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Abstract—We consider a CDMA wireless ad-hoc network terms of utility functions. Starting with [9], this topic has
in the high SINR regime. We introduce a suite of cross-layer peen extensively studied in TCP-based wireline networks.
algorithms for joint flow control, routing, scheduling and power A significant advance in that direction is reported in [11].
control. The algorithms guarantee forwarding of all incoming - - - - ;
traffic, with an energy expenditure that can get arbitrarily close Anot_her important issue is energy management. This is Cruc'al
to the minimum possible. When traffic arrival rates lie outside N wireless ad—hoc and sensor networks, where battery drain
the stable throughput region supported by the wireless network, may shorten network lifetime. An approach that minimizes
the algorithms ensure fair allocation of resources. Compared energy consumption in addition to fairness and throughput
to other algorithms that have been proposed in the past in objectives is reported in [10].

a more general setting, our scheme is of considerably lower . . . .
complexity. It relies on iterative methods for solving convex In this paper, focusing on CDMA wireless networks in the

throughput optimization problems for CDMA networks in the  high SINR regime, we obtain algorithms for achieving the ob-
high SNIR regime. The resulting cross—layer control algorithms jectives above that are considerably simpler computationally.

are promising in practical implementations, for they operate The approach can be viewed in three stages. 1) Introduction
in real-time, i.e., evolve in parallel with network dynamics, —f gistributed power control algorithms that are energy effi-
with limited computational complexity between successive control . " - . . .
epochs. cu_ant, co_upled with 2). Flow control techn|que§, \_/vh|ch ensure
fair sharing of the wireless network transmission rates, for
|. INTRODUCTION any arrival rate scenario, be it inside or outside the stable
In modern high-rate wireless data networks, improved pahroughput region supported by the network, and 3) Real-time
formance depends on efficient use of the scarce resourjmat dynamic operation in parallel with system evolution; the
(e.g. power, bandwidth, codes, antennas) in the presencesdfiemes adaptively track changes in traffic without requiring
a volatile wireless channel. In contrast to traditional wirelinknowledge of arrival rates. In the resulting suite of algorithms
networks, this calls for designs that jointly consider the physlifferent layers are coupled through queue length information,
ical together with higher layers in the networking stack. As ia an instance of cross—layer interaction: Local queue lengths
result, making the most out of the wireless network resourcase used for flow control at ingress nodes, whereas differential
has generated sustained interest. A thread of research thegue length and interference related information exchanged
goes back to at least [15] deals with identifying throughplitetween links drives the power control function.
maximizing policies in general time—varying networks, subject This paper is organized as follows. Section Il presents the
to server dependencies. Recent related work is reported, amuamgless network model. In Section Il we recall the back—
others, in [3], [10], [11], [14], [17]. In addition to throughputpressure power control algorithms. In Section IV we extend
maximization, these papers tackle the issue of fair allocatitinese power control algorithms so that they meet throughput
of network resources. The latter gains significance as wirelegsmands of flows with the minimum possible energy consump-
networks are expected to support a wide range of applicatidien. Section V introduces flow control schemes running on top
(from voice to file transfers, to video streaming) with diversef power control; these provide fair resource allocation among
QoS requirements. competing flows. Section VI contains simulation results which
In this paper, we follow up on previous work [5], where twallustrate the joint operation of the algorithms and affirm the
distributed power control algorithms were proposed. These desired network performance. Section VII concludes the paper.
gorithms ensure that the network achieves maximum possible
throughput, given its topology and power budget. However,
system operation for arrival rates beyond the throughput regionWe consider a wireless multihop network consisting/\of
was not addressed. Whenever demand for rates cannotnbees. Each node can transmit information only to a set of
satisfied, not all participant devices require the same portiorighborsN,,. Let there be a total of. possible transmitting
of the system resources. Sharing of resources must be carliekls, i.e., pairs of neighbors. For each lirk the sender
out to achieve a certain notion of fairness, expressed tiansmits data selecting a power leyglandp = {p;, ¢ =

