
Streaming Hierarchical Video Segmentation

Chenliang Xu†, Caiming Xiong† and Jason J. Corso

Computer Science and Engineering, SUNY at Buffalo
{chenlian,cxiong,jcorso}@buffalo.edu

Abstract. The use of video segmentation as an early processing step
in video analysis lags behind the use of image segmentation for image
analysis, despite many available video segmentation methods. A major
reason for this lag is simply that videos are an order of magnitude big-
ger than images; yet most methods require all voxels in the video to
be loaded into memory, which is clearly prohibitive for even medium
length videos. We address this limitation by proposing an approxima-
tion framework for streaming hierarchical video segmentation motivated
by data stream algorithms: each video frame is processed only once and
does not change the segmentation of previous frames. We implement
the graph-based hierarchical segmentation method within our streaming
framework; our method is the first streaming hierarchical video segmen-
tation method proposed. We perform thorough experimental analysis on
a benchmark video data set and longer videos. Our results indicate the
graph-based streaming hierarchical method outperforms other streaming
video segmentation methods and performs nearly as well as the full-video
hierarchical graph-based method.

1 Introduction

The video analysis literature, despite a rich history of segmentation [1], has
been dominated by feature-based methods, e.g., [2], over the last decade. More
recently, a trend to incorporate an initial oversegmentation into supervoxels fol-
lowed by various task-specific processes, such as hierarchical grouping [3] and
long-range tracking [4, 5], and superpixel flow [6], has surfaced. Many driving
applications in video, such as animation [7, 8], require a dense segmentation that
feature-based methods cannot naturally provide.

Good progress has been reported on video segmentation in recent years with
methods ranging from mean shift [9], region tracking [4], interactive matting [8]
and graph-based processing [3]. To evaluate this progress and these methods’
comparative suitability for early video oversegmentation into supervoxels, Xu
and Corso [10] study five methods, with varying characteristics (segmentation by
weighted aggregation (SWA) [11, 12], graph-based (GB) [13], hierarchical graph-
based (GBH) [3], mean shift [9], and Nyström normalized cuts [14]). The methods
have been evaluated for desirable video segment properties, such as spatiotem-
poral uniformity and coherence, explained variation, and spatiotemporal bound-
ary extraction, and compared on a human-labeled video benchmark. The study
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conclusively reports that the two hierarchical segmentation methods (SWA and
GBH) generate space-time segments with the most desirable properties, paving
the way for more principled use of video segmentation going forward.

However, there are two extant limitations in the state of practice in video
segmentation, and indeed, in those that performed best in [10]. First, most meth-
ods build a representation on the entire video and process it at once (e.g. a large
graph for whole video). Clearly, they exhaust memory resources on all typical and
even some quite large machines (e.g., consider these loading a 320×240 video: 3
seconds of video requires 21MB of memory; 2 minutes: 840 MB; 30 minutes: 12.6
GB; 2h: 50GB, and so on). Thus, most existing video segmentation methods are
unable to handle even medium-length videos. Those methods that do process
the video online, such as streaming mean shift [15] perform comparatively worse
on the recent evaluation [10]. Note, [3] presents a hierarchical graph-based al-
gorithm that conclusively performs best in [10]; however, the clip-based version
of their method is restricted to the voxel-layer and is not hierarchical, reduc-
ing it to graph-based segmentation [13], which performs comparatively worse
on the benchmark. We also note that the flow-based work of [6] can also han-
dle videos of arbitrary length, but outputs non-hierarchical segmentations. It is
not included in the evaluation; we expect it to perform similarly to those other
non-hierarchical methods in [10].

Second, in some applications, such as surveillance and interaction [16], it is
impractical to expect the whole video to be available. In these cases, the video is
continuously streaming in real time. These limitations seem to have stunted the
use of video segmentation; e.g., contrast the relative lack of supervoxels in the
video analysis literature with the dominance of superpixels in the image analysis
literature [17, 13, 18–22]. Indeed, due to the lack of long-range, efficient super-
voxel methods, some researchers resort directly to frame-by-frame superpixel
methods, such as [23] who seek a video-based foreground object extraction.

