

 1

On Accelerating Iterative Algorithms with CUDA: A Case Study on Conditional
Random Fields Training Algorithm for Biological Sequence Alignment

Zhihui Du1+ ,Zhaoming Yin2 , Wenjie Liu1 and David Bader3

1Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China

+Corresponding Author’s Email: duzh@tsinghua.edu.cn
2School of Software and Microelectronics, Peking University, 100871, China.

 Email zhaoming_leon@pku.edu.cn
3College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Abstract The accuracy of Conditional Random Fields (CRF) is

achieved at the cost of huge amount of computation to train
model. In this paper we designed the parallelized algorithm for
the Gradient Ascent based CRF training methods for biological
sequence alignment. Our contribution is mainly on two aspects: 1)
We flexibly parallelized the different iterative computation
patterns, and the according optimization methods are presented.
2) As for the Gibbs Sampling based training method, we designed
a way to automatically predict the iteration round, so that the
parallel algorithm could be run in a more efficient manner. In the
experiment, these parallel algorithms achieved valuable
accelerations comparing to the serial version.

Keywords Conditional Random Fields; Biological Sequence
Alignment; GPGPU

I. INTRODUCTION
With the rapid growth of biological databases, simply

adding new training resources will reveal their limitation, and
better algorithms with more complicated model which can
include more features are needed. And Conditional Random
Fields (CRF) introduced by Lafferty et al [1], is one of them.
This method has already been successfully employed in many
fields such as Nature Language Processing, Information
Retrieval, and Bioinformatics [2, 3, 4, 5]. CRF is a kind of
discriminative model, the training algorithms for this kind of
model are mainly based on the gradient of the conditional
likelihood function, or on a related idea [14].

Currently, the parallelization methods of Conditional
Random Fields are mainly the coarse-grained method, such as
the FlexCRF [8] and ContraAlign [9]. They are generally
about partitioning sub-tasks (such as a single training sample)
to different computation nodes. Since the operations of the
sub-tasks also consist of loops and iterations, they still have a
great potential for the fine-grained acceleration, and the GPU
programming is one of the possible way to achieve the
fine-grained acceleration.

We provide the design, implementation, and experimental
study, of the parallel CRF iterative training algorithm on GPU
card. More specifically, the algorithm is aimed at biological
sequence alignment. And we implement the parallel algorithm
for both Collins Perceptron based algorithm [27] and Gibbs
Sampling based algorithm [14], because of their different
iterative patterns.

The rest of this paper is organized as follows: in section II,
we introduce the basic idea of Conditional Random Fields,
Biological Sequence Alignment and GPU CUDA

programming language. In section III, we describe the design
of the parallelized iterative CRF training algorithm. In section
IV, we proposed some of the problems and our optimization
ideas. The experiments are presented in section V,
Conclusions and future works are discussed in section VI.

II. BACKGROUND AND RELATED WORK
Conditional Random Fields (CRF) introduced by Lafferty et

al is a kind of Discriminative Model [12], different from the
generative models such as Hidden Markov Model [13], it has
many advantages such as: supporting of multiple feature
selection, and the relaxation of strong independent assumption.
In addition, as a kind of undirected graphical model, it
conquers the label bias problem [1] which brings inaccuracy to
other directed graph models such as Maximal Entropy Hidden
Markov Model [26]. Biological Sequence Alignment (BSA) is
the task of comparing DNA or RNA sequences and align them
with some objective functions [28]. There is a pair-wise CRF
based method by Chun Do et al to do BSA [9].

Liu et al. [15] explore the power of GPU using the OpenGL
graphic language. This is the first GPU implementation of
biological sequence alignment based algorithms. Munekawa et
al. [16] and Cschatz [17] propose the implementation of
Smith-Waterman on GPU using CUDA. They discuss in detail
of how to arrange the threads and how to make the memory
access faster.

