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Abstract

The extension of programming languages with database query capabilities is
called language-integrated query. This is a desirable goal in connection with
two recent developments (from the programming and the database communi-
ties): (a) the functional-object paradigm; and (b) enhanced expressiveness and
conciseness of functional query languages. In addition, the extensible com-
piler architectures for modern programming languages along with the advanced
optimization techniques for functional query languages bring new perspectives
to persistent programming languages. The main results of the present master
project work are contributions that fall under the larger ScalaQL project. The
ScalaQL project proposes a translation algorithm from two source languages,
LINQ and Scala, to SQL:1999 queries with the Ferry query language as an in-
termediate language. The underlying translations are required to be total and
semantics preserving. The master work contributes to (a) providing the syntac-
tic and semantic foundation for the second translation (from Scala into Ferry);
(b) covering the relevant aspects of both the Scala and Ferry type systems; and
(c) establishing the required isomorphism of types between the supported Scala
subset and Ferry. Finally, the proposed approach has been implemented as a
Scala compiler plugin that allows compile-time processing of LINQ queries and
preparing well-formed SQL:1999 queries amenable to relational DBMS evalua-
tion.
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Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Problem Statement . . . . . . . . . . . . . . . . . . 9
1.3 Structure of this report . . . . . . . . . . . . . . . . 10
1.4 Background . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Semantic foundation: query comprehensions . . . . . 11
1.4.2 Ferry: optimizing database comprehensions . . . . . 11
1.4.3 Design overview and supported use cases . . . . . . 12
1.4.4 Microsoft LINQ . . . . . . . . . . . . . . . . . . . . . 13

1.5 Levels of integration of host and query languages 15
1.5.1 Level 1: Native query syntax . . . . . . . . . . . . . 15
1.5.2 Level 2: Static guarantee of database evaluation . . 15
1.5.3 Level 3: Optimizability known at shipping time . . . 16
1.5.4 Level 4: Client-side processing . . . . . . . . . . . . 17
1.5.5 ScalaQL and LINQ under the light of integration levels 17

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Motivation
The integration of database and programming languages has gained a significant
interest raised by best practices achieved at both sides. Modern programming
languages, such as Scala, F#, X10, Fortress, have started a trend of blending
the traditional object paradigms with the proven benefits of the functional style
programming, e.g. higher-order functions, enriched libraries of operations on im-
mutable collections. At the same time, modern functional database query lan-
guages, e.g. LINQ, increase expressiveness and conciseness of their expressions
by introducing functional operations (in addition to the traditional relational
ones) and by supporting comprehensions. The functional operations, e.g. map,
filter, flatMap, provide compact notations while preserving the semantics of list
comprehensions [25] being a foundation for query manipulation, in particular,
allowing well-known optimization techniques. Extending such programming lan-
guages with a language-intergated query enables programs to efficiently query

8
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Figure 1.1: Scala compiler architecture and ScalaQL extension

data at different locations (databases) on demand, and manipulate these data in
program space by using, for example, operators defined for collections. Having
a language-integrated query benefits from enforcing well-formedness of queries
at compile time while aiming at preserving conciseness of the expressions pro-
vided by the functional query languages (e.g., by semantic-preserving mapping
of common operations).

The topic of this master project is formulated as a part of the ScalaQL
project1. The ScalaQL project proposes a translation algorithm from two source
languages, LINQ and Scala (or rather, a subset of it), into Core SQL:1999
queries. The underlying translation is to be (a) total, i.e. each well-formed
query of the input language is translated into a bunch of well-formed SQL
queries; and (b) query semantics preserving. The main contribution of the mas-
ter project is made to the translation from the target Scala subset to SQL:1999
queries to be evaluated at DBMS, and program transformations in Scala with
correspondence to the proposed translation algorithm. The preference is given
to Scala being a modern programming language combining both functional and
object paradigms. The choice of Scala is underpinned by the provided compiler
architecture designed to operate in phases delegating Abstract Syntax Trees
(ASTs) between successive phases for analyses and transformations as shown in
Figure 1.1. The default functionality of the Scala compiler phases can be easily
extended by introducing a new custom compiler phase with respect to the inter-
action protocol 2 defined for compiler plugins. The Scala comprehensions and
its extensive library on collection operations are in the core of the translation.

1.2 Problem Statement
This master project being a part of ScalaQL project addresses program trans-
formations in Java and Scala with application to integration of mainstream
functional database query languages and programming languages. The main
focus is made on embedding of the modern query language LINQ into Scala
by means of translating LINQ queries into Scala comprehensions. The resulting
Scala queries are further translated to Ferry language [27] amenable to SQL:1999
evaluation on a relational DBMS. Both transformations are performed at com-
pile time as a part of a custom Scala compiler (scalac) phase followed by the
normal compilation phases (Figure 1.1). The transformations are applied at

1http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL
2http://www.scala-lang.org/sid/2

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL
http://www.scala-lang.org/sid/2
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the level of parse trees that are analyzed and transformed on the way from one
phase to another. The well-formedness of Scala queries, and therefore LINQ
queries, is guaranteed by successful completion of the compilation process. The
well-formedness of resulting Ferry queries is guaranteed by the translation pro-
viding isomorphism of types between the chosen Scala subset and Ferry. The
isomorphic property of the Scala-to-Ferry translation is partially ensured by
final typechecking of Ferry queries.

As the initial part of the master thesis, program transformation mechanisms
applied for embedding functional database query languages into Java are cov-
ered. The approach referred to as nested languages is applied for embedding a
Semantic Web query language, OWL2 Functional Syntax, into Java in prefer-
ence to embedded DSLs [14]. The underlying expansion of nested OWL2 queries
is performed as a part of the compilation process of Eclipse IDE by means
of Eclipse JDT plugin extension mechanisms and the provided APIs for AST
rewritings.

1.3 Structure of this report
The rest of the chapter is organized as follows. Sec. 1.4 provides background on
the underpinnings of modern query languages (query comprehensions), as em-
bodied in an state of the art, optimizable query language for relational backends
(Ferry). A summary description of the technologies under the LINQ umbrella
closes that section, emphasizing aspects frequently glossed over in the literature
(for example, degree of static checking and optimization). In Sec. 1.5 classi-
fication criteria are put forward to rank competing approaches to a language-
integrated query, by defining four capability levels for language processors to
handle queries involving different mixes of program vs. database semantics.

The following chapter, Chapter 2, discusses the typesafe embedding of a
query language for the Semantic Web, OWL2 Functional Syntax, relying on the
concepts of a nested query and query expansion (Sec. 2.2). Sec. 2.4 covers datails
of the underlying Java program transformations supported by Eclipse JDT that
are underpinned by the corresponding AST-building and AST-rewritings.

The next three chapters cover in detail our compilation pipeline, starting
from LINQ to Scala (Chapter 3) followed by the chosen subset of Scala (types,
operations, and syntactic constructs) that our Scala to Ferry translation accepts
as input (Chapter 5). Chapter 4 provides detailed discussion of typing rules
applied by our Scala-based typechecker against the full Ferry language.

Chapter 6 summarizes the underlying translations, from LINQ and Scala into
Ferry, by giving the user perspective of the ScalaQL prototype and outlining
its architecture. The implementation details covering Scala compiler (scalac)
architecture with respect to custom compilation phases by a compiler plugin
and relevant AST-building and AST-rewritings supported by scalac APIs are
covered in Sec. 6.3.

The last chapter discusses conclusions (Chapter 7) and sketches possible
future works with reference to related works. Appendix A summarizes the
syntax and semantics of LINQ.

A prototype (ScalaQL) realizing our approach can be downloaded from
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL
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1.4 Background
1.4.1 Semantic foundation: query comprehensions
As summarized in [14], query comprehensions provide a uniform notation for
denoting collections such as lists, bags and sets, based on the observation that
the operations of set and bag union and list concatenation are monoid operations
(that is, they are associative and have an identity element [12]).

In the list comprehension [e | e1 . . . en] each ei is a qualifier, which can either
be a generator of the form v ← E, where v is a variable and E is a sequence-
valued expression, or a filter p (a boolean valued predicate). Informally, each
generator v ← E sequentially binds variable v to the items in the sequence
denoted by E, making it visible in successive qualifiers. A filter evaluating to
true results in successive qualifiers (if any) being evaluated under the current
bindings, otherwise ‘backtracking’ takes place. The head expression e is evalu-
ated for those bindings that satisfy all filters, and taken together these values
constitute the resulting sequence. For example, the meaning of the following
OQL query:

select distinct e(x) from ( select d(y) from E as y where q(y) ) as x where p(x)

is captured by { e(x) | x ← {{ d(y) | y ← E , q(y) }} , p(x) }
In tandem with closures (i.e., functions with parameters bound upon eval-

uation) the notation allows expressing complex queries, albeit not always com-
pactly (the Scala collections library improves on this by encapsulating recurring
patterns). In general, comprehensions contain nested queries. If evaluated as-is
on large datasets, the engine would spend an excessive amount of time in nested
loops, a situation that is overcome with optimizations for secondary-storage [16]
and for main-memory [33].

1.4.2 Ferry: optimizing database comprehensions
Ferry [17], designed by Tom Schreiber at Uni Tübingen3, pushes the envelope
on how far a relational database engine can participate in program evaluation.
Ferry’s type system, constructs, and function library support computation, in
particular comprehensions, over arbitrarily nested, ordered lists and tuples. A
Ferry read-only query operates on data typed as per t = a | [t] | (t, . . . , t) where a
represents atomic types like string, int, or bool. Structured types can be used to
model programming language types such as lists, dictionaries (“maps” in Java),
and algebraic datatypes. For performance, lists are not encoded following a
(purely) recursive datatype formulation but as database tables. Unlike their
program-level counterparts, Ferry lists must be homogeneous (all items sharing
the same concrete type) for reasons having to do with static optimization (the
detailed data layout has to be known). In other words, Ferry lists support
parametric polymorphism but not subtype polymorphism.

The syntax of Ferry is fully composable (the same cannot be said of SQL’92)
and revolves around the for-where-group by-order by-return construct. Addition-
ally, let-bindings, conditionals, and primitive operators (arithmetic, relational,
string) are supported. Table 5.17 summarizes the built-in functions. Several

3Ferry, http://www-db.informatik.uni-tuebingen.de/research/ferry

http://www-db.informatik.uni-tuebingen.de/research/ferry
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Figure 1.2: Relational translation of a non-relational language, reproduced
from [17]

Table 1.1: Sample of Ferry’s built-in function library
map :: (t→ t1, [t])→ [t1] map over list

concat :: [[t]]→ [t] list flattening
take; drop :: (int, [t])→ [t] keep/remove list prefix

nth :: (int, [t])→ t positional list access
zip :: ([t1], . . . , [tn])→ [(t1, . . . , tn)] n-way positional

unzip :: [(t1, . . . , tn)]→ ([t1], . . . , [tn]) merge and split
unordered :: [t]→ [t] disregard list order

length :: [t]→ int list length
all; any :: [bool]→ bool quantification

sum; min; max :: [a]→ a list aggregation
the :: [t]→ t group representative

groupWith :: (t→ (a1, . . . , am); [t])→ [[t]] grouping

programming language embeddings are being developed by the team behind
Ferry (including Ruby and itself, but not Scala), so far for relational backends
only.

A Ferry program is compiled by the pipeline shown in Figure 1.2, a trans-
lation that relies on the loop lifting strategy [28] originally developed for the
purely relational Pathfinder4 XQuery compiler. The resulting algebraic query
plans are amenable to dataflow-based analysis and optimization [16].

1.4.3 Design overview and supported use cases
Using our Scala extension, the developer needs only provide the query shown
in Listing 1.1. In this case, the query has been formulated using Microsoft
LINQ, thus fostering portability for queries across the .NET and JVM platforms.
Internally, one component of our solution (the compiler plugin, Figure 1.1) takes
charge of parsing and transforming the syntax tree in question into another, this
time in terms of a Scala subset. In a nutshell, that subset comprises all features
required as counterpart to LINQ-specific clauses (where, joint into, group by, and
so on) as well as a subset of Scala’s own operators (originating in the collections
library and in supported datatypes).

Coming back to the example, the result of this source-to-source translation
4Pathfinder, http://www-db.informatik.uni-tuebingen.de/research/pathfinder

http://www-db.informatik.uni-tuebingen.de/research/pathfinder
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Listing 1.1: LINQ2Scala: Input
@LINQAnn val resultSet =

" from how in travelTypes " +
" join trans in transports on how equals trans .How into lst " +
" select new { How = how, Tlist = lst } "

Listing 1.2: LINQ2Scala: Output
@Persistent val resultSet =

for (how <− travelTypes;
val outerKey = how ;
val lst = for ( trans <− transports ;

if outerKey == trans.How )
yield trans

) yield new { val How = how; val Tlist = lst }

(from LINQ into Scala) is shown in Listing 1.2, not in the internal AST repre-
sentation but as if the query had been written from scratch in Scala (another
use case fully supported by our tooling). Sec. 3.1 addresses the correctness of
this first translation. Our analysis is based on an (off-line, manually performed)
detailed comparison of the semantics of source and target operators and types.
In other words, the code blocks in the operators’ definitions are not translated:
the source-to-source translation occurs at the level of API contracts (which thus
serve their purpose of abstraction barrier). The usage context for our solution
(shipping of read-only queries for server-side evaluation) sidesteps many well-
known difficulties from memory models (side-effects on shared mutable state,
interference from updates by other threads). In anticipation of the discussion
in that section, it can already be mentioned that differences between LINQ and
Scala (regarding scoping, automatic coercions, and semantics of closures) do not
present a big hurdle; a situation resulting from the aforementioned convergence
trend of the functional and object paradigms.

At this point, denotational semantics is our guide to accomplish a second
translation (from the Scala subset into Ferry) which involves: (a) formulating
Scala-level operators in terms of a smaller set of built-in Ferry functions; and
(b) reflecting the different container semantics (set, sequence, map, multiset) by
means of appropriate encodings. Our reliance on a functional database query
language (Ferry) is a departure from the architecture of established Object/Re-
lational Mapping engines, but is in line with the design decisions embodied in
Microsoft products, where Entity SQL5 fills a comparable niche, the main dif-
ference being that Entity SQL already abstracts from records into objects. The
final query to be shipped is shown in Listing 1.3.

1.4.4 Microsoft LINQ
Throughout this technical report, the term “LINQ” refers to the LINQ (embed-
ded) query language. However, LINQ functionality results from the interplay of
several technologies, the first one covering compile-time translation from LINQ

5Entity SQL, http://msdn.microsoft.com/en-us/library/bb387145.aspx

http://msdn.microsoft.com/en-us/library/bb387145.aspx
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Listing 1.3: Query ready to ship for database-based evaluation
for how in travelTypes return

let outerKew = how,
lst = for trans in transports where outerKey == trans.how return trans

in (how = how, tlist = lst) // record , not tuple

Listing 1.4: Runtime exception (in LINQ to SQL) at evaluation time
1 static void Main(string [] args)
2 { MyDatabaseDataContext ctx = new MyDatabaseDataContext();
3 var res = from s in ctx . Sites where s.UrlPath.Normalize() == "Test" select s ;
4 foreach (var s in res ) ;
5 }

textual syntax (embedded in languages such as and VB.NET) into Standard
Query Operators (SQO), which are comparable to the operators in collection li-
braries of programming languages supporting closures. For example, the textual
syntax from x in foo let y = f(x) select h(x, y, z) actually stands for the following
code [14]: foo.Select(x => new { x, y = f(x) }).Select(t0 => h(t0.x, t0.y)). All
we need to know about these ASTs is that LINQ renames the well-known map,
filter, and flatMap into Select, Where, and SelectMany.

Another important component are query providers, i.e., implementations
(possibly by third-parties) that receive SQO ASTs and return a resultset. Query
providers, including that for main-memory evaluation, perform lazy evaluation
of LINQ queries. This design guarantees that the minimum amount of work will
be performed to obtain the first result, and that some queries on infinite input
will be answered. When the query provider is connected to an RDBMS, queries
operate not on sequences but on multisets: if any operators are applied after
an OrderBy() there is no assurance that results will reflect the previous sorting.
PLINQ, the project focusing on parallel evaluation of LINQ queries, puts it in
these terms: “ordering operators re-establish order, shuffle points shuffle the
order” 6.

Given that the semantics of query evaluation is at the mercy of the partic-
ular query provider in use, such evaluation may (a) produce a run-time error,
(b) partition the expression into an SQL query and pre- and post-processing
phases executed outside SQL, or (c) translate the expression completely to SQL.

Regarding (a), the division of labor between the C# compiler and query
providers does not require the former to be fully aware about limitations of the
latter7. This means that a query provider may be handed a query it cannot
evaluate, as shown by the code in Listing 1.4: upon trying to iterate the re-
sultset, a runtime NotSupportedException is thrown with the message “Method
‘Normalize’ has no supported translation to SQL”. Given that in our approach
both roles (query rewriting and shipping) are under control of the same compiler
plugins, this mismatch is avoided.

6PLINQ, http://msdn.microsoft.com/en-us/magazine/cc163329.aspx
7http://bartdesmet.net/blogs/bart/archive/2007/07/05/

linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx

http://msdn.microsoft.com/en-us/magazine/cc163329.aspx
http://bartdesmet.net/blogs/bart/archive/2007/07/05/linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx
http://bartdesmet.net/blogs/bart/archive/2007/07/05/linq-to-sharepoint-improving-the-parser-debugger-visualizer-fun.aspx
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1.5 Levels of integration of host and query lan-
guages

A persistent programming language wallpapers over the different locations and
longevity of data [4],[11],[23]. The more modest goal of language-integrated
query also poses some challenges, that we classify into the integration levels
where they manifest.

