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Abstract

It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major
bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are
extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning
algorithms. Unlike these conventional implementations, this paper proposes a new learning algorithm called extreme learning machine
(ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines
the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning
speed. The experimental results based on a few artificial and real benchmark function approximation and classification problems
including very large complex applications show that the new algorithm can produce good generalization performance in most cases and

can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks.!
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1. Introduction

Feedforward neural networks have been extensively used
in many fields due to their ability: (1) to approximate
complex nonlinear mappings directly from the input
samples; and (2) to provide models for a large class of
natural and artificial phenomena that are difficult to handle
using classical parametric techniques. On the other hand,
there lack faster learning algorithms for neural networks.
The traditional learning algorithms are usually far slower
than required. It is not surprising to see that it may take
several hours, several days, and even more time to train
neural networks by using traditional methods.

From a mathematical point of view, research on the
approximation capabilities of feedforward neural networks
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has focused on two aspects: universal approximation on
compact input sets and approximation in a finite set of
training samples. Many researchers have explored the
universal approximation capabilities of standard multilayer
feedforward neural networks. Hornik [7] proved that if the
activation function is continuous, bounded and noncon-
stant, then continuous mappings can be approximated in
measure by neural networks over compact input sets.
Leshno [17] improved the results of Hornik [7] and proved
that feedforward networks with a nonpolynomial activa-
tion function can approximate (in measure) continuous
functions. In real applications, the neural networks are
trained in finite training set. For function approximation in
a finite training set, Huang and Babri [11] shows that a
single-hidden layer feedforward neural network (SLFN)
with at most N hidden nodes and with almost any
nonlinear activation function can exactly learn N distinct
observations. It should be noted that the input weights
(linking the input layer to the first hidden layer) and hidden
layer biases need to be adjusted in all these previous
theoretical research works as well as in almost all practical
learning algorithms of feedforward neural networks.
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Traditionally, all the parameters of the feedforward
networks need to be tuned and thus there exists the
dependency between different layers of parameters (weights
and biases). For past decades, gradient descent-based
methods have mainly been used in various learning
algorithms of feedforward neural networks. However, it
is clear that gradient descent-based learning methods are
generally very slow due to improper learning steps or may
easily converge to local minima. And many iterative
learning steps may be required by such learning algorithms
in order to obtain better learning performance.

It has been shown [23,10] that SLFNs (with N hidden
nodes) with randomly chosen input weights and hidden
layer biases (and such hidden nodes can thus be called
random hidden nodes) can exactly learn N distinct
observations. Unlike the popular thinking and most
practical implementations that all the parameters of the
feedforward networks need to be tuned, one may not
necessarily adjust the input weights and first hidden layer
biases in applications. In fact, some simulation results on
artificial and real large applications in our work [16] have
shown that this method not only makes learning extremely
fast but also produces good generalization performance.

In this paper, we first rigorously prove that the input
weights and hidden layer biases of SLFNs can be randomly
assigned if the activation functions in the hidden layer are
infinitely differentiable. After the input weights and the
hidden layer biases are chosen randomly, SLFNs can be
simply considered as a linear system and the output weights
(linking the hidden layer to the output layer) of SLFNs can
be analytically determined through simple generalized
inverse operation of the hidden layer output matrices.
Based on this concept, this paper proposes a simple
learning algorithm for SLFNs called extreme learning
machine (ELM) whose learning speed can be thousands of
times faster than traditional feedforward network learning
algorithms like back-propagation (BP) algorithm while
obtaining better generalization performance. Different
from traditional learning algorithms the proposed learning
algorithm not only tends to reach the smallest training
error but also the smallest norm of weights. Bartlett’s [1]
theory on the generalization performance of feedforward
neural networks states for feedforward neural networks
reaching smaller training error, the smaller the norm of
weights is, the better generalization performance the
networks tend to have. Therefore, the proposed learning
algorithm tends to have good generalization performance
for feedforward neural networks.

As the new proposed learning algorithm can be easily
implemented, tends to reach the smallest training error,
obtains the smallest norm of weights and the good
generalization performance, and runs extremely fast, in
order to differentiate it from the other popular SLFN
learning algorithms, it is called the extreme learning
machine in the context of this paper.

This paper is organized as follows. Section 2 rigorously
proves that the input weights and hidden layer biases of

SLFNs can be randomly assigned if the activation
functions in the hidden layer are infinitely differentiable.
Section 3 further proposes the new ELM learning
algorithm for single-hidden layer feedforward neural net-
works (SLFNs). Performance evaluation is presented in
Section 4. Discussions and conclusions are given in Section 5.
The Moore—Penrose generalized inverse and the minimum
norm least-squares solution of a general linear system
which play an important role in developing our new ELM
learning algorithm are briefed in the Appendix.

2. Single hidden layer feedforward networks (SLFNs) with
random hidden nodes

For N arbitrary distinct samples (x;,t;), where X; =
[xi1, X2, - - - ,xm]T eR"and t; = [t;1, 10, ..., tl-m]T e R”, stan-
dard SLFNs with N hidden nodes and activation function
g(x) are mathematically modeled as

N N
D Bgix) = Bigwi - x; +bi) = 0,

i=1 i=1

j=1,...,N, (1

where w; = [w;, W, ..., w,-n]T is the weight vector connect-
ing the ith hidden node and the input nodes, f;, =
[Bit>Bias- . Bl is the weight vector connecting the ith
hidden node and the output nodes, and b; is the threshold
of the ith hidden node. w; - x; denotes the inner product of
w; and x;. The output nodes are chosen linear in this paper.