The parallel CRF based training method also implement
some of the ideas in Hidden Markov Model based BSA, such
as Viterbi algorithm. ClawHMMER [18, 19] is an
HMM-based sequence alignment application on GPUs. We
parallelized the HMM based BSA using CUDA [20], and
proposed a tile based way to cope with long sequences more
efficiently. We also used the Viterbi algorithm in this paper.

Currently the parallelization of CRF is mainly on
coarse-grained method using MPI, such as FlexCRF [8] and
ContraAlign [9], their work do not conflict with our
fine-grained method. Since the training of CRF occupies most
of the workload in the BSA, we mainly concern on the training
of CRF for BSA.

III. TRAINING ALGORITHMS

A. BSA and CRF training
The sequence alignment is, for example, there are two

sequences, template sequence: AACT, target sequence:
AAACT, and the alignment is: The problem for sequence

2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops

978-1-4244-8302-0/10/$26.00 ©2010 IEEE 543

 2

alignment is how to select the proper objective
function to guide the alignment process. For example, the
second column of the template sequence is A, if at this time, it
faces the thirds column of target sequence which is also A, the
factors that may cause them to be matched are: one possible
factor is the amino acid itself, say A match A, under such
circumstance, the chance is high, and there might be other
factors that influent the match result, let’s say the following
characters such the third column of template, which is C, and
the fourth T, because of the existence of these characters, they
reduced the possibility of A matching A at this time. We call
all these factors “features”.

In biological sequence alignment realm, there are basically
two elements that forms feature. One is observations, which is
the occurrence of sequence characters, for example, the third
column of template is C, and this is the observation. Another is
states, which is the “match”, “delete” and “insert” result for a
specific column. With the combination of these two basic
elements, we could construct many features, for example, the
following are some of the potential features:

Feature 1: the current state and the next state, since there

are 3 possible states for each column, and each column could
form a feature vector of length 9.

Feature 2: the current observation and the current state, for
each column there are 20 kinds of amino acids (or 4 kinds of
DNA or RNA) it could form a feature vector of length
20*3=60 or 3*4=12.

Feature 3: the combination of current observation and the
next observation, with the current state. For each column it
could form a feature vector of length 4*4*3=48.

For example: for the column 1 of the previous alignment

example, the feature vector length is (9+12+48=69), and the 1st,
10th, 22nd position is set to 1, because the feature values are:
match-match for feature 1, A-match for feature 2, and
A-A-match for feature 3.

CRF is the mathematical tool to integrate all these features,
it can be described as:

1(| ,) exp (,)
() j j

j
P y x F y x

Z x
λ λ= �

 (1)

In which, x stands for the observations and y stands for
states, Z(x) is a normalizer, it can be expressed as:

() exp (,)j j
y j

Z x F y xλ= � �
 (2)

In the formulas above, F(y, x) stands for feature functions, y

is the input of state, and x is the input of observation. We could
define the form of feature function using binary function as
follows:

�
�
�

=
others

Aisresidueiththeif
yxf

0
1

),((3)

The problem discussed in this paper is on how to use CUDA
to design algorithm to efficiently train the CRF model for
sequence alignment. For how to use CRF model to align
sequences please see [9]. The log likelihood function for
P(y|x,�) is:

)](log),([),,(
1

xZxyFyxl
x

d

j
jj −= � �

=

λλ (4)

According to the Maximum likelyhood rule, we make

partial deriviation on the P(y|x,�) to compute the according
gradient for each weight, in this way we could update the
weights in the gradient direction to reach the optimal point.
We neglect the process of mathematical induction and get the
following formula:

)),(),((
^

);|(~
^^ yxFEyxFww j

wxyPy
jjj −×+= α (5)

In this formula � is a constant which represent the learning

rate (velocity), Fj(x, y) is the practical feature value of the
trainning data (template sequence), and is the expectation of
estimated feature value, it is hard to compute [23], therefore,
we need some simplification to compute it, Collins Perceptron
and Gibbs Sampling are the ones to solve this problem.