1.5.1 Level 1: Native query syntax
In this level, queries must be written in the language the DBMS understands (for
our purposes, Ferry, but the same considerations apply to SQL, XQuery, and so
on). This limitation implies that only the operators supported by the DBMS
can be applied, and that expressions will only evaluate to types the DBMS can
handle. After database evaluation, moving results back to program space poses
no principle problem: the type system is rich enough to deliver an assignment-
compatible type. Regarding variables, the only variables initially in the scope of
queries are those representing persistent extents (in the relational context, each
table is an extent; for the Entity Data Model8, there are extents for entities
and associations). Because usages of variables declared in the host program are
disallowed, the typing rules of the query language allow static typing.

Native query syntax is the most verbose of all levels, but its embedding allows
compiler plugins to detect queries broken due to refactorings of the database
schema. Admittedly, Level 1 is not very useful in practice, but serves to set the
stage for the next level.

1.5.2 Level 2: Static guarantee of database evaluation
In this level, a few restrictions are placed on usages of program variables, in a
manner that allows finding out (conservatively) at compile time whether total
translation is possible, i.e. whether the query can be fully evaluated by the
DBMS without client-side processing.

First, program-level operators may appear in queries as long as they can be
expressed in terms of one or more query language operators.

Second, Program-level literals and constructor invocations may appear as
long as a lossless encoding exists for their types, for marshalling to and from the
persistent representation (assuming that each persistable value can be denoted
by a literal in the query language).

The features above could have been shoehorned into Level 1 by adding syn-
tactic sugar to the query language. This redressing can go even further: LINQ
constructs can be used as surface syntax over Ferry operators, literals, and types,
adding convenience without increasing expressive power. In contrast, Level 2 en-
ables the parameterization of queries with values known only at runtime, while
retaining the property of database-only evaluation. In what follows we limit
our attention to LINQ and Scala as (surface) syntaxes for language-integrated
query, and Ferry as DBMS native query language.

Variable usages in queries can be either in left-hand side or right-hand side
positions, where a LHS is to be interpreted as binding as opposed to destruc-

8Entity Data Model, http://msdn.microsoft.com/en-us/magazine/cc700331.aspx

http://msdn.microsoft.com/en-us/magazine/cc700331.aspx
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Listing 1.5: A query statically known to be Level 2, using program variables
val paramEmp = Employee(...) // a case class instance
val parkingLots = List(North, South)
/∗ here comes a query where paramEmp and parkingLots appear in RHS position ∗/

tive update. In comprehensions-aware query languages (Sec. 1.4.1), binding is
implied by generators and let-declarations only. Additionally, LINQ and Scala
add one more means to effect bindings, when constructing values of structural
types (anonymous types in LINQ terminology), as with the expression new { x
= 0, y = 0 }, which makes x and y visible in certain scope.

When parameterizing queries with runtime values, LHS positions are not the
problem: they should be fresh names for the scope in question (neither LINQ
nor Scala allow hiding of variables). Thus, no program variable can appear
there anyway. On the other hand, allowing arbitrary program variables in RHS
positions is a can of worms. Some usages are harmless (for example, variables of
primitive types, whose declared types are final – cannot be subclassed – leading
thus to statically known actual types). From a Ferry point of view, actual types
are crucial, given that the query plan fragment to generate for a given operator
depends in general on the data layout of the operands, i.e., their actual type has
to be known statically. This inflexibility is the price to pay for the extensive
optimizations that Ferry makes possible (Sec. 1.4.2), a capability we retain in
all of Levels 1, 2, and 3.

In Level 2, a program variable is allowed in queries as long as: (a) its actual
type is known statically; and (b) such type has a counterpart in Ferry’s type
system (possibly after marshalling and encoding). These restrictions are not as
draconian as might seem. In practice, the parameters to a query are often con-
structed shortly before the query, in the same straight-line block of statements,
as exemplified in Listing 1.5. Additionally, Embedded SQL lies halfway between
Levels 1 and 2: while some program variables are allowed, not all programming
language operators may appear inside queries.

1.5.3 Level 3: Optimizability known at shipping time
Levels 3 and 4 place no restrictions on RHS usages of program variables in
queries, unlike Level 2 which bans usages of variables whose actual type (i.e.,
the precise runtime type) cannot be statically determined.

In Levels 3 and 4, in order to build the Ferry query to ship, the actual types of
program variables are inspected using runtime reflection. This allows computing
the Ferry type T (possibly after marshalling and encoding) for the value in
question, if T exists. Otherwise, the variable’s value cannot be shipped (i.e.,
cannot be passed as a by-value parameter to the database) and the enclosing
fragment of the query is tainted for client-side processing (Level 4).

As an example of what can go wrong when translating into Ferry, consider
the query for ( e <- Employees; if e.skills == fashionableSkills ) yield e.name where
both e.skills and fashionableSkills have (Scala) type List[Skill]. When lexically
enclosed in a query, == denotes structural equality, so that the query above
expands into Ferry’s
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for e in Employees
where length(e. skills ) == length(JfashionableSkillsK)

and let diffs = filter ( v −> v.1 != v.2, zip(e. skills , JfashionableSkillsK))
in length( diffs ) == 0

return e.name

where JfashionableSkillsK is a literal in Ferry’s syntax for the value in the sim-
ilarly named program variable. For the Ferry expansion to be well-formed,
fashionableSkills should be an homegenous collection (no instances of proper
subtypes of Skill can be contained). Otherwise, the (structural) equality test
v.1 != v.2 would compare apples with oranges, i.e. break a typing rule.

1.5.4 Level 4: Client-side processing
At this level, not all subexpressions in the query fulfill the conditions of previous
levels. Those that do, can be given as input to the optimizer. A correct evalu-
ation consists in shipping those fragments, and performing client-side process-
ing after receiving their sub-results. This fallback measure makes performance
contingent upon cache affinity, number of client-server roundtrips, the size of
intermediate results, and the depth of nested loops. Level 4 is prone to the very
situation we set out to avoid: non-optimized nested loops.

1.5.5 ScalaQL and LINQ under the light of integration
levels

All existing approaches to languague integrated query exhibit slightly different
strengths and weaknesses [8],[34],[20] and ours is no exception. After fixing the
embedded query language to support comprehensions syntax, the dimensions
for variation involve (a) whether the translation into a DBMS-supported query
language is total (otherwise, a mixture of client-side and server-side process-
ing takes place); (b) the range of target data models (relational, XML, OO
databases); and (c) the level of semantic analysis performed at compile time.

Given that LINQ may resort to client-side processing (when targeting rela-
tional backends or otherwise), our approach compares favorably in all of Levels
1 to 3 (with the caveat that disambiguating whether a query is Level 3 or 4
takes place at runtime).

As discussed in Sec. 1.4.4 (Listing 1.4) some LINQ providers cannot rule
out exceptions during query evaluation, given that some well-formedness checks
(whether a specific target database supports certain operators) are delayed until
runtime. Regarding this, all of Levels 1 to 4 do without exceptions of this kind.
Database evaluation may end abruptly due to errors like division by zero, or
more in general due to operands with incompatible types (for values held in
program variables, Level 4). However, exceptions like that in Listing 1.4 happen
for all executions of the query, and could have been flagged at compile-time as
in our approach.

The current (beta) version of ScalaQL supports Level 2.

1.6 Contributions
As a part of the master project the following contributions have been made:
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• OWL2Expander, a Java-based query expander implemented as an Eclipse
plugin; it takes an OWL2 nested query as its input and performs program
transformation in Java by expanding the OWL2 query to Java statements
of the OWL2 API and inserting them as a Java block right after the nested
query; the additional feature of folding away the resulting expansion block
being a bonus “in addition to” feature can be added through OWL2Folding
plugin;

• ScalaVisualizer, an Eclipse plugin for visualizing Scala ASTs after three
scalac phases: (a) parser, (b) typer and (c) the final phase; developed as a
by-product to structurally cover the details of the internal AST represen-
tation and transformation in Scala;

• ScalaQL prototype, a Scala compiler plugin aimed at supporting Level 2
according to Sec. 1.5. The ScalaQL prototype implementation carried out
involved:

1. extension of the existing standalone utility for translating LINQ queries
into Scala comprehensions that comprised: (a) making sure that a
larger set of collection operation invocations can be processed; and
(b) integrating the resulting code into a compiler plugin;

2. translation of the target Scala subset into Ferry language that com-
prised: (a) developing a utility for translating Scala queries into Ferry
queries; and (b) integrating the resulting code into a compiler plugin;

3. realization of all the required ASTs (Abstract Syntax Trees) transfor-
mations that comprised: (a) analyzing the structure of Scala ASTs
including customization of traverse and transform mechanisms, and
specification of the target Scala subset in the form of AST patterns;
(b) applying all the necessary ASTs transformations inside the Scala
compiler; and (c) preparing a test suite and accompanying technical
documentation;

ScalaQL prototype available as a beta version implements program trans-
formation in Scala resulting from all the underlying translations, from
LINQ into Scala and from the intended Scala subset into Ferry; designed
to execute in two separate custom Scala compiler phases for each of
the translations; open-source ScalaQL prototype can be downloaded from
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL

• ScalaToFerryTyper, a Ferry typechecker that checks well-formedness of a
Ferry query by deriving a Ferry expression type; operates at the Ferry level
in contrast to Ferry Core; used by ScalaQL to partially ensure isomorphic
property of the Scala-to-Ferry translation and signal incorrectness of the
translation implementation;

The contributions above have been reported in the following publications:

• Paper: Miguel Garcia, Anastasia Izmaylova, and Sibylle Schupp. Ex-
tending Scala with database query capability, Journal of Object Tech-
nology, 2010, July-August, To appear. Preprint at http://www.sts.
tu-harburg.de/people/mi.garcia/pubs/2009/jot/scalaql-preprint.
pdf

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaQL
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/jot/scalaql-preprint.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/jot/scalaql-preprint.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/jot/scalaql-preprint.pdf
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• Technical Report: Miguel Garcia and Anastasia Izmaylova, Compiling
LINQ and a Scala subset into SQL:1999, Software Systems Institute (STS),
Technische Universität Hamburg-Harburg, October 2009, Germany. Avail-
able online at http://www.sts.tu-harburg.de/people/mi.garcia/pubs/
2009/ScalaQLTechRep01.pdf

http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/ScalaQLTechRep01.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/pubs/2009/ScalaQLTechRep01.pdf
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In this chapter some aspects of program transformation supported by Eclipse
JDT are covered. In particular, an Eclipse plugin is contributed to support the
typesafe embedding in Java of a query language for the Semantic Web, OWL2
Functional Syntax. We call the resulting prototype OWL2Expander. The under-
lying program transformation mechanism relies on two concepts: (a) the concept
of nested query, that stands for a string encapsulating a query expressed with the
embedded language syntax; and (b) the concept of query expansion, that refers
to the host language statements generated from a detected nested query. Query
expansion builds upon the existing IDE infrastructure and extends compilation
functionality through a compiler plugin. This plugin enforces syntactical cor-
rectness and well-formedness checks on the embedded query at compile time,
avoiding some runtime exceptions. Additionally, the compiler plugin traverses
and rewrites ASTs (Abstract Syntax Trees), thus performing code transforma-
tion by inserting, replacing and deleting AST nodes representing parts of an
input compilation unit.

20
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Listing 2.1: SQL embedded in Java
final Sql sql = Select(ARTICLE.NAME, ARTICLE.ARTICLE_NO)

.from(ARTICLE)

.where(ARTICLE.OID.in(named("article_oid")))

. toSql ();

Listing 2.2: OWL2 expansion in Java
// OWL2 query: Declaration(Class(c:Cat))
OWLDataFactory dataFactory1 = new OWLDataFactoryImpl();
URI uri1 = new URI("c:Cat");
OWLClass owlClass1 = new OWLClassImpl(dataFactory1, uri1);
OWLDeclarationAxiom owlDeclarationAxiom1 = new OWLDeclarationAxiomImpl(

dataFactory1, owlClass1 );

2.1 Motivation and Background
The program transformation approach outlined above refers to the research area
of extending languages with embeddings of Domain Specific Languages (DSLs).
In the presence of existing technologies and with experiences already made, the
current proposals to embedded DSLs aim at preserving the original syntax of the
host language while providing well-formedness checks of the DSL expressions.
These checks are performed at compile time to exclude some runtime exceptions.
Examples of such approaches refer to the Internal DSL approach with relevant
works on Fluent Interface, Query Builder, reification of the database schema,
Expression Builder, Native Queries, Criteria API1, etc. [14].

The approaches just mentioned rely on generation of the required APIs re-
sembling DSL syntax and reusing the type system of the host language to en-
force some well-formedness rules of the DSL along with the IDE-tooling. In
Listing 2.1 an example of SQL embedded in Java is shown 2.

One of the obvious shortcomings of such approaches is that the resulting
queries are not portable among different platforms. The alternative approach
adopted in this work favours nested language where a nested query is taken as an
input that is automatically expanded to a bunch of statements, query expansion,
of an underlying internal DSL. The expansion is performed at compile time by
a compiler plugin. The approach addresses the same goals as embedded DSLs
and allows preserving an original syntax of the DSL without extending the host
language grammar. The shortcoming of this approach is the lack of support for
IDE refactorings that can be applied for embedded DSLs in the case of schema
changes.

An example of Java query expansion for the simple OWL2 query Declara-
tion(Class(c:Cat)) is shown in Listing 2.2.

1http://blogs.sun.com/ldemichiel/entry/java_persistence_2_0_public1
2http://www.jequel.de/

http://blogs.sun.com/ldemichiel/entry/java_persistence_2_0_public1
http://www.jequel.de/
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2.2 Query Expansion (user perspective)
The typesafe embedding of a functional query language implies the following
steps performed at compile time

• detecting a nested query, i.e. a string instance encapsulating a query writ-
ten following the syntax of the target embedded language

• parsing a detected nested query to a new string with statements of the
host language

• parsing the obtained string to build AST nodes representing the expansion
statements

• writing back the obtained query expansion to an original source code

The outlined steps are shown as part of the screenshot in Figure 2.1 on
p. 22. The detected nested query that is a string argument of expand method is
expanded to a block of Java statements associated with certain comments. The
resulting block is inserted right after the nested query and typechecked by the
compiler.

2.3 Compiler Plugin Development with Eclipse
JDT/Core

Eclipse JDT/Core provides a powerful plugin extension mechanism that allows
extending the IDE with, for example, static analyses. Participating in Java
build process and reconciling Java editors is done by implementing a compila-
tion participant with extension point: org.eclipse.jdt.core.compilationParticipant,
as shown in Listing 2.3 on p. 24. Implementing the method reconcile allows
accessing AST of the compilation unit and specifying a custom visitor (visitor
pattern) for visiting its nodes and performing certain actions on some of them.

2.4 AST Manipulation with Eclipse JDT
Eclipse JDT provides a rich API for rewritable ASTs that allows visiting AST
of an original compilation unit, parsing a source string with Java statements
to build AST, retrieving additional information about AST nodes, performing
AST rewritings, and writing back AST changes to the source file.

2.4.1 ASTVisitor
The input OWL2 queries of OWL2Expander are to be string arguments of
@OWL2Expansion(toOWL2Expand = true)-annotated methods as in the example
of Listing 2.1 on p. 22
Expander.expand(
“ SubClassOf(American ObjectSomeValuesFrom(hasTopping TomatoTopping)) ”
).

Such queries are detected by traversing an AST of a compilation unit obtained
from a source file and applying a visitor pattern by extending the abstract class
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Listing 2.3: Participating in Eclipse static analyses

public class OWL2CompilationParticipant extends CompilationParticipant {

public boolean isActive ( IJavaProject project ) {
return true ;

}

public void reconcile (ReconcileContext context) {
super. reconcile (context );

// Getting CompilationUnit instance from the context
CompilationUnit unitFromContext;
try {

unitFromContext = context.getAST3();
// Building the corresponding AST of the compilation unit
AST astFromContext = unitFromContext.getAST();

// Creating an instance of the owl2 visitor
// that visits each AST node and perform specified actions
ASTVisitor owl2visitor = new OWL2Visitor(context);

// Accepting the owl2 visitor for the compilation unit
unitFromContext.accept( owl2visitor );

} catch (JavaModelException e) {
// TODO Auto−generated catch block

e. printStackTrace ();
}

}

public void buildStarting (BuildContext [] files , boolean isBatch) {
// TODO Auto−generated method stub
super. buildStarting ( files , isBatch );

}

}

org.eclipse.jdt.core.dom.ASTVisitor. For the purposes of the OWL2Expander two
methods of this class are implemented, public boolean visit(MethodInvocation
invocation) and public boolean visit(Block block) (Listing 2.4 on p. 25).

2.4.2 ASTParser
After detecting an OWL2 functional query passed as a string argument to
the @OWL2Expansion(toOWL2Expand = true)-annotated method, str_owl2, it
is parsed to another string, str_expansion, encapsulating Java statements con-
forming to the OWL2 API 3. The obtained string can be parsed to AST repre-
sentation with a new instance of org.eclipse.jdt.core.dom.ASTParser as shown in
Listing 2.5 on p. 25.