Il. SYSTEM MODEL



1,...,L} is the system’s power vector. BY/"** we denote can be derived from the solution to the following optimization
the maximum allowable instantaneous power for linkAt problem:

the receiver of linkl; let the signal-to-interference plus noise MAXTHRU

ratio (SINR) be

L
— max Y X;(t)Ci (% (p))
I + ;i i=1
7; the noise power, and; the interference subjectto 0 <p; < P™*, i=1,...,L.
I L o The problem above is amenable to distributed solutions.
A Z PjPjitji- These entail the calculation of a cross—layiaterference

J=Li7i price ;(t) at each linkl;, which depends on the maximum
In the expression abové&';; denotes the path loss betweerlifferential backlog, as well the link sensitivity to interference
transmitter of link{; and receiver of linkl; (abbreviated from other links. This interference price is subsequently com-
as zmt(l;) and rcv(l;) in the following), andp;; is the municated to all other links, which use it to update their own
corresponding coding gain. In CDMA wireless networks, thpower levels. In particular, with the help of the cross-layer
transmission rate over the channel may be modelled agrice

concave (or quasiconcave) curve with respect to the received aC; (;(p(1)))
SINR ~;(p). Here we assume that the transmission tbas mi(t) == —X,(t) ﬁ, =1,...,L (1)
a functional dependence o similar to Shannon’s capacity, i(p(1))

i.e.,C; = log(1+7;). A further assumption instrumental in thewe introduced two distributed coordinated solutions to this
results is that the system operates in the high SINR reginggtimization problem.

this is often valid in CDMA systems. Whenever this is the 1) Back—Pressure Best Response (BPBR) Power Control,
case, the transmission rates can be closely approximated by where at every time slot = 1,... each link[;,i =

Ci = log(7s)- 1,...L performs the updates
Let \;; be the exogenous traffic arrival rate at nadeith X, (1)
destination nodg, andA={)\;;, i, = 1,..., N} the arrival mi(t) = ——
rate vector of the system. Each nodenaintains a separate Li(p()) +mi
queue per destination, containifi backlogged amount of and
data pending for transmission, with final destination ngdi _ Xi(t—1)
j ¢ N; then data contained i’/ can reach the destinatigin pi(t) = min ( ) Pf””)-

L
after a multihop route. Leh be the network stability region, Zﬂj(t —1)pi;Gij
i.e., the set of all arrival rates for which there exists some py
policy stabilizing the network queues. e
2) Back—Pressure Gradient Projection (BPGP) Power Con-

1. BACK-PRESSUREPOWER CONTROL trol, based on the same price recursion

We briefly review the maximum throughput distributed

power control algorithms presented in [5]. mi(t) = _ X

To ensure maximum throughput, scheduling and routing Li(p()) +mi
decisions take place according to back—pressurerouting and power recursion
and scheduling policy [15]. Central to such adaptive routing I pmaz
and scheduling are the maximum differential backldgst) pi(t) = |pi(t—1)+x Xi(t — 1)5279@1)/)“@4 '
during time slott, over each linkl;: A traffic flow that is pi(t —1) P 0
scheduled for transmission over link during time slot¢ JFi

is one that attains the maximum differential backlog. Wpetails on these schemes can be found in [5].

mention that in the high SINR regime the network feasible

rate region is convex [12], therefore all links should be IV. ENERGY CONTROL

activated. Consequently, the back—pressure algorithm incurdhe abovementioned distributed power control schemes,

little computational effort, as long as there is no need terived from the solution tMAXTHRU ensure maximization

examine combinations of transmissions. It is only required that network throughput. However, there is no guarantee about

each link searches for the flow with the maximum differentighe level of transmit powers. In fact, it was observed in [5]

backlog. that relatively high arrival rates and long queues lead to power
The fact that transmission rates depend upon transmit powsage several times reaching the upper constegfitt”, irre-

ers, leads us in [5] to formulate the maximum throughpspective of how high the maximum power constraints are. The

policy of [15] as an optimization problem over availableeason for this is that the power update value was a function

system power. The objective is to find power updates that the ratios of the previous power value, the queue lengths

guarantee maximum throughput. It turns out that such updates interference prices. As the algorithm runs in parallel with



system evolution, with random incoming traffic, these ratios —V exp(p;)
often exceed the maximum power constrafyt***, in an

effort to mitigate interference and reach the global optimunphe first term above is linear ip and the minus log term is