B. Collins Perceptron Training Algorithm
 Collins Perceptron suppose that all of the probability mass

are placed on a single state
^
y which is mostly probable. It is:

);|(maxarg
^

wxypy y= . The information included in this
formula is: At the very beginning, use current weights vector

w to compute a state(class)
^
y , then use this

^
y to compute

the feature value, this feature value is appriximately the same
as the , then use this value to update the weight vector w,
repeat this step until the w converges.

The formula of updating the w is as follows:

),(

),(
^
yxFww

yxFww

jjj

jjj

α

α

−=

+=
 (6)

The problem is, how to compute the
^
y ? There are two

way to solve this problem, local based method and global
based method:

Local based method suppose that there are no relattionship
between states With the global based method, we will train

the model by computing the states
^
y as a whole, using a

dynamic programming algorithm, typically using viterbi
algorithm. For example:

observations: , states: {match,delete, insert}

In the example above, the state sequence is:
match->match->insert->match->match.

AA- CT
AAACT

AA- CT
AAACT

544

 3

If we use local based method, in column 3, we construct
features by assuming states of {match, delete, insert} one by
one, if we need the value of the combination of states to
construct the feature vector. (For example, the current state
and the previous state), we will use the original state in the
training data, let’s say the previous state of column 3 is match.

If we use global based method, we would not use the states
in the training data, but use a dynamic programming matrix to
train every possible state combinations (for example the
current assumed state and every possible previous states).

C. Gibbs Sampling Training Algorithm
A method known as Gibbs sampling can be used to find the

needed samples of
^
y . The updating of Gibbs sampling based

method is the same as Collins Perceptron method and Gibbs
sampling method is very similar to the local based Collins
perceptron method, the difference between them are basically
two points: 1) Gibbs sampling using randomly generated states
as training data, and local based method using data in the
training sets. 2) Gibbs sampling method should compute the
states one by one, and global based Collins method could
compute the states at the same time. Take the previous sample
for example: Firstly, we assign a random state sequence to it,
which might be delete->match->insert->match->match, then
according to the most likely state for column 1, say it is match,
then we update this state sequence to
match->match->insert->match->match, then do this again in
the second column, repeat this step until all the states are
updated.

D. Time Complexity Analysis
Suppose that, the training sequence length is L, and feature

number is F, and the iteration round number is R, and the time
complexity for local based Collins method is L*F*R, for
global based Collins method it is L2*F*R. And for Gibbs
Sampling based method, it is, L*F*R.

IV. PARALLEL ALGORITHM AND OPTIMIZATION METHODS

A. Parallel Collins Perceptron Algorithm
Pesudo Code 1: DoCRFTrain (seq_temp, seq_tar)

InitWeights();
While contrlValue < Thresh:
 Parallel_for: Columni in columns of template:
 for: feature Fi in features of Columnn:
 for: state Yk in three states of dependent Block:
 do:
 calculate Fi(X, Yk, j)

 calculate
^
y

UpdateWeights();
Done;

Insert1

Delete1

Match1

A
C
D
E
F
G
H
I
K
L

Insert1

Delete1

Match1

Insert1

Delete1

Match1

M
N
P
Q
R
S
T
V
W
Y

A
C
D
E
F
G
H
I
K
L

M
N
P
Q
R
S
T
V
W
Y

A
C
D
E
F
G
H
I
K
L

M
N
P
Q
R
S
T
V
W
Y

Figure 1 CRF feature selection for biological sequence Alignment

To discuss the parallel algorithm, we start from the local
based Collins Perceptron algorithm. Assume that the feature
we set is as the Figure 1 shows (this feature selection strategy
will be used in all of the following three algorirthms), in the
figure, each undirected links stands for the features, for
example, the link between "match" and "delete", stands for
the feature of the current state "delete" and the previous state
"match". And there are link between a given state "match"
and the amino acid alphabet box, which stands for the
features of the current state "match" with one possible
observation in the box.

The local method in itself is the process of iteratively
updating the feature weights, since there are no data
dependency between the feature weights, and there are no
data dependency between different columns, so it is quite fit
for the SIMT (Single Instruction, Multiple Threads)
computing pattern of CUDA, the algorithm is shown in
Peudo Code 1.

