be a sequence of positive numbers. From the nonbranching property of
P2(M) [10, Corollary 7.31], there is only one Wasserstein geodesic joining µ̂

(s)
εk to µ̂

(s)
1 and it

is obtained by reparameterizing (µ̂(s)
t )εk≤t≤1 on [0, 1] (with an affine reparameterization in t).

So we can also apply the displacement convexity inequality of the functional UZ(s),ν along that
geodesic, and get

UZ(s),ν(µ̂
(s)
t ) ≤

(
1− t

1− εk

)
UZ(s),ν(µ̂

(s)
εk

) +
(

t− εk

1− εk

)
UZ(s),ν(µ̂

(s)
1 )

− λ

2
(t− εk) (1− t) W 2

2 (µ̂(s)
0 , µ̂

(s)
1 ). (10)

(For the latter term we have used the fact that if (µt)0≤t≤1 is any Wasserstein geodesic, then
W2(µs, µt) = |t− s|W2(µ0, µ1).)
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The first term in the right-hand side of (10) can be trivially bounded by U ′(∞), which
coincides with UZ(s),ν(µ̂

(s)
0 ) since µ̂

(s)
0 is totally singular. Indeed, since U(r)

r ≤ U ′(∞), we have

UZ(s),ν(µ̂
(s)
εk

) =
1

Z(s)

∫

M
U

(
Z(s)ρ̂(s)

εk

)
dν + U ′(∞) µ̂(s)

εk,s(M)

=
1

Z(s)

∫

{ρ̂(s)
εk

>0}
U

(
Z(s)ρ̂(s)

εk

)
dν + U ′(∞) µ̂(s)

εk,s(M)

=
∫

{ρ̂(s)
εk

>0}

U
(
Z(s)ρ̂

(s)
εk

)

Z(s)ρ̂s
εk

ρ̂(s)
εk

dν + U ′(∞) µ̂(s)
εk,s(M)

≤
∫

{ρ̂(s)
εk

>0}
U ′(∞)ρ̂(s)

εk
dν + U ′(∞) µ̂(s)

εk,s(M)

= U ′(∞) µ̂(s)
εk

(M) = U ′(∞).

Then by passing to the lim inf as k →∞ in (10), we recover

UZ(s),ν(µ̂
(s)
t ) ≤ (1− t) UZ(s),ν(µ̂

(s)
0 ) + t UZ(s),ν(µ̂

(s)
1 )− λ

2
t(1− t) W 2

2 (µ̂(s)
0 , µ̂

(s)
1 ). (11)

By combining together (8), (9) and (11), we obtain

Uν(µt) ≤ (1−t)
[
Z(a)UZ(a),ν(µ̂

(a)
0 )+Z(s)UZ(s),ν(µ̂

(s)
0 )

]
+t

[
Z(a)UZ(a),ν(µ̂

(a)
1 )+Z(s)UZ(s),ν(µ̂

(s)
1 )

]

− λ

2
t(1− t)

[
Z(a)W 2

2 (µ̂(a)
0 , µ̂

(a)
1 ) + Z(s)W 2

2 (µ̂(s)
0 , µ̂

(s)
1 )

]
. (12)

The last term inside square brackets can be rewritten as∫
d2(γ0, γ1)Π(a)(dγ) +

∫
d2(γ0, γ1)Π(s)(dγ) =

∫
d2(γ0, γ1)Π(dγ) = W 2

2 (µ0, µ1).

Plugging this back into (12) and using Lemma 2.1, we conclude that

Uν(µt) ≤ (1− t) Uν(µ0) + t Uν(µ1)− λ

2
t(1− t)W 2

2 (µ0, µ1).

This finishes the proof of Theorem 1.7. ¤

Proof of Corollary 1.8. Let U := r → −r1−1/N . By the estimates derived in [4, Proposi-
tion E.17], Uν is well-defined on Pp(M). (This is made more explicit in [10, Theorem 17.8
and Example 17.9].)

Let DCn be the displacement convex class of order n, that is the class of functions U ∈
C2(0,∞) ∩ C([0, +∞)) such that U(0) = 0 and δnU(δ−n) is a convex function of δ. (See [10,
Definition 17.1]). Obviously, U ∈ DCn. By [10, Proposition 17.7], there is a sequence (U (`))`∈N
of Lipschitz functions, all belonging to DCn, such that U (`) converges monotonically to U as
` →∞.

Since U (`) lies in DCn, it is by now classical (see [10, Theorem 17.15], which summarizes
the works of many authors) that U

(`)
ν it is a.c.c.s-displacement convex. By Theorem 1.7, this

functional is also displacement convex. Then it follows by an easy limiting argument that Uν

itself is displacement convex. ¤
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inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, 2 (2001), 219–257.

[2] Fathi, A., and Figalli, A. Optimal transportation on non-compact manifolds. Preprint (2006).
[3] Figalli, A. Existence, uniqueness and regularity of optimal transport maps. To appear in SIAM, Journal

Math. Anal. Available online via http://cvgmt.sns.it/people/figalli/.
[4] Lott, J., and Villani, C. Ricci curvature for metric-measure spaces via optimal transport. To appear in

Ann. of Math. Available online via http://www.umpa.ens-lyon.fr/~cvillani/.
[5] Otto, F., and Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic

Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361–400.
[6] Sturm, K.-T. On the geometry of metric measure spaces. I. Acta Math. 196, 1 (2006), 65–131.
[7] Sturm, K.-T. On the geometry of metric measure spaces. II. Acta Math. 196, 1 (2006), 133–177.
[8] Sturm, K.-T., and von Renesse, M.-K. Transport inequalities, gradient estimates, entropy and Ricci

curvature. Comm. Pure Appl. Math. 58, 7 (2005), 923–940.
[9] Villani, C. Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. American Mathe-

matical Society, Providence, RI, 2003.
[10] Villani, C. Optimal transport, old and new. Notes from the Saint-Flour 2005 Summer School. Available

online at www.umpa.ens-lyon.fr/~cvillani/.