S(l)ii(;/elzzvk\)lleedwai‘:heti(;hb:r:tirzlsm)é)r;rshelss;:f:r?:ewas EVEN MOre - ncave inp, because the logarithm of a sum of exponentials
P : is a convex function [1]. The third term is concavepnand

rilrga? ni]r?ttéllgsfd;)hoecragﬁtwc:tk,mF;(:(VivrﬁerngU\I/Z?ngﬂ IhSt %tehe sum of concave functions is concave. TherefoRERGY
b y - OP 9 P 9 a convex optimization problem with a unique solutiom

far from desirable, especially if we consider networks WithS
5P y Consequently, it is possible to obtain a unique solution to

limited energy resources. We are interested in finding ways ati timization problem that nts for requlation of
to achieve throughput maximization, while simultaneousl € stalic op ation probie at accounts for reguiation o

regulating energy consumption. Here we present power contrGie®Y consumption. Note that as time elapses the optimization

schemes that maintain throughput optimality while also kee roblem constantly changes, for queue lengths at each time

ing transmit powers to the minimum possible level. Previo AOt also change, due to data transmissions and stochastic

work provides such a framework. Following [10], [14] aarnvals. However, we do not require convergence for each

power vectorp® can be determined so that average powér?starjce of the_ optimization problem. This might take several
becomes arbitrarily close to the minimum average poRgr iterations per time slot and render the approach more complex

required for stability. Proximity toP is determined by a and perhap.s impractit_:al. Instead, we propose algorithms that
power cost paramete¥, at the expgﬁse of larger backlogsperform a single iteration per slot, towards the global optimum

and hence larger delays. The power updates are obtained f percelvgd at gach time siat Of course, convergence tq
the solution to the following optimization problem: this operating point never takes place, since the optimization

problem changes at the next stot 1, and so does the global

ENERGY . . . . .
. optimum. Still, we prove in [6] that despite the stochastic
_ " _ fluctuations, running the algorithms in parallel with system

maX; (Xl(t)cl(mp)) sz) evolution is sufficient to guarantee maximum throughput.

i . max ) —
subjectto 0 <pi < F™, i=1,.... L A. Best—Response Algorithm

We mention that forlV = 0 the problem above reduces . . . L
to MAXTHRU [5], where no energy regulation is taken int To determine _the unique solution to the optlmlzqnon prob-
account. As before, we adopt the Shannon capacity modelc};nm ENERGY with C;((p)) = log(vi(p)) we write the

r " A
the wireless link, with the approximatiofi; = log; in the arush-Kuhn-Tucker (KKT) conditions for the optimal power

high SINR regime. If we consider frozen backlogs (used z\a/seCtorp (£), namely

L
capacity weights) and put = 0, we get a problem similar to y(;y 9Ci(%i(P(t)) X0 9C;(v; (p(1)))

[2], [7]. The developments in [2] relied on the fact that in the opi(t) opi(t) ete)
high SINR regime the aggregate utility is a concave function J# Pe

of an exponential transform of the transmit powers, hence

a unique global optimum exists. This means that iterative —V=v—y

schemes can be sought that converge to the global optimum
of this static optimization problem, namely maximization of &nd
weighted sum of the channel capacities.
It is straightforward to show that fov¥’ > 0 each instance vi(pi(t) — P"*") =0, pp;(t)=0, vi,pu >0,

of ENERGYat each time slot (with fixed queues) is a convex o ) )
optimization problem too. wherev;, u; are the Lagrange multipliers associated with the