For the global based algorithm to train Collins Perceptron
algorithm, it is different, it uses viterbi algorithm to get the
state vector. And Viterbi Algorithm itself can be parallelized,
so the trainning process become the parallelization of viterbi
algorithm, we use the basic wave-front algorithm to do the
parallelization tasks, and the algorithm could be described
using Pseudo Code 2.

Iteration 1

Iteration i

Iteration n

C
olum

n 1

C
olum

n i

C
olum

n m

...

...

Figure 2, dependency analysis of Gibbs Sampling algorithm, and the way of
paralleling different iterations.

B. Parallel Gibbs Sampling Algorithm
Gibbs Sampling algorithm is very similar to the process of

local based Collins Perceptron CRF training algorithm.
However it differs from the Collins based method in that. For
each iteration, the current state should be computed after the

545

 4

computation of the previous state, in this way the parallel_for
in the Pseudo Code 1, cannot be parallelized in Gibbs
Sampling algorithm. Here we introduce the method of
paralleling computation of different iterations which is
“wave-front” like, see Figure 2.

Peudo Code 2: DoWaveCRFTrain (seq_temp, seq_tar)
InitWeights();
While contrlValue < Thresh:

for: roundr in all rounds:
 parallel_for: blockmn in blocks of roundr:
 for: feature Fi in features of Columnn:
 for: state Si in three states of Blockmn:
 for: state Sj in three states of dependent Block:

//when Si is Match, the dependent block is
Block(m-1)(n-1)

// when Si is Delete, the dependent block is
Blcok(m-1)n

//when Si is Insert, the dependent block is
Blcokm(n-1)

 do:
 calculate Fi(X, Yk, j)

calculate
^
y Traceback()

UpdateWeights();
In the Figure 2, though the data in the same iteration are

strictly dependent on each other, but this is not true for data in
different iterations (in the Figure, full lines represent the
dependent relationship, and the dotted lines represent the
independent relationship). Under such dependency condition,
data marked with the same color are independent of each other
which can be calculated in parallel.

One problem is , this wave-front algorithm is different from
the wave-front pattern to parallel viterbi algorithm [20], for we
know how many rows in the dynamic programming matrix,
but we do not know how many iterations there will be in the
Gibbs Sampling based method. So, there must be redundant
computations with this wave-front manner if we compute all
the iterations permitted at the same time. One way to solve this
problem is to “predict” how many iterations there will be, the
parallel algorithm is show in Pseudo Code 3.

Peudo Code 3: DoWaveCRFTrain (seq_temp, seq_tar)

InitOriginW();
While contrlValue < Thresh:

for: K roundr in all rounds:
 parallel_for: blockmn in blocks of roundr:
 for: feature Fi in features of Columnn:
 for: state Yk in three states of dependent Block:
 do:
 calculate Fi(X, Yk, j)

 calculate
^
y

UpdateW();
judgeWhichRound()

x x+k

E
rrornum

ber

Iteration round

Termination point

x-k

Figure 3 The curve of the learning process .

In this algorithm, we predict the iteration number K with a

fixed value to prevent too many redundant computation, for
example K = 10 , with this strategy, there could be at most 9
redundant computations, and the larger K is, the higher
parallelization we could achieve with higher probability of
doing more redundant computations.

PROBLEMS AND OPTIMIZATION METHODS

A. How to Assign Memory and Threads?
Assigning memory and threads are very important for

promoting the performance of CUDA accelerated algorithm.
In implement our method, we put the small but often accessed
memory in the shared memory and put large but less often
accessed memory in global memory. As for the thread
scheduling, we use the optimization method in [24], to make
the memory access better.