That standard SLFNs with N hidden nodes with
activation function g(x) can approximate these N samples
with zero error means that Z,-N:1||0j —tj|| =0, i.e., there
exist f8;, w; and b; such that

N
> Bigwi-xj+b)=t, j=1,..,N. 2)
i=1

The above N equations can be written compactly as

HE =T, 3)
where
H(wi,...,wg,bi,....b5,X1,...,XN)

g(wy - X1 + by) g(wg - X1 + by)

= : : , @

g(wi - Xy + by) g(wy - Xy + by) i

By t
p=1": and T= ] : . ®)

T

ﬁN Nxm t% Nxm

As named in Huang et al. [11,10], H is called the hidden
layer output matrix of the neural network; the ith column
of H is the ith hidden node output with respect to inputs
X1,X2,...,XyN.
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If the activation function g is infinitely differentiable we
can prove that the required number of hidden nodes N < N.
Strictly speaking, we have’

Theorem 2.1. Given a standard SLFN with N hidden nodes
and activation function ¢g: R — R which is infinitely
differentiable in any interval, for N arbitrary distinct samples
(x;,t;), where x; € R" and t; € R", for any w; and b;
randomly chosen from any intervals of R" and R, respec-
tively, according to any continuous probability distribution,
then with probability one, the hidden layer output matrix H
of the SLFN is invertible and |Hff — T| = 0.

Proof. Let us consider a vector c¢(b;)=[g;(x1),-..,
g:x)I" = [g(w; - X1 +by),...,g(w; - Xy + b)]", the ith col-
umn of H, in Euclidean space R", where b; € (a, b) and
(a, b) is any interval of R.

Following the same proof method of Tamura and
Tateishi ( [23], p. 252) and our previous work ( [10],
Theorem 2.1), it can be easily proved by contradiction that
vector ¢ does not belong to any subspace whose dimension
is less than M.

Since w; are randomly generated based on a continuous
probability distribution, we can assume that w; - X; #Ww; -
x, for all k#k'. Let us suppose that ¢ belongs to a
subspace of dimension N — 1. Then there exists a vector «
which is orthogonal to this subspace

(o, e(bi) — e(a)) = oy - g(bi + di) + a2 - g(bi + d>)
+odoy-gbi+dy)—z=0,  (6)
where dy=w;-xX;, k=1,...,N and z=o-c(a),
Vb; € (a,b). Assume oy #0, Eq. (6) can be further written
as
N—1
gbi+dy)= =) 7,9(bi+d,)+z/on, (7
p=1
where 7, = o, /oy, p=1,..., N — 1. Since g(x) is infinitely
differentiable in any interval, we have

N—1
9O+ dx) == 7,9"bi + ),
p=1
I=1,2,...,N,N+1,..., ®)

where g is the /th derivative of function g of b;. However,
there are only N — 1 free coefficients: y,,...,yy_; for the
derived more than N — 1 linear equations, this is contra-
dictory. Thus, vector ¢ does not belong to any subspace
whose dimension is less than N.

Hence, from any interval (a, b) it is possible to randomly
choose N bias values by,...,by for the N hidden nodes
such that the corresponding vectors ¢(b;),c(b2),...,c(by)
span RY. This means that for any weight vectors w; and
bias values b; chosen from any intervals of R” and R,
respectively, according to any continuous probability

?In fact, the theorem and its proof are also linearly valid for the case
9:(x) = g(lIx — will /b;), w; € R", b; € R*.

distribution, then with probability one, the column vectors
of H can be made full-rank. O

Such activation functions include the sigmoidal func-
tions as well as the radial basis, sine, cosine, exponential,
and many other nonregular functions as shown in Huang
and Babri [11].

Furthermore, we have

Theorem 2.2. Given any small positive value ¢>0 and
activation function g © R — R which is infinitely differentiable
in any interval, there exists N <N such that for N arbitrary
distinct samples (X;, t;), where x; € R" and t; € R, for any w;
and b; randomly chosen from any intervals of R" and R,
respectively, according to any continuous probability distribu-
tion, then with probability one, |Hy. 5B 5 xm — Tnxmll <e.

Proof. The validity of the theorem is obvious, otherwise, one
could simply choose N = N which makes |[Hy. 5Bxxm —
Ty xml <& according to Theorem 2.1. [

3. Proposed extreme learning machine (ELM)

Based on Theorems 2.1 and 2.2 we can propose in this
section an extremely simple and efficient method to train
SLFNE.

3.1. Conventional gradient-based solution of SLFNs

Traditionally, in order to train an SLFN, one may wish
to find specific w;,b;, f (i = 1,..., N) such that

) =T
i) =T ©)

IH(W, ... Wi, by, .

= min ||[H(wy,..

wi,bi,

.,WN,bl,...

which is equivalent to minimizing the cost function

N N 2
E=Y" (Z Big(wi - X; + by) — t,«) : (10)
j=1 \i=l

When H is unknown gradient-based learning algori-
thms are generally used to search the minimum of
I[HS — T||. In the minimization procedure by using
gradient-based algorithms, vector W, which is the set of
weights (w;,f;) and biases (b;) parameters, is iteratively
adjusted as follows:

0E(W)

W (11)
Here # is a learning rate. The popular learning algorithm
used in feedforward neural networks is the BP learning
algorithm where gradients can be computed efficiently by
propagation from the output to the input. There are several
issues on BP learning algorithms:

Wi =W, 1 —p

(1) When the learning rate x is too small, the learning
algorithm converges very slowly. However, when
n is too large, the algorithm becomes unstable and
diverges.
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(2) Another peculiarity of the error surface that impacts
the performance of the BP learning algorithm is the
presence of local minima [6]. It is undesirable that the
learning algorithm stops at a local minima if it is
located far above a global minima.