Proposition 1: At each time slot the optimization problem POWer constraints. Consider the cross—layer pricing scheme
ENERGYhas a unique, global optimum. 7= {m;, i = 1...L} of (1) introduced in [5], where each link
Proof: This follows by a simple modification to the proOfcharges other links for causing interference to its transmission.

in [2]. We perform the change of variablgs := log p;. The These prices convey both interference sensitivity (as in [7]), as
objective function becomes well as backlog information, for they are scaled by the link's

maximum differential backlogX;(t). When the inequality

L . . . ..
- - - constrains are inactive the Lagrange multipliers are zero and
JX(1),p) = Z} (Xi(t) log(~i(p)) — VeXp(pi)) the KKT conditions take the form
L L
. Xi(t
= > 0 (tox(Gusexpii) = om0y —V =0 @

=1 g j=1

J#i

L
—log <77i T ZeXp (Bs + log(Gjipji))>> for eachi = 1,..., L. Assuming prices charged by other links

s are known, each link; may solve (2) to find its own power



from

pi(l) = LXi(t) 7

V+ Z i (t)pijGij

i=1
J#i

for sufficiently small step size > 0. Consequently, the second
algorithm summarizes as follows:

Back—Pressure Gradient—Projection
Power Control
For every time slot = 1,2,..., each linki;, i =1,..., L:

Energy Efficient

The equations above motivate the following energy efficient-3. Performs exactly the same steps 1-3 of the best—

algorithm:

Back—Pressure Best—Response Energy Efficient Power

Control
For every time slot = 1,2,..., each linki;, i =1,..., L:
1. Computes the differential backlog

X:n(t) = { W;?nt(lb)(t) o WT“ZU(ZZ)(t)7 TC'U(ZZ') # m

W o () rev(l;) = m
for each flow with destinatiomn = 1,..., N. Let the
maximum differential backlog at link; be

Xi(t) := max X (t).

2. Schedules for transmission a flow* (i) achieving

response algorithm.
4. Transmits with power given by

pi(t) = {Pi(t— ) +

L P:!YLLLLL‘
X;(t—1) '
- (t—1)p;iGii =V ,
K pi(t—l) jz:;ﬂ'j( )pJ J :|0
J#i
for sufficiently small stepsizé > 0, with the notation

[z]% := max(min(z,b), a).

In both algorithms, the higher the power cost paraméter
the higher the queue lengths and the delays, the lesser the
consumed energy. In the distributed algorithms we presented

the maximum differential backlog, i.e., one for whicHn [5], V was set to zero; this caused the minimum possible

X7 O() = X (t).
3. Computes a cross—layer interference price
X;(t

Li(p(t)) + i’

delays, however transmit powers were high. Still, for any fixed
V' convergence at each time slobts turned towards a power
vector p*(t) that results in throughput optimality.

We emphasize that both energy efficient algorithms employ
back—pressure routing, and run in parallel with system opera-

The price m;(t) is subsequently communicated to alfion. That is, the algorithmdo notcompute the solutiop*(t)

links.
4. Transmits with power given by
Xi(t
pi(t+1) = min T (*) , Pimm)
V+ Z 7 (1) pijGij
p

where the constarit’ > 0 is very large.

to ENERGYat every time slot. Observe that node backlogs
and flows transmitted over links vary over time. Therefore, a
new optimization problenENERGYarises at every time slot
before convergence to the solutipri(¢ — 1) for the previous
time slot is achieved. Another observation is the following:
The gradient projection algorithm, due to the small constant
x which is necessary for convergence, is more conservative
in energy consumption in comparison with the best response
scheme; this was also observed in [5] whéfe= 0. That

is, for the same value o¥, the gradient descent algorithm

~ Note that power updates above can be derived by interprgizes power levels closer to the minimum power required for
ing the convex optimization problem as a power control gam&ability.

