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Abstract The accuracy of Conditional Random Fields (CRF) is 

achieved at the cost of huge amount of computation to train 
model. In this paper we designed the parallelized algorithm for 
the Gradient Ascent based CRF training methods for biological 
sequence alignment. Our contribution is mainly on two aspects: 1) 
We flexibly parallelized the different iterative computation 
patterns, and the according optimization methods are presented. 
2) As for the Gibbs Sampling based training method, we designed 
a way to automatically predict the iteration round, so that the 
parallel algorithm could be run in a more efficient manner. In the 
experiment, these parallel algorithms achieved valuable 
accelerations comparing to the serial version.  

  
Keywords Conditional Random Fields; Biological Sequence 
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I. INTRODUCTION 
With the rapid growth of biological databases, simply 

adding new training resources will reveal their limitation, and 
better algorithms with more complicated model which can 
include more features are needed. And Conditional Random 
Fields (CRF) introduced by Lafferty et al [1], is one of them. 
This method has already been successfully employed in many 
fields such as Nature Language Processing, Information 
Retrieval, and Bioinformatics [2, 3, 4, 5]. CRF is a kind of 
discriminative model, the training algorithms for this kind of 
model are mainly based on the gradient of the conditional 
likelihood function, or on a related idea [14].  

Currently, the parallelization methods of Conditional 
Random Fields are mainly the coarse-grained method, such as 
the FlexCRF [8] and ContraAlign [9]. They are generally 
about partitioning sub-tasks (such as a single training sample) 
to different computation nodes. Since the operations of the 
sub-tasks also consist of loops and iterations, they still have a 
great potential for the fine-grained acceleration, and the GPU 
programming is one of the possible way to achieve the 
fine-grained acceleration. 

We provide the design, implementation, and experimental 
study, of the parallel CRF iterative training algorithm on GPU 
card. More specifically, the algorithm is aimed at biological 
sequence alignment. And we implement the parallel algorithm 
for both Collins Perceptron based algorithm [27] and Gibbs 
Sampling based algorithm [14], because of their different 
iterative patterns. 

The rest of this paper is organized as follows: in section II, 
we introduce the basic idea of Conditional Random Fields, 
Biological Sequence Alignment and GPU CUDA 

programming language. In section III, we describe the design 
of the parallelized iterative CRF training algorithm. In section 
IV, we proposed some of the problems and our optimization 
ideas. The experiments are presented in section V, 
Conclusions and future works are discussed in section VI.  

II. BACKGROUND AND RELATED WORK 
Conditional Random Fields (CRF) introduced by Lafferty et 

al is a kind of Discriminative Model [12], different from the 
generative models such as Hidden Markov Model [13], it has 
many advantages such as: supporting of multiple feature 
selection, and the relaxation of strong independent assumption. 
In addition, as a kind of undirected graphical model, it 
conquers the label bias problem [1] which brings inaccuracy to 
other directed graph models such as Maximal Entropy Hidden 
Markov Model [26].  Biological Sequence Alignment (BSA) is 
the task of comparing DNA or RNA sequences and align them 
with some objective functions [28]. There is a pair-wise CRF 
based method by Chun Do et al to do BSA [9].  

Liu et al. [15] explore the power of GPU using the OpenGL 
graphic language. This is the first GPU implementation of 
biological sequence alignment based algorithms. Munekawa et 
al. [16] and Cschatz [17] propose the implementation of 
Smith-Waterman on GPU using CUDA. They discuss in detail 
of how to arrange the threads and how to make the memory 
access faster.  

The parallel CRF based training method also implement 
some of the ideas in Hidden Markov Model based BSA, such 
as Viterbi algorithm. ClawHMMER [18, 19] is an 
HMM-based sequence alignment application on GPUs. We 
parallelized the HMM based BSA using CUDA [20], and 
proposed a tile based way to cope with long sequences more 
efficiently. We also used the Viterbi algorithm in this paper.  

Currently the parallelization of CRF is mainly on 
coarse-grained method using MPI, such as FlexCRF [8] and 
ContraAlign [9], their work do not conflict with our 
fine-grained method. Since the training of CRF occupies most 
of the workload in the BSA, we mainly concern on the training 
of CRF for BSA. 

