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Abstract— We consider a CDMA wireless ad–hoc network
in the high SINR regime. We introduce a suite of cross–layer
algorithms for joint flow control, routing, scheduling and power
control. The algorithms guarantee forwarding of all incoming
traffic, with an energy expenditure that can get arbitrarily close
to the minimum possible. When traffic arrival rates lie outside
the stable throughput region supported by the wireless network,
the algorithms ensure fair allocation of resources. Compared
to other algorithms that have been proposed in the past in
a more general setting, our scheme is of considerably lower
complexity. It relies on iterative methods for solving convex
throughput optimization problems for CDMA networks in the
high SNIR regime. The resulting cross–layer control algorithms
are promising in practical implementations, for they operate
in real–time, i.e., evolve in parallel with network dynamics,
with limited computational complexity between successive control
epochs.

I. I NTRODUCTION

In modern high–rate wireless data networks, improved per-
formance depends on efficient use of the scarce resources
(e.g. power, bandwidth, codes, antennas) in the presence of
a volatile wireless channel. In contrast to traditional wireline
networks, this calls for designs that jointly consider the phys-
ical together with higher layers in the networking stack. As a
result, making the most out of the wireless network resources
has generated sustained interest. A thread of research that
goes back to at least [15] deals with identifying throughput
maximizing policies in general time–varying networks, subject
to server dependencies. Recent related work is reported, among
others, in [3], [10], [11], [14], [17]. In addition to throughput
maximization, these papers tackle the issue of fair allocation
of network resources. The latter gains significance as wireless
networks are expected to support a wide range of applications
(from voice to file transfers, to video streaming) with diverse
QoS requirements.

In this paper, we follow up on previous work [5], where two
distributed power control algorithms were proposed. These al-
gorithms ensure that the network achieves maximum possible
throughput, given its topology and power budget. However,
system operation for arrival rates beyond the throughput region
was not addressed. Whenever demand for rates cannot be
satisfied, not all participant devices require the same portion
of the system resources. Sharing of resources must be carried
out to achieve a certain notion of fairness, expressed in

terms of utility functions. Starting with [9], this topic has
been extensively studied in TCP–based wireline networks.
A significant advance in that direction is reported in [11].
Another important issue is energy management. This is crucial
in wireless ad–hoc and sensor networks, where battery drain
may shorten network lifetime. An approach that minimizes
energy consumption in addition to fairness and throughput
objectives is reported in [10].

In this paper, focusing on CDMA wireless networks in the
high SINR regime, we obtain algorithms for achieving the ob-
jectives above that are considerably simpler computationally.
The approach can be viewed in three stages. 1) Introduction
of distributed power control algorithms that are energy effi-
cient; coupled with 2) Flow control techniques, which ensure
fair sharing of the wireless network transmission rates, for
any arrival rate scenario, be it inside or outside the stable
throughput region supported by the network, and 3) Real–time
joint dynamic operation in parallel with system evolution; the
schemes adaptively track changes in traffic without requiring
knowledge of arrival rates. In the resulting suite of algorithms
different layers are coupled through queue length information,
in an instance of cross–layer interaction: Local queue lengths
are used for flow control at ingress nodes, whereas differential
queue length and interference related information exchanged
between links drives the power control function.

This paper is organized as follows. Section II presents the
wireless network model. In Section III we recall the back–
pressure power control algorithms. In Section IV we extend
these power control algorithms so that they meet throughput
demands of flows with the minimum possible energy consump-
tion. Section V introduces flow control schemes running on top
of power control; these provide fair resource allocation among
competing flows. Section VI contains simulation results which
illustrate the joint operation of the algorithms and affirm the
desired network performance. Section VII concludes the paper.