Each link adjusts its power in best-responséashion, in an
effort to maximize its own net surplus [5], [7].
B. Gradient—Projection Algorithm

The second algorithm obtains by solving tlENERGY
convex optimization problem with thgradient—

The present setup can be compared with [10], where dis-
tributed implementation was presented for the special case
of cell-partitioned networks, for which solution &NERGY
amounted to individual selection of the appropriate power at
each link. In general, the transmission rate is a concave func-

Projection +ion of the SINRy which, due to interference, depends on the

method. This requires that the partial derivative of the objectiygre power vectop. As a result, the optimization problem

function be calculated
L
-3 Xi)piGij
I;i(p(t)) +ny

Op;

j=1

i

is a complicated one, which requires global coordination. Our
work provides distributed coordination schemes for solving
ENERGY

Finally, within the set of stabilizing network control poli-
cies, performance with respect to backlogs and delays may

Convergence towards the maximum is provided by the updaiggy |n a single—hop network backlog ratios can be steered

0 to desired targets by employing the so-caléeegbonential rule
J(X(),p), gets by employing o

p; i=1 of [13] in conjunction with power control, as done in [4]. In

pi(t+1)=pi(t) +r

geeey 5



the current setup, each lirlk can be weighted differently, by and the optimal flow rates are related to congestion prices
means of its own power cost parametér Alternatively, each according to

link I; might use a flow related parametey; (encapsulated RI(t) = (UTY~1(&(1)).
in the header of the packet), so that the system could support
applications with different QoS. As in [9], a distributed solution to the dual problem can be

sought using subgradient price updates of the form
V. FLow CONTROL

- . +
We now turn to providing performance guarantees for arrival

rates beyond the achievable throughput region. In such ané;(t+1) = [&(t) +% ZRij(t) — CUt(t) 3
operating regime queues grow to infinity. It is clear that as j=

long as a link’s transmit powey; is dependent upon the size
of its differential backlogX; then a relatively large arrival
rate (beyond the system stable throughput region) might win R{(t 1) = (Uij)”l(fi(t)).

exclusive use of the wireless channel. Other flows whose

arrival rates are strictly inside the throughput region are le@dkey observation in [11] is that (3) is a Lindley recursion,

where K > 0 is a large constant, and setting

to starvation. This necessitates the use of flow control. where¢; is the scaled queue length, i.e.,
Flow controller Wit
i , _ &) = J, where W, (t Z W (t
i W/ Outgoing queue K
- ‘ - ‘ is the total local queue length at node¢, i = 1,...,N.

Thus the Lagrange multiplier computation is readily available
from the network via local queue lengths. The paraméfer
Fig. 1. Flow control based on local information regulates the behavior of the flow control mechanism. Higher
K results in closer approximation of the desired fair operating
point, however queues grow longer, hence delay is greater. In
A. Problem Formulation summary, we have:

Stochastic arrivals entering the network at nadare ini-
tially stored at an intermediate reservoir whose total contehlow Control Based on Local Information
is A;, before becoming available for transmission. At each For every time slot = 1,2,... and for each destination

time slott, flow control decisions determine the amount of = 1,..., NV, each node = 1,..., N:

traffic R7(¢) with destination nodej, to be removed from 1 Removes from the exogenous traffic reservoir amount of
reservoir containing4] (if enough available) and be placed traffic equal to

at the outgoing queue with siZ&/. Each node; perceives

utility in his allocated flow rate for destinatign quantified by RY(t) = min ((U.j)"l(Wi(t ~1)/K) Ag_'(t)>

an increasing concave utility functidii/ (R?). The objective ’ ’ )

is to maximize aggregate network utility: p )
FAIRNESS where A (¢) denotes the current amount of data in the

N N exogenous traffic reservoir of nodedestined for node
max Z Z U!(R)

i=1j=1 2. Subsequently places these daﬁf;t(t in the respective
subject to R € A. outgoing queues with conteft’; (¢).