(3) Neural network may be over-trained by using BP
algorithms and obtain worse generalization perfor-
mance. Thus, validation and suitable stopping
methods are required in the cost function minimization
procedure.

(4) Gradient-based learning is very time-consuming in
most applications.

The aim of this paper is to resolve the above issues
related with gradient-based algorithms and propose an
efficient learning algorithm for feedforward neural
networks.

3.2. Proposed minimum norm least-squares (LS) solution of
SLFNs

As rigorously proved in Theorems 2.1 and 2.2, unlike the
traditional function approximation theories which require
to adjust input weights and hidden layer biases, input
weights and hidden layer biases can be randomly assigned
if only the activation function is infinitely differentiable. It
is very interesting and surprising that unlike the most
common understanding that all the parameters of SLFNs
need to be adjusted, the input weights w; and the hidden
layer biases b; are in fact not necessarily tuned and the
hidden layer output matrix H can actually remain un-
changed once random values have been assigned to these
parameters in the beginning of learning. For fixed input
weights w; and the hidden layer biases b;, seen from Eq. (9),
to train an SLFN is simply equivalent to finding a least-
squares solution f of the linear system HfS = T:

b= T
bi)B = TI. (12)

H(wi, ...

= mﬁin IH(wy, ..

-,W/\“/,bl,---

.,Wﬁ,bl,...

If the number N of hidden nodes is equal to the number N
of distinct training samples, N = N, matrix H is square and
invertible when the input weight vectors w; and the hidden
biases b; are randomly chosen, and SLFNs can approx-
imate these training samples with zero error.

However, in most cases the number of hidden nodes is
much less than the number of distinct training samples,
N <N, H is a nonsquare matrix and there may not exist
w;, b, B, (i= 1,...,N) such that Hf = T. According to
Theorem 5.1 in the Appendix, the smallest norm least-
squares solution of the above linear system is

p=H'T, (13)

where H' is the Moore—Penrose generalized inverse of
matrix H [22,19].

Remark 1. As discussed in the Appendix, we have the
following important properties:

(1) Minimum training error. The special solution B =H'T
is one of the least-squares solutions of a general linear
system Hp =T, meaning that the smallest training
error can be reached by this special solution:

nHﬁ—Tn=MHﬁT—Tu=nyWHﬁ—Tw (14)

Although almost all learning algorithms wish to reach
the minimum training error, however, most of them
cannot reach it because of local minimum or infinite
training iteration is usually not allowed in applications.

(2) Smallest norm of weights. Further, the special solution
f =H'T has the smallest norm among all the least-
squares solutions of Hf = T:

1B = T < B,
Vp e {ﬁ L JHB — T| < |Hz — T|,Vz € RNxN}. (15)

(3) The minimum norm least-squares solution of Hf = T is
unique, which is f = H'T.

3.3. Proposed learning algorithm for SLFNs

Thus, a simple learning method for SLFNs called
extreme learning machine (ELM) can be summarized as
follows:

Algorithm ELM: Given a training set ® = {(x;,t;)|x; €
R".t; e R",i=1,...,N}, activation function g(x), and
hidden node number N,

Step 1: Randomly assign input weight w; and bias b;,
i=1,...,N.

Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight

p=H'T, (16)
where T = [t,... ,tN]T.

Remark 2. As shown in Theorem 2.1, in theory this
algorithm works for any infinitely differential activation
function g¢g(x). Such activation functions include the
sigmoidal functions as well as the radial basis, sine, cosine,
exponential, and many nonregular functions as shown in
Huang and Babri [11]. According to Theorem 2.2, the
upper bound of the required number of hidden nodes is the
number of distinct training samples, that is N <N.

Remark 3. Several works [11,23,10,9,4] have shown that
SLFNs with N hidden nodes can exactly learn N distinct
observations. Tamura and Tateishi [23] and Huang [10,9]
rigorously prove that SLFNs (with N hidden nodes) with
randomly chosen sigmoidal hidden nodes (with both input
weights and hidden biases randomly generated) can exactly
learn N distinct observations. Huang et al. [11,9] also
rigorously proves that if input weights and hidden biases
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are allowed to be tuned (as done in most traditional
implementations) SLFNs with at most N hidden nodes and
with almost any nonlinear activation function can exactly
learn N distinct observations and these activation functions
include differentiable and nondifferentiable functions,
continuous and noncontinuous functions, etc.

This paper rigorously proves that for any infinitely
differentiable activation function SLFNs with N hidden
nodes can learn N distinct samples exactly and SLFNs may
require less than N hidden nodes if learning error is
allowed. Different from previous works [11,23,10,9,4] and
the ELM algorithm introduced in this paper, Ferrari and
Stengel [4] shows that SLFNs with N sigmoidal hidden
nodes and with input weights randomly generated but hidden
biases appropriately tuned can exactly learn N distinct
observations. Hidden nodes are not randomly generated in
the work done by Ferrari and Stengel [4], although the
input weights are randomly generated, the hidden biases
need to be determined based on the input weights and input
training data (cf. Eq. (18) of [4]).