B. How to Predict Iteration Round Number for Gibbs
Sampling?

Previously, we proposed method of setting a defined K to
parallel the computation of different iterations, in this method
the K are hard to select, because for different training samples
the K might be different to reach the optimal performance.
Suppose the learning curve is as the Figure 3 shows, we could
see that if the learning process is converging, and the previous
reduced error number is the area of the trapezoid and we could
predict the remaining K, therefore we could see K as a variant
not a static value, and the method to compute K is as follow:

Method : half the iteration round

1) Compute the slope (we mark it as sl) according to the
first and last iteration reduced error number (let’s say
e1 and e2) of the previous round.

2) If remained error number is marked as re, and
re-K*(2K-K*sl)/2 is larger than termination point
(which is marked as term), then K = mid-point of the
expecting rounds, else solve the formula (re – term) =
K*(2K-K*sl)/2 to get the K.

V. EXPERIMENTAL RESULTS
The experiments are performed on the platform which has a

dual-processor Intel 2.83GHz CPU with 4 GB memory and an
NVIDIA Geforce 9800 GTX GPU with 8 streaming
processors and 512MB of global memory. We tested using
Windows XP system. And the experiments are run on both

546

 5

debug and release mode. To focus on the algorithmic
efficiency in our study, we made two simplifications in our
experiments, one is that we use a pseudo count method [29] to
train the CRF, and another is that we neglected the discussion
of accuracy for our experiments (because we lack the training
data set and theory preparation to train the previous
knowledge,). We employ the automatic sequence-generating
program ROSE [25] to generate different test cases.

A. Test of Collins Perceptron
The test of Collins Perceptron is divided into two parts, the

local based method and the global based method. We select
groups of sequences which have lengths less than 2000 to test
both of the two methods. The experimental results for local
based method are shown in Table I.

TABLE I. PERFORMANCE COMPARISM OF LOCAL BASED TRAINING
METHODS

 Sequence-
Length

Execution Time (Second)/Speedup

Debug Release

500 serial 1.531
1.814

0.718
0.919 GPU 0.844 0.781

1000 serial 2.671
3.351

1.265
1.528 GPU 0.797 0.828

1500 serial 4.437
5.681

2.109
2.753 GPU 0.781 0.766

2000 serial 7.296
9.342

3.625
4.548 GPU 0.781 0.797

From the table we could see that our algorithm achieved
acceleration comparing to the serial version, and the longer the
sequence is, the higher acceleration performance it will be.
However, there are two problems indicated by this experiment:

1) The acceleration rate is not high enough as we expected,
as our previous analysis, the local based algorithm
should fit the SIMT computation mode most, but the
truth is not like that, this might be related to the small
problem size itself.

2) When the sequence length is small, the acceleration rate
is not obvious, to solve this problem, we must unite
other local based method tasks as a whole to promote
the usage of GPU and the performance.

Table II shows the result of global based Collins Perceptron
algorithm, because the running time for viterbi algorithm is
long, the experimental results show the average time for each
iteration.

TABLE II. PERFORMANCE COMPARISM OF GLOBAL BASED TRAINING
METHODS

 Sequence-
Length

Execution Time (Second)/Speedup

Debug Release

500 serial 1.72
8.113

1.03
4.813 GPU 0.212 0.214

1000 serial 5.27
13.077

3.17
5.591 GPU 0.403 0.567

1500 serial 13.95
15.587

8.37
10.07 GPU 0.895 0.831

2000 serial 28.17
22.357

16.7
12.945 GPU 1.26 1.29

Figure 4 The curve of the learning time for stable K based Gibbs Sampling.

Figure 5 The curve of the learning time for Dynamic K based (half the
iteration expectation) Gibbs Sampling.

1) As table II shows, comparing to the local based algorithm,
the acceleration rate is higher. This is because the
problem size for global based algorithm is larger than
the serial version, and under such circumstances, the
GPU might be better prepared for the work. In addition,
we used the methods of partition different kind of
computations as shown in [20], and because the
computation of a single kernel is very large, divide it
will obviously increase the utilization of GPU.