The total outgoing traffic from nodeé to every possible
direction at timet is denoted byC?“!(¢). This depends on
the power control updates of the previous section, involvir}
the outgoing queuesV; for each nodei. Introducing the
Lagrange multipliers (congestion priceg)(¢), i =1,... N}
we consider the corresponding Lagrangian

The algorithm above is to be contrasted with traditional
CP-based flow control in wireline networks, where paths are
ed and the congestion price is the sum of node queue lengths
along the path leading from source to destination [9]. Here,
instead, flow control is based exclusively on local information:
The aggregate (over all possible destinations) local queue
length W;(¢) at each node = 1,...,N, plays the role of
ZZU] (RI(t Z& ZRJ —CP(t) ] congestion price, which is used to regulate traffic input to
i=1j=1 the network. Depending on the chosen flow utility functions
U7, flow control expresses different objectives. Routinely
encountered objectives are proportional fairness, maximizing a
e ; j weighted sum of throughputs or providing minimum rate guar-
&) =0, ie. &)= (U'(RI() antees; all these can be attained using the present approach.

The stationary points of the Lagrangian satisfy
OU] (R (1))
OR](t)
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E. Joint Real-Time Operation

The joint network design, involving flow control, routing
scheduling and power control, is obtained by concatenating
the flow control algorithm with any one of the energy effi-
cient algorithms listed in Section IV. Real-time energy and
flow control operations take place simultaneously. Note that
average delay is affected by both control parametérand
K. Also note that different layers are coupled through queue

length information, in an instance of cross—layer interaction:

- eV Local queue lengthdV; are used as congestion prices for
e v | 1 flow control at network nodes, whereas differential queue
length (along with interference related) information exchanged

between links drives the physical layer power control func-
WWWW“MW tion. Whenever arrival rates lie outside the network stable
o ‘ ‘ ‘ throughput region, power control still operates as in the
o % smec P .+  stable scenario. In that case, the (unstable) flow arrival rates
are essentially substituted by the arrival rates of the desired

Fig. 2. Tradeoff between energy consumption and queueing delay fajr operating point. Also, as mentioned before, flow control
decisions do not depend upon control information sent to
) . the source across the network. The rate of each flow can be

B. Proportional Fairness determined locally at each source, since only local information

Proportional fairness can be attained when the flow utilifg used to determine allowable rates: 1) local total queue length
functions are of the fornU/ (R}) = a;; log(R’), where the and 2) flow specific utility function. Hence, flow control does
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weights{a;;, i,j = 1,..., N} determine fair proportion. In not incur additional communication overhead.
that case the rate updates solvifJIRNESSare given by Similar flow control techniques have been proposed and
used before [8], [11]. However, the present work proposes
J _ay  agkK o : . ; ) _
RI(t+1) = AN 1,...,N. real-time interaction of components across different layers:

&i(1) i(t) Flow control, depending on local queue lengifs, interacts

) in real-time (through the queue lengths) with the adaptive
C. Weighted Sum of Throughputs power control algorithms, that run in parallel with system

The objective is to reach the operating point where thevolution, to determine the instantaneous service @f&4(t)
weighted sum of throughputs is maximized (also see [17Bnd hence affect queue lengths and flow control decision at
where{a;;, i,j =1,..., N} are now the throughput weights.the next time slot. Consequently, correct real-time operations
This means that service should ensure @}ﬁil Z;.V:l a;;r] of the resulting suite of algorithms under dynamic traffic

is maximized, where-{ is the throughput of exogenous trafficPatterns is not a priori guaranteed. In Section VI we provide

generated at nodig with destination nodg. Hencel’7 (R!) =  €xtensive simulation results that illustrate convergence of the
a;R?, and the solution tFAIRNESS's joint algorithms; these results verify that the desired real-time
, network control is indeed achieved.
Ri(t+1) = { Alt), Wi(t) <ai K ij=1,...N. Lastly, we comment that the present model did not account
¢ 0, Wi(t) > aiy K 77 ’ for time variations in the wireless channel. This important
D. Minimum Rates issue is a subject for further work.
Flow control tries to distribute some minimum requested VI. SIMULATION RESULTS
ratesr; ., for each flow with origin node and destination ~ We start by demonstrating that, with the proposed power