Remark 4. Modular networks have also been suggested in
several works [23,10,16,9,4], which partition the training
samples into L subsets each learned by an SLFN
separately. Suppose that the number of hidden nodes in
ith SLFN is s;. For the methods proposed by Huang
[10,16,9], since random hidden nodes (with randomly
generated input weights and hidden layer biases) are used
in each SLFN these SLFNs can actually share common
hidden nodes. That means, the ith hidden node of the first
SLFN can also work as the ith hidden node of the rest
SLFNs and the total number of hidden nodes required in
these L SLFNs is still max;(s;). Although Ferrari and
Stengel [4] also randomly generates input weights for these
sub-SLFNs but the hidden biases of these sub-SLFNs need
to tuned based on the input weights and input training
data. And thus, the hidden biases of these SLFNs are
different, which means these SLFNs cannot share the
common hidden nodes and the total number of hidden
nodes required in modular network implementation of
Ferrari and Stengel [4] is Z,L: 18i >max;(s;). One can refer to
Tamura and Tateishi [23] and Huang [10,16,9] for details of
modular network implementation.

Remark 5. Several methods can be used to calculate the
Moore—Penrose generalized inverse of H. These methods
may include but are not limited to orthogonal projection,
orthogonalization method, iterative method, and singular
value decomposition (SVD) [18]. The orthogonalization
method and iterative method have their limitations since
searching and iteration are used which we wish to avoid in
ELM. The orthogonal project method can be used when
H"H is nonsingular and H' = (HTH)"'HT which is also
used in Ferrari and Stengel [4]. However, H'H may not
always be nonsingular or may tend to be singular in some
applications and thus orthogonal projection method may
not perform well in all applications. The SVD can be

generally used to calculate the Moore—Penrose generalized
inverse of H in all cases.

4. Performance evaluation

In this section, the performance of the proposed ELM
learning algorithm® is compared with the popular algo-
rithms of feedforward neural networks like the conven-
tional BP algorithm and support vector machines (SVMs)
on quite a few benchmark real problems in the function
approximation and classification areas. All the simulations
for the BP and ELM algorithms are carried out in
MATLAB 6.5 environment running in a Pentium 4,
1.9 GHZ CPU. Although there are many variants of BP
algorithm, a faster BP algorithm called Levenberg—Mar-
quardt algorithm is used in our simulations. As mentioned
in the HELP of MATLAB package and tested on many
benchmark applications among all traditional BP learning
algorithms, the Levenberg—Marquardt algorithm appears
to be the fastest method for training moderate-sized
feedforward neural networks (up to several hundred
weights). It has a very efficient implementation of
Levenberg—Marquardt algorithm provided by MATLAB
package, which has been used in our simulations for BP.
The simulations for SVM are carried out using compiled
C-coded SVM packages: LIBSVM* running in the same
PC. The kernel function used in SVM is radial basis
function whereas the activation function used in our
proposed algorithms is a simple sigmoidal function
g(x) = 1/(1 4+ exp(—x)). In our experiments, all the inputs
(attributes) have been normalized into the range [0, 1] while
the outputs (targets) have been normalized into [—1, 1]. As
seen from ELM algorithm, the learning time of ELM is
mainly spent on calculating the Moore—Penrose general-
ized inverse H' of the hidden layer output matrix H.

4.1. Benchmarking with regression problems

4.1.1. Artificial case: approximation of ‘SinC’ function with
noise

In this example, all the three algorithms (ELM, BP and
SVR) are used to approximate the ‘SinC’ function, a
popular choice to illustrate support vector machine for
regression (SVR) in the literature

»x) = {im(x)/ N (17)

A training set (x;, y;) and testing set (x;, ;) with 5000 data,
respectively, are created where x;’s are uniformly randomly
distributed on the interval (—10, 10). In order to make the
regression problem ‘real’, large uniform noise distributed in

[—0.2,0.2] has been added to all the training samples while
testing data remain noise-free.

SELM Source Codes: http://www.ntu.edu.sg/home/egbhuang/.
4SVM Source Codes: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Table 1
Performance comparison for learning noise free function: SinC

Algorithms Time (s) Training Testing No of SVs/nodes
Training Testing RMS Dev RMS Dev
ELM 0.125 0.031 0.1148 0.0037 0.0097 0.0028 20
BP 21.26 0.032 0.1196 0.0042 0.0159 0.0041 20
SVR 1273.4 5.9087 0.1149 0.0007 0.0130 0.0012 2499.9
1.2 r T T r r T T T

There are 20 hidden nodes assigned for our ELM
algorithm and BP algorithm. 50 trials have been conducted
for all the algorithms and the average results and standard
deviations (Dev) are shown in Table 1. It can be seen from
Table 1 that ELM learning algorithm spent 0.125s CPU
time obtaining the testing root mean square error (RMSE)
0.0097, however, it takes 21.26s CPU time for BP
algorithm to reach a much higher testing error 0.0159.
The new ELM runs 170 times faster than the conventional
BP algorithms. We also compare the performance of SVR
and our ELM algorithm. The parameter C is tuned and set
as C =100 in SVR algorithm. Compared with SVR, the
reduction for our ELM algorithm in CPU time is also
above 10,000 times, even though the fact that C executable
may be faster than MATLAB environment has not be
taken into account. Since the number of support vectors
obtained by SVR is much larger than the hidden nodes
required by ELM, the testing time spent for the obtained
SVR is 190 times longer than the testing time for ELM,
meaning that after trained the SLFN may response to new
external unknown stimuli much faster than SVM in real
deployment.

Fig. 1 shows the true and the approximated function of
the ELM learning algorithm. Fig. 2 shows the true and the
approximated function of the BP and SVM learning
algorithms.