III. TRAINING ALGORITHMS   

A. BSA and CRF training 
The sequence alignment is, for example, there are two 

sequences, template sequence: AACT, target sequence: 
AAACT, and the alignment is: The problem for sequence 
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alignment is how to select the proper objective 
function to guide the alignment process. For example, the 
second column of the template sequence is A, if at this time, it 
faces the thirds column of target sequence which is also A, the 
factors that may cause them to be matched are: one possible 
factor is the amino acid itself, say A match A, under such 
circumstance, the chance is high,  and there might be other 
factors that influent the match result, let’s say the following 
characters such the third column of  template, which is C, and 
the fourth T, because of the existence of these characters, they 
reduced  the possibility of A matching A at this time. We call 
all these factors “features”.  

In biological sequence alignment realm, there are basically 
two elements that forms feature. One is observations, which is 
the occurrence of sequence characters, for example, the third 
column of template is C, and this is the observation. Another is 
states, which is the “match”, “delete” and “insert” result for a 
specific column. With the combination of these two basic 
elements, we could construct many features, for example, the 
following are some of the potential features: 

 
Feature 1: the current state and the next state, since there 

are 3 possible states for each column, and each column could 
form a feature vector of length 9. 

Feature 2: the current observation and the current state, for 
each column there are 20 kinds of amino acids (or 4 kinds of 
DNA or RNA) it could form a feature vector of length 
20*3=60 or 3*4=12. 

Feature 3: the combination of current observation and the 
next observation, with the current state. For each column it 
could form a feature vector of length 4*4*3=48.  

 
For example: for the column 1 of the previous alignment 

example, the feature vector length is (9+12+48=69), and the 1st, 
10th, 22nd position is set to 1, because the feature values are: 
match-match for feature 1, A-match for feature 2, and 
A-A-match for feature 3.                                                   

CRF is the mathematical tool to integrate all these features, 
it can be described as: 
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In which, x stands for the observations and y stands for 
states, Z(x) is a normalizer, it can be expressed as: 
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In the formulas above, F(y, x) stands for feature functions, y 

is the input of state, and x is the input of observation. We could 
define the form of feature function using binary function as 
follows: 
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The problem discussed in this paper is on how to use CUDA 
to design algorithm to efficiently train the CRF model for 
sequence alignment. For how to use CRF model to align 
sequences please see [9]. The log likelihood function for  
P(y|x,�)  is: 
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According to the Maximum likelyhood rule, we make 

partial deriviation on the P(y|x,�) to compute the according 
gradient for each weight, in this way we could update  the 
weights in the gradient direction to reach  the optimal point. 
We neglect the process of mathematical induction and get the 
following formula: 
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In this formula � is a constant which represent the learning 

rate (velocity), Fj(x, y) is the practical feature value of the 
trainning data (template sequence), and   is the expectation of 
estimated feature value, it is hard to compute [23], therefore, 
we need some simplification to compute it, Collins Perceptron 
and Gibbs Sampling are the ones to solve this problem.  

B. Collins Perceptron Training Algorithm  
 Collins Perceptron suppose that all of the probability mass 

are placed on a single state
^
y which is mostly probable. It is: 

);|(maxarg
^

wxypy y= . The information included in this 
formula is: At the very beginning, use current weights vector 

w to compute a state(class) 
^
y  , then use this 

^
y  to compute 

the feature value, this feature value is appriximately the same 
as the , then use this value to update the weight vector w, 
repeat this step until the w converges. 

The formula of updating the w is as follows:  
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The problem is, how to compute the 
^
y ? There are two 

way to solve this problem, local based method and global 
based method: 

Local based method suppose that there are no relattionship 
between states With the global based method, we will train 

the model by computing the states 
^
y  as a whole, using a 

dynamic programming algorithm, typically using viterbi 
algorithm. For example: 

observations: ,  states: {match,delete, insert} 
 

In the example above, the state sequence is: 
match->match->insert->match->match.  