In the current implementation, obtained Java statements are wrapped to the
compilation unit, and the resulting AST node returned by a parser is an instance

3http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/
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Listing 2.4: Visitor pattern with ASTVisitor
public class OWL2Visitor extends ASTVisitor {

...
// OWL2 specific strings are supposed to be passed as a string parameter of
// @OWL2Expansion(toOWL2Expand = true)−annotated methods
public boolean visit (MethodInvocation invocation) {

// Testing if the method invocation has a OWL2 query to be expanded
boolean toOWL2Expand = toOWL2Expansion(invocation);
if (!toOWL2Expand) {return false;}
// code that performs query expansion and AST rewriting on the compilation
// unit

// Visiting a OWL2 expansion block to check if its Java statements conform to
// the OWL2 query above
public boolean visit (Block node) {

// Identifying an owl2 expansion block
List comments = unitFromContext.getCommentList();
// code that checks if the block is an OWL2 expansion block,
// if it is preceeded by a method invocation with an OWL2 query
// that conforms to its Java statements

}

}

Listing 2.5: Parsing with ASTParser
// Creating an instance of the parser
// and passing a char sequence derive from a string with Java statements
ASTParser parser = ASTParser.newParser(AST.JLS3);
parser . setSource(str_expansion.toCharArray());

// Parsing to the AST Node
ASTNode node = parser.createAST(null);

// Deriving the block of the expansion−related Java statements
CompilationUnit unit_expansion = (CompilationUnit) node;
Block block_expansion =((TypeDeclaration)unit_expansion.types(). get (0)). getMethods()[0].getBody();

of org.eclipse.jdt.core.dom.CompilationUnit. The block with the Java statements,
org.eclipse.jdt.core.dom.Block, as its chilren nodes can be finally obtained from
the unit.

Referring to the example of Figure 2.1, the method statements() applied to
the corresponding query expansion block will return the list of statements that
are instances of subclasses of the abstract class org.eclipse.jdt.core.dom.Statement:

{ . . .
URI uri1 = new URI(“’American’);
OWLClass owlClass1 = new OWLClassImpl(dataFactory1, uri1);
URI uri2 = new URI(“hasTopping”);
OWLObjectProperty owlObjectProperty1 = new OWLObjectPropertyImpl(dataFactory1, uri2);
URI uri3 = new URI(“TomatoTopping”);
OWLClass owlClass2 = new OWLClassImpl(dataFactory1, uri3);
. . . }
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Listing 2.6: AST bindings
...

// obtaining the method binding
IMethodBinding binding = invocation.resolveMethodBinding();
// obtaining the annotation bindings
IAnnotationBinding [] annotations = binding.getAnnotations ();
for (IAnnotationBinding annoBinding: annotations) {

if (annoBinding.getName().equals("OWL2Expansion")) {
IMemberValuePairBinding[] valuePairs = annoBinding.getAllMemberValuePairs();
for (IMemberValuePairBinding valuePair: valuePairs ) {

if ( valuePair .getName().equals("toOWL2Expand")
&&valuePair.getValue(). toString (). equals("true")) {
toOWL2Expand = true;

}
}

}
}

...
// obtaining the parameter types binding
ITypeBinding[] parameterTypes = binding.getParameterTypes();

...
String parameterType = parameterTypes[0].getQualifiedName();
if (!parameterType.equals("java . lang . String")) {return false ;}

...

2.4.3 AST bindings
The Eclipse JDT maintains additional information associated with each AST
node, information that can be retrieved by resolving node bindings, e.g. by ap-
plying the method resovleMethodBinding() defined for MethodInvocation nodes
as shown in Listing 2.6. The OWL2Visitor shown in Listing 2.4 visits each
MethodInvocation node to discover whether it has an OWL2 query to be ex-
panded as its string argument. In this case, a MethodInvocation binding, binding,
comprises, for example, additional information about associated Java 5 annota-
tions (annotations in the code listing, with method getAnnotations() retrieving
them from a binding). A binding for an annotation comprises value pairs, and
method getAllMemberValuePairs() on an annotation binding, and method pa-
rameter types, method getParameterTypes() on binding.

2.4.4 ASTRewrite
A new instance of the class org.eclipse.jdt.core.dom.rewrite.ASTRewrite can be
used to protocol all rewrites on an AST of a compilation unit, as shown in
Listing 2.7. All modifications are recorded in this protocol without touch-
ing the original AST. The intended modifications can be made to a rewrite
list, an instance of the class org.eclipse.jdt.core.dom.rewrite.ListRewrite associ-
ated with the rewrite protocol and describing modifications to children of some
AST node. For our OWL2Expander, an AST is modified by inserting an OWL2
expansion block to a rewrite list of the block statements containing a method
invocation with OWL2 query. The modifications in the rewrite protocol are
written back to the working copy by creating the text edits as an instance
of org.eclipse.text.edits.TextEdit returned by the method rewriteAST() on the
rewrite protocol that correspond to the document with the original source, an
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Listing 2.7: Rewriting AST with ASTRewrite
...

// Creating a Document instance from the working copy referenced by the context
Document document = new Document(context.getWorkingCopy().getSource());

...
CompilationUnit unit = context.getAST3();
AST ast = unit.getAST();
// Creating an instance of ASTRewrite for the AST of the compilation unit
// that is used as a rewrite protocol for recording AST modifications
ASTRewrite rewrite = ASTRewrite.create(ast);

...
// Obtaining the expression statement encapsulating the method invocation
ExpressionStatement invocationExprStmt = (ExpressionStatement) invocation .getParent ();
// Obtaining the block containing the method invocation
Block block = (Block) invocationExprStmt.getParent ();
// Retrieving the list of statements to be extended by inserting an OWL2
// expansion block
ListRewrite lrw = rewrite . getListRewrite (block, Block.STATEMENTS_PROPERTY);
// Creating a string place holder from the string encapsulating an OWL2 expansion
ASTNode javastmts = rewrite.createStringPlaceholder(str_expansion, ASTNode.BLOCK);
// Inserting the resulting AST node (OWL2 expansion block) right after the
// method invocation
lrw . insertAfter (javastmts , invocationExprStmt, null );
// Applying the AST changes to the AST of the compilation unit referenced by
// ’document’
TextEdit edits = rewrite .rewriteAST(document, null);
// Writing back the recorded AST modifications to the source
context .getWorkingCopy().applyTextEdit(edits , null );
// Updating the AST of the compilation unit
context .resetAST();

...

instance of org.eclipse.jface.text.Document. Finally, the AST of the compilation
unit has to be reset.

2.5 Folding Bonus with Eclipse JDT/UI
As can be seen on the screenshot shown in Figure 2.1, query expansion can
result in a bulky block of statements even for a simple OWL2 query. Therefore,
an additional contribution is made by defining a new folding structure of the
Java editors that adds the OWL2 expansion block regions of a Java source
file to the ones being folded away. Such a feature can be easily provided with
Eclipse JDT/UI by implementing a Java folding structure provider with the
extension point org.eclipse.jdt.ui.foldingStructureProviders. In order to add a new
folding structure to the default ones, implementation of the method install of the
interface org.eclipse.jdt.ui.text.folding.IJavaFoldingStructureProvider must install
an instance of the default Java folding structure provider. The final step is going
to Window→Preferences→Java→Editor→Select folding to use and selecting the
folding to be used.
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2.6 Evaluation
Two examples are given in this chapter illustrating expansion of the OWL2
queries, Declaration(Class(c:Cat)) (Listing 2.2 on p. 21) and SubClassOf(American
ObjectSomeValuesFrom(hasTopping TomatoTopping)) (Figure 2.1 on p. 22) as
well as the example of the SQL embedded in Java select ARTICLE.NAME, AR-
TICLE.ARTICLE_NO from ARTICLE where ARTICLE.OID in (:article_oid) (List-
ing 2.1 on p. 21) 4. The examples demonstrate that queries built as a bunch
of Java statements of the Internal DSL APIs require additional efforts to get
familiar with a dedicated API even if the last shows resemblance to an original
textual syntax. In addition, embedded queries can vastly break the conciseness
and readability provided by DSLs as seen from the example of the very sim-
ple OWL2 query Declaration(Class(c:Cat)) expanded to a bunch of OWL2 API
constructor invocations. Finally, as already mentioned in Sec. 2.1, such queries
are not portable among different platforms. The applied approach effectively
addresses the portability issue and aims at preserving the original syntax of
the DSL while providing the same compile time well-formedness checks as in-
ternal DSLs. The current implementation of OWL2Expander prototype benefits
from the powerful Eclipse IDE and Eclipse JDT plugin extension mechanisms
allowing participation in the compilation as well as featuring existing Eclipse
UI tools.

4http://www.jequel.de/

http://www.jequel.de/
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For the purpose of the translation into Scala, the accepted LINQ queries
are those given by the grammar in Table A.1 (listing LINQ-proper productions,
with QueryExp as entry rule) and in Table A.2 (listing other syntactic domains).
In order to save space, well-known productions have been omitted (e.g., those
for arithmetic expressions). The notation conventions in the grammar follow
Turbak and Gifford [30]. An alternative, more visual representation of the
grammar is depicted in Figure 3.1.

The translation algorithm can be best understood by conceptually apply-
ing first a translation from LINQ into its denotational semantics formulation
(Sec. A.2) followed from there by a relatively straightforward conversion to Scala
comprehensions. In other words, we avoid the translation from LINQ into SQO
(which is described in the C# 3.0 language spec and in more detail in [14]).

The input AST already has query continuations (i.e., subqueries) inlined:
in LINQ, the subquery def in the expression “def into v body” is inlined by
replacing usages of v with that definition. This is justified as the syntax for
query continuations amounts to a let-declaration of the form: “let v = def in
body”.

As presented in Sec. 1.4.1, the notation for comprehensions does not commit
to a particular type system and operations set on contained expressions, other
than the requirement for one or more iterable collection types to exist. The de-
notational semantics for LINQ in Appendix A reinforces this point: the meaning
of contained expressions was left unspecified. This perspective on LINQ is useful
for integration with languages that already define a type system and operations

29
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Figure 3.1: Railroad diagram for the textual syntax of LINQ, reproduced from
http://www.albahari.com/nutshell/linqsyntax.html

set, in our case Scala. We require the enclosed expressions to be side-effect free,
a property that will be maintained in the Scala and Ferry targets.

3.1 Translation algorithm
After inlining, a QueryExp consists of:

(a) at least one FromClause; followed by

(b) zero or more BodyClause; followed by

(c) one of a SelectClause or a GroupByClause.

A case analysis is applied by the translator to handle these AST shapes.
As with the denotational formulation, the two kinds of clauses that produce

“end results” (select and group by) do so by evaluating the head of a compre-
hension over a collection of input binding environments. The Scala counterpart
to the comprehension head is a yield e construct. For that evaluation to be
semantically equivalent with respect to the original LINQ query:

• the same variables that were made to go into scope by preceding body
clauses (FromClause, LetClause, WhereClause, JoinClause, JoinIntoClause,
and OrderByClause) must also be made go into scope by the comprehension
qualifiers quals inside the for ( quals ) yield e

• moreover, those variables should bind (in each binding environment) to the
same type and values as their LINQ counterparts. Each binding environ-
ment is conceptually given by the nested iterations that comprehensions
denote, or by tuples in the cartesian product of collections being iterated
(details in [14]).

http://www.albahari.com/nutshell/linqsyntax.html
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Listing 3.1: Correspondence between LINQ and Scala environments, handling
of orderby
// from str in strs
// let chrArr = str .ToCharArray()
// from ch in chrArray
// orderby ch
// select ch

val res9 = for ( ( str , chrArr , ch )
<− ( ( for ( str <− strs;

val chrArr = str .ToCharArray();
ch <− chrArray

) yield ( str , chrArr , ch )
) orderBy { _ match { case ( str , chrArr , ch ) => ch } }

)
) yield ch

The translation is thus compositional, with the contract just mentioned between
qualifiers and head of comprehension.

The flow of binding environments comes to bear in the example of List-
ing 3.1. In the LINQ formulation, at the final “select ch”, three variables are in
scope (as introduced by two previous generators and a let). Correspondingly,
the outermost Scala yield will produce for each binding environment the result
denoted by select ch (in terms of the Scala formulation, will produce a collection
item for each 3-tuple holding values for those three variables).

3.1.1 Handling of group . . . by
Before discussing the Scala-level formulation of grouping, we review details of
the interfaces supported in the Microsoft implementation, with the goal of mak-
ing sure that operations on the resulting Scala-level values (relying on those
interfaces) are supported.

A LINQ group by clause introduces an irregularity in that it returns nested
collections: group result by key returns a finite ordered map of groupings, where
a grouping denotes key 7→ cluster, a cluster being a sequence of results.

In the Microsoft implementation, a given instance of IGrouping (holding a
single key of type K and a sequence of values of type T ) can also be iterated,
following the convention that IGrouping<K,T> implements the interface IEnu-
merable<T>. If grp denotes one such group, then:

• its values (not keys) can be iterated as in from v in grp (and their key
obtained with the v.Key getter, same as with grp.Key)

• any of the SQO operators can be applied, as in grp.Count()

Also in the Microsoft implementation, iterating the result of any overloaded
SQO GroupBy operators yields one grouping at a time, in agreement with the
type of the result which is IEnumerable<IGrouping<TKey, TSource> >.

In the LINQ expression group . . . into v, the type of v is IGrouping<TKey,
TSource>. Therefore, v can receive collection operations.
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Table 3.1: JoinInto and translation scheme

(a) join T0..1
type Vinnervar in Einnerexp on Elhs equals Erhs

(b) override def visit(jc: JoinClause, rinnerexp: String,
rlhs: String, rrhs: String) = {
val outerKey = fresh("outerKey")
"val " + outerKey + " = " + rlhs + " ; " +
tpVar(jc.tp, jc.innervar) + " <- " + rinnerexp +
" ; if " + outerKey + " == " + rrhs
}

3.1.2 Handling of JoinClause
The production JoinClause, reproduced in Table 3.1 (a), lists the inner collec-
tion, inner variable, as well as expressions for outer key and inner key (appearing
left and right of the on . . . equals . . . ). The outer key is evaluated in a context
where the inner variable is not yet visible, thus warranting the translation into
the qualifiers generated by the code snippet in (b). Those qualifiers are: a local
variable declaration, an iteration, and a guard.

The Microsoft implementation of the SQO join operator (for main-memory)
does the following1:

When the object returned by Join is enumerated, it first enumer-
ates the inner sequence and evaluates the innerKeySelector function
once for each inner element, collecting the elements by their keys in
a hash table. Once all inner elements and keys have been collected,
the outer sequence is enumerated. For each outer element, the out-
erKeySelector function is evaluated and, if non-null, the resulting
key is used to look up the corresponding inner elements in the hash
table. For each matching inner element (if any), the resultSelector
function is evaluated for the outer and inner element pair, and the
resulting object is yielded.

3.1.3 Handling of join . . . into
The SQO counterpart of a join . . . into . . . clause is not the method Join<T,
U, K, V> but a GroupJoin<T, U, K, V>. Both have IEnumerable<V> as return
type, but they differ in the resultSelector closure received as argument:

• For SQO Join, it has type Func<T, U, V>

• For SQO Join, it has type Func<T, IEnumerable<U>, V>

The book “Introducing Microsoft LINQ” goes on to add:

In case of the absence of a corresponding element group in the in-
ner sequence, the GroupJoin operator extracts the outer sequence
element paired with an empty sequence (Count = 0).

1reproduced online technical documentation “The .NET Standard Query Operators”
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Listing 3.2: join into in LINQ and Scala
// from how in travelTypes
// join trans in transports on how equals trans .how into lst
// select new { how = how, tlist = lst}

val res12 = for (how <− travelTypes;
val outerKey = how ;
val lst = for ( trans <− transports ;

if outerKey == trans )
yield trans

) yield new { val how = how; val tlist = lst }

3.1.4 Handling of orderBy
There is a big semantic difference between LINQ’s orderby clause and sorting
functions in programming languages. In LINQ, its effect consists in permuting
the sequence of binding-environments under which the following clauses (com-
prehension qualifiers or head) will be evaluated, as discussed in Appendix A.2.
The Scala counterpart to orderby acts instead on an input collection, not on
binding-environments (which are implicit). Therefore, in order to keep the LINQ
→ Scala translation compositional, we feed those “following expressions” with
tuples containing all variables in scope. The order in which tuples are delivered
reflects the ordering criteria, an ordering resulting from making explicit (as a
sequence of tuples) the binding-environments that orderby refers to.

The example in Listing 3.1 showcases the translation pattern: the environ-
ments to be permuted (determined by all body clauses before the orderby) are
computed by a nested Scala comprehension, given as input to a orderBy. To
maintain the contract between qualifiers and head of comprehension, the result
of such orderBy is again a collection of bindings.

The current custom implementation of orderBy is based on http://joelneely.
wordpress.com/2008/03/29/sorting-by-schwartzian-transform-in-scala/

3.2 Implementation
The parser relies on the library for packrat combinator parsers that is part of
Kiama (http://kiama.googlecode.com/). The snippet in Listing 3.3 illus-
trates the structure of the parser sts.linq.Parser.

The translation from a LINQ AST into a Scala comprehension (as a String)
is realized in sts.linq.Comprehend, for invocation as in Comprehend(ast) which
invokes the following:

class Comprehend extends Stringify {
override def apply(e: LINQAttr) : String = {
val w = new ComprehendWalker(this, "defaultOuput")
w walk e

}

Before translation proper, the input AST is pre-processed. Firstly, query con-
tinuations are inlined (transformation T1 in [14]). After this, there is only one
query to translate, which may contain nested LINQ queries as collection-valued

http://joelneely.wordpress.com/2008/03/29/sorting-by-schwartzian-transform-in-scala/
http://joelneely.wordpress.com/2008/03/29/sorting-by-schwartzian-transform-in-scala/
http://kiama.googlecode.com/


CHAPTER 3. LINQ TO SCALA 34

Listing 3.3: Snippet of the LINQ parser
lazy val queryexp : Parser [QueryExp] =

fromclause ~ querybody ^^ { case from ~ qbody => QueryExp(from, qbody) }

lazy val fromclause : Parser [FromClause] =
fromclauseWithoutType | fromclauseWithType

lazy val fromclauseWithoutType : Parser [FromClause] =
("from" ~> IDENTIFIER) ~ ("in" ~> exp) ^^
{ case variable ~ in => FromClause (List(), variable , in) }

lazy val fromclauseWithType : Parser [FromClause] =
("from" ~> strsdotsep) ~ IDENTIFIER ~ ("in" ~> exp) ^^
{ case tp ~ variable ~ in => FromClause (tp, variable, in) }

lazy val querybody : Parser [QueryBody] =
(bodyclause∗) ~ sg ~ (querycont?) ^^
{ case qbclauses ~ selgby ~ qcont => QueryBody(qbclauses, selgby, qcont) }

expressions. Secondly, the query-body clauses are placed in a list. Both steps
are performed by the following:

override def visit (qe: QueryExp, rfrom: String , rqbody: String) = {
val transformed = Transformer inlinecontinuations qe
val linearized = Linearize (transformed.asInstanceOf [QueryExp])
. . .