j. Assume that such rates are indeed feasible, i.e., lie insigledates, energy expenditure, regulated by the paranéter
the stable throughput region of the network. These can be @pn get arbitrarily close to the minimum possible. A simple
proximately provisioned by considering the concave functiogcenario with two single—hop flows, i.e., two pairs of trans-
J(RI) = §1 i mitter; and receivers is considered. In Figure 2, we show the
Ui (B;) = dlog(Ri — 17 i) evolution of the power levels and the queue lengths over time,

where§ > 0 is sufficiently small. With this utility function for two different values of the regulating parametér= 5
the source perceives little gain in receiving rates that a@@dV = 50. We run the best-response algorithm, but similar

substantially larger than the minimum ones. The resulting rdfesults hold for the gradient—projection algorithm as well. The
updates are given by arrival rates are close to the boundary of (but inside) the system

stable throughput region, with the one flow having almost
+ K i,j=1,...N. double rate as the other. The horizontal black lines are the

Rg(t +1) =+ , _ _ _
Wi(t) transmit powers that give target SINRs whose corresponding

i,min
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Fig. 4. Multihop network: Proportional fairness (left), maximum weighted sum of throughputs (center) and minimum rates (right)

Throughput Region

: T : : :
—6— Feasible rates region, V=20
18- — Perron-Frobenius Pareto Surface

Fig. 5. Multihop network topology

power control. We consider the multihop network of Figure 5.
Three flows originating from nodes 0, 1 and 5 have destination

T R T N N - '~ SR
o 2 4 6 8 10 12 14 16 18 20

rate ), nodes 8, 7 and 4 respectively. The throughput region in Figure
4 is convex, as expected. A sequence of increasing arrival rates
Fig. 3. Throughput region for energy regulating algorithms (red color) is considered, and as long as these remain inside

the stable throughput region, they coincide with the service
. rates (black color) provided by the network. Since we intend
constant channel transmission rates are equal to the (unknq aximize network throughput, the desired operating point

o the algf?;'thtm) illrrlvalﬂratfs.tF(;r a 'sl,mall Vag‘(fh: o .th_e is given by the intersection of the fair regions and the Pareto
POWETS ot the two TIows fluctuate heavily around the€ miNIMUIY ¢, -6 For the case of proportionally fair utilities (left), fair

ﬁowers_ (black horizontal I|_ne_s). For a larger value= 50 é)oints lie on the line

uctuations around the minimum powers are much lower.

However, the corresponding (see color code) queue lengths A =\ = ﬁ

and delays for flows are significantly larger wh&h= 50. 5 3

The tradeoff between energy consumption and queueing defay maximizing a weighted sum of throughputs (center), the

is clear. operating point is given by the intersection of the Pareto
In general, energy regulation may not imply throughpuurface with the plangi; +6X2+4A3 = ¢, with the maximum

optimality. We show that the proposed schemes address bptssible value ok = 106. Finally, for providing minimum

objectives simultaneously. Figure 3 depicts the feasible ra@es (right), fair points lie on the line

region for the single—hop, two receivers/transmitters pair net-

work. In [5], the rate region achieved in the simulation exper-

iments indeed approximated the Pareto surface, determinedNla confirm that when arrival rates (red color) are beyond

terms of the Perron—Frobenius eigenvalue [12]; this providdse throughput region of the network, service rates (black

the theoretical throughput region of the system in the higiolor) move along the boundary in the right direction, so as to

SNIR regime. Here, in Figure 3, we verify that the theoreticapproach the fair pointThus, the proposed energy regulating

maximum throughput region is again achieved while alsgorithms successfully interact with the flow control scheme

regulating energy consumption withh = 20. The results to jointly determine resource allocation in real-time.

shown concern the best-response scheme, however similak final, cleaner example on the joint algorithm operation

results hold for the gradient—projection algorithm too. is provided by a single—hop network with two flows. In all
Next, we illustrate the operation of the proposed joint suiteases of Figure 6 we generate a sequence of Poisson arrival

of algorithms, including flow control, routing, scheduling angrocesses, and show the arrival rates and corresponding service

T1—3:T2—8:T3—5.
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