4.1.2. Real-world regression problems

The performance of ELM, BP and SVR are compared
on 13 real-world benchmark data sets® covering various
fields. The specifications of the data sets are listed in
Table 2. As in the real applications, the distributions of
these data set are unknown and most of them are not
noisy-free. For each case, the training data set and testing
data set are randomly generated from its whole data set
before each trial of simulation.

For BP and ELM, the number of hidden nodes are
gradually increased by an interval of 5 and the nearly
optimal number of nodes for BP and ELM are then
selected based on cross-validation method. In addition,
over-stopping criteria is used for BP as well. Average
results of 50 trials of simulations for each fixed size of
SLFN are obtained and then finally the best performance
obtained by BP and ELM are reported in this paper.

Shttp://www.niaad liacc.up.pt/~ltorgo/Regression/ds_menu.html.

—— Expected
— Actual

o B B -4 -2 0 2 4 B 8 10

Fig. 1. Outputs of the ELM learning algorithm.

As proposed by Hsu and Lin [8], for each problem, we
estimate the generalized accuracy using different combina-
tion of cost parameters C and kernel parameters y: C =
212,21 .. 271 272 and y =[2%,2°,...,27%,271°]. There-
fore, for each problem we try 15 x 15 = 225 combinations
of parameters (C, y) for SVR. Average results of 50 trials of
simulations with each combination of (C,y) are obtained
and the best performance obtained by SVR are shown in
this paper as well.

As observed from Tables 3 and 4, general speaking,
ELM and SVR obtain similar generalization performance,
which is slightly higher than BP’s in many cases. If the
difference of the two testing RMSE obtained by two
algorithms is larger than 0.005 for a case, the winner’s
testing RMSE will be shown in boldface in Tables 3 and 4.
As observed from Table 5, ELM needs more hidden nodes
than BP but it is more compact than SVR in most cases.
The advantage of the ELM on training time is quite
obvious. As shown in Table 6, ELM obtains the fastest
learning speed in all cases. ELM learns up to hundreds of
times faster than BP. However, out of these three
algorithms, BP obtains the shortest testing time (response
time to unknown data set for testing) in all cases because
BP usually provides the most compact network architec-
tures. Table 7 shows the average standard deviations of
training and testing RMSE of the BP, SVR and ELM.
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(b) SVR
Fig. 2. Outputs of the BP and SVR learning algorithms.
Table 2

Specification of real-world regression cases

Data sets # Observations # Attributes
Training Testing Continuous Nominal

Abalone 2000 2177 7 1
Delta ailerons 3000 4129 6 0
Delta elevators 4000 5517 6 0
Computer activity 4000 4192 8 0
Census (house8L) 10,000 12,784 8 0
Auto price 80 79 14 1
Triazines 100 86 60 0
Machine CPU 100 109 6 0
Servo 80 87 0 4
Breast cancer 100 94 32 0
Bank 4500 3692 8 0
California housing 8000 12,460 8 0
Stocks 450 500 10 0

495

Table 3
Comparison of training and testing RMSE of BP and ELM
Data sets BP ELM

Training Testing Training Testing
Abalone 0.0785 0.0874 0.0803 0.0824
Delta ailerons 0.0409 0.0481 0.0423 0.0431
Delta elevators 0.0544 0.0592 0.0550 0.0568
Computer activity 0.0273 0.0409 0.0316 0.0382
Census (house8L) 0.0596 0.0685 0.0624 0.0660
Auto price 0.0443 0.1157 0.0754 0.0994
Triazines 0.1438 0.2197 0.1897 0.2002
Machine CPU 0.0352 0.0826 0.0332 0.0539
Servo 0.0794 0.1276 0.0707 0.1196
Breast cancer 0.2788 0.3155 0.2470 0.2679
Bank domains 0.0342 0.0379 0.0406 0.0366
California housing 0.1046 0.1285 0.1217 0.1267
Stocks domain 0.0179 0.0358 0.0251 0.0348
Table 4
Comparison of training and testing RMSE of SVR and ELM
Data sets SVR ELM

Training Testing Training Testing
Abalone 0.0759 0.0784 0.0803 0.0824
Delta ailerons 0.0418 0.0429 0.04230 0.0431
Delta elevators 0.0534 0.0540 0.0545 0.0568
Computer activity 0.0464 0.0470 0.0316 0.0382
Census (house8L) 0.0718 0.0746 0.0624 0.0660
Auto price 0.0652 0.0937 0.0754 0.0994
Triazines 0.1432 0.1829 0.1897 0.2002
Machine CPU 0.0574 0.0811 0.0332 0.0539
Servo 0.0840 0.1177 0.0707 0.1196
Breast cancer 0.2278 0.2643 0.2470 0.2679
Bank domains 0.0454 0.0467 0.0406 0.0366
California housing 0.1089 0.1180 0.1217 0.1267
Stocks domain 0.0503 0.0518 0.0251 0.0348
Table 5
Comparison of network complexity of BP, SVR and ELM
Data sets BP SVR ELM

# nodes (C,y) # SVs # nodes
Abalone 10 24279 309.84 25
Delta ailerons 10 23,27% 82.44 45
Delta elevators 5 2°27% 260.38 125
Computer activity 45 (2°,27%) 64.2 125
Census (house8L) 10 @' 27h 810.24 160
Auto price 5 2%,27%) 21.25 15
Triazines 5 21,27 48.42 10
Machine CPU 10 (2,274 7.8 10
Servo 10 22,279 22.375 30
Breast cancer 5 @2 74.3 10
Bank domains 20 (2'9,27% 129.22 190
California housing 10 23,24 2189.2 80
Stocks domain 20 23,279 19.94 110
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Table 6
Comparison of training and testing time of BP, SVR and ELM
Data sets BP? (s) SVRP® (s) ELM? (s)