3.2.1 Execution context of LinqToScala
Both LINQ queries and Scala comprehensions are desugared into the map, filter,
and flatMap building blocks known from functional programming.

This desugaring is internal to the respective compilers (C# and Scala). In
what follows we focus only on the scalac compiler. For example, after phase
typer the comprehension:

val res = for ( p <− e ) yield p + 1

is desugared by the namer phase (i.e., very early) into the following intermediate
program representation (as can be seen by invoking scalac -Xprint:typer ):

val res : Array[Double] =
e.map[Double](((p: Double) => p.+(1))): Array[Double];

Same AST, another visualization (scalac -Ybrowse:typer) on Figure 3.2.
In case the expressions making up a Scala comprehension are side-effect

free2, the query can be rewritten and shipped to a DBMS for evaluation (for
example, a DBMS supporting the Microsoft Entity Framework [1]).

The document Internals of Scala Annotations3 explains how symbol and
type annotations are represented at different phases of the compiler.

2Functional purity in Scala, http://jnordenberg.blogspot.com/2008/10/
functional-purity-in-scala.html

3Internals of Scala Annotations, http://www.scala-lang.org/sid/5

http://jnordenberg.blogspot.com/2008/10/functional-purity-in-scala.html
http://jnordenberg.blogspot.com/2008/10/functional-purity-in-scala.html
http://www.scala-lang.org/sid/5
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Figure 3.2: Comprehension AST after typer phase

3.2.2 LinqToScala in action
The implementation of the LINQ → Scala translation is based on the compiler
plugin architecture4 of Scala. ScalaQL generates an AST from a LINQ query
string by:

1. detecting where the input LINQ query is found in the Scala source, parsing
that string s1, converting the resulting syntax tree into a new string s2
containing the Scala translation.

2. replacing (in the text of the compilation unit where s1 was found) that
occurrence with s2.

3. letting the scalac parser parse the new compilation unit, which now con-
tains only Scala code.

4. replacing the AST of the original compilation unit with that of the ex-
panded one.

The code shown in Listing 3.5 is responsible for these steps.

4http://www.scala-lang.org/sid/2

http://www.scala-lang.org/sid/2
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Listing 3.4: Snippet of the LINQ parser
class LINQtoScalaTransformer extends Transformer {

...
override def transform( tree : Tree): Tree = {

val newTree = super.transform(tree );
newTree match {

case Template(parents, self , body) =>
copy.Template(newTree,parents, self , newStmts(body))

case Block(stats , expr) =>
copy.Block(tree , newStmts(stats),expr)

case _ =>
newTree

}
}

Listing 3.5: Parsing and replacing
private def newStmts(body:List[Tree ]): List [Tree] = {

var body1:List [Tree] = List()
for ( tree <− body) {
tree match {
case ValDef(Modifiers(_,_,List (Annotation(Apply(Select(New(Ident("LINQAnn")),_),_),_))),

_,_, Literal (Constant(rhs))) =>
if (name.toString == "LINQAnn") {
// parsing the corresponding string taken from right hand side part

// of the annotated value definition
val in = new java.io.CharArrayReader (rhs. toString .toArray)
val ast = sts. linq .Parser .run(in)
val scala_str = sts. linq .Transformer comprehend ast
// wrapping the resulting parse scala string to be injected
// into a compilation unit

val unit_str = "object LINQObject{ " + scala_str + "; }"
val unit_inject = new CompilationUnit(new BatchSourceFile("", unit_str.toCharArray))
// intermidiate scalac parse phase aimed to create AST from the wrapped
// scala string
unit_inject .body = new global.syntaxAnalyzer.UnitParser( unit_inject ). parse
// unwrapping aimed to derive the AST nodes represented the scala statements
// generated from the initial LINQ query
( unit_inject .body: @scala.unchecked) match {
case PackageDef(_, List(ModuleDef(_,_,Template(_,_,linqstats)))) =>

body1 = body1::: linqstats
}

}
...

}
}
body1

}
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4.1 Detailed typing of Ferry
Ferry [27] is in fact a surface syntax that is desugared into Ferry-Core, the actual
language for which a type system and translation rules are defined. However, to
simplify the translation from Scala, we define the typing rules of Ferry, whose
typing constraints are imposed by the typing and well-formedness conditions
of Ferry-Core. These constraints are not apparent from the grammar of Ferry
alone.

4.1.1 Terminology
Before delving into details of Ferry’s type system, some terminology is consid-
ered.

As in other relational query languages, an important type in Ferry is the
(non-nested) tuple type. Additionally, an homogeneous list type is available,
as well as atomic types (aka DB column types). Non-atomic types are called
“structured types”. Our notation of choice for Ferry’s type system is based on
domain theory [30, Appendix A].

Ft = FTuple + Fb,

37
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FTuple = Fb2 + . . .+ Fbn,

Fb = FList + Fa,

FList = Ft∗

Fa = {bool, int, string, . . .}

where domain variables for atomic and structured types

t ∈ Ft,
b ∈ Fb,
a ∈ Fa,
(b1, . . . , bn) ∈ FTuple,
[t] ∈ FList

(Fbn contains types of all tuples with n elements of type b : Fb, and Ft∗ con-
tains types of all finite-length lists with elements of type t : Ft).

Unlike lists in OO languages, Ferry lists are homogeneous without subtyp-
ing. For example, a Ferry list cannot simultaneously contain tuples of both 2D
and 3D points. Consequently, the corresponding Ferry functions taking lists
as arguments, e.g., append and concat require the same element type for all
arguments:

append : ∀t1, t2, t ∈ Ft, t1 = t2 = t⇒ ([t1], [t2]→ [t])

concat : ∀tj , t ∈ Ft, t1 = . . . = tm = t⇒ [[t1], . . . , [tm]]→ [t]

Ferry does not allow nesting of tuples. In principle, a further processing step
(“flattening”/“unflattening”) could be applied to lift this limitation. However,
that would require extending the Ferry language (type system, etc.). We men-
tion this possibility but for now maintain the limitation of flat tuples, both for
user-provided expressions as well as for intermediate results. Therefore, tuple
types have the form:

FTuple ⊂ Ft2 + . . .+ Ftn

As an aside, the Ferry expression ((1, 2), 3) could be internally treated (after
flattening) as (1, 2, 3). With that, the expression ((1, 2), 3).1.2 would typecheck
and be well-formed.

For the discussion of Ferry typing, in addition to type domains defined above
and domains representing Ferry expressions Table 4.1 and Table 4.2, a type
environment domain TypeEnvironment is introduced as follows

TE ∈ TypeEnvitornment = Identifier→ Ft,

and the following domain variables are used

e, ej ∈ Exp, v, vj ∈ Identifier, t, tj ∈ Ft, b, bj ∈ Fb.

Given the formal specification of Ferry type system, the type derivation
rules for checking well-typedness of Ferry expressions with reference to [27] are
discussed in the next sections.
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Table 4.1: Ferry-related production rules

Id, V, T, TC, F ∈ Identifier = [a-zA-Z][a-zA-Z0-9]*
N ∈ NatLiteral
E ∈ Exp = ( IntLiteral ∪ StringLiteral ∪ BoolLiteral

∪ UnaryOpExp ∪ BinOpExp
∪ TupleExp ∪ ListExp
∪ PosAccExp ∪ NomAccExp
∪ LetExp ∪ IfExp ∪ ForExp
∪ VarUseExp ∪ TableRefExp ∪ FunAppExp

TPL ∈ TupleExp ::= ( E 2..* <separator:,>
exprs )

LST ∈ ListExp ::= [ E 0..* <separator:,>
exprs ]

PA ∈ PosAccExp ::= Ee . Nn

NA ∈ NomAccExp ::= Ee . TCtablecolname

VE ∈ VarUseExp ::= Vvarid

4.1.2 Ferry’s Tuples and Lists
Ferry tuples [27, p. 50]

∀e ∈ TupleExp, e = (e1, . . . , en)⇒

∀mj=1TE ` ej : bj
TE ` e : (b1, . . . , bm)

Taking into account ’flattening’ results in m ≥ n.

Ferry lists [27, p. 50]

∀e ∈ ListExp, e = [e1, . . . , en]⇒

∀nj=1TE ` ej : t
TE ` e : [t]

A Ferry tuple allows accessing its elements by using expressions

e.n ∈ PosAccExp, n ∈ NatLiteral⇒

TE ` e : (b1, . . . , bn, . . . , bm)
TE ` e.n : bn

,

or

e.c ∈ NomAccExp, c ∈ TableColName, c 7→ n⇒
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Table 4.2: Ferry-related production rules

LBC ∈ LetBindingClause ::= Vvarid = Ee

LTE ∈ LetExp ::= let LBC 1..* <separator:,>
letbindingcls in Ee

IFE ∈ IFExp ::= if Efilter then Ee1 else Ee2

FBC ∈ ForBindingClause ::= Vvarid in Ee

WC ∈ WhereClause ::= where Ee

GBC ∈ GroupByClause ::= group by E 1..* <separator:,>
exprs

M ∈ OrderModifier = {ascending; descending }

OBC ∈ OrderByClause ::= order by ( EeM 0..1
ordermodifier ) 1..* <separator:,>

FRE ∈ ForExp ::= for FBC 1..* <separator:,>
forbindingcls

WC 0..1
wherecls1

( GBCgroupbyclsWC 0..1
wherecls2)

0..1

OBC 0..1
orderbycls

return Ee

TCT ∈ TableColType = {int; string; bool}
TCS ∈ TableColSpec ::= TCtablecolname TCTtablecoltype

TKS ∈ TableKeySpec ::= ( TC 1..* <separator:,>
tablecolname )

TOS ∈ TableOrderSpec ::= TCtablecolname M 0..1
ordermodifier

TRE ∈ TableRefExp ::= table Ttableid ( TCS 1..* <separator:,>
tablecolspec )

with keys ( TKS 1..* <separator:,>
tablekeyspec )

( with order ( TOS 1..* <separator:,>
tableorderspec )) 1..* <separator:,>

FE ∈ FunAppExp ::= Ffunid( E 0..* <separator:,>
exprs | Vvarid → Ee1 , Ee2 )
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TE ` e : (b1, . . . , bn, . . . , bm), c 7→ n
TE ` e.c : bn

.

Given that the following user-provided expressions

[ v′.c | v′ ← [ (v.c, . . .) | v ← e] ] ,

TE ` e : [(b1, . . . , bn, . . . , bm)], c 7→ n, TE[v : (b1, . . . , bn, . . . , bm)] ` (v.c, . . .) : (b1, . . .)
TE[v′ : (b1, . . .)] ` v′.c : b1

.

will be evaluated by Ferry type system described in this technical report as well-
formed, and a type will be assigned to it. Well-formedness of such expressions
means that the column names can be propagated to an outer tuple. Such a
propagation is also promoted by some of the Ferry macros, e.g., groupBy [27,
p. 8]

[v′.c | v′ ← groupBy (v → (eg1 , . . . , egn), e)] ,
TE ` e : [(b1, . . . , bn, . . . , bm)], c 7→ n, ∀nj=1TE[v : (b1, . . . , bn, . . . , bm)] ` egj : aj

TE[v′ : ([b1], . . . , [bn], . . . , [bm])] ` v′.c : [bn]
.

and unzip [27, p. 8]
v′ = unzip(e),

TE ` e : [(b1, . . . , bn, . . . , bm)], c 7→ n
TE[v′ : ([b1], . . . , [bn], . . . , [bm])] ` v′.c : [bn]

.

Similarly, column names can be propagated to a user-provided outer tuple
expression by lists and some of the Ferry functions taking list as their arguments
(obvious examples would be the, take, drop [27]) provided that list element
expressions are typed by mapping to the same column name.

4.1.3 Ferry’s IfExp and LetExp

∀e ∈ IFExp, e = if e1 then e2 else e3 ⇒
TE ` e1 : bool, TE ` e2 : t, TE ` e3 : t

TE ` e : t
Note that Ferry IFExp requires both e2 and e3 to be assigned to the same type
t.

∀e ∈ LetExp, e = let v1 = e1, . . . , vn = en in e0 ⇒
∀nj=1TE[vi : ti]j−1

i=1 ` ej : tj , TE[vj : tj ]nj=1 ` e0 : t0
TE ` e0 : t0

Note that each new variable definition contributes to the type environment
of all subsequent expressions.

4.1.4 Type signature of Ferry’s where clause
On [27, p. 41], Ferry’s where clause is desugared to filter macro that is repre-
sented in the Table 4.3.

According the signature of Ferry’s filter macro
TE ` e2 : [t], TE[v : t] ` e1 : bool
TE ` filter(v ← e1, e2) : [t]
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Table 4.3: Desugaring of Ferry’s where

source for v in e1 where e2 . . .more ForClauses
target for v in filter ( v -> e1

e2
) . . .more ForClauses

4.1.5 Type signature of Ferry’s order by clause
According to the rewriting rule (FOR-2) [27, p. 42], the sorting criteria (al-
ways ascending) are copied unchanged (well, save for normalization) into a Fer-
ryCore’s for expression (which also allows order by).

According to the typechecking rule (ForExpr-2) [27, p. 52], each sorting
criteria expression must evaluate to an atomic value.

It is not clear if order by clause influences typing, referring to other languages
(LINQ), it should not, but the expansion of sortBy macros mentioned in [27,
p. 44] puts confusion.

4.1.6 Type signature of Ferry’s groupBy macro
Before discussing the type signature of Ferry’s group by clause (Sec. 4.1.7), that
of the groupBy macro is discussed first.

Table 4.4: groupBy macro

groupBy :: ( (b1 . . . bn)→ (a1 . . . am),
[(b1 . . . bn)]

)→ [([b1] . . . [bn])]

The desugaring [27, p. 43] of Ferry’s groupBy macro (whose type signature
is shown in Table 4.4) contains a usage of map (itself a macro), unzip (another
macro), and the groupWith built-in function, as follows:

map ( y -> unzip(y) ,
groupWith ( x -> g, e )

)

Unlike the groupBy function and the group by clause, the groupWith built-in
function is not desugared, but directly translated into an algebraic query plan
[27, p. 130].

Given the type signature of groupWith, the constraints shown in Table 4.5
are imposed. In terms of the unexpanded expression (groupBy( x -> g, e)), the
detailed types that x, g, and e must have are thus shown also on Table 4.5.

4.1.7 Type signature of Ferry’s group by clause
On [27, p. 41], the desugaring of Ferry’s group by clause is shown, as reproduced
in Table 4.6.
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Table 4.5: Types in groupBy’s macro expansion

e :: [(b1 . . . bn)]
x :: (b1 . . . bn)
g :: (a1 . . . am)
y :: same as e

unzip(y) :: ([b1] . . . [bn])

Table 4.6: Desugaring of Ferry’s group by

source for v in e1 group by eg1 . . . egn . . .more ForClauses
target for v in groupBy ( v -> ( eg1 . . . egn ) ,

e1
) . . .more ForClauses

In words, a Ferry for with a group by clause is desugared into another Ferry
for but with a source collection given by applying the groupBy macro to the
original source collection. Because of the type signature of such macro, the
detailed types in the original (non-desugared) for are those given on Table 4.7,
or

TE ` e1 : [(b1, . . . , bn)], ∀nj=1TE[v : (b1, . . . , bn)] ` egj : aj
TE ` groupBy(v ← (eg1, . . . , egn), e2) : [([b1], . . . , [bn])]

Table 4.7: Types in group by clause

e1 :: [(b1 . . . bn)]
v :: (b1 . . . bn)
egi :: ai

4.2 Detailed typing of Ferry’s for
Taking into account the discussion of the previous sections, type derivation of
Ferry’s ForExp is given below

∀e ∈ ForExp,
e = for v1 in ev1, . . . , vn in evn

(where Eew1)?(
group by eg1, . . . , egl (where ew2)?

)?