AA- CT 
AAACT

AA- CT 
AAACT 
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If we use local based method, in column 3, we construct 
features by assuming states of {match, delete, insert} one by 
one, if we need the value of the combination of states to 
construct the feature vector. (For example, the current state 
and the previous state), we will use the original state in the 
training data, let’s say the previous state of column 3 is match.  

If we use global based method, we would not use the states 
in the training data, but use a dynamic programming matrix to 
train every possible state combinations (for example the 
current assumed state and every possible previous states). 

C. Gibbs Sampling Training Algorithm 
A method known as Gibbs sampling can be used to find the 

needed samples of 
^
y . The updating of Gibbs sampling based 

method is the same as Collins Perceptron method and Gibbs 
sampling method is very similar to the local based Collins 
perceptron method, the difference  between them are basically 
two points: 1) Gibbs sampling using randomly generated states 
as training data, and local based method using data in the 
training sets. 2) Gibbs sampling method should compute the 
states one by one, and global based Collins method could 
compute the states at the same time. Take the previous sample 
for example: Firstly, we assign a random state sequence to it, 
which might be delete->match->insert->match->match, then 
according to the most likely state for column 1, say it is match, 
then we update this state sequence to 
match->match->insert->match->match, then do this again in 
the second column, repeat this step until all the states are 
updated.  

D. Time Complexity Analysis 
Suppose that, the training sequence length is L, and feature 

number is F, and the iteration round number is R, and the time 
complexity for local based Collins method is L*F*R, for 
global based Collins method it is L2*F*R. And for Gibbs 
Sampling based method, it is, L*F*R.  

IV. PARALLEL ALGORITHM AND OPTIMIZATION METHODS 

A. Parallel Collins Perceptron Algorithm 
Pesudo Code 1:  DoCRFTrain (seq_temp, seq_tar) 

InitWeights(); 
While contrlValue < Thresh:  
   Parallel_for: Columni  in columns of template: 
         for: feature Fi in features of Columnn: 
             for: state Yk in three states of dependent Block: 
                 do: 
      calculate Fi(X, Yk, j) 

                     calculate 
^
y  

UpdateWeights(); 
Done; 

 

Insert1

Delete1

Match1

A
C
D
E
F
G
H
I
K
L

Insert1

Delete1

Match1

Insert1

Delete1

Match1

M
N
P
Q
R
S
T
V
W
Y

A
C
D
E
F
G
H
I
K
L

M
N
P
Q
R
S
T
V
W
Y

A
C
D
E
F
G
H
I
K
L

M
N
P
Q
R
S
T
V
W
Y  

Figure 1 CRF feature selection for biological sequence Alignment 
 

To discuss the parallel algorithm, we start from the local  
based Collins Perceptron algorithm. Assume that the feature 
we set is as the Figure 1 shows (this feature selection strategy 
will be used in all of the following three algorirthms), in the 
figure, each undirected links stands for the features, for 
example, the link between "match" and "delete",  stands for 
the feature of the current state "delete" and the previous state 
"match".  And there are link between a given state "match" 
and the amino acid alphabet box, which stands for the 
features of the current state "match" with one possible 
observation in the box. 

The local method in itself is the process of iteratively 
updating the feature weights, since there are no data 
dependency between the feature weights, and there are no 
data dependency between different columns, so it is quite fit 
for the SIMT (Single Instruction, Multiple Threads) 
computing pattern of CUDA, the algorithm is shown in 
Peudo Code 1. 

For the global based algorithm to train Collins Perceptron 
algorithm, it is different, it uses viterbi algorithm to get the 
state vector. And Viterbi Algorithm itself can be parallelized, 
so the trainning process become the parallelization of viterbi 
algorithm, we use the basic wave-front algorithm to do the 
parallelization tasks, and the algorithm could be described 
using Pseudo Code 2. 

Iteration 1

Iteration i

Iteration n

C
olum

n 1

C
olum

n i

C
olum

n m

...

...

 
Figure 2, dependency analysis of Gibbs Sampling algorithm, and the way of 
paralleling different iterations. 