II. SYSTEM MODEL

We consider a wireless multihop network consisting ofN
nodes. Each noden can transmit information only to a set of
neighborsNn. Let there be a total ofL possible transmitting
links, i.e., pairs of neighbors. For each linkli, the sender
transmits data selecting a power levelpi and p = {pi, i =



1, . . . , L} is the system’s power vector. ByPmax
i we denote

the maximum allowable instantaneous power for linkli. At
the receiver of linkli let the signal-to-interference plus noise
ratio (SINR) be

γi :=
piGii

Ii + ηi
,

ηi the noise power, andIi the interference

Ii :=
L∑

j=1,j 6=i

pjρjiGji.

In the expression aboveGji denotes the path loss between
transmitter of link lj and receiver of linkli (abbreviated
as xmt(lj) and rcv(li) in the following), and ρji is the
corresponding coding gain. In CDMA wireless networks, the
transmission rate over the channel may be modelled as a
concave (or quasiconcave) curve with respect to the received
SINR γi(p). Here we assume that the transmission rateCi has
a functional dependence onγi similar to Shannon’s capacity,
i.e.,Ci = log(1+γi). A further assumption instrumental in the
results is that the system operates in the high SINR regime;
this is often valid in CDMA systems. Whenever this is the
case, the transmission rates can be closely approximated by
Ci = log(γi).

Let λij be the exogenous traffic arrival rate at nodei with
destination nodej, andλ={λij , i, j = 1, . . . , N} the arrival
rate vector of the system. Each nodei maintains a separate
queue per destination, containingW j

i backlogged amount of
data pending for transmission, with final destination nodej. If
j /∈ Ni then data contained inW j

i can reach the destinationj,
after a multihop route. LetΛ be the network stability region,
i.e., the set of all arrival rates for which there exists some
policy stabilizing the network queues.

III. B ACK–PRESSUREPOWER CONTROL

We briefly review the maximum throughput distributed
power control algorithms presented in [5].

To ensure maximum throughput, scheduling and routing
decisions take place according to aback–pressurerouting
and scheduling policy [15]. Central to such adaptive routing
and scheduling are the maximum differential backlogsXi(t)
during time slott, over each linkli: A traffic flow that is
scheduled for transmission over linkli during time slot t
is one that attains the maximum differential backlog. We
mention that in the high SINR regime the network feasible
rate region is convex [12], therefore all links should be
activated. Consequently, the back–pressure algorithm incurs
little computational effort, as long as there is no need to
examine combinations of transmissions. It is only required that
each link searches for the flow with the maximum differential
backlog.

The fact that transmission rates depend upon transmit pow-
ers, leads us in [5] to formulate the maximum throughput
policy of [15] as an optimization problem over available
system power. The objective is to find power updates that
guarantee maximum throughput. It turns out that such updates

can be derived from the solution to the following optimization
problem:

MAXTHRU

max
L∑

i=1

Xi(t)Ci(γi(p))

subject to 0 < pi < Pmax
i , i = 1, . . . , L.

The problem above is amenable to distributed solutions.
These entail the calculation of a cross–layerinterference
price πi(t) at each linkli, which depends on the maximum
differential backlog, as well the link sensitivity to interference
from other links. This interference price is subsequently com-
municated to all other links, which use it to update their own
power levels. In particular, with the help of the cross-layer
price

πj(t) := −Xj(t)
∂Cj(γj(p(t)))

∂Ij(p(t))
, j = 1, . . . , L (1)

we introduced two distributed coordinated solutions to this
optimization problem.

1) Back–Pressure Best Response (BPBR) Power Control,
where at every time slott = 1, . . . each link li, i =
1, . . . L performs the updates

πi(t) =
Xi(t)

Ii(p(t)) + ηi

and

pi(t) = min
(

Xi(t− 1)
L∑

j=1
j 6=i

πj(t− 1)ρijGij

, Pmax
i

)
.