(order by eo1, . . . , eok)?

return er ⇒
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∀nj=1TE[vi : ti]j−1
i=1 ` evj : [tj ],(

TE[vj : tj ]nj=1 ` ew1 : bool
)?
,(

TE[vj : tj ]n−1
j=1 ` evn : [(b1, . . . , bm)],

∀lj=1TE[vi : ti, vn : (b1, . . . , bm)]n−1
i=1 ` egj : aj ,(

TE[vj : tj , vn : ([b1], . . . , [bm])]n−1
j=1 ` ew2 : bool

)? ?,(
∀kj=1TE[vi : ti, vn : tn | ([b1], . . . , [bm])]n−1

i=1 ` eoj : aj
)?
,

TE[vj : tj , vn : tn | ([b1], . . . , [bm])]n−1
j=1 ` er : tr

TE ` e : tr

4.3 Prototype implementation
The example given below illustrates our Scala-based typechecker for Ferry lan-
guage by returning the type ascribed (with some intermediate expression types)
for the longest example of [27]

// Initial query expression aimed to retrieve a list of two employees’ names
// with info about their salaries who earn less money than other employees
// in their department.
e ’ =

let e = table Employees (id int , dept string , salary int ) with keys (( id )) in
for x in e group by x.dept return ( the(x.dept), take(2,

for y in zip(x. id ,x. salary )
order by y.2 descending

return y)
)

// e :: [( ’ id ’ int , ’dept’ string , ’ salary ’ int )]
// x :: ( ’ id ’ int , ’dept’ string , ’ salary ’ int )
// x :: ( ’ id ’ [ int ], ’dept’ [ string ], ’ salary ’ [ int ])
// ( as a result of variale reassignment by ’group by’ clause )
// y :: ( ’ id ’ string , ’ salary ’ string )

// e’ :: [( string , [( ’ id ’ string , ’ salary ’ string )])]
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Listing 5.1: Before desugaring of Scala comprehensions
// from item in items
// join entry in statusList on item.ItemNumber equals entry.ItemNumber
// select new Temp(item.Name, entry.InStock)

val res10 = for (item <− items;
val outerKey = item.ItemNumber ;
entry <− statusList ;
if outerKey == entry.ItemNumber

) yield new Temp(item.Name, entry.InStock)

Listing 5.2: After desugaring of Scala comprehensions
val res10 = items.map(((item) => { val outerKey = item.ItemNumber;

scala .Tuple2(item, outerKey)
})

).flatMap(((x$9) => x$9: @scala.unchecked match {
case scala .Tuple2((item @ _), (outerKey @ _))

=> statusList. filter ((( entry) => outerKey.$eq$eq(entry.ItemNumber)))
.map(((entry) => new Temp(item.Name, entry.InStock)))

}));

5.1 Scala queries: ad-hoc or translated from LINQ
Without the ScalaQL extension, the Scala compiler desugars comprehensions
into applications of map, filter, and flatMap, as can be seen in Listing 5.1 (before
desugaring) and in Listing 5.2 (afterwards). A translation into Ferry taking the
desugared version as starting point would need to consider many more cases.
For this reason, ScalaQL takes the comprehension formulation as starting point.

5.2 Ensuring isomorphism of types between Scala
subset and Ferry

The translation from Scala to Ferry abides by an isomorphism of types between
a chosen Scala subset and Ferry. This implies that the aimed mapping between
Scala and Ferry types has to be bijective and the correspondence between Scala
and Ferry operators has to be defined.

Additionally, the translation from Scala to Ferry guarantees the resulting
Ferry query to be type-safe, and to evaluate without runtime errors for all inputs
on which the original Scala query would have terminated without exceptions.

5.2.1 Scala tuples
The direct translation of Scala tuples into Ferry’s native counterpart does not
satisfy the aforementioned property of bijectivity as SQL engines do not sup-
port nested tuples. Instead, a flattening encoding has to be applied before
evaluating on the server-side nested-tuple expressions. Instead, the expression
(e1, (e2, e3), e4) is encoded as (e1, e2, e3, e4). That value, together the with infor-
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mation on the expected type, in the example (t1, (t2, t3), t4), are used to recover
from the relational representation the Ferry-level counterpart.

Without the second piece of information (expected type), the sketched flat-
tening encoding would not be injective, as two different Scala tuples would
correspond to the same Ferry tuple, for example

J((e1, e2), e3, e4)K = J(e1, (e2, e3), e4)K = (e1, e2, e3, e4),

Summing up, injectivity is preserved by performing Scala tuple encoding at
compile time in conjunction with an encoding-aware translation:

J((e1, e2), e3, e4).1K = ((e1, e2, e3, e4).1, (e1, e2, e3, e4).2)

5.2.2 Scala lists, sets, and maps
Scala collections are translated to Ferry counterparts under the assumption
of being homogeneous, i.e. no instances of proper subtypes are contained, a
property that is checked if necessary at runtime, leading to classifying queries
into Level 3 or Level 4 (Sec. 1.5).

Scala sets are represented as Ferry lists, together with a translation of op-
erators on them that preserve set semantics (e.g. an equality test disregards
order, and set insertion implies that no duplicates will appear in the result).

Similarly, Scala maps are represented as Ferry lists of two-element tuples
with the first element encapsulating a key, and the second element having any
of the Scala types amenable to encoding. In case the key itself is a tuple, tuple
flattening is applied.

5.2.3 Scala case classes and anonymous classes
Scala case classes and final anonymous classes promote an object abstraction
for records known from functional query languages

case class Employee (id: Int , name: String, dept: String , salary : Int )

val empl1 = Employee(1,’John’, ’US’, 1200)
// or
val empl2 = new { val id = 1; val name = ’John’; val dept = ’US’; val salary = 1200}

The concept of records is partially supported by Ferry tuples

let e = table Employees (id int, name string, dept string, salary int) in

map(v → e.name, e).

In order to add to our supported Scala subset the aforementioned user de-
fined Scala types, records are adopted as an extension of Ferry tuples. The
grammar production for a record literal is:

e ∈ RecordExp ::= ( (TCtablecolname Ee) 2..∗<separator:,> ),

with the corresponding typing rule

∀e ∈ RecordExp, e = (c1 e1, . . . , cn en)⇒
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∀j=1
m TE ` ej : bj

TE ` e : (b1, . . . , bm) ,

i.e. no new type is introduced and flattening as for tuples is applied. Column
names are not stored in the relational representation, they are translated away
after type checking is over.

The translation of Scala case classes and anonymous classes are considered
under assumption of persistable Scala values and fields containing no references
to other instances of user defined types (case classes and anonymous classes).

5.2.4 Scala enumerations
A value from a Scala enumeration is encoded as an integer.

5.3 Scala operators and their Ferry counterparts
5.3.1 Equality tests for lists and tuples
Scala provides equality operations for comparing values of structured types, (e.g.
tuples and lists, which belong to the translatable Scala subset). However, out-
of-the-box, Ferry allows testing for equality just atomics. Additionally, (a) the
type components of a Ferry structured type are known at compile-time; and
(b) structural equality for structured types sharing the same structure can be
checked by and-ing the equality tests for components. The depth of component-
nesting is finite, and known at compile.

We therefore extend the Ferry language by allowing expressions of the form
eA == eB where eA and eB are structured types. Our translator takes care of
expanding that comparison into a longer form, as illustrated below.

• Lists case: xs == ys where xs and ys are lists of atomics is expanded
to length(xs) == length(ys) and let nonEqualItems = filter(v -> v.1 !=
v.2, zip(xs,yz)) in length(nonEqualItems) == 0, and xs != ys is expanded
to length(xs) != length(ys) or let nonEqualItems = filter(v -> v.1 != v.2,
zip(xs,yz)) in length(nonEqualItems) != 0

• Tuples case: xs == ys where xs and ys are tuples of atomics is expanded
to xs.1 == ys.1 and . . . and xs.n==ys.m and . . . and xs.N == ys.M; well-
typedness of xs == ys is checked by N==M and ∀Nn=1∀Mm=1 xs.n == xs.m,
n → c1, m → c2 ⇒ c1 == c2, and xs != ys is expanded to xs.1 != ys.1 or
. . . or xs.n!=ys.m or . . . or xs.N!=ys.M;

Please notice that preserving the semantics of equality in the translation has
to take into account the case where operands are not of exactly the same type.
For example, when enclosed in a query, a comparison of a list and a tuple can
be determined statically to evaluate to false. Detecting these situations is taken
care of by typechecking the resulting Ferry query. Additionally, comparing two
tuples for equality requires additional checks by ScalaQL due to flattening, e.g.

J((t1, t2), t3) == (t1, (t2, t3))K 6= (t1, t2, t3) == (t1, t2, t3)

that becomes more complicated when using operators such as zip.
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5.3.2 Equality tests for sets and maps
• Sets case : xs == ys where xs and ys are list-based represention of sets,

is expanded to length(xs) == length(ys) and let included = map (v1 →
length(filter(v2 → v2 == v1, ys)), xs) in length(filter(v → v! = 0, included))
== length(xs), where an equality test v2 == v1 is adjusted with respect to
the structured or atomic type of elements of the homogeneous collections
xs and ys. Having xs and ys of type Set[A] implies that they will have no
duplicates in a Ferry database.

• Maps case: xs == ys where xs and ys are list-based represention of maps,
is expanded to length(xs) == length(ys) and let included = map (v1 →
length(filter(v2 → v2 == v1, ys)), xs) in length(filter(v → v! = 0, included))
== length(xs), where an equality test v2 == v1 refers to the equality test
provided for Ferry tuples, i.e. the(v2.1) == the(v1.1) and v2.2 == v1.2
adjusted in turn with respect to the structured or atomic type of their
first and second elements.

5.3.3 Ferry counterparts to equality tests for Scala case
classes and anonymous classes

Even though both Scala case classes and anonymous classes are represented as
records in Ferry that can be applied an equality test defined for Ferry tuples, the
semantics of equality is preserved only for Scala case classes but not for Scala
anonymous classes (in this case, == compares two objects by their identities
and provides reference equality if not overridden), i.e.

Jcc1 == cc2K = Jcc1K == Jcc2K

but
Jac1 == ac2K 6= Jac1K == Jac2K

where JcciK and JacjK stand for a variable or the corresponding encoding.

5.3.4 Precedence test for structured types
The same technique as in the case of equility expansion for structured types
can be applied for Ferry relational operations <, >, <=, >= as counterparts
to the relational operations defined for Scala tuples and lists. In contrast to
equality operators, Scala relational operators are defined for tuples and lists
and typechecked by compiler. The case of comparison of lists with different
lengths is ruled out by Ferry typer run at compile time.

5.3.5 Operators with direct counterparts
In some cases, a direct translation from Scala into Ferry is possible, as shown
in Table 5.1:

Some Scala operators on collections have a direct counterpart in Ferry, e.g.
length. However, even for similarly named operators there are side-conditions (in
the form of typing rules for Ferry) that may preclude a one-to-one translation.
In these cases, additional encodings or query rewritings are necessary. For
example, Scala’s zip operator has no restriction on the item types of its argument
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Table 5.1: Operators with a direct counterpart
Scala, where Ferry, where
e, e1: List[A], e2: List[B] s: [t], s1: [t1], s2: [t2]
c: C[A] ∈ {List[A], Set[A], Map[K, A]}
n : int n : int

e.length : Int length(s) : int
c take n : C[A] take(n,s) : [t]
c drop n : C[A] drop(n,s) : [t]
e1 zip e2 : List[Tuple2[A,B]] zip((s1,s2)) : [(t1,t2)]

collections, while Ferry’s output (a pair) cannot internally be a non-flat tuple.
Without flattening support (Sec. 5.2), the one-to-one translation shown below
would fail to typecheck (due to zip(Employees, salaries), because Employees is a
list of tuples):

val salaries : List [ Int ] = ...
val Employees1 = Employees zip salaries
// Ferry : let Employees = table EmployeesTab(id int, name string, dept string )
// in zip(Employees, salaries )
val firstEmployeeName = Employees1(0).2

Moreover, the assumption of having homogeneous lists implies preserving
homogeneity by operators, e.g. append.

Scala operators taking a function as an argument There are some
higher-order operators in Scala that allow passing a function as its argument
Table 5.2. Note that in the case of c being of type Map[K, A] function fm can
be not only pair-to-pair function.

5.3.6 Operators with almost direct counterparts
Other nodes in the input AST can be translated into a bunch of invocations of
Ferry functions, as shown in Table 5.7, Table 5.8, Table 5.9, Table 5.10.

Translation with almost direct counterparts is illustrated with the next ex-
ample of counting employees fulfilling some condition (in the case, being assigned
to a particular department)

val numberOfEmployeesAtUK = Employees count (employee => employee.dept == "UK")
// Ferry : let Employees = table EmployeesTab(id int, name string, dept string )
// in length( filter (employee −> employee.dept == "UK", Employees))

Scala operators taking a function as an argument There are some
higher-order operators in Scala that allow passing a function as its argument
Table 5.6.
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Table 5.2: Higher-order operators with a direct counterpart
Scala, where Ferry, where
c: C[A] ∈ {List[A], Set[A]} s: [t]
m: Map[K, A]
f : A → B s′: t1
fm: Tuple2[K, A] → Tuple2[K1, B] | Tuple2[K, A] → B
p: A → Boolean stest: bool
pm: Tuple2[K, A] → Boolean

c map f : C[B] map(v → s′, s) : [t1]
( m map fm : Map[K1, B] | List[B] )
c filter p : C[A] filter(v → stest, s ) : [t]
( m filter pm : Map[K, A] )

5.3.7 Operators with no counterparts
Unlike a functional language, Ferry doesn’t allow accumulating the results of
binary operation application between successive elements of lists except for the
cases of some built-in operations sum, min, max or sortBy. Therefore, some Scala
operations such as shown in Table 5.3 are not translatable for the general case
and translation can be considered for a few special cases, e.g.

val e2 = e1.reduceLeft((v1,v2) => if (v1 < v2) v1 else v2 ) // Ferry : e2 = min(e1)
val e3 = e1.reduceLeft((v1,v2) => if (v1 > v2) v1 else v2 ) // Ferry : e3 = max(e1)
val e4 = e1.reduceLeft((v1,v2) => v1 + v2 ) // Ferry: e4 = sum(e1)

val e5 = e1.reduceLeft((v1,v2) => if (e_g[v1] < e_g[v2]) v1 else v2 )
// Ferry : e5 = let e1’ = concat(sortBy(v −> e_g[v],e1)) in nth(1, e1’)

val e6 = e1.reduceLeft((v1,v2) => if (e_g[v1] > e_g[v2]) v1 else v2 )
// Ferry : e6 = let e1’ = concat(sortBy(v −> e_g[v],e1)) in nth(length(e1 ’), e1’)

provided that e1 is a list of atomics, and eg is of atomic type.
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This is often the case with Scala’s reduceLeft that recursively applies a given
binary operation between successive elements of a sequence, as shown below
when summing up employee salaries.

val sumOfSalaries = Employees.map(employee =>
employee. salary ). reduceLeft (( salary1 , salary2 ) => salary1 + salary2 )
// Ferry : let Employees = table EmployeesTab(id int, name string,
// dept string , salary int )
// in sum( map(employee −> employee.salary, Employees) )

Scala’s intersect, diff and ++/union imply multi-set intersection, difference,
and union, the given translation to Ferry is possible under restriction of e1, e2
being lists of tuples with elements of atomic types or lists of atomics.

5.4 Scala’s groupBy
Representation of group by on Scala collections defined by semantics of groupBy
(see Listing 5.3) that is followed by translating it to Ferry.

Scala’s groupBy considered under constraint imposed by Ferry’s groupBy

f : v → (eg1, ..., egn) | egi : ai,

i.e. a tuple of expressions evaluated with atomic values (however, having equal-
ity tests for Ferry structured types promotes redefining Ferry’s groupBy to cover
more general case of a grouping discriminator):

val m = e.groupBy(v → f(v)),

where m: Map[Tuple$seq, List[A] ] provided that e: List[A].

The final translation with respect to provided semantics of both Scala groupBy
and Ferry groupBy is given below

Je.groupBy(v ⇒ (eg1, . . . , egn))K = let e′ = map(v → ([(eg1, . . . , egn)], [v]), e) in
map(v → (the(v.1), concat(v.2)),

groupBy(v → the(v.1), e′))

The result of Ferry expression has a type of [([(a1, . . . , an)], [t])] that is sim-
ilar to what is returned by the Scala groupBy. Such a structure is derived by
creating a list containing ([(eg1, . . . , egn)], [v]) where boxing a tuple of key ex-
pressions guarantees under flattening its first position, and boxing each tuple
from original list will guarantee [([(a1, . . . , an)], [t])] after applying the corre-
sponding unboxing and concatenation at the end.

The resulting groups returned by Scala groupBy may be accessed, for exam-
ple, by

val e1 = m apply k

or, equivalently,

val e2 = for ( x <− m; if x._1 == k ) yield x._2
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Listing 5.3: groupBy in Scala 2.8
/∗∗ Partition this traversable into a map of traversables
∗ according to some discriminator function .
∗ @invariant (xs partition f )(k) = xs filter (x => f(x) == k)
∗
∗ @note This method is not re−implemented by views. This means
∗ when applied to a view it will always force the view and
∗ return a new collection .
∗/
def groupBy[K](f: A => K): Map[K, This] = {
var m = Map[K, Builder[A, This]]()
for (elem <− this) {
val key = f(elem)
val bldr = m get key match {
case None => val b = newBuilder; m = m updated (key, b); b
case Some(b) => b

}
bldr += elem

}
m mapValues (_.result)

}

The corresponding translation of Scala apply defined for maps is given below

Jm apply kK = nth(1, for x in m where the(x.1) == k return x.2)

where m refers to the general case of Ferry encoding defined for Scala Map[K,V]
type.

5.5 Scala’s sortWith
Scala 2.8 sortWith is shown in Listing 5.4, reproduced from the Scala SVN repo1.

• In Scala one can customize both the expressions to be compared for
lessThan, and the comparator function. In Ferry, no custom comparator
function is accepted by sortBy.

• seeSec. 5.3.1

Scala’s sortWith is translateded under constraint imposed by Ferry’s sortBy

f : (v1, v2)→ (eg1[v1], ..., egn[v1]) < (eg1[v2], ..., egn[v2]) | egi : ai,

i.e. a comparison with comparator < of tuples of expressions evaluated with
atomic values (as also pointed for Ferry groupBy, having precedence tests for
Ferry structured types promotes redefining Ferry sortBy to cover more general
case of a sorting criteria):

val e ’ = e.sortWith( (v1,v2) => f(v1,v2) ),

1http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/src/library/scala/
collection/generic/TraversableTemplate.scala

http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/src/library/scala/collection/generic/TraversableTemplate.scala
http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/src/library/scala/collection/generic/TraversableTemplate.scala
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Listing 5.4: sortWith in Scala 2.8
/∗∗ Sort the traversable according to the comparison function
∗ <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>,
∗ which should be true iff <code>e1</code> is smaller than
∗ <code>e2</code>.
∗ The sort is stable . That is elements that are equal wrt ‘lt‘ appear in the
∗ same order in the sorted traversable as in the original .
∗
∗ @param lt the comparison function
∗ @return a traversable sorted according to the comparison function
∗ <code>&lt;(e1: a, e2: a) =&gt; Boolean</code>.
∗ @ex <pre>
∗ List ("Steve", "Tom", "John", "Bob")
∗ . sort ((e1, e2) => (e1 compareTo e2) &lt; 0) =
∗ List ("Bob", "John", "Steve", "Tom")</pre>
∗/
def sortWith( lt : (A,A) => Boolean): This = {
val arr = toArray
Array.sortWith(arr , lt )
val b = newBuilder[A]
for (x <− arr) b += x
b. result

}

where e′: List[A] provided that e: List[A].