Training Testing Training Testing Training Testing
Abalone 1.7562 0.0063 1.6123 0.3223 0.0125 0.0297
Delta ailerons 2.7525 0.0156 0.6726 0.2231 0.0591 0.0627
Delta elevators 1.1938 0.0125 1.121 0.5868 0.2812 0.2047
Computer activity 67.44 0.0688 1.0149 0.3027 0.2951 0.172
Census (house8L) 8.0647 0.0457 11.251 4.1469 1.0795 0.6298
Auto price 0.2456 <10~ 0.0042 0.0465 0.0016 <107
Triazines 0.5484 <1074 0.0086 0.0540 <107* <1074
Machine CPU 0.2354 <107 0.0018 0.0421 0.0015 <107
Servo 0.2447 <107 0.0045 0.0394 <1074 <1074
Breast cancer 0.3856 <107* 0.0064 0.0591 <10~* <107
Bank domains 7.506 0.0466 1.6084 0.3021 0.6434 0.2205
California housing 6.532 0.0469 74.184 10.453 1.1177 0.3033
Stocks domain 1.0487 0.0063 0.0690 0.0637 0.0172 0.0297

“Run in MATLAB environment.
®Run in C executable environment.

Table 7
Comparison of the standard deviation of training and testing RMSE of BP, SVR and ELM
Data sets BP SVR ELM

Training Testing Training Testing Training Testing
Abalone 0.0011 0.0034 0.0015 0.0013 0.0049 0.0058
Delta ailerons 0.0015 0.0015 0.0012 0.0010 0.0030 0.0035
Delta elevators 0.0007 0.0003 0.0006 0.0005 0.0028 0.0029
Computer activity 0.0007 0.0007 0.0015 0.0016 0.0005 0.0033
Census (house8L) 0.0011 0.0050 0.0013 0.0013 0.001 0.0017
Auto price 0.0405 0.0231 0.0025 0.0040 0.0119 0.0119
Triazines 0.0656 0.0531 0.0152 0.0163 0.0212 0.0209
Machine CPU 0.0192 0.0715 0.0083 0.0180 0.0060 0.0156
Servo 0.0313 0.0475 0.0406 0.0185 0.0121 0.0113
Breast cancer 0.1529 0.0962 0.0115 0.0151 0.0121 0.0167
Bank domains 0.0006 0.0004 0.0005 0.0008 0.0006 0.0009
California housing 0.0045 0.0026 0.0012 0.0011 0.0021 0.0033
Stocks domain 0.0012 0.0022 0.0016 0.0022 0.0011 0.0016
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Fig. 3. The generalization performance of ELM is stable on a wide range

of number of hidden nodes.

Fig. 3 shows the relationship between the generalization
performance of ELM and its network size for the California
Housing case. As observed from Fig. 3, the generalization
performance of ELM is very stable on a wide range of
number of hidden nodes although the generalization
performance tends to become worse when too few or too
many nodes are randomly generated. It is also true to other
cases. Wang and Huang [24] has conducted a good
comparison of the performance of ELM versus BP as a
function of the number of hidden nodes.

4.2. Benchmarking with small and medium real classification
applications

4.2.1. Medical diagnosis application: diabetes

The performance comparison of the new pro-
posed ELM algorithm and many other popular
algorithms has been conducted for a real medical diagnosis
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Table 8
Performance comparison in real medical diagnosis application: diabetes

Algorithms Time (s) Success rate (%) # SVs/nodes
Training Testing Training Testing
Rate Dev Rate Dev
ELM 0.0118 0.0031 78.68 1.18 77.57 2.85 20
BP 3.0116 0.0035 86.63 1.7 74.73 32 20
SVM 0.1860 0.0673 78.76 0.91 77.31 2.35 317.16

problem: Diabetes,® using the “Pima Indians Diabetes
Database” produced in the Applied Physics Laboratory,
Johns Hopkins University, 1988. The diagnostic, binary-
valued variable investigated is whether the patient shows
signs of diabetes according to World Health Organization
criteria (i.e., if the 2 h post-load plasma glucose was at least
200 mg/dl at any survey examination or if found during
routine medical care). The database consists of 768 women
over the age of 21 resident in Phoenix, Arizona. All
examples belong to either positive or negative class. All the
input values are within [0, 1]. For this problem, as usually
done in the literature [20,21,5,25] 75% and 25% samples
are randomly chosen for training and testing at each trial,
respectively. The parameter C of SVM algorithm is tuned
and set as C = 10 and the rest parameters are set as default.

Fifty trials have been conducted for all the algorithms
and the average results are shown in Table 8. Seen from
Table 8, in our simulations SVM can reach the testing rate
77.31% with 317.16 support vectors at average. Ritsch
et al. [20] obtained a testing rate 76.50% for SVM which is
slightly lower than the SVM result we obtained. However,
the new ELM learning algorithm can achieve the average
testing rate 77.57% with 20 nodes, which is obviously
higher than all the results so far reported in the literature
using various popular algorithms such as SVM [20],
SAOCIF [21], Cascade-Correlation algorithm [21], bagging
and boosting methods [5], C4.5 [5], and RBF [25] (cf.
Table 9). BP algorithm performs very poor in our
simulations for this case. It can also be seen that the
ELM learning algorithm run around 300 times faster than
BP, and 15 times faster than SVM for this small problem
without considering that C executable environment may
run much faster than MATLAB environment.