B. Test of Gibbs Sampling Algorithm
As for the Gibbs sampling algorithm, there are two ways of

getting the proper “jumping step” K--the stable method and the
variant method. The experiment is executed on the sequence of
length 500, the iteration expectation range from 100 to 1000,
and for the case of stable K the K is ranging from 10 to 100, for
the case of dynamic K, the slopes are ranging from 0.2 to 2.
The figure from 4 to 5 shows the experiment results. From the
figures, we could see that, comparing to the variant methods,
the stable methods spend more time to train the model on
average, when the K is less than about 50 the performance will
be worse than the dynamic methods. What’s more the
performance of dynamic K based algorithm is steadier with the
variation of iteration expectation comparing to the stable K
based algorithm. This is a very important result, for in the real
application, we cannot assure that the iteration number is just
as our expectation.

Finally, table 3 shows the results on the test of the execution
time on different length of sequence, we used the method of
stable method which set K=50. Comparing to the local based
parallel Collins Perceptron training algorithm, the parallel

547

 6

Gibbs sampling algorithm is a little worse, this is because that
their work load are the same, but the thread load for Gibbs
sampling method is unbalanced, smaller than Collins method.

TABLE III. PERFORMANCE COMPARISM OF GIBBS SAMPLING METHODS

Sequence-
Length

Execution Time (Second)/Speedup
Debug Release

500 0.25 6.124 0.25 2.872
1000 0.42 6.36 0.469 2.697
1500 0.66 6.723 0.735 2.869
2000 0.97 7.522 1.06 3.42

VI. CONCLUSION AND FUTURE WORK
In this article, we analyzed the Conditional Random field

model and its application on the Biological Sequence
alignment, we designed the parallel version of training
sequence alignment oriented CRF training algorithm (which
also includes many optimization ideas), experiment shows that
our method perform well on GPU card with CUDA, still there
are more work to be done which are listed as follows: 1) Much
work should been done on our algorithm to support arbitrarily
large feature sets. 2) We need to integrate our work with the
work done by Chun Do et al [9] and their MPI based coarse
grained parallel methods.

VII. ACKNOWLEGEMENT
This paper is partly supported by National Natural Science
Foundation of China (No. 61073008 and No. 60773148),
Beijing Natural Science Foundation (No. 4082016), NSF
Grants IIP-0934114 and OCI-0904461, NIH award RC2
HG005542, and the NVIDIA CUDA Center of Excellence at
Georgia Tech.

REFERENCES
[1] Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In:
Proc. 18th International Conf. on Machine Learning, Morgan
Kaufmann, San Francisco, CA (2001) 282–289

[2] McCallum, A.: Efficiently inducing features of conditional random
fields. In: Proc. 19th Conference on Uncertainty in Artificial
Intelligence. (2003)

[3] Sha, F., Pereira, F.: Shallow parsing with conditional random fields.
Technical Report MS-CIS-02-35, University of Pennsylvania (2003)

[4] Sarawagi, Sunita; William W. Cohen (2005). "Semi-Markov conditional
random fields for information extraction". in Lawrence K. Saul, Yair
Weiss, Léon Bottou (eds.). Advances in Neural Information Processing
Systems 17. Cambridge, MA: MIT Press. pp. 1185-1192.

[5] Leaman, R., Gonzalez, G.: BANNER: An executable survey of advances
in biomedical named entity recognition. In 'Pacific Symposium on
Biocomputing'

[6] Christopher M. Bishop Neural Networks for Pattern Recognition Oxford
England Oxford University Press.

[7] Minsky M. L. and Papert S. A. 1969. Perceptrons. Cambridge, MA:
MIT Press.

[8] J. Shan, Y. Chen, Q. Diao, Y. Zhang. Parallel information extraction on
shared memory multi-processor system. In Proc. of International
Conference on Parallel Processing, 2006.

[9] Do, C.B., Gross, S.S., and Batzoglou, S. (2006) CONTRAlign:
Discriminative Training for Protein Sequence Alignment. In
Proceedings of the Tenth Annual International Conference on
Computational Molecular Biology (RECOMB 2006).