 

B. Parallel Gibbs Sampling Algorithm 
Gibbs Sampling algorithm is very similar to the process of 

local based Collins Perceptron CRF training algorithm. 
However it differs from the Collins based method in that. For 
each iteration, the current state should be computed after the 
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computation of the previous state, in this way the parallel_for 
in the Pseudo Code 1, cannot be parallelized in Gibbs 
Sampling algorithm. Here we introduce the method of 
paralleling computation of different iterations which is 
“wave-front” like, see Figure 2.  

Peudo Code 2:  DoWaveCRFTrain (seq_temp, seq_tar) 
InitWeights(); 
While contrlValue < Thresh: 

for: roundr  in all  rounds:  
        parallel_for: blockmn  in blocks of roundr: 
           for: feature Fi in features of Columnn: 
              for: state  Si in three states of  Blockmn: 
                 for: state  Sj in three states of dependent Block: 

//when Si is Match, the dependent block is 
Block(m-1)(n-1) 

// when Si is Delete, the dependent block is 
Blcok(m-1)n 

//when Si is Insert, the dependent block is  
Blcokm(n-1) 

                   do:  
               calculate Fi(X, Yk, j) 

calculate 
^
y Traceback() 

UpdateWeights(); 
In the Figure 2, though the data in the same iteration are 

strictly dependent on each other, but this is not true for data in 
different iterations (in the Figure, full lines represent the 
dependent relationship, and the dotted lines represent the 
independent relationship). Under such dependency condition, 
data marked with the same color are independent of each other 
which can be calculated in parallel.  

One problem is , this wave-front algorithm is different from 
the wave-front pattern to parallel viterbi algorithm [20], for we 
know how many rows in the dynamic programming matrix, 
but we do not know how many iterations there will be in the 
Gibbs Sampling based method. So, there must be redundant 
computations with this wave-front manner if we compute all 
the iterations permitted at the same time. One way to solve this 
problem is to “predict” how many iterations there will be, the 
parallel algorithm is show in Pseudo Code 3. 

 
Peudo Code 3:  DoWaveCRFTrain (seq_temp, seq_tar) 

InitOriginW(); 
While contrlValue < Thresh: 

for: K roundr  in all  rounds:  
        parallel_for: blockmn  in blocks of roundr: 
           for: feature Fi in features of Columnn: 
              for: state Yk in three states of dependent Block: 
                 do: 
      calculate Fi(X, Yk, j) 

                  calculate 
^
y  

UpdateW(); 
judgeWhichRound() 

 

x x+k 

E
rrornum

ber

Iteration round     

Termination point

x-k

 
Figure 3  The curve of the learning process . 
 
In this algorithm, we predict the iteration number K with a 

fixed value to prevent too many redundant computation, for 
example K = 10 , with this strategy, there could be at most 9 
redundant computations, and the larger K is, the higher 
parallelization we could achieve with higher probability of 
doing more redundant computations. 

PROBLEMS AND OPTIMIZATION METHODS 

A. How to Assign Memory and Threads? 
Assigning memory and threads are very important for 

promoting the performance of CUDA accelerated algorithm. 
In implement our method, we put the small but often accessed 
memory in the shared memory and put large but less often 
accessed memory in global memory. As for the thread 
scheduling, we use the optimization method in [24], to make 
the memory access better. 

B. How to Predict Iteration Round Number for Gibbs 
Sampling? 

Previously, we proposed method of setting a defined K to 
parallel the computation of different iterations, in this method 
the K are hard to select, because for different training samples 
the K might be different to reach the optimal performance. 
Suppose the learning curve is as the Figure 3 shows, we could 
see that if the learning process is converging, and the previous 
reduced error number is the area of the trapezoid and we could 
predict the remaining K, therefore we could see K as a variant 
not a static value, and the method to compute K is as follow: 

 
Method : half the iteration round 

1) Compute the slope (we mark it as sl) according to the 
first and last iteration reduced error number (let’s say 
e1 and e2) of the previous round. 

2) If remained error number is marked as re, and 
re-K*(2K-K*sl)/2 is larger than termination point 
(which is marked as term), then K = mid-point of the 
expecting rounds, else solve the formula (re – term) = 
K*(2K-K*sl)/2 to get the K. 