To overcome these limitations, we present a principled approximation to hier-
archical video segmentation. Our key contributions are twofold: (1) we propose a
streaming hierarchical video segmentation framework that leverages ideas from
data streams [24] and enforces a Markovian assumption on the video stream
to approximate full video segmentation and (2) we instantiate the streaming
graph-based hierarchical video segmentation within this approximation frame-
work. Our method is the first streaming hierarchical video segmentation method
in the literature, to the best of our knowledge. Fig. 1 illustrates the differences
between frame-by-frame, streaming, and full volume processing. Although frame-
by-frame processing is efficient and can achieve high-performance in spatial re-
spects, its temporal stability is limited.

We have implemented and evaluated our streaming hierarchical graph-based
algorithm both on the existing benchmark [10] and on longer length videos.
Our experiment results demonstrate the streaming approximation can perform
almost as well as the full-video hierarchical graph-based method and asymp-
totically approaches the full-video method as the size of the streaming-window
increases. However, the streaming approximation maintains better performance
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(c) whole video processing(b) stream processing
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(a) frame-by-frame processing

past current future

Fig. 1. Three different processing paradigms for video segmentation. (a) Frame-by-
frame processing such that each frame is independently segmented, but no temporal
information is used. Even though it is fast, the results and temporal coherence are
poor. (b) Stream processing segments the current frame only based on a few previously
processed frames. It is forward-only online processing, and the results are good and
efficient in terms of time and space complexity. (c) 3D volume processing that represents
a model for the whole video. It is bidirectional multi-pass processing. The results are
best, but the complexity is too high to process long and streaming videos.

of the hierarchical segmentation than full-video, non-hierarchical methods, and
the proposed method outperforms other state of the art streaming methods on
longer videos.

The remainder of the paper is organized as follows: Sec. 2 presents our stream-
ing hierarchical video segmentation approximation framework, Sec. 3 introduces
the graph-based streaming hierarchical method, Sec. 4 discusses our experimen-
tal analysis, Sec. 5 concludes the paper.

2 Streaming Hierarchical Video Segmentation—An
Approximation for Hierarchical Video Segmentation

Problem Statement. For a given video V, consider an objective function or
criterion E(·|·) to obtain the hierarchical segmentation result S by minimizing:

S∗ = argmin
S

E(S|V) . (1)

Concretely, let Λ2 denote the 2D pixel lattice. We think of a video as a function
on space-time lattice Γ

.
= Λ2 × Z mapping to color space R3, s.t. V : Γ → R3.

The hierarchical segmentation results in h layers of individual segmentations
S .

= {S1, S2, . . . , Sh} where each layer Si is a set of segments {s1, s2, . . . } such
that sj ⊂ Γ , ∪jsj = Γ , and si ∩ sj = ∅ for all pairs of segments. Each layer in
the hierarchy gives a full segmentation and the hierarchy itself defines a forest of
trees (segments only have one parent). There are several methods, e.g., [3, 15],
for pursuing this hierarchical segmentation. However, we are not aware of any
method that has an explicit objective function to optimize; they are all based on
some criteria to pursue hierarchical segmentation results. We consider them as
greedy/gradient descent-like methods to approximate the global or local minimal
of an implicit objective function E(S|V).
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Next, we introduce our streaming hierarchical video segmentation framework
that approximates a solution for (1) by leveraging ideas from data streams [24].

2.1 Streaming Hierarchical Video Segmentation—An
Approximation Framework for E(S|V)

Consider a stream pointer t that indexes frames in a video V of arbitrary length.
By definition, our streaming algorithm may touch each frame of video at most a
constant number of times and it may not alter the previously computed results
from frames t̂ < t. Without loss of generality, we can conceptualize this streaming
video as a set of m non-overlapping subsequences, V = {V1, V2, · · · , Vm} with
ki frames for subsequence Vi. Thus, hierarchical segmentation result S could
approximately be decomposed into {S1, S2, · · · , Sm} as video V in Fig. 2, where
Si is hierarchical segmentation of subsequence Vi.