The corresponding translation into Ferry with respect to semantics of both
Scala sortWith and Ferry sortBy is given below

Je.sortWith((v1, v2) ⇒ (eg1[v1], ..., egn[v1]) < (eg1[v2], ..., egn[v2]))K =

concat(sortBy(v → (eg1[v], ..., egn[v]), e))

The resulting Ferry expression performs stable sorting, i.e. those items that
the comparator function reports as equal are listed in the same order as they
appeared in the input.

5.6 Custom Scala’s operator orderBy
Intermediate custom Scala operator orderBy defined in Listing 5.5 is used that
is further replaced by Scala 2.8 operator sortWith Table 5.4.

The aforementioned translation is possible under constraint of egi : aj im-
posed by Ferry’s sortBy.

5.7 Definition of translatable comprehensions
5.7.1 Syntax
The pointed subset of context-free syntax appears in Table 5.5.
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Listing 5.5: Custom operator orderBy in Scala
def orderBy( lt : A => B): This = {
val arr = toArray
val lt1 = (e1: A, e2: A) => lt(e1) < lt(e2)
Array.sortWith(arr , lt1 )
val b = newBuilder[A]
for (x <− arr) b += x
b. result

}

Table 5.4: Scala’s custom operator orderBy

Scala, where e : List[A] Ferry, where s : [t]
e.orderBy( v ⇒ (eg1, . . . , egn) ) | egi : aj
e.sortWith( (v$1, v$2) ⇒
(eg1[v$1], . . . , egn[v$1])
<
(eg1[v$2], . . . , egn[v$2]) ) sortBy( v → (eg1[v], . . . , egn[v]), s )

5.7.2 Handling Patterns
Scala allows usage of patterns, in particular variable patterns, that promotes ef-
fective variable bindings and pattern matching. Patterns are used in (a) variable
definitions that are also a part of Scala ForExpr; (b) Scala for-comprehension
generators;(c ) case clause definitions being appeared in pattern matching con-
structs with respect to the chosen syntax subset. The expected patterns are
restricted to represent atomic and structured types (tuples and lists) according
to available Ferry types, i.e.

// case v @ ( ..., v1 @_, ..., l , ..., _ ) guard => body
case CaseDef( Bind(v, Apply(Select(_, Tuple$seq),

List (..., Bind(v1, Ident(_ )),...,
Literal ( l ), ..., Ident(_) ))),

guard,
body ) => ...

// case v @ List ( ..., v1 @_, ..., l , ..., _ ) guard => body
case CaseDef( Bind(v, Apply(Ident(Name("List")),

List (..., Bind(v1, Ident(_ )),...,
Literal ( l ), ..., Ident(_) ))),

guard,
body ) => ...

Handling patterns in ValDef is shown in the following table:

Scala val Vv1 @ ( Vv2 , _ ,. . . ) = Ee
val Vv1 @ ( Vv2@_, _ ,. . . ) = Ee

Ferry let v1 = Ee, v2 = e.1 in . . .

Handling patterns in Generator is shown in the following table:
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Scala Vv1 @ ( Vv2 , _ ,. . . ) ← Ee ( Vv2 , _ ,. . . ) ← Ee
Vv1 @ ( Vv2@_, _ ,. . . ) ← Ee Vv$seq @ ( Vv2@_, _ ,. . . ) ← Ee

Ferry v1 in Ee . . . let v2 = v1.1 in . . . v$seq in Ee . . . let v2 = v$seq.1 in . . .

5.7.3 Handling Scala’ pattern matching
Scala’s pattern matching is translated to Ferry IFExp. Such a translation implies
restriction of expression types in case clause blocks that have to be assigned to
the same type. Handling pattern matching is shown in the following table.

Scala Ee1 match {
case Vv1 @ ( Vv2 , Ll ,. . . ) ⇒ Ee2
case Vv1 @ ( Vv2@_, Ll ,. . . ) ⇒ Ee2

Ferry if conds then let bindings Ee2 else . . .
conds ::= e1.2 == l
bindings ::= v1 = e1, v2 = e1.1

5.7.4 Handling Scala’s Block
Handling scala’s blocks according to the intended scala subset is shown in the
following table:

Scala {
val Vv1 = Ee1
. . .
val VvN = EeN
Ee
}

Ferry let bindings in e
bindings ::= v1 = e1, . . . , v2 = eN

5.7.5 Handling Scala’s IFExpr
Handling scala’s IFExp is shown in the following table, the translation is applied
to e ∈ IFExp such that TE ` e1 : t and TE ` e2 : t.

Scala if Eebool Ee1 else Ee2
Ferry if ebool then e1 else e2

5.7.6 Handling Scala’s ForExpr

case class ValFrom(pos:Position, pat: Tree, rhs : Tree) extends Enumerator
case class ValEq(pos: Position , pat: Tree, rhs : Tree) extends Enumerator
case class Filter ( test :Tree) extends Enumerator

case class ForComp(enums:List[Enumerator]) extends TermTree

Handling scala’s ForExp is shown in the following tables:
Scala for ( Vv ← Ee1) yield Ee2
Ferry for v in e1 return e2
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Scala for ( Vv1 ← Ee1 ; Vv2 ← Ee2 ;. . . ) yield Ee
Ferry concat( for v1 in e1 return concat(for v2 in e2 return . . .) )

Scala for ( Vv ← Ee1 ; if Eebool) yield Ee2
Ferry for v in e1 where ebool and . . . return e2

Scala for ( Vv ← Ee1 ; val Vv1= Ee1 ; . . . ;val VvN= EeN ; . . . ) yield Ee2
Ferry for v in e1 return let v1 = e1, . . . , vN = eN in e2

5.7.7 Extended example of translating Scala for-comprehention
More complex translation rules are required for Scala comprehension, as rewrit-
ing their components (qualifiers, which can be generators, guards, and let-
declarations) has to take into account the variables in scope.

val namesWithSalaries1 = for (employee <− Employees)
yield (employee.name,employee.salary)

// Ferry : let Employees =
// table EmployeesTab(id int , name string, dept string , salary int )
// in for employee in Employees return (employee.name, employee.salary)

val namesWithSalaries2 = for (employee <− Employees;
val salary = employee.salary ; val name = employee.name)

yield (name, salary )
// Ferry : let Employees = table EmployeesTab(id int, name string,
// dept string , salary int )
// in for employee in Employees return
// let name = employee.name, salary = employee.salary
// in (name, salary )

val namesWithSalariesLessThan =
for (employee <− Employees; val salary = employee.salary ;

val name = employee.name; if salary < 200)
yield (name, salary )

// Ferry : let Employees = table EmployeesTab(id int, name string,
// dept string , salary int )
// in for employee in Employees
// where
// let name = employee.name, salary = employee.salary
// in salary < 200
// return
// let name = employee.name, salary = employee.salary
// in (name, salary )

Some additional constructs of Scala are also handled, for example, patterns
that can be a part of generators, let-declarations:

val namesWithSalaries = for ( (_, name, _, salary ) <− Employees)
yield (name, salary )

// Ferry : let Employees = table EmployeesTab(id int, name string,
// dept string , salary int )
// in for employee$1 in Employees return
// let name = employee$1.name, salary = employee$1.salary
// in (name, salary )
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Table 5.5: The pointed Scala subset

Id ∈ Identifier, V ∈ VarId, SId ∈ StableId,
P ∈ Path, L ∈ Literal (constrained by Ferry atomics)
E ∈ Exp = IFExp ∪ ForExp ∪ InfixExp ∪ MatchExp

IFE ∈ IFExp ::= if ( Ee1 ) nl 0..* Ee2 ( semi 0..1else Ee3 ) 0..1

FE ∈ ForExp ::= for ( (ENsenums) | {ENsenums} ) nl 0..*yield Ee

ME ∈ MatchExp ::= IEinfixexp match { CC1..*
caseclause }

IE ∈ InfixExp ::= PE | IE Id nl 0..1IE
PE ∈ PrefixExp ::= ( ∼, ! ) 0..1SE
SE ∈ SimpleExp ::= new CTclasstemplate | { BL } | SE1

SE1 ∈ SimpleExp1 ::= L | Ppath | _

| ( E 0..* <separator:,>
exprs )

| SE.Id

| SE1 ( AE 0..* <separator:,>
argexprs )

AE ∈ ArgExpr ::= ( (B 1..* <separator:,>
bindings ) | Id | _ ) ⇒ AEargexp

BL ∈ Block ::= ( BSblockstatssemi ) 0..*Ee

BS ∈ BlockStat ::= VDvaldef

ENs ∈ Enumerators ::= Ggenerator ( semi ENenums) 0..*

EN ∈ Enumerator ::= Ggenerator | GDguard | val Pat1pattern = Ee

G ∈ Generator ::= Pat1pattern ← Ee GDguard
0..1

CC ∈ CaseClause ::= case Patpattern G 0..1⇒ BLblock
GD ∈ Guard ::= if IEinfixexp

Pat ∈ Pattern ::= Pat1 1..* <separator: | >
patterns

Pat1 ∈ Pattern1 ::= Vvarid ( @ SP ) 0..1| SP
SP ∈ SimplePattern ::= _ | Vvarid | L | SIdstableid

| SIdstableid ( Pats 0..*
patterns )

| SIdstableid ( Pats 0..*
patterns ) ( Vvarid @ ) 0..1_ ∗ )

| ( Patspatterns 0..1)

Pats ∈ Patterns ::= Patpattern 1..* <separator: , >| _ ∗
VD ∈ ValDef ::= val PD

PD ∈ PatDef ::= Pat1patterns 1..* <separator: , >= Ee
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Table 5.6: Higher-order operators with almost direct counterparts
Scala, where Ferry, where
c: C[A] ∈ {List[A], Set[A]} s, s1, s2: [t]
m: Map[K, A]
f : A → C[B] s′: t1
fm: Tuple2[K, A] → Map[K1, B]

| Tuple2[K, A] → List[B]
p: A → Boolean stest: bool
pm: Tuple2[K, A] → Boolean

c filterNot p : C[A] filter(v → not stest, s ) : [t]
(m filterNot pm : Map[K, A])
c flatMap f : C[B] concat(map(v → s2, s1)) : [t]
(m flatMap fm : Map[K1, B] | List[B])
c partition p : Tuple2[C[A],C[A]] (filter(v → stest, s), filter(v → not stest, s)) : ([t],[t])
(m partition pm : Tuple2[Map[K, A], Map[K, A]])
c forall p | m forall pm: Boolean length(filter(v → not stest, s ) ) == 0 : bool
c exists p | m exists pm : Boolean length(filter(v → stest, s ) ) != 0 : bool
c count p | m count pm: Int length(filter(v → stest, s ) ) : int
c takeWhile p : C[A] let prefixs = filter(v → v.1 ! = 0,

map(v → let sPrefix = take(v, s) in
if length(filter(v → stest, sPrefix))

== length(sPrefix)
then (length(sPrefix), v) else (0, v),
range[1, length(s)])) in
take (nth(length(prefixs), prefixs).2, s) : [t]

(m takeWhile pm : Map[K, A])
c dropWhile p : C[A] let prefixs = filter(v → v.1 ! = 0,

map(v → let sPrefix = take(v, s) in
if length(filter(v → not stest, sPrefix))

== length(sPrefix)
then (length(sPrefix), v) else (0, v),
range[1, length(s)])) in
take (nth(length(prefixs), prefixs).2, s) : [t]

(m dropWhile pm : Map[K, A])
c span p : Tuple2[C[A], C[A]] (Je takeWhile pK, Je dropWhile pK) : ([t], [t])
(m span pm : Tuple2[Map[K, A], Map[K, A]]
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Table 5.7: Operators with an (almost) direct counterpart

Scala, where Ferry, where
c, c1, c2: C[A]∈ {List[A], Set[A], Map[K, A]} s, s1, s2: [t]
from, to: Int range[from, to] = [from, . . . , to]: [int]
n: Int n: int

c.isEmpty : Boolean length(s) == 0 : bool
c.nonEmpty : Boolean length(s) != 0 : bool
c.size : Int length(s) : int
c.head : A nth(1, s) : t
c.tail : C[A] drop(1, s) : [t]
c.last : A nth(length(s), s) : t
c.init : C[A] take(length(s) - 1, s) : [t]
c splitAt n: Tuple2[C[A], C[A]] (take(n, s), drop(n, s)) : ([t], [t])
c slice (from, to) : C[A] map(v → nth(v, s), range[from, to]) : [t]
c takeRight n : C[A] drop(length(s) - n, s) : [t]
c1 sameElements c2 : Boolean length(s1)==length(s2) and

let s′1 = map(v → [v], s1),
s′2 = map(v → [v], s2) in

let s′ = filter(v → v.1 != v.2, zip((s′1, s′2)))
in length(s′) == 0: bool
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Table 5.8: Operators with an (almost) direct counterpart for Lists
Scala, where Ferry, where
e, e1, e2: List[A], x: A s,s1,s2: [t], x: t
from, to: Int range[from, to] = [from, . . . , to]: [int]
n: Int n: int

e apply n | e(n) : A nth(n,s) : t
e1.lengthCompare e2 : Int if length(s1) < length(s2) then −1 else

if length(s1) > length(s2) then 1 else 0 : int
e.indices : List[Int] range[1, length(s)] : [int]
e.isDefinedAt n : Boolean n < length(s) : bool
e.zipWithIndex : List[Tuple2[A, Int]] zip((s,range[1, length(s)])) : [(t, int)]
e prefixLength p : Int let prefixLens = filter(v → v != 0, map(v →

let sPrefix = take(v, s) in
if length(filter(v → stest, sPrefix)) == length(sPrefix)
then length(sPrefix) else 0,
range[1, length(s)])) in
nth(length(prefixLens), prefixLens): int

e indexWhere p : Int nth(1, filter(v → let v1 = nth(v, s) in stest,
range[1, length(s)])) : int

e indexOf x : Int nth(1, filter(v → nth(v, s) == x, range[1, length(s)])) : int
e.reverse : List[A] map(v → nth(v, s), range[1, length(s)] order by v descending)) : [t]
e1 startsWith e2 : Boolean take(length(s2), s1))==s2 : bool
e contains x : Boolean length(filter(v → v == x, s)) != 0 : bool
e1 patch (n1, e2, n2) : List[A] append(take(n1 - 1, s1), append(s2, drop(n1 + n2 - 1, s1))) : [t]
e1 padTo (n, x) : List[A] append(s1, map(v → x, range[1, n])) : [t]
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Table 5.9: Operators with an (almost) direct counterpart for Sets
Scala, where Ferry, where
e, e1, e2: Set[A], x: A s,s1,s2: [t], x: t

e contains x | e apply x | e(x) : Boolean length(filter(v → v == x, s)) != 0 : bool
e + x : Set[A] if Je contains xK then s else append(s, [x]) : [t]
e1 ++ e2 : Set[A] append(s1, filter(v → not Je1 contains vK, s2)) : [t]
e - x : Set[A] filter(v → v != x, s) : [t]
e1 - - e2 : Set[A] filter(v → not Je2 contains vK, s1) : [t]
e1 & e2 | e1 intersect e2 : Set[A] filter(v → Je2 contains vK, s1) : [t]
e1 | e2 | e1 union e2 : Set[A] append(s1, filter(v → not Je1 contains vK, s2)) : [t]
e1 &v e2 | e1 diff e2 : Set[A] filter(v → not Je2 contains vK, s1) : [t]
e1 subsetof e2 : Boolean filter(v → not Je2 contains vK, s1) == 0 : bool
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Table 5.10: Operators with an (almost) direct counterpart for Maps
Scala, where Ferry, where
e, e1, e2: Map[K, A], x: A s,s1: [([t1], t)], x: t
k: K, ks : Set[K] k: t1, ks: [t1]
p: K → Boolean kbool: bool
f : A → B s2: ([t1], t’)

e(k) | e apply k : A nth(1, filter(v → the(v.1) == k, s)).2 : t
e getOrElse (k, x) : A let values = filter(v → the(v.1) == k, s)

in if length(values) != 0 then nth(1, values).2 else x : t
e contains k | e isDefinedAt k : Boolean length(filter(v → the(v.1) == k, s)) != 0 : bool
e + (k -> x) : Map[K, A] append(s, [([k], x]) : [([t1], t)]
e ++ e1 : Map[K, A] append(s, s1): [([t1],t)]
e - k : Map[K, A] filter(v → the(v.1) != k, s) : [([t1], t)]
e - - ks : Map[K, A] filter(v → length(filter(v1 → v1 == the(v.1), ks))