 

V. EXPERIMENTAL RESULTS 
The experiments are performed on the platform which has a 

dual-processor Intel 2.83GHz CPU with 4 GB memory and an 
NVIDIA Geforce 9800 GTX GPU with 8 streaming 
processors and 512MB of global memory. We tested using 
Windows XP system. And the experiments are run on both 
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debug and release mode. To focus on the algorithmic 
efficiency in our study, we made two simplifications in our 
experiments, one is that we use a pseudo count method [29] to 
train the CRF, and another is that we neglected the discussion 
of accuracy for our experiments (because we lack the training 
data set and theory preparation to train the previous 
knowledge,). We employ the automatic sequence-generating 
program ROSE [25] to generate different test cases. 

A. Test of Collins Perceptron 
The test of Collins Perceptron is divided into two parts, the 

local based method and the global based method. We select 
groups of sequences which have lengths less than 2000 to test 
both of the two methods.  The experimental results for local 
based method are shown in Table I. 

TABLE I.  PERFORMANCE COMPARISM OF LOCAL BASED TRAINING 
METHODS 

         Sequence- 
Length 

Execution Time (Second)/Speedup 

Debug Release 

500 serial 1.531 
1.814 

0.718 
0.919 GPU 0.844 0.781 

1000 serial 2.671 
3.351 

1.265 
1.528 GPU 0.797 0.828 

1500 serial 4.437 
5.681 

2.109 
2.753 GPU 0.781 0.766 

2000 serial 7.296 
9.342 

3.625 
4.548 GPU 0.781 0.797 

From the table we could see that our algorithm achieved 
acceleration comparing to the serial version, and the longer the 
sequence is, the higher acceleration performance it will be. 
However, there are two problems indicated by this experiment: 

1) The acceleration rate is not high enough as we expected, 
as our previous analysis, the local based algorithm 
should fit the SIMT computation mode most, but the 
truth is not like that, this might be related to the small 
problem size itself. 

2) When the sequence length is small, the acceleration rate 
is not obvious, to solve this problem, we must unite 
other local based method tasks as a whole to promote 
the usage of GPU and the performance. 

Table II shows the result of global based Collins Perceptron 
algorithm, because the running time for viterbi algorithm is 
long, the experimental results show the average time for each 
iteration.  

TABLE II.  PERFORMANCE COMPARISM OF GLOBAL BASED TRAINING 
METHODS 

         Sequence- 
Length 

Execution Time (Second)/Speedup 

Debug Release 

500 serial 1.72 
8.113 

1.03 
4.813 GPU 0.212 0.214 

1000 serial 5.27 
13.077 

3.17 
5.591 GPU 0.403 0.567 

1500 serial 13.95 
15.587 

8.37 
10.07 GPU 0.895 0.831 

2000 serial 28.17 
22.357 

16.7 
12.945 GPU 1.26 1.29 

 
Figure 4 The curve of the learning time for stable K based Gibbs Sampling. 

 
Figure 5 The curve of the learning time for Dynamic K based (half the 
iteration expectation) Gibbs Sampling. 

1) As table II shows, comparing to the local based algorithm, 
the acceleration rate is higher. This is because the 
problem size for global based algorithm is larger than 
the serial version, and under such circumstances, the 
GPU might be better prepared for the work. In addition, 
we used the methods of partition different kind of 
computations as shown in [20], and because the 
computation of a single kernel is very large, divide it 
will obviously increase the utilization of GPU. 

B.  Test of Gibbs Sampling Algorithm  
As for the Gibbs sampling algorithm, there are two ways of 

getting the proper “jumping step” K--the stable method and the 
variant method. The experiment is executed on the sequence of 
length 500, the iteration expectation range from 100 to 1000, 
and for the case of  stable K the K is ranging from 10 to 100, for 
the case of dynamic K, the slopes are ranging from  0.2 to 2. 
The figure from 4 to 5 shows the experiment results. From the 
figures, we could see that, comparing to the variant methods, 
the stable methods spend more time to train the model on 
average, when the K is less than about 50 the performance will 
be worse than the dynamic methods. What’s more the 
performance of dynamic K based algorithm is steadier with the 
variation of iteration expectation comparing to the stable K 
based algorithm. This is a very important result, for in the real 
application, we cannot assure that the iteration number is just 
as our expectation. 