Then, to enforce the data stream properties, we make a Markov assumption.
Assume hierarchical segmentation Si of subsequence Vi is only conditioned on
the subsequence Vi−1 and its segmentation result Si−1. Therefore we can obtain
a directed Bayesian-like network approximating the hierarchical video segmen-
tation model, see Fig. 2, as:

E(S|V) = E1(S1|V1) + E1(S2|V2, S1, V1) + · · ·+ E1(Sm|Vm, Sm−1, Vm−1)

= E1(S1|V1) +

m∑
i=2

E1(Si|Vi, Si−1, Vi−1) , (2)

where, for convenience, we denote E(·|·), E1(·|·), E2(·|·) as different (hierarchical)
segmentation models for whole video, video subsequence and each layer of video
subsequence, respectively. So,

S = {S1, · · · , Sm} = argmin
S1,S2,··· ,Sm

[
E1(S1|V1) +

m∑
i=2

E1(Si|Vi, Si−1, Vi−1)

]
, (3)

where E1(Si|Vi, Si−1, Vi−1) is hierarchical segmentation model for each subse-
quence and E1(S1|V1) is a special case (no information from the previous sub-
sequence).

Given an explicit objective function E1(·|·), Eq. (3) could be solved using dy-
namic programming, but because most hierarchical video segmentation methods
do not provide an explicit energy function and the configuration space of Si is
too large, we can not use dynamic programming. For our streaming scenario—to
obtain S efficiently—we again make the assumption that the hierarchical seg-
mentation result Si for the current subsequence Vi never influences segmentation
results for previous subsequences, it only influences the next subsequence Vi+1.
Therefore, Eq. 3 is approximated as:

S = {S1, · · · , Sm} =
{

argmin
S1

E1(S1|V1), · · · , argmin
Si

E1(Si|Vi, Si−1, Vi−1),

· · · , argmin
Sm

E1(Sm|Vm, Sm−1, Vm−1),
}
, (4)
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V1 V2 V3 Vm−1 Vm

t = 0

E(S|V) S

V

S1 S2 S3 Sm−1 Sm

Fig. 2. Framework of streaming hierarchical video segmentation.

which can be solved greedily. Start from V1, obtain S1, then fix S1 and obtain S2

based on S1, V1, and V2. In the same way, obtain S3, S4, · · · , Si until the whole
video is completed.

Therefore, at any time, our approximation framework only needs to store two
subsequences into memory, whatever the length of video is, and each subsequence
is processed only once. The length ki of a subsequence Vi is a parameter and can
range from 1 to the full length of the video. According to the definition of data
streams, we hence name this approximation framework with greedy solution as
streaming hierarchical video segmentation. And our framework obviously
can well handle the two proposed problems of current hierarchical video segmen-
tation mentioned in the introduction: namely, we do not store the whole video
at once and in some cases, the whole video may not be available.

2.2 Model For Estimating Si|(Vi, Si−1, Vi−1)

We can hierarchically segment video of arbitrary length if we know how to solve:

Si = argmin
Si

E1(Si|Vi, Si−1, Vi−1) , (5)

where Si is hierarchical segmentation of subsequence Vi, s.t. Si = {S1
i , S

2
i , · · · , Shi }

with h layers. Sji is the segmentation result at the jth layer and the first layer
S1
i is the video itself, where each voxel is a segment. Continuing with a simi-

lar Markov assumption, assume Sji only depends on Sj−1i , Sj−1i−1 , Sji−1 and the
subsequence Vi−1 and Vi, see Fig. 3. Then we can obtain:

Si = argmin
Si

E1(Si|Vi, Si−1, Vi−1)

= argmin
S2
i ,··· ,Sh

i

h∑
j=2

E2(Sji |Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1) . (6)
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Fig. 3. Sub-framework for hierarchical segmentation for single subsequence Vi.

We can hence reformulate this using a greedy approach, as we did in Eq. 4:

Si = argmin
Si

E1(Si|Vi, Si−1, Vi−1)

=
{

argmin
S2
i

E2(S2
i |Vi, S1

i , S
1
i−1, S

2
i−1, Vi−1), · · · ,

argmin
Sh
i

E2(Shi |Vi, Sh−1i , Sh−1i−1 , S
h
i−1, Vi−1)

}
, (7)

where, recall, E2(·|·) is the conditional segmentation model for a single layer of
the subsequence. Since in the first layer, each voxel is a segment, S1

i is given.
Eq. 7 can be solved by using the greedy solution for Eq. 4. In this way, we
transfer complex conditional hierarchical segmentation Si|(Vi, Si−1, Vi−1) to a
simple layer by layer conditional segmentation Sji |(Vi, Sj−1i , Sj−1i−1 , S

j
i−1, Vi−1).