2) Back–Pressure Gradient Projection (BPGP) Power Con-
trol, based on the same price recursion

πi(t) =
Xi(t)

Ii(p(t)) + ηi

and power recursion

pi(t) =
[
pi(t−1)+κ

Xi(t− 1)
pi(t− 1)

−κ

L∑
j=1
j 6=i

πj(t−1)ρijGij

]P max
i

0

Details on these schemes can be found in [5].

IV. ENERGY CONTROL

The abovementioned distributed power control schemes,
derived from the solution toMAXTHRU, ensure maximization
of network throughput. However, there is no guarantee about
the level of transmit powers. In fact, it was observed in [5]
that relatively high arrival rates and long queues lead to power
usage several times reaching the upper constraintPmax

i , irre-
spective of how high the maximum power constraints are. The
reason for this is that the power update value was a function
of the ratios of the previous power value, the queue lengths
and interference prices. As the algorithm runs in parallel with



system evolution, with random incoming traffic, these ratios
often exceed the maximum power constraintPmax

i , in an
effort to mitigate interference and reach the global optimum
(as viewed at each time slott). This effect was even more
noticeable with the best–response scheme.

In a mobile ad–hoc network, power minimization is of
primary interest. Operating at maximum power might be
far from desirable, especially if we consider networks with
limited energy resources. We are interested in finding ways
to achieve throughput maximization, while simultaneously
regulating energy consumption. Here we present power control
schemes that maintain throughput optimality while also keep-
ing transmit powers to the minimum possible level. Previous
work provides such a framework. Following [10], [14] a
power vectorp? can be determined so that average power
becomes arbitrarily close to the minimum average powerP ∗av

required for stability. Proximity toP ∗av is determined by a
power cost parameterV , at the expense of larger backlogs,
and hence larger delays. The power updates are obtained from
the solution to the following optimization problem:

ENERGY

max
L∑

i=1

(
Xi(t)Ci(γi(p))− V pi

)

subject to 0 < pi < Pmax
i , i = 1, . . . , L.

We mention that forV = 0 the problem above reduces
to MAXTHRU [5], where no energy regulation is taken into
account. As before, we adopt the Shannon capacity model for
the wireless link, with the approximationCi = log γi in the
high SINR regime. If we consider frozen backlogs (used as
capacity weights) and putV = 0, we get a problem similar to
[2], [7]. The developments in [2] relied on the fact that in the
high SINR regime the aggregate utility is a concave function
of an exponential transform of the transmit powers, hence
a unique global optimum exists. This means that iterative
schemes can be sought that converge to the global optimum
of this static optimization problem, namely maximization of a
weighted sum of the channel capacities.

It is straightforward to show that forV > 0 each instance
of ENERGYat each time slott (with fixed queues) is a convex
optimization problem too.

Proposition 1: At each time slott the optimization problem
ENERGYhas a unique, global optimum.

Proof: This follows by a simple modification to the proof
in [2]. We perform the change of variables̃pi := log pi. The
objective function becomes

J(X(t), p̃) :=
L∑

i=1

(
Xi(t) log(γi(p̃))− V exp(p̃i)

)

=
L∑

i=1

[
Xi(t)

(
log(Gii exp(p̃i))

− log
(

ηi +
L∑

j=1
j 6=i

exp
(
p̃j + log(Gjiρji)

)))

−V exp(p̃i)
]
.

The first term above is linear iñp and the minus log term is
concave inp̃, because the logarithm of a sum of exponentials
is a convex function [1]. The third term is concave inp̃, and
the sum of concave functions is concave. ThereforeENERGY
is a convex optimization problem with a unique solution.

Consequently, it is possible to obtain a unique solution to
the static optimization problem that accounts for regulation of
energy consumption. Note that as time elapses the optimization
problem constantly changes, for queue lengths at each time
slot also change, due to data transmissions and stochastic
arrivals. However, we do not require convergence for each
instance of the optimization problem. This might take several
iterations per time slot and render the approach more complex
and perhaps impractical. Instead, we propose algorithms that
perform a single iteration per slot, towards the global optimum
as perceived at each time slott. Of course, convergence to
this operating point never takes place, since the optimization
problem changes at the next slott+1, and so does the global
optimum. Still, we prove in [6] that despite the stochastic
fluctuations, running the algorithms in parallel with system
evolution is sufficient to guarantee maximum throughput.