4.2.2. Medium size classification applications

The ELM performance has also been tested on the
Banana database’ and some other multiclass databases
from the Statlog collection [2]: Landsat satellite image
(SatImage), Image segmentation (Segment) and Shuttle
landing control database. The information of the number
of data, attributes and classes of these applications is listed
in Table 10.

Sftp://ftp.ira.uka.de/pub/node/probenl.tar.gz.
"http://www.first.gmd.de/~raetsch/data.

Table 9
Performance comparison in real medical diagnosis application: diabetes

Algorithms Testing rate (%)
ELM 77.57

SVM [20] 76.50

SAOCIF [21] 77.32
Cascade-Correlation [21] 76.58

AdaBoost [5] 75.60

C4.5[5) 71.60

RBF [25] 76.30
Heterogeneous RBF [25] 76.30

Table 10

Information of the benchmark problems: Landsat satellite image, Image
segmentation, Shuttle landing control database, and Banana

Problems # Training # Testing # Attributes # Classes
samples samples

Satellite image 4400 2000 36 7

Image segmentation 1500 810 18 7

Shuttle 43500 14500 9 7

Banana 5200 490000 2 2

For each trial of simulation of SatImage and Segment,
the training data set and testing data set are randomly
generated from their overall database. The training and
testing data sets are fixed for Shuttle and Banana
applications, as usually done in the literature. Although
there are 40,000 training data in the original Banana
database, during our simulations it is found that there are
only 5200 distinct training samples and the redundancy of
the training data has been removed. Fifty trials have been
conducted for the ELM algorithm, and 5 trials for BP since
it obviously takes very long time to train SLFNs using BP
for these several cases. Seen from Table 11, obviously the
ELM algorithm run much faster than BP Ilearning
algorithm by a factor up to 4200.

4.3. Benchmarking with real-world very large complex
applications

We have also tested the performance of our ELM
algorithm for very large complex applications such as
forest cover-type prediction.
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Table 11
Performance comparison in more benchmark applications: Satimage, Segment, Shuttle, and Banana
Problems Algorithms Time (s) Success rate (%) # Nodes
Training Testing Training Testing
Rate Dev Rate Dev
Satellite ELM 14.92 0.34 93.52 1.46 89.04 1.50 500
image BP 12561 0.08 95.26 0.97 82.34 1.25 100
Image ELM 1.40 0.07 97.35 0.32 95.01 0.78 200
segment BP 4745.7 0.04 96.92 0.45 86.27 1.80 100
RBF [25] N/A N/A 80.48 N/A N/A N/A N/A
Shuttle ELM 5.740 0.23 99.65 0.12 99.40 0.12 50
BP 6132.2 0.22 99.77 0.10 99.27 0.13 50
Banana ELM 2.19 20.06 92.36 0.17 91.57 0.25 100
BP 6132.2 21.10 90.26 0.27 88.09 0.70 100
Table 12
Performance comparison of the ELM, BP and SVM learning algorithms in forest-type prediction application
Algorithms Time (min) Success rate (%) # SVs/nodes
Training Testing Training Testing
Rate Dev Rate Dev
ELM 1.6148 0.7195 92.35 0.026 90.21 0.024 200
SLFN [3] 12 N/A 82.44 N/A 81.85 N/A 100
SVM 693.6000 347.7833 91.70 N/A 89.90 N/A 31,806

Forest cover-type prediction is an extremely large
complex classification problem with seven classes. The
forest cover type [2] for 30 x 30 m cells was obtained from
US forest service (USFS) region 2 resource information
system (RIS) data. There are 581,012 instances (observa-
tions) and 54 attributes per observation. In order to
compare with the previous work [3], similarly it was
modified as a binary classification problem where the goal
was to separate class 2 from the other six classes. There are
100,000 training data and 481,012 testing data. The
parameters for the SVM are C = 10 and y = 2.

Fifty trials have been conducted for the ELM algorithm,
and 1 trial for SVM since it takes very long time to train
SVM for this large complex case.® Seen from Table 12, the
proposed ELM learning algorithm obtains better general-
ization performance than SVM learning algorithm. How-
ever, the proposed ELM learning algorithm only spent
1.6 min on learning while SVM need to spend nearly 12h
on training. The learning speed has dramatically been
increased 430 times. On the other hand, since the support
vectors obtained by SVM is much larger than the required
hidden nodes in ELM, the testing time spent SVMs for this
large testing data set is more than 480 times than the ELM.
It takes more than 5.5h for the SVM to react to the

8Actually we have tested SVM for this case many times and always
obtained similar results as presented here.

481,012 testing samples. However, it takes only less than
I min for the obtained ELM to react to the testing samples.
That means, after trained and deployed the ELM may
react to new observations much faster than SVMs in such a
real application. It should be noted that in order to obtain
as good performance as possible for SVM, long time effort
has been made to find the appropriate parameters for
SVM. In fact the generalization performance of SVM we
obtained in our simulation for this case is much higher than
the one reported in the literature [3].

We did try to run the efficient optimal BP package
provided by MATLAB for this application, however, it
always ran out of memory and also showed that there are
too many variables (parameters) required in the simula-
tions, meaning that the application is too large to run in
our ordinary PC. On the other hand, it has been reported
[3] that SLFNs using gradient-based learning algorithm
could only reach a much lower testing accuracy (81.85%
only) than our ELM (90.21%).