Thus, we can obtain Si by pursuing segmentation Sji layer by layer.

2.3 Semi-Supervised Grouping Method for Estimating
Sj
i |(Vi, S

j−1
i , Sj−1

i−1 , S
j
i−1, Vi−1)

According to Eq. 7, now we propose a method to estimate Sji that:

Sji = argmin
Sj
i

E2(Sji |Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1) . (8)

First, we consider Eq. 8 to pose a semi-supervised grouping problem, given our
streaming assumptions (not user input). Given joint segment set

?jth layer

j − 1th layer

video Vi−1 Vi

Sj
i−1

Sj−1
iSj−1

i−1

Sj
i =

time

Fig. 4. Illustration of posing Eq. 8 as a semi-
supervised problem.

Sj−1i−1,i = Sj−1i−1 ∪ Sj−1i , each small
segment is described by a feature-
vector on appearance from Vi∪Vi−1.
Sji−1 is the segmentation result of
the jth layer for subsequence Vi−1;
since it is above the j − 1th layer, it
is seen as supervised information for
segments that belong to Sj−1i−1 , and
these segments are hence supervised
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i
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i−1
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Sj−1
i−1 Sj−1

i
Sj−1

i−1 Sj−1
i

sa sb

Sj−1
i−1 Sj−1

i
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(a)

(b) (c) (d)

t
Vi−1 Vi

Fig. 5. Example of the three cases in the additional merging criteria: (a), the initial
status of semi-supervised grouping; (b-d) three different cases, when sa and sb needed
to be merged: (b) sa ⊂ Sj−1

i and sb ⊂ Sj−1
i ; (c) sa ∩ Sj−1

i−1 6= ∅ and sb ⊂ Sj−1
i ; (d)

sa ∩ Sj−1
i−1 6= ∅ and sb ∩ Sj−1

i−1 6= ∅

segments. The goal is to infer Sji : the labels of other unsupervised segments in

Sj−1i , with fixed labels for segments in Sj−1i−1 . Fig. 4 illustrates this idea.

Now we design a general semi-supervised algorithm Hsemi−G(Sj−1i ) to infer

Sji . Given any unsupervised grouping method HG(Sj−1i ) that obtains segmenta-
tion result by merging small segments into large segments iteratively (see Sec. 3
for a graph-based example), we add one more step in its merging process to
arrive at semi-supervised grouping algorithm Hsemi−G(Sj−1i ). Assume there are
two segments sa and sb in the current layer, they need to be merged based on
the selected grouping method, this merging should be reevaluated according to
three cases, which we call the additional merging criteria (see an example of
each case in Fig. 5 (b-d)):
1. If sa and sb both are unsupervised segments, as in Fig. 5(b), then sa and sb

can be merged.
2. If sa is an unsupervised segment and sb contains some supervised segments,

as in Fig. 5(c), then sa and sb also can be merged, vice versa.
3. If sa and sb both contain some supervised segments, as in Fig. 5(d), if they

have the same parent, then they are merged, otherwise they are not merged.

Finally, when the merging process stops, we get large merged segments from
Sj−1i , they are considered as jth layer segmentation result Sji of hierarchical
segmentation for subsequence Vi. Then we assign unique indices to these large
segments. If the large merged segment contains some supervised segments in
Sj−1i−1 , its index is same as parent node’s index in Sji−1 of the supervised seg-
ment, or assign it a new index. This ensures consistent indices of same object in
continuous subsequences and also proposes new indices for new objects.