== 0, s) : [([t1], t)]
e updated (k, x) : Map[K, A] append(s, [([k], x]) : [([t1], t)]
e.keys : Set[K] map(v → the(v), groupWith(v → (v.1, . . . , v.N),

map(v → the(v.1), s))) : [t1]
e.values : Set[A] map(v → the(v), groupWith(v → (v.1, . . . , v.N),

map(v → v.2, s))) : [t]
e filterKeys p : Map[K, A] filter(v → kbool, s) : [([t1], t)]
e mapValues f : Map[K, B] map(v → s2, s) : [([t1], t’)]
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Table 5.11: The pointed Scala subset operators on Traversable (1 of 2)

xs.isEmpty : Boolean test whether the collection is
empty

xs.nonEmpty : Boolean test whether the collection is
non-empty

xs.size : Int the number of elements in the
collection

xs ++ ys : Traversable[A] a collection consisting of the ele-
ments of both xs and ys

xs map f : Traversable[A] the collection obtained from ap-
plying the collection-valued func-
tion f to each element in xs

xs flatMap f : Traversable[A] the collection obtained from ap-
plying the collection-valued func-
tion f to each element in xs and
concatenating the results

xs filter p : Traversable[A] the collection consisting of those
elements of xs that satisfy the
predicate p

xs filterNot p : Traversable[A] the collection consisting of those
elements of xs that do not satisfy
the predicate p

xs partition p : Tuple2[ Traversable[A],
Traversable[A] ]

split xs into a pair of two col-
lections, one with elements that
satisfy the predicate p, the other
with elements that do not

xs groupBy f : Map[B, Traversable[A]] partition xs into a map of collec-
tions according to a discrimina-
tor function f

xs forall p : Boolean test indicating where the pre-
dicte p holds for all elements of
xs

xs exists p : Boolean test indicating where the pre-
dicte p holds for some element in
xs

xs count p : Int the number of elements of xs that
satisfy the predicate p

xs reduceLeft op : A apply binary operation op be-
tween successive elements of non-
empty collection xs going left to
right
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Table 5.12: The pointed Scala subset operators on Traversable (2 of 2)

xs.head : A the first element of the collection
(or some element if no order is
defined)

xs.tail : Traversable[A] the rest of the collection except
for xs.head

xs.last : A the last element of the collection
(or some element if no order is
defined)

xs.init : Traversable[A] the rest of the collection except
for xs.last

xs take n : Traversable[A] a collection consisting of the first
n elements of xs (or some arbi-
trary n elements if no order id
defined)

xs drop n : Traversable[A] the rest of the collection except
for xs take n

xs splitAt n : Tuple2[ Traversable[A],
Traversable[A] ]

the pair of collections (xs take n,
xs drop n)

xs splice(from, to) : Traversable[A] a collection consisting of ele-
ments in some index range of xs

xs takeWhile p : Traversable[A] the longest prefix of elements in
this collection which all satisfy p

xs dropWhile p : Traversable[A] the longest prefix of elements in
this collection which all do not
satisfy p

xs span p : Tuple2[ Traversable[A],
Traversable[A] ]

the pair of collections (xs take-
While p, xs dropWhile p)

Table 5.13: The pointed Scala subset operators on Iterable

xs takeRight n : Iterable[A] a collection consisitng of the last
n elements of xs (or some arbi-
trary n elements if no order is de-
fined)

xs takeLeft n : Iterable[A] the rest of the collection except
for xs takeRight n

xs sameElements ys : Boolean a test whether xs and ys contain
the same elements in the same
order
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Table 5.14: The pointed Scala subset operators on Sequence

xs.length : Int the length of the sequence (same
as size)

xs.lengthCompare ys : Int returns -1 if xs is shorter than ys,
+1 if it is longer and 0 if they
have the length

xs(i) | xs apply i : A the element of xs at index i
xs.indices : Sequence[Int] the index range of xs extending

from 0 to xs.length - 1
xs isDefinedAt i : Boolean a test whether i is contained in

xs.indices
xs zip ys : Sequence[Tuple2[A,B]] a sequence of pairs of corre-

sponding elements from xs and ys
xs.zipWithIndex : Sequence[Tuple2[A, Int]] a sequence of pairs of elements

from xs with their indices
xs prefixLength p : Int the length of the longest prefix of

elements in xs that all satisfy the
predicate p

xs indexWhere p : Int the index of the first element in
xs that satisfies p

xs indexOf x : Int the index of the first element in
xs equal to x

xs.reverse : Sequence[A] a sequence with the elements of
xs in reveresed order

xs startsWith ys : Boolean a test whether xs has sequence ys
as a prefix

xs contains x : Boolean a test whether xs has an element
equal to x

xs intersect ys : Sequence[A] the multi-set intersection of se-
quences xs and ys which pre-
serves the order of elements in xs

xs diff ys : Sequence[A] the multi-set difference of se-
quences xs and ys which pre-
serves the order of elements in xs

xs ++ ys | xs union
ys

: Sequence[A] multi-set union

xs.removeDuplicates : Sequence[A] a subsequence of xs that contains
no duplicated elements

xs patch (f, ys, r) : Sequence[A] the sequence resulting from xs
by replacing r elements starting
with f by the patch ys

xs padTo (len, x) : Sequence[A] the sequence resulting from xs
by appending the value x until
length len is reached
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Table 5.15: The pointed Scala subset operators on Set

xs contains x | xs(x) : Boolean test whether x is an element of xs
xs + x : Set[A] the set containing all elements of xs as

well as x
xs ++ ys : Set[A] the set containing all elements of xs as

well as all elements of ys
xs - x : Set[A] the set containing all elements of xs ex-

cept for x
xs - - ys : Set[A] the set containing all elements of xs ex-

cept for the elements of ys
xs & ys | xs intersect
ys

: Set[A] the set intersection of xs and ys

xs | ys | xs union ys : Set[A] the set union of xs and ys
xs & ys | xs diff ys : Set[A] the set difference of xs and ys
xs subsetof ys : Boolean test whether xs is a subset of ys

Table 5.16: The pointed Scala subset operators on Map

xs(k) | xs apply k : A the value associated with key k in map
xs, exception if not found

xs getOrElse (k, d) : A the value associated with key k in map
xs, or the default value d if not found

xs contains k : Boolean test whether xs contains a mapping for
key k

xs isDefinedAt k : Boolean the same as contains
xs + (k -> x) : Map[K, A] the map containing all mappings of xs

as well as the mapping k -> x from key
k to value x

xs ++ kvs : Map[K, A] the map containing all mappings of xs
as well as all key/value pairs of kvs

xs - k : Map[K, A] the map containing all mappings of xs
except for any mapping of key k

xs - - ks : Map[K, A] the map containing all mappings of xs
except for any mapping with a key in
ks

xs updated (k, v) : Map[K, A] the same as xs + (k -> x)
xs.keys : Set[K] a set containing each key in xs
xs.values : Set[A] a set containing each value associated

with a key in xs
xs filterKeys p : Map[K, A] a map view containing only those map-

pings in xs where the key satisfies pred-
icate p

xs mapValues f : Map[K, A] a map vew resulting from applying
function f to each value associated with
a key in xs
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Table 5.17: Sample of Ferry’s built-in function library
map :: (t→ t1, [t])→ [t1] map over list

concat :: [[t]]→ [t] list flattening
take; drop :: (int, [t])→ [t] keep/remove list prefix

nth :: (int, [t])→ t positional list access
zip :: ([t1], . . . , [tn])→ [(t1, . . . , tn)] n-way positional

unzip :: [(t1, . . . , tn)]→ ([t1], . . . , [tn]) merge and split
unordered :: [t]→ [t] disregard list order

length :: [t]→ int list length
all; any :: [bool]→ bool quantification

sum; min; max :: [a]→ a list aggregation
the :: [t]→ t group representative

groupWith :: (t→ (a1, . . . , am), [t])→ [[t]] grouping (as in [25])
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6.1 ScalaQL in action (external view)
Certain aspects of ScalaQL concerning functionality and implementation details
have been already covered in previous chapters. In this chapter, a more detailed
account of the architecture of the implementation is given.

ScalaQL operates on Scala source files recognizing at compile time two kinds
of queries: (a) embedded LINQ queries, which have been tagged with an @LIN-
QAnn annotation; and (b) Scala queries, tagged with @Persistent. Input and
output are shown in Figure 6.1 on p. 71 and Figure 6.2 on p. 72).

In the screenshot on Figure 6.1 on p. 71, two queries are shown in the editing
area.

First, a LINQ query on the right-hand-side of the projectsByName value
definition, annotated with @LINQAnn. The query refers to the employees data
stored in the database table Employees, and groups each employee’s name with
the list of projects where the employee works. The list of projects is obtained
from the program variable projects.

70
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Second, a Scala query on the right-hand-side of the nameWithSalaries value
definition, annotated with @Persistent. The query takes the first four employees
of a particular department (from table Employees) and zips the employees’ names
with the salaries given by program variable salaries.

The LINQToScala phase replaces the right-hand-side part of projectByName,
expanding it to another query, a query annotated with @Persistent as a tag for
the next phase to recognize and process.

In the second screenshot (Figure 6.2 on p. 72), two queries are shown. The
first one is an expansion of the embedded LINQ query, while the second one
has not been processed by the first phase. Both are translated into Ferry,
where some program variables are queried from a database, i.e. those variables
that have been partially defined: var v = _. One such example is Employees.
Other variables encountered in a query are replaced with their Ferry encodings,
e.g. projects, salaries. The ScalaToFerry phase terminates without errors if the
derived Ferry queries are successfully typechecked.

6.2 Architecture of the prototype
The ScalaQL prototype follows the Scala compiler architecture, which is based on
a compiler operating in phases and an interaction protocol defined for compiler
plugins. These plugins can update ASTs on their way from one phase to the
next one, as well as generate errors and warnings.

As can be seen in Figure 1.2, ScalaQL realizes two separate translation tasks
in a single compiler plugin: (a) LINQ-to-Scala translation performed by LINQ-
ToScala; and (b) Scala-to-Ferry translation as second translation, ScalaToFerry.
These phases are executed in that order and comprise the following steps (sum-
marized schematically in Figure 6.3):

LINQToScala phase:

• converting an embedded LINQ query into a string with the corresponding
Scala comprehension. This step is performed by LINQ2Scala Converter.

• parsing the string obtained above with Scalac Parser to AST. This API is
a part of scalac.

• replacing the AST of the original compilation unit with that obtained
above. This step is performed by LINQ2Scala Transformer using API that
are a part of scalac.

ScalaToFerry phase:

• translating Scala comprehensions into Ferry with ScalaToFerry Translator,

• typechecking the derived Ferry queries (Scala2Ferry Typer).
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Figure 6.3: ScalaQL architecture
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Listing 6.1: ScalaQL phases
...

val runsAfter = "parser"
val phaseName = "LINQToScala"

...

def newPhase(prev: Phase): Phase = new LINQToScalaPhase(prev)
class LINQToScalaPhase(prev: Phase) extends StdPhase(prev) {
def apply(unit : CompilationUnit) {

... // code to be executed in the phase
}

6.2.1 Annotation types used by ScalaQL
In more detail, the annotations that ScalaQL detects are:

class LINQAnn extends StaticAnnotation
class Persistent extends StaticAnnotation

These annotations are applied to Scala value definitions, like “val Pat1pattern
= Ee”, thus marking the right-hand-side of the definition for translation, either
LINQ-to-Scala-to-Ferry or Scala-to-Ferry, as shown below:

LINQToScala: ScalaToFerry:

@LINQAnn val Pat1pattern = SLStringLiteral @Persistent val Pat1pattern = Ee

6.3 Implementation details (internal view)
6.3.1 ScalaQL compiler plugin phases
ScalaQL extends Scala compiler functionality by defining the corresponding
classes for its phases by subtyping scala.tools.nsc.SubComponent.StdPhase and
running them right after the initial compiler phase parser as shown in Listing 6.1.

6.3.2 ScalaQL input queries
The target value definition nodes recognized by ScalaQL phases are shown in
Listing 6.2 and Listing 6.3.

6.4 LINQToScala phase
6.4.1 LINQ2Scala Converter
An input embedded LINQ query extracted from right-hand-side part of @LIN-
QAnn-annotated value definition linq_str is parsed with LINQ2Scala Converter
(sts.linq.Parser and sts.linq.Transformer) to a string linq2scala_str with the cor-
responding Scala comprehension Listing 6.4
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Listing 6.2: ScalaQL target AST nodes (internal)

...

val phaseName = "LINQToScala"

...

node match {

case ValDef(Modifiers(_,_,List (Annotation(Apply(Select(New(Ident(name)),_),_),_))),
_,_, Literal (Constant(rhs))) =>
if (name.toString == "LINQAnn")

... // code translating LINQ in ’rhs ’ to Scala
case _ =>

}

Listing 6.3: ScalaQL target AST nodes (internal)

...

val phaseName = "ScalaToFerry"

...

node match {

case ValDef(Modifiers(_,_,List (Annotation(Apply(Select(New(Ident(name)),_),_),_))),
_,_, rhs) =>
if (name.toString == "Persistent")
... // code translating Scala in ’ rhs ’ to Ferry

case _ =>

}

Referring to the extended example shown in Figure 6.1 and Figure 6.2, the
following embedded LINQ query string

"from empl in Employees select " +
"new { name = empl.name," +

"listOfProjects = from project in projects" +
"where project.employees.contains(empl.name)" +
"select project.name }"

is converted to

"for (empl <- Employees)" +
"yield new { val name = empl.name;" +

"val listOfProjects = for (project <- projects;" +
"if (project.employees.contains(empl.name)))" +

"yield project.name }"
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Listing 6.4: LINQToScala Converter (internal)
val ast = sts. linq .Parser .run(new java. io .CharArrayReader(linq_str . toString .toArray))
val linq2scala_str = sts. linq .Transformer comprehend ast

Listing 6.5: LINQToScala Parser (internal)
object LINQToScalaParser extends global.syntaxAnalyzer .UnitParser(unit ) {...}
// ’ unit .body’ refers to the AST of the compilation unit
unit .body = LINQToScalaParser.parse

6.4.2 LINQ2Scala Parser
The resulting string (linq2scala_str) encapsulating LINQ query expansion is
parsed to the AST representation with a new instance of scalac’s API, ob-
ject LINQToScalaParser extends scala.tools.nsc.ast.parser.Parsers.UnitParser(unit),
that is extended to return undesugared version of a Scala for comprehension.
The obtained AST can be inserted to an original compilation unit (Listing 6.5)

An undesugared AST representation of a Scala for comprehension used as
an input for the subsequent Scala-to-Ferry translation is a pair of a number of
qualifiers, enums, and yield-expression, rhs, i.e. (enums, rhs) where each qualifier
is an instance of a generator, let-declaration, or filter represented by the follow-
ing case classes,

case class ValFrom(pos: Position, pat: Tree, rhs: Tree) // a generator
case class ValEq(pos: Position, pat: Tree, rhs: Tree) // a let-declaration
case class Filter(test: Tree) // a filter

6.4.3 LINQ2Scala Transformer
LINQ2ScalaTransformer extends scalac’s API scala.tools.nsc.ast.Trees.Transformer
by overriding the method transform that in addition to traversing the AST of the
compilation unit allows its modification (Listing 6.6). The original LINQAnn-
annotated value definition that can appear in a class template, or method body
block,

case class Template(parents: List[Tree], self: Tree, body: List[Tree]),
case class Block(stats: List[Tree], expr: Tree),

is replaced with a value definition having the corresponding Scala comprehen-
sion in its right-hand-side and re-annotated for the subsequent Scala-to-Ferry
translation with @Persistent.

For the extended example shown in Figure 6.1 and Figure 6.2, the method
stmtsWalk walks through statements in the template’s body of the Scala object
MyQLAppl, i.e.
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Listing 6.6: LINQToScala Transformer (internal)
class LINQ2ScalaTransformer extends Transformer {

override def transform( tree : Tree): Tree = {
val newTree = super.transform(tree );
newTree match {

case Template(parents, self , body) =>
copy.Template(newTree, parents, self , stmtsWalk(body))

case Block(stats , expr) =>
copy.Block(newTree, stmtsWalk(stats), expr)

case _ => newTree
}

}

List(. . . ,
@LINQAnn val projectsByName = "from empl in Employees select " +

"new { name = empl.name," +
"listOfProjects = from project in projects" +

"where project.employees.contains(empl.name)" +
"select project.name }"

val salaries = List(200, 600, 400, 300),
@Persistent val namesWithSalaries = ( ( for (empl @ Employee(_, name, dept, _) <- Employees;

if dept == "GE")
yield name ) take 4 ) zip salaries

),

finds @LINQAnn-annotated value definition projectsByName, and replaces it with
a new value definition of the same name by returning the following list of state-
ments

List(. . . ,
@Persistent val projectsByName = for (empl <- Employees)

yield new { val name = empl.name;
val listOfProjects = for (project <- projects;

if (project.employees.contains(empl.name)))
yield project.name }

val salaries = List(200, 600, 400, 300),
@Persistent val namesWithSalaries = ( ( for (empl @ Employee(_, name, dept, _) <- Employees;

if dept == "GE")
yield name ) take 4 ) zip salaries

).

6.5 ScalaToFerry phase
6.5.1 Scala2Ferry Translator
Scala2FerryTranslator extends scala.tools.nsc.ast.Trees.Traverser by overriding its
traverse method. This allows traversing the AST of the compilation unit and
executing specified actions when visiting certain AST nodes. In addition to
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translating annotated Scala queries, Scala2FerryTranslator manages data derived
from program variable definitions by encoding their values (encodings) and user
provided types defined as case classes or final classes (user_provided_types) (List-
ing 6.7). In the case of the extended example shown in Figure 6.1 and Figure 6.2,
the program variables, projects and salaries, defined as

val projects: List[Project] = List(Project("project1", List("Alex", "Bert", "Cora", "Drew", "Erik")),
Project("project2", List("Fred", "Gina", "Herb", "Ivan", "Jill"))),

val salaries = List(200, 600, 400, 300)
are encoded in Ferry with

projects → [(name "project1", employees ["Alex", "Bert", "Cora", "Drew", "Erik"]),
(name "project2", employees ["Fred", "Gina", "Herb", "Ivan", "Jill"])],

salaries → [200, 600, 400, 300],
whereas the user defined types, Employee and Project, are stored as a pair of a
type name (a case class name) and a list of its fields’ names and fields’ values if
available (in the case of final classes)

Employee → List( ("id", None), ("name", None), ("dept", None), ("salary", None) )
Project → List( ("name", None), ("employees", None) ).