A. Best–Response Algorithm

To determine the unique solution to the optimization prob-
lem ENERGY with Ci(γi(p)) = log(γi(p)) we write the
Karush-Kuhn-Tucker (KKT) conditions for the optimal power
vectorp∗(t), namely

Xi(t)
∂Ci(γi(p(t)))

∂pi(t)
+

L∑
j=1
j 6=i

Xj(t)
∂Cj(γj(p(t)))

∂pi(t)

∣∣∣∣∣
p(t)=p∗(t)

− V = νi − µi

and

νi(p?
i (t)− Pmax

i ) = 0, µip
?
i (t) = 0, νi, µi ≥ 0,

whereνi, µi are the Lagrange multipliers associated with the
power constraints. Consider the cross–layer pricing scheme
π= {πi, i = 1 . . . L} of (1) introduced in [5], where each link
charges other links for causing interference to its transmission.
These prices convey both interference sensitivity (as in [7]), as
well as backlog information, for they are scaled by the link’s
maximum differential backlogXj(t). When the inequality
constrains are inactive the Lagrange multipliers are zero and
the KKT conditions take the form

Xi(t)
pi(t)

−
L∑

j=1
j 6=i

πj(t)ρijGij − V = 0 (2)

for eachi = 1, . . . , L. Assuming prices charged by other links
are known, each linkli may solve (2) to find its own power



from

pi(t) =
Xi(t)

V +
L∑

j=1
j 6=i

πj(t)ρijGij

, i = 1, . . . , L.

The equations above motivate the following energy efficient
algorithm:

Back–Pressure Best–Response Energy Efficient Power
Control

For every time slott = 1, 2, . . ., each linkli, i = 1, . . . , L:

1. Computes the differential backlog

Xm
i (t) :=

{
Wm

xmt(li)
(t)−Wm

rcv(li)
(t), rcv(li) 6= m

Wm
xmt(li)

(t), rcv(li) = m

for each flow with destinationm = 1, . . . , N . Let the
maximum differential backlog at linkli be

Xi(t) := max
m=1,...,N

Xm
i (t).

2. Schedules for transmission a flowm?(i) achieving
the maximum differential backlog, i.e., one for which
X

m?(i)
i (t) = Xi(t).

3. Computes a cross–layer interference price

πi(t) =
Xi(t)

Ii(p(t)) + ηi
,

The price πi(t) is subsequently communicated to all
links.

4. Transmits with power given by

pi(t + 1) = min
(

Xi(t)

V +
L∑

j=1
j 6=i

πj(t)ρijGij

, Pmax
i

)

where the constantV > 0 is very large.

Note that power updates above can be derived by interpret-
ing the convex optimization problem as a power control game.
Each link adjusts its power in abest–responsefashion, in an
effort to maximize its own net surplus [5], [7].

B. Gradient–Projection Algorithm

The second algorithm obtains by solving theENERGY
convex optimization problem with thegradient–projection
method. This requires that the partial derivative of the objective
function be calculated

∂

∂pi
J(X(t),p) =

Xi(t)
pi(t)

−
L∑

j=1
j 6=i

Xj(t)ρijGij

Ij(p(t)) + ηj
− V.

Convergence towards the maximum is provided by the updates

pi(t + 1) = pi(t) + κ
∂

∂pi
J(X(t),p), i = 1, . . . , L,

for sufficiently small step sizeκ > 0. Consequently, the second
algorithm summarizes as follows:

Back–Pressure Gradient–Projection Energy Efficient
Power Control

For every time slott = 1, 2, . . ., each linkli, i = 1, . . . , L:

1–3. Performs exactly the same steps 1–3 of the best–
response algorithm.