There are two advantages of our semi-supervised grouping method. First,
from low to high layers, more and more segments will merge with segments from
the previous subsequence and the indices of these segments from the current
subsequence are the same as the indices of the corresponding segments in the
previous subsequence. Thus in a higher layer, the indices of the segments between
neighboring subsequences are more consistent than those of a lower layer.
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Second, in the third case of the additional merging criteria, we avoid merging
sa and sb when they contain some supervised segments that connect to different
parent nodes in Sji−1. If we do not handle this case, supervised segments in sa∪sb
will be merged and connected to the same parent node thereby contradicting
with hierarchical segmentation results Si−1 for previously processed subsequence
Vi−1, and violating the streaming constraints.

3 Graph-based Streaming Hierarchical Video
Segmentation

Felzenszwalb and Huttenlocher [13] propose a graph-based unsupervised group-
ing method for image segmentation (GB). Their objective is to group pixels that
exhibit similar appearance. First represent the image as graph with nodes as pix-
els and edges connecting nodes according to their spatial relationship. The edge
weight is calculated based on the similarity of two nodes. Then the method iter-
atively merges neighboring regions based on relaxed internal variation RInt(·) of
regions, which we will define below. It allows regions to be merged if the weight
of the edge connecting them is larger than their relaxed internal variations.

Although Grundmann et al. [3] have already extended the GB method to
hierarchical form, we re-derive our version directly from [13] to put it into our
streaming approximation framework; [3] do not provide a streaming version of
GB. In order to adopt this graph-based grouping method into our streaming
hierarchical segmentation framework, we construct a graph over the spatial-
temporal video volume with a 26-neighborhood in 3D space-time. This graph
is only constructed for the current two subsequences in process, Vi and Vi−1;
this graph is the first layer of the hierarchy and edge weights are direct color
similarity of voxels. Assume we have computed the streaming hierarchical seg-
mentation result up to subsequence Vi using ideas from the previous section, i.e.,
given the hierarchical segmentation result Si−1 of Vi−1, we infer the hierarchical
segmentation for Vi layer by layer.

Consider the jth layer of Vi as an example. We build a graph G = {V,E}
based on the j − 1th layer of subsequences Si−1 and Si, where each segment in
the j − 1th layer {Sj−1i , Sj−1i−1 } is a node xa that is described by a histogram
of Lab color of all voxels in the segment. If there is one edge between two seg-
ments/nodes xa ∈ V and xb ∈ V in the first layer, then there is edge eab ∈ E
between segments, and its weight w(eab) is χ2 distance of the corresponding two
histograms. Since Sji−1 ∈ Si−1 is given, we consider Sji−1 to be semi-supervised

information for nodes in graph G; thus, all segments/nodes in Sj−1i−1 are indexed
nodes, and their index can not be changed by our semi-supervised grouping
method.

According to [13], denote a region R as a subset of connected nodes in graph
G. The internal variation of region RInt(R) is the maximum edge weight emax
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Fig. 6. Example long term video StreamGBH output with k = 10. (a) the video with
frame number on top-left, (b) the 5th layer, (c) the 10th layer, (d) the 14th layer
segmentations. Faces are obscured for privacy concerns in the figure.

of its Minimum Spanning Tree (MST) plus a relaxation term:

RInt(R) = Int(R) + σ(R), with σ(R) =
τ

|R| (9)

s.t. Int(R) = max
e∈MST (R)

w(e) , (10)

where |R| is the number of voxels in region R, and τ is a constant parameter that
controls the number of segments to be computed. Our semi-supervised group-
ing method Hsemi−G(·) simply combines the merging method in [13] by Eq. 10
and semi-supervised information from Sji−1. First, sort the edges in increasing
order in the graph G; and then traverse the sorted edges. At each edge, check
whether the edge weight is smaller than the internal variation of both regions
incident to the edge: if not, keep traversing; if so, then use the additional merg-
ing criteria to decide whether to merge or not. Therefore, based on our proposed
semi-supervised Hsemi−G(·), we finally obtain graph-based streaming hierarchi-
cal video segmentation. Fig. 6 shows some example layer-segmentations of the
method on a long video (30 seconds) with an equal subsequence length k = 10
frames.