New instances of user defined types are encoded with Ferry records, e.g.

Employee(1, "Alex", "GE", 600) → (id 1, name "Alex", dept "GE", salary 600)
typed with [(int, string, string, int)].

The translation of Scala comprehensions is realized by matching AST nodes
of the compilation unit with patterns that cover the specified Scala subset, and
by visiting these nodes (Listing 6.8). In the example of Figure 6.1 and Fig-
ure 6.2, the Scala queries:

@Persistent val projectsByName = for (empl <- Employees)
yield new { val name = empl.name;

val listOfProjects = for (project <- projects;
if (project.employees.contains(empl.name)))

yield project.name }
@Persistent val namesWithSalaries = ( ( for (empl @ Employee(_, name, dept, _) <- Employees;

if dept == "GE")
yield name ) take 4 ) zip salaries

are translated to the following Ferry queries (with the corresponding encodings
and database tables querying performed)
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for empl in table Employees (id int, name string, dept string, salary int) with keys ((id))
return (name empl.name,

listOfProjects for project in [(name ’project1’, employees [’Alex’, ’Bert’, ’Cora’, ’Drew’, ’Erik’]),
(name ’project2’, employees [’Fred’, ’Gina’, ’Herb’, ’Ivan’, ’Jill’])]

where length(filter(v → v == empl.name, project.employees)) != 0
return project.name)

zip(take(4, for empl in table Employees (id int, name string, dept string, salary int))) with keys ((id))
where let name = empl.name, dept = empl.dept in dept == ’GE’
return let name = empl.name, dept = empl.dept in name), [200, 600, 400, 300]),

6.5.2 Scala2Ferry Typer
As mentioned in Sec. 5.2, the typechecking of Ferry queries, which is applied
before their shipping, serves two purposes: (a) ensuring the isomorphism of the
Scala-to-Ferry translation for the chosen Scala subset; (b) providing an addi-
tional confidence in correctness of the given translation, thus avoiding runtime
exceptions on the database side. Typechecking is performed by ScalaToFerry
Typer (sts.ferry.Typer) for Ferry queries before their normalisation to Ferry Core
(Listing 6.9).

For the extended example shown in Figure 6.1 and Figure 6.2, ScalaToFerry
Typer results in the following types for the first and the second Ferry queries,
correspondingly:

[(’name’ string, ’listOfProjects’ [string])]
[(string, int)]
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Listing 6.7: ScalaToFerry Translator (internal)
class ScalaToFerryTranslator [T] (v: Visitor [T], defaultVal : T) extends Traverser
{

override def traverse ( tree : Tree) = {
tree match {
case e @ ValDef(Modifiers(_,_,List (Annotation(Apply(Select(New(Ident(name)),

_), _), _))), _, _, rhs) =>
if (name.toString == "Persistent") {
walk(rhs)

}

case e @ ValDef(_,name,_,rhs) =>
val rhs1 = rhs match {

case EmptyTree =>
// partial variable definition

case Match(_,_) =>
...
walkValDefPatterns(e, rhs );
...

case _ =>
...
walk(rhs)
...

}
...
v.encodings = v.encodings update (v. visit (name).toString, rhs1)
...

case e @ ClassDef(mods, name, _, Template(_, _, body)) =>
if (mods.isCase || mods. isFinal ) {

val body1 = body.map(_ match {
case ValDef(_, name, _, rhs) => { ... walk(rhs ); ...}
})

...
v.user_provided_types = v.user_provided_types update (name.toString, body1)
...
}

case _ => super.traverse(tree );
}

}
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Listing 6.8: ScalaToFerry Visitor (internal)
abstract class Visitor [T]() {

var encodings: Map[String,T] = Map()
var user_provided_types: Map[String, List [Tuple2[String , Option[T ]]]] = Map()

def visit (e: Apply, gens: List [Tuple2[T,T]], letdecls : List [Tuple2[T,T]],
filteres : List [T], rhs : T) : T

def visit (e: Apply, qual : T, fun: String , args : List [T]) : T
def visit (e: Apply, qual : T, fun: String , arg : Tuple2[ List [T], T]) : T
def visit (e: Apply, fun: String , args : List [T]) : T
def visit (e: Apply, vparams : List [T], body: T, args : List [T]) : T
def visit (e: Apply, expr : T, posAcc: Int ) : T
def visit (e: ValFrom, varid : T, bindings : List [Tuple2[T,T]], rhs : T) : Tuple2[T,T]
def visit (e: Bind, bindings : List [Tuple2[T,T]], pat: Patterns .Value) : List [Tuple2[T,T]]
def visit (e: Bind, bindings : List [Tuple2[T,T]], uptype: List [ String ]) : List [Tuple2[T,T]]
def visit (e: Select , qual : T, sel : String) : T
def visit (e: Block, stats : List [Tuple2[T,T]], expr : T) : T
def visit (e: If , e1: T, e2: T, e3: T) : T
def visit (e: Match, casecls : List [Tuple2[ List [Tuple2[T,T]], T]]) : T
def visit (e: ValDef, name: String, exprs : List [T]) : T
def visit (e: Ident , name: String) : T
def visit (e: Literal , value : Any) : T
def visit (e: Name) : T

}

Listing 6.9: ScalaToFerry Typer (internal)
try {

val ferryExpr = ferryQ.asInstanceOf [Expr]
...
sts . ferry .Typer.typing( ferryExpr )
...

} catch {
case e: Error => global.error(e.getMessage + " in translation of " + tree)

}



Chapter 7

Conclusions

A modern functional database query language integrated with a modern pro-
gramming language brings new opportunities to the developers. Such oppor-
tunities comprise the fashionable functional-object paradigms of modern pro-
gramming languages, and enhanced expressiveness and conciseness by fetching
persistent data into program space. The ScalaQL proposal is motivated by
comprehension syntax of a programming language and pre-exisiting libraries
of operations on collections and underpinned by modern extensible compiler
architectures.

The ScalaQL project addresses some aspects of persistent programming lan-
guages by summarizing them as the target levels of integration (Sec. 1.5) and
proposes the translation algorithm from LINQ and Scala to Ferry. The main
results of the current master thesis project contributes in providing the proof
of a concept covering the details of the Scala-to-Ferry translation and program
transformation in Scala underlying both translations, i.e. from LINQ to Scala
and from Scala to Ferry.

7.1 ScalaQL prototype
The current implementation of ScalaQL prototype targets Level 2 of the out-
lined integration levels (Sec. 1.5). It is designed as a single compiler plugin with
two compilation phases that perform the underlying translations, one for LINQ
to Scala translation, and another for Scala to Ferry translation. Both phases
make use of the available scalac APIs that allows AST building and subsequent
transformations on input compilation unit ASTs. In contrast to the normal
scalac compilation phases (Figure 1.1), the phases of ScalaQL preserve AST
nodes returned by a parser before desugaring takes place and Scala-To-Ferry
translation is performed based on those AST nodes. The target Scala subset of
the Scala-To-Ferry translation is extracted in the terms of Scala patterns based
on the available scalac APIs (case classes) representing ASTs. The resulting
Ferry queries are typechecked (as the final step of the Scala-To-Ferry transla-
tion) against the full Ferry language (i.e. not just Ferry Core). The developed
prototype fulfills all the requirements set at the start of the project. Still, fur-
ther improvements are motivated by available related works as outlined in the
next section.
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7.2 Future Work
7.2.1 Client-side processing (for levels 3 and 4)
The outlined levels of integration address different levels of client-side processing
(by a query interpreter) assuming that a query evaluator and optimiser are
available. Level 3 and Level 4 as formulated in Sec. 1.5 approaches the full
integration of LINQ into Scala by addressing a complete client-side processing.
Level 3 extends by allowing program variables whose actual type can be precisely
determined only at runtime due to possible subtyping. In this case, a program
variable type is computed and represented with a Ferry counterpart at runtime
assuming that such a counterpart is pre-defined. The case when a Ferry type
counterpart does not exist is addressed by the next level, Level 4. Level 4
applies client-side processing on a query that can be only partially processed on
the DB side meaning that only fragments of it can be optimised and shipped
to a database evaluating to sub-results. Support for these levels is a desirable
extension of the current ScalaQL implementation.

7.2.2 Higher-level Data Models
Some aspects related to Object/Relational Mapping can be investigated, in
particular, the ones motivated by Entity SQL 1 that is a part of Microsoft
Entity Framework. Entity SQL is a query language developed to support the
base concepts, Entity Data Model and Entity-Relationship. Entity SQL allows
querying data against higher-level conceptual data models 2 with the constructs
well-known from SQL.

7.2.3 Capabilities partially supported by DBPLs
The general aspects of RDBMSs and OODBMSs are considered as the poten-
tial future contributions to persistent programming languages, in particular,
support for some abstractions. The related work on incremental maintenance
of materialized views refers to the efficiency that is especially significant in in-
formation integration for distributed data sources and deals with incremental
propagation of updates from the referenced database entities to the correspond-
ing materialized views. Most of the current work refers to relational database
systems, in particular, ones related to deriving production rules for incremental
maintenance of materialized views [19]. Production rules are expressed with a
query language syntax and specify certain data manipulation operations in an
action part. A production rule is triggered by certain events when certain con-
ditions are fulfilled and updates views. The work on incremental maintenance
of materialized views in OQL being a query language for object databases is
considered to be relevant [2, 3]. The approach relies on an algebraic incremen-
tal maintenance plan (IMP) constructed for each pre-defined update event that
allows computing required changes to a materialized view reacting to changes
made to a database referred to as a delta. The aspects of data consistency are
addressed with invariants defining integrity constraints and the corresponding
analyses detecting their violation.

1http://msdn.microsoft.com/en-us/library/bb387118.aspx
2http://msdn.microsoft.com/en-us/magazine/cc700331.aspx

http://msdn.microsoft.com/en-us/library/bb387118.aspx
http://msdn.microsoft.com/en-us/magazine/cc700331.aspx
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Appendix A

Syntax and Semantics of
LINQ

A.1 Syntax
In its simplest form, a LINQ query begins with a from clause and ends with
either a select or group clause. In between, zero or more query body clauses
can be found (from, let, where, join or orderby). Queries may be nested: the
collection over which a from variable ranges may itself be a query. A similar
effect can be achieved by appending into variable S2 to a subquery S1: with
that, S1 is used as generator for S2. The fragment into variable S2 is called a
query continuation.

A join clause tests for equality the key of an inner-sequence item with that of
of an outer-sequence item, yielding a pair for each successful match. An orderby
clause reorders the items of the incoming stream using one or more keys, each
with its own sorting direction and comparator function. The ending select or
group clause determines the shape of the result in terms of variables in scope.

The detailed structure of LINQ phrases is captured by the grammar in Ta-
ble A.1 (listing LINQ-proper productions, with QueryExp being the entry rule)
and in Table A.2 (listing other syntactic domains). In order to save space, well-
known productions have been omitted (e.g., those for arithmetic expressions).
The notation conventions in the grammar follow Turbak and Gifford [30]. Ter-
minals are enumerated (e.g. for the syntactic domain Direction). Compound
syntactic domains are sets of phrases built out of other phrases. Such domains
are annotated with domain variables, which are referred from the right-hand-side
of productions. References, e.g. QC0..1

qcont (which ranges over the QueryContinu-
ation domain) are subscripted with a label later used to denote particular child
nodes in the transformations rules. The superscript of a reference indicates the
allowed range of occurrences.

LINQ is mostly implicitly typed: only variables in from or join clauses may
optionally be annotated with type casts. Several ambiguities have to be re-
solved with arbitrary lookahead (e.g. to distinguish between a JoinClause and
a JoinIntoClause) requiring rule priorities or syntactic predicates [24].
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Table A.1: LINQ-related production rules

Q ∈ QueryExp ::= Ffrom QBqbody

F ∈ FromClause ::= from T0..1
type Vvar in Ein

QB ∈ QueryBody ::= B0..*
qbclauses SGsel_gby QC0..1

qcont

B ∈ BodyClause = (FromClause ∪ LetClause ∪ WhereClause
∪ JoinClause ∪ JoinIntoClause ∪ OrderByClause)

QC ∈ QueryCont ::= into Vvar QBqbody

H ∈ LetClause ::= let Vlhs = Erhs

W ∈ WhereClause ::= where Ebooltest

J ∈ JoinClause ::= join T0..1
type Vinnervar in Einnerexp

on Elhs equals Erhs

K ∈ JoinIntoClause ::= Jjc into Vresult

O ∈ OrderByClause ::= orderby U1..* <separator:,>
orderings

U ∈ Ordering ::= Eord Directiondir
Direction ∈ { ascending, descending }

S ∈ SelectClause ::= select Eselexp

G ∈ GroupByClause ::= group Ee1 by Ee2

A.2 Semantics
The denotational semantics of LINQ gives meaning to a query in terms of its
syntax components. An auxiliary definition and two kinds of valuation functions
are needed. A binding-set B ≡ {v1 7→ t1, . . .} is a finite map from non-duplicate
variables vi to values ti. We write vi 7→ ti as a shorthand for the pair (vi, ti).
LINQ forbids declaring a variable whose name would hide another, so a non-
ordered map is enough. As usual, an expression E can be evaluated in the
context of B by induction on its syntactic structure, with a non-defining occur-
rence of variable v evaluating to its image t under B.

The kinds of valuation functions are: (1) JQKenvs denotes the sequence of
binding-sets generated by Q (a query body) given the incoming sequence of
binding-sets envs; while (2) JEK(env) denotes the evaluation of E in the con-
text of the single binding-set env. To simplify the formulation of the valuation
functions, a query is regarded as a sequence S of body clauses Q, resulting from
having desugared query continuations into subqueries [14].

The valuation JQKenvs denotes simply the (sub-)query results when Q is a
SelectClause or a GroupByClause:

J select Eselexp Kenvs [ JselexpK(env) | env← envs ] (A.1)

Informally speaking, group result by key returns a Grouping, i.e. a finite
ordered map with entries key 7→ cluster, a cluster being a sequence of results.
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Table A.2: Other syntactic domains

Id, V ∈ Identifier = ( ([a-zA-Z][a-zA-Z0-9]*) - Keyword )
SG ∈ (SelectClause ∪ GroupByClause)
E ∈ Exp = (QueryExp ∪ ArithExp ∪ BoolExp ∪ UnaryExp

∪ BinaryExp ∪ PrimaryExp ∪ DotSeparated ∪ . . . )
EL ∈ ExpOrLambda = (Exp ∪ Lambda)
P ∈ PrimaryExp = (Application ∪ QueryExp ∪ NewExp ∪ PrimitiveLit ∪ . . . )

T ∈ TypeName ::= Id1..* <separator:.>fragments

D ∈ DotSeparated ::= Ppre . Ppost

A ∈ Application ::= Idhead Cast0..1cast ( EL0..* <separator:,>args )

L ∈ Lambda ::= ( Id0..* <separator:,>params ) => Ebody

The valuation of GroupByClause involves a left-fold, taking an empty grouping
as initial value and progressively adding the valuation of result to the cluster
given by the valuation of key. Using Haskell,

J group Eresult by Ekey Kenvs foldl cf [] envs (A.2)

where cf, the combining function, captures the provided result selector and key
extractor, has type Grouping → BindingSet → Grouping, and is defined as:

cf g bs = let r = (JresultK(env)) in
let k = (JkeyK(env)) in
if hasKey g k then appendToCluster g k r

else append g [(k ,[ r ])]

For Q other than select or groupby, JQKenvs denotes a sequence of binding-
sets which constitute the envs in effect for the next clause in S, the first Q in S
being evaluated with an empty incoming envs.

Jfrom Vvar in EsrcSeq Kenvs [env’ | env← envs, item← JsrcSeqK(env),
let env’ = env ∪ {var 7→ item} ] (A.3)

Jlet Vvar = Eexp Kenvs [env’ | env← envs,
let env’ = env ∪ {var 7→ JexpK(env) } ] (A.4)

Jwhere Etest Kenvs [env | env← envs, JtestK(env) ] (A.5)

The valuation of an OrderByClause permutes the incoming binding-sets, sorting
the sequence envs according to the multi-key given by expressions keyi and sort
directions diri. In terms of the Haskell function Data.List.sortBy,

J orderby key1 dir1 . . . keyn dirn Kenvs sortBy comp envs (A.6)

where comp is a comparison function (specific to the given keyi and diri, i =
1 . . . n) between two binding-sets bsA and bsB, returning one of GT, EQ, LT.
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First, J key1 K(bsA) and J key1 K(bsB) are compared taking dir1 into account. If
they are not equal that’s the outcome of comp bsA bsB. Otherwise, J key2 K(bsA)
and J key2 K(bsB) are compared taking dir2 into account, and so on. If no GT
or LT is found for i = 1 . . . n, EQ is returned.
The semantics is defined over a core syntax where explicit type annotations have
been desugared into type casts (in from and join clauses).

Jjoin VinnerVar in Eisrc on EouterKey equals EinnerKey Kenvs
[ienv | env← envs, innerItem← JisrcK(env) ,
let ienv = env ∪ { innerVar 7→ innerItem } ,
JouterKeyK(env) = JinnerKeyK(ienv) ] (A.7)

Jjoin VinnerVar in Eisrc on EouterKey equals EinnerKey into VresVar Kenvs
[renv | env← envs,
let group = [ innerItem | innerItem ← JisrcK(env)

let ienv = env ∪ {innerVar 7→ innerItem},
JouterKeyK(env) = JinnerKeyK(ienv) ],

let renv = env ∪ { resVar 7→ group } ] (A.8)
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