Finally, table 3 shows the results on the test of the execution 
time on different length of sequence, we used the method of 
stable method which set K=50. Comparing to the local based 
parallel Collins Perceptron training algorithm, the parallel 
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Gibbs sampling algorithm is a little worse, this is because that 
their work load are the same, but the thread load for Gibbs 
sampling method is unbalanced, smaller than Collins method.  

TABLE III.  PERFORMANCE COMPARISM OF GIBBS SAMPLING  METHODS 

Sequence- 
Length 

Execution Time (Second)/Speedup
Debug Release 

500 0.25 6.124 0.25 2.872 
1000 0.42 6.36 0.469 2.697 
1500 0.66 6.723 0.735 2.869 
2000 0.97 7.522 1.06 3.42 

VI. CONCLUSION AND FUTURE WORK 
In this article, we analyzed the Conditional Random field 

model and its application on the Biological Sequence 
alignment, we designed the parallel version of training 
sequence alignment oriented CRF training algorithm (which 
also includes many optimization ideas), experiment shows that 
our method perform well on GPU card with CUDA, still there 
are more work to be done which are listed as follows: 1) Much 
work should been done on our algorithm to support arbitrarily 
large feature sets. 2) We need to integrate our work with the 
work done by Chun Do et al [9] and their MPI based coarse 
grained parallel methods.  

VII. ACKNOWLEGEMENT 
This paper is partly supported by National Natural Science 
Foundation of China (No. 61073008 and No. 60773148), 
Beijing Natural Science Foundation (No. 4082016), NSF 
Grants IIP-0934114 and OCI-0904461, NIH award RC2 
HG005542, and the NVIDIA CUDA Center of Excellence at 
Georgia Tech. 

REFERENCES 
[1] Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: 

Probabilistic models for segmenting and labeling sequence data. In: 
Proc. 18th International Conf. on Machine Learning, Morgan 
Kaufmann, San Francisco, CA (2001) 282–289 

[2] McCallum, A.: Efficiently inducing features of conditional random 
fields. In: Proc. 19th Conference on Uncertainty in Artificial 
Intelligence. (2003) 

[3] Sha, F., Pereira, F.: Shallow parsing with conditional random fields. 
Technical Report MS-CIS-02-35, University of Pennsylvania (2003) 

[4] Sarawagi, Sunita; William W. Cohen (2005). "Semi-Markov conditional 
random fields for information extraction". in Lawrence K. Saul, Yair 
Weiss, Léon Bottou (eds.). Advances in Neural Information Processing 
Systems 17. Cambridge, MA: MIT Press. pp. 1185-1192.  

[5] Leaman, R., Gonzalez, G.: BANNER: An executable survey of advances 
in biomedical named entity recognition. In 'Pacific Symposium on 
Biocomputing' 

[6] Christopher M. Bishop Neural Networks for Pattern Recognition Oxford 
England Oxford University Press. 

[7] Minsky M. L. and Papert S. A. 1969. Perceptrons. Cambridge, MA: 
MIT Press. 

[8] J. Shan, Y. Chen, Q. Diao, Y. Zhang. Parallel information extraction on 
shared memory multi-processor system. In Proc. of International 
Conference on Parallel Processing, 2006. 

[9] Do, C.B., Gross, S.S., and Batzoglou, S. (2006) CONTRAlign: 
Discriminative Training for Protein Sequence Alignment. In 
Proceedings of the Tenth Annual International Conference on 
Computational Molecular Biology (RECOMB 2006). 

[10] J. M. Nageswaran, et al. A configurable simulation environment for the 
efficient simulation of large-scale spiking neural networks on graphics 
processors,Special issue of Neural Network, Elsevier, vol. 22, no. 5-6, 
pp. 791-800, July 2009. 