4 Experimental Evaluation

Implementation. We have implemented the graph-based streaming hierar-
chical video segmentation method (StreamGBH), which runs on arbitrarily
long videos with low and constant memory consumption. Our implementation
adaptively handles streaming video and can process bursts of k frames on the
stream, where k can be as few as 1 or as many as the local memory on the
machine can handle. When k = all frames, it is a traditional hierarchical
graph-based video segmentation method (GBH) [3]. When the hierarchical level
h = 1, it is a single layer graph-based streaming video segmentation method
(StreamGB). When k = all frames and h = 1, it is a graph-based video
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segmentation method (GB) by extending Felzenszwalb’s graph-based image seg-
mentation [13] to the 3D video volume. StreamGBH and all of these variants
are available as part of our LIBSVX software library, which is downloadable at
http://www.cse.buffalo.edu/~jcorso/r/supervoxels/.

We analyze the following two aspects of StreamGBH in the context of the
benchmark in [10] and provide details on the specific results in Sec. 4.1 and 4.2.
We discuss space and time complexity in Sec. 4.3.

Comparison between different subsequence lengths: vary k. We ex-
plore the effectiveness of the streaming variate k in the performance of our
StreamGB and StreamGBH methods. The algorithms are expected to reach their
lower bound on performance when k = 1, and their upper bound on performance
(GB/GBH) when k = all frames, respectively.

Comparison against state of the art streaming methods. We com-
pare our StreamGB and StreamGBH methods against Grundmann’s clip-based
graph-based method (CGB) [3] and Paris’s streaming mean shift method [15]
with fixed k = 10. Since neither of their implementations is publicly available,
we have implemented Grundmann’s CGB method. For Paris’s Streaming Mean
Shift, we use the source code for whole video processing provided on the author’s
website http://people.csail.mit.edu/sparis/#code) as an upper bound for
the streaming mean shift implementation.
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Fig. 7. Quantitative experiments on the benchmark data set. Left: 3D Undersegmen-
tation Error. Middle: 3D Boundary Recall. Right: Explained Variation. Top Row: per-
formance of Streaming GB/GBH with different k against full-video versions. Bottom
Row: comparison against streaming methods.
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4.1 Quantitative Performance: Benchmark Comparisons

Data. We use the recently published benchmark data set (Chen Xiph.org) [25]
and video segmentation performance metrics from [10] in the quantitative exper-
iments. Specifically, the video data set is a subset of the well-known xiph.org

videos that have been supplemented with a 24-class semantic pixel labeling set
(the same classes from the MSRC object-segmentation data set [26]). The 8
videos in this set are densely labeled with semantic pixels and have a length of
85 frames each. This data set allows us to evaluate the segmentation methods
against human perception.

3D Undersegmentation Error. It measures what fraction of voxels go
beyond the volume boundary of the ground-truth segment when mapping the
segmentation onto it. Refer to the benchmark paper [10] for the derivation of the
measure. Fig. 7 (left column) shows the dependency of 3D Undersegmentation
Error on the number of segments. The upper-left of Fig. 7 shows an interest-
ing finding. The curves of StreamGBH are more smooth than StreamGB, and
the performance of StreamGBH gradually converges to GBH as the length k of
incoming video subsequences increases, which agrees with our approximation
framework in Sec. 2.1. The StreamGBH with k = 10 has comparative per-
formance with GBH. However the GB method performs worst among all the
methods. The reasons are twofold: (1) without a hierarchical structure, the GB
method is more dependent on the input parameters for different videos which
makes the curve less smooth and (2) without an over-segmentation stage, the
GB method is partially dependent on an enforced minimum region size, which
is not robust for videos of different lengths. According to reason (2), StreamGB
method works more reasonably. The bottom-left of Fig. 7 shows our proposed
StreamGBH method achieves the best among all the other streaming methods.

3D Boundary Recall. The 3D boundary is the shape boundary of a 3D ob-
ject, composed by surfaces. It measures the spatiotemporal boundary detection:
for each segment in the ground-truth and segmentations, we extract the within-
frame and between-frame boundaries and measure recall using the standard for-
mula. Fig. 7 (middle column) shows the dependency of 3D Boundary Recall on
the number of segments. StreamGBH again performs best and StreamGB is also
better than the other two in the bottom-middle of Fig. 7.