[10] J. M. Nageswaran, et al. A configurable simulation environment for the
efficient simulation of large-scale spiking neural networks on graphics
processors,Special issue of Neural Network, Elsevier, vol. 22, no. 5-6,
pp. 791-800, July 2009.

[11] Mohammad A. Bhuiyan, Vivek K. Pallipuram and Melissa C. Smith
Acceleration of Spiking Neural Networks in Emerging Multi-core and
GPU Architectures In HiComb 2010 Atlanta 2010

[12] Kevin P. Murphy "An Introduction to Graphical Models" 2001
[13] L.R Rabiner “A tutorial on hidden Markov models and selected

applications in speech recognition”. In Proceedings of the IEEE, Vol. 77,
No. 2. (06 August 2002), pp. 257-286.

[14] Charles Elkan Log-linear Models and Conditional Random Fields ACM
17th Conference on Information and Knowledge Management, tutorial,
2008

[15] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, GPU Accelerate
Smith-Waterman, Proc. Int’l Conf. Computational Science (ICC 06)
pp.188-195,2006

[16] Y. Munekawa, F. Ino, and K. Hagihara. Design and Implementation of
the Smith-Waterman Algorithm on the CUDA-Compatible GPU. 8th
IEEE International Conference on BioInformatics and BioEngineering,
pages 1 C6, Oct .200

[17] S.A. Manavski, G. Valle. CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment. BMC
Bioinformatics. 2008 Mar 26;9 Suppl 2:S10

[18] R. Horn, M. Houston, P. Hanrahan. ClawHMMer: A streaming HMMer
–search implementation. Proc. Supercomputing (2005).

[19] I. Buck, T. Foley, D. Horn, J. Sugerman , K. Fatahalian, M.
Houston, P. Hanrahan. Brook for GPUs: Stream Computing on Graphics
Hardware (2004) ACM Trans. On Graphics.

[20] Zhihui Du, Zhaoming Yin, David. A Bader, A Tile-based Parallel
Viterbi Algorithm for Biological Sequence Alignment on GPU with
CUDA IEEE International Parallel and Distributed Processing
Symposium (IPDPS) —HiComb Workshop, Atlanta USA, 2010

[21] Smith, Temple F.; and Waterman, Michael S. (1981). "Identification of
Common Molecular Subsequences". Journal of Molecular Biology 147:
195–197.

[22] Berger et al.: A. Berger, A. Della Pietra, and J. Della Pietra. A maximum
entropy approach to natural language processing. Computational
Linguistics, pp.39-71, No.1, Vol.22, 1996

[23] Klinger, R., Tomanek, K.: Classical Probabilistic Models and
Conditional Random Fields. Algorithm Engineering Report
TR07-2-013, Department of Computer Science, Dortmund University of
Technology, December 2007.

[24] Shane Ryoo Christopher I.Rodrigues Sara S. Baghsorkhi Sam S. Stone
David B. Kirk Wen-mei W. Hwu Optimization Principles and
Application Performance Evaluation Of a Multithreaded GPU Using
CUDA Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming Salt Lake City, UT,
USA 2008

[25] J. Stoye, D. Evers and F. Meyer. “Rose: generating sequence families”.
In Bioinformatics. 1998;14(2):157-163

[26] A. Mccallum , D. Freitag , Fernando Pereira Maximum Entropy Markov
Models for Information Extraction and Segmentation Proceedings of the
Seventeenth International Conference on Machine Learning Pages: 591
– 598 2000

[27] M. Collins. Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms. Proceedings of the
ACL-02 Conference on Empirical Methods in Natural Language
Processing, pp. 1-8, 2002.

[28] Notredame C. Recent progresses in multiple sequence alignment: a
survey Pharmacogenomics. 2002 Jan;3(1):131-44.

[29] Jorja G. Henikoff , Steven Henikoff , Howard Hughes: Using
substitution probabilities to improve position-specific scoring matrices
Computer Applications in the Biosciences 1996.

548