[11] Mohammad A. Bhuiyan, Vivek K. Pallipuram and Melissa C. Smith 
Acceleration of Spiking Neural Networks in Emerging Multi-core and 
GPU Architectures  In HiComb 2010 Atlanta 2010 

[12] Kevin P. Murphy "An Introduction to Graphical Models" 2001 
[13] L.R Rabiner “A tutorial on hidden Markov models and selected 

applications in speech recognition”. In Proceedings of the IEEE, Vol. 77, 
No. 2. (06 August 2002), pp. 257-286. 

[14] Charles Elkan Log-linear Models and Conditional Random Fields ACM 
17th Conference on Information and Knowledge Management, tutorial, 
2008 

[15] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, GPU Accelerate 
Smith-Waterman, Proc. Int’l Conf. Computational Science (ICC 06) 
pp.188-195,2006 

[16] Y. Munekawa, F. Ino, and K. Hagihara. Design and Implementation of 
the Smith-Waterman Algorithm on the CUDA-Compatible GPU. 8th 
IEEE International Conference on BioInformatics and BioEngineering, 
pages 1 C6, Oct .200 

[17] S.A. Manavski, G. Valle. CUDA compatible GPU cards as efficient 
hardware accelerators for Smith-Waterman sequence alignment. BMC 
Bioinformatics. 2008 Mar 26;9 Suppl 2:S10 

[18] R. Horn, M. Houston, P. Hanrahan. ClawHMMer: A streaming HMMer 
–search implementation. Proc. Supercomputing (2005). 

[19] I. Buck, T. Foley,  D. Horn,  J. Sugerman ,  K. Fatahalian,  M.  
Houston, P. Hanrahan. Brook for GPUs: Stream Computing on Graphics 
Hardware (2004) ACM Trans. On Graphics. 

[20] Zhihui Du, Zhaoming Yin, David. A Bader, A Tile-based Parallel 
Viterbi Algorithm for Biological Sequence Alignment on GPU with 
CUDA IEEE International Parallel and Distributed Processing 
Symposium (IPDPS) —HiComb Workshop, Atlanta USA, 2010 

[21] Smith, Temple F.; and Waterman, Michael S. (1981). "Identification of 
Common Molecular Subsequences". Journal of Molecular Biology 147: 
195–197.  

[22] Berger et al.: A. Berger, A. Della Pietra, and J. Della Pietra. A maximum 
entropy approach to natural language processing. Computational 
Linguistics, pp.39-71, No.1, Vol.22, 1996 

[23] Klinger, R., Tomanek, K.: Classical Probabilistic Models and 
Conditional Random Fields. Algorithm Engineering Report 
TR07-2-013, Department of Computer Science, Dortmund University of 
Technology, December 2007. 

[24] Shane Ryoo Christopher I.Rodrigues Sara S. Baghsorkhi Sam S. Stone 
David B. Kirk Wen-mei W. Hwu Optimization Principles and 
Application Performance Evaluation Of a Multithreaded GPU Using 
CUDA Proceedings of the 13th ACM SIGPLAN Symposium on 
Principles and practice of parallel programming Salt Lake City, UT, 
USA 2008 

[25] J. Stoye, D. Evers and F. Meyer.  “Rose: generating sequence families”. 
In Bioinformatics. 1998;14(2):157-163 

[26] A. Mccallum , D. Freitag , Fernando Pereira Maximum Entropy Markov 
Models for Information Extraction and Segmentation Proceedings of the 
Seventeenth International Conference on Machine Learning  Pages: 591 
– 598 2000 

[27] M. Collins. Discriminative training methods for hidden Markov models: 
Theory and experiments with perceptron algorithms. Proceedings of the 
ACL-02 Conference on Empirical Methods in Natural Language 
Processing, pp. 1-8, 2002. 

[28] Notredame C. Recent progresses in multiple sequence alignment: a 
survey Pharmacogenomics. 2002 Jan;3(1):131-44. 

[29] Jorja G. Henikoff ,  Steven Henikoff ,  Howard Hughes:  Using 
substitution probabilities to improve position-specific scoring matrices 
Computer Applications in the Biosciences 1996. 

548