Explained Variation. Explained Variation is proposed in [20] as a human-
independent metric. It considers the segmentation as a compression method of

a video. R2 =
∑

i(µi−µ)2∑
i(xi−µ)2 sums over i voxels, xi is the actual voxel value, µ

is the global voxel mean and µi is the mean value of the voxels assigned to the
segment that contains xi. Fig. 7 (right) shows the dependency of Explained Vari-
ation on the number of segments. The bottom-right of Fig. 7 again shows that
StreamGBH, StreamGB and mean shift methods have comparative performance
when the number of segments is larger than 500.

Mean Duration of Segments. When evaluating the performance among
different streaming algorithms, we believe the mean duration of segments is a
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Fig. 8. Mean duration of segments
vs. number of segments.

more important metric, as it measures
the temporal coherence of a segmenta-
tion method more directly. Fig. 8 shows
the dependency of mean duration of seg-
ments on number of segments. Our proposed
StreamGBH and StreamGB both perform
better than the other two. ClipGB performs
worst and loses most of the temporal infor-
mation.

4.2 Qualitative Performance on Long Videos

Fig. 9. (top) Qualitative comparison of k = 10
for the streaming methods. (bottom) Shot change
of StreamGBH with k = 10. (a) the video with
frame number on top-left, (b) the 5th layer seg-
mentation, (c) the 10th layer segmentation, (d)
the 14th layer segmentation.

Here we show some qualita-
tive results on long videos,
which necessitate a streaming
method. Recall, Fig. 6 shows a
long term temporal coherence of
StreamGBH. In the segmenta-
tion, objects have consistent in-
dices along the time duration as
long as the shot is not changed
(see below for a shot change de-
tection example). We see dif-
ferent details of an object in
the layers of hierarchy. For ex-
ample, one can find three pa-
pers in the violin case in 5th
layer, and locate a single mu-
sician body pose in 14th layer.
Note, however, the person walk-
ing behind the musician gets
mixed into the musician’s seg-
ment at frame 401 at higher
layers in the hierarchy; this is
a shortcoming of our method
due to the streaming assump-
tions. Fig. 9 (top) is a shot cut
from a long video with changes
in illumination as a person en-
ters a kitchen. StreamGB and
StreamGBH have better temporal coherence than the others. However, the arm
of the person is only able to be segmented out by StreamGBH; StreamGB has
some small noise fragments and Clip-based GB completely loses the arm on
Frame 513. We also show how StreamGBH captures a shot change in a video as
Frame 931 to Frame 932 in Fig. 9 (bottom). Our proposed StreamGBH has a
promising performance even without any motion cues in the above experiments.
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4.3 Space and Time Complexity

Since our method adopts streaming techniques, at any time, we only need con-
stant memory to keep the previous and current video subsequences in the mem-
ory. This constant memory is O(nk), n is the number of voxels per frame and k
is the length of video subsequence window; thus it is independent of the video
length. For a p-frame video, there are n × p voxels in total. The complexity of
GBH is O(np log np). Since our StreamGBH considers only k frames at each
time, its complexity is O(np log nk). For an arbitrarily long video, p � k and
p� n where k and n are constant numbers, thus the complexity of StreamGBH
is O(p) whereas GBH is O(p log p). Therefore, StreamGBH is more efficient in
both space and time complexity. For our experiments, the timing result on bench-
mark [10] for StreamGBH on average is 355 seconds for 85 frames (about 0.25
fps) generating 16 layer hierarchies; our method is not optimized or parallelized.

5 Conclusion, Limitations and Future Work

We have proposed a framework for streaming hierarchical video segmentation
and a graph based streaming hierarchical approach (StreamGBH) based on our
framework. To the best of our knowledge, it is the first solution for fully unsuper-
vised online hierarchical video segmentation that can handle any arbitrarily long
video (and our code is available). We evaluate this approach on a benchmark data
set under different metrics and qualitatively on some long videos. The results
show that our approach outperforms other state of the art streaming methods in
both quantitative and qualitative perspectives. Although our StreamGBH can
process videos of arbitrary length, our implementation is not real time. In future,
we plan to improve this implementation to leverage parallelization hardware and
optimized data structures from data stream algorithms.
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