5. Discussions and conclusions

This paper proposed a simple and efficient learning
algorithm for single-hidden layer feedforward neural net-
works (SLFNs) called extreme learning machine (ELM),
which has also been rigorously proved in this paper. The
proposed ELM has several interesting and significant
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features different from traditional popular gradient-based
learning algorithms for feedforward neural networks:

(1) The learning speed of ELM is extremely fast. In our
simulations, the learning phase of ELM can be
completed in seconds or less than seconds for many
applications. Previously, it seems that there exists a
virtual speed barrier which most (if not all) classic
learning algorithms cannot break through and it is not
unusual to take very long time to train a feedforward
network using classic learning algorithms even for
simple applications.

(2) The proposed ELM has better generalization perfor-
mance than the gradient-based learning such as back-
propagation in most cases.

(3) The traditional classic gradient-based learning algo-
rithms may face several issues like local minima,
improper learning rate and overfitting, etc. In order
to avoid these issues, some methods such as weight
decay and early stopping methods may need to be used
often in these classical learning algorithms. The ELM
tends to reach the solutions straightforward without
such trivial issues. The ELM learning algorithm looks
much simpler than most learning algorithms for
feedforward neural networks.

(4) Unlike the traditional classic gradient-based learning
algorithms which only work for differentiable activa-
tion functions, as easily observed the ELM learning
algorithm could be used to train SLFNs with many
nondifferentiable activation functions [15]. The perfor-
mance comparison of SLFNs with different activation
functions is beyond the scope of this paper and shall be
investigated in the future work. It may also be
interesting to further compare ELM with sigmoidal
activation functions and ELM with RBF activation
functions [13,14] in the future work.

It should be worth pointing out that gradient-based
learning algorithms like back-propagation can be used
for feedforward neural networks which have more than one
hidden layers while the proposed ELM algorithm at its
present form is still only valid for single-hidden layer
feedforward networks (SLFNs). Fortunately, it has been
found in theory that SLFNs can approximate any
continuous function and implement any classification
application [12]. Thus, reasonably speaking the proposed
ELM algorithm can generally be efficiently used in many
applications. As observed from most cases, BP achieves
shorter testing time than ELM.

Although it is not the objective of the paper to com-
pare the feedforward neural networks and another
popular learning technique—support vector machines
(SVM), a simple comparison between the ELM and SVM
has also been conducted in our simulations, showing that
the ELM may learn faster than SVM by a factor up to
thousands. As shown in our simulations especially forest-
type prediction application, the response speed of trained

SVM to external new unknown observations is much
slower than feedforward neural networks since SVM
algorithms normally generate much larger number of
support vectors (computation units) while feedfor-
ward neural networks require very few hidden nodes
(computation units) for same applications. It is not easy for
SVMs to make real-time predication in this application
since several hours may be spent for such prediction
(testing) set, while the ELM appears to be suitable in
applications which request fast prediction and response
capability.

This paper has demonstrated that ELM can be used
efficiently in many applications, however, two more
interesting aspects are still open: the universal approxima-
tion capability’ of ELM and the performance of ELM in
sparse high-dimensional applications, which are currently
under our investigation.

Appendix A

In this section, the Moore—Penrose generalized inverse is
introduced. We also consider in this section the minimum
norm least-squares solution of a general linear system
Ax =y in Euclidean space, where A € R”*" and y € R”.
As shown in [23,10], the SLFNs are actually a linear system
if the input weights and the hidden layer biases can be
chosen randomly.

A.1. Moore—Penrose generalized inverse

The resolution of a general linear system Ax =y, where
A may be singular and may even not be square, can be
made very simple by the use of the Moore—Penrose
generalized inverse [22].

Definition 5.1 (Serre [22], Rao and Mitra [19]). A matrix
G of order n x m is the Moore—Penrose generalized inverse
of matrix A of order m x n, if

AGA = A, GAG =G, (AG)" =AG, (GA)" = GA.
(18)
For the sake of convenience, the Moore—Penrose

generalized inverse of matrix A will be denoted by A.

A.2. Minimum norm least-squares solution of general linear
system

For a general linear system Ax =y, we say that X is a
least-squares solution (l.s.s) if

IAX — yll = min [Ax —y], (19)
where || - || is a norm in Euclidean space.

“Readers can refer to Huang et al. [26] for the universal approximation
capability of ELM.
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Definition 5.2. xy € R” is said to be a minimum norm least-
squares solution of a linear system Ax =y if for any y € R”

Ixoll < I,
Vx € [x : |Ax — y| <[|Az — y||,Vz € R"). (20)

That means, a solution x is said to be a minimum norm
least-squares solution of a linear system Ax =y if it has the
smallest norm among all the least-squares solutions.

Theorem 5.1 (p. 147 of Serre [22], p. 51 of Rao and Mitra
[19]). Let there exist a matrix G such that Gy is a minimum
norm least-squares solution of a linear system Ax =y. Then
it is necessary and sufficient that G = A', the Moore—Pen-
rose generalized inverse of matrix A.

Remark. Seen from Theorem 5.1, we can have the
following properties key to our proposed ELM learning
algorithm:

(1) The special solution xy = A'y is one of the least-
squares solutions of a general linear system Ax =y:

|AX) =yl = [AATy - y|| = min |Ax —y]. @

(2) In further, the special solution xo = Ay has the
smallest norm among all the least-squares solutions of
Ax =y:

Ixoll = ATyl <Xl
Vx € {x : |Ax — y|| <||Az — y||,Vz € R"}. (22)

(3) The minimum norm least-squares solution of AX =y is
unique, which is x = ATy.
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