4. Transmits with power given by

pi(t) =
[

pi(t− 1) +

κ


Xi(t− 1)

pi(t− 1)
−

L∑
j=1
j 6=i

πj(t− 1)ρijGij − V




]P max
i

0

,

for sufficiently small stepsizek > 0, with the notation
[x]ba := max(min(x, b), a).

In both algorithms, the higher the power cost parameterV ,
the higher the queue lengths and the delays, the lesser the
consumed energy. In the distributed algorithms we presented
in [5], V was set to zero; this caused the minimum possible
delays, however transmit powers were high. Still, for any fixed
V convergence at each time slott is turned towards a power
vectorp?(t) that results in throughput optimality.

We emphasize that both energy efficient algorithms employ
back–pressure routing, and run in parallel with system opera-
tion. That is, the algorithmsdo notcompute the solutionp?(t)
to ENERGYat every time slott. Observe that node backlogs
and flows transmitted over links vary over time. Therefore, a
new optimization problemENERGYarises at every time slott,
before convergence to the solutionp?(t− 1) for the previous
time slot is achieved. Another observation is the following:
The gradient projection algorithm, due to the small constant
κ which is necessary for convergence, is more conservative
in energy consumption in comparison with the best response
scheme; this was also observed in [5] whereV = 0. That
is, for the same value ofV , the gradient descent algorithm
gives power levels closer to the minimum power required for
stability.

The present setup can be compared with [10], where dis-
tributed implementation was presented for the special case
of cell-partitioned networks, for which solution ofENERGY
amounted to individual selection of the appropriate power at
each link. In general, the transmission rate is a concave func-
tion of the SINRγ which, due to interference, depends on the
entire power vectorp. As a result, the optimization problem
is a complicated one, which requires global coordination. Our
work provides distributed coordination schemes for solving
ENERGY.

Finally, within the set of stabilizing network control poli-
cies, performance with respect to backlogs and delays may
vary. In a single–hop network backlog ratios can be steered
to desired targets by employing the so-calledexponential rule
of [13] in conjunction with power control, as done in [4]. In



the current setup, each linkli can be weighted differently, by
means of its own power cost parameterVi. Alternatively, each
link li might use a flow related parameterVij (encapsulated
in the header of the packet), so that the system could support
applications with different QoS.

V. FLOW CONTROL

We now turn to providing performance guarantees for arrival
rates beyond the achievable throughput region. In such an
operating regime queues grow to infinity. It is clear that as
long as a link’s transmit powerpi is dependent upon the size
of its differential backlogXi then a relatively large arrival
rate (beyond the system stable throughput region) might win
exclusive use of the wireless channel. Other flows whose
arrival rates are strictly inside the throughput region are lead
to starvation. This necessitates the use of flow control.

--λij

Aj
i

Rj
i

W j
i

Flow controller

Outgoing queue

��

QQ

Fig. 1. Flow control based on local information

A. Problem Formulation

Stochastic arrivals entering the network at nodei are ini-
tially stored at an intermediate reservoir whose total content
is Ai, before becoming available for transmission. At each
time slot t, flow control decisions determine the amount of
traffic Rj

i (t) with destination nodej, to be removed from
reservoir containingAj

i (if enough available) and be placed
at the outgoing queue with sizeW j

i . Each nodei perceives
utility in his allocated flow rate for destinationj, quantified by
an increasing concave utility functionU j

i (Rj
i ). The objective

is to maximize aggregate network utility:
FAIRNESS

max
N∑

i=1

N∑

j=1

U j
i (Rj

i )

subject to R ∈ Λ.

The total outgoing traffic from nodei to every possible
direction at timet is denoted byCout

i (t). This depends on
the power control updates of the previous section, involving
the outgoing queuesW j

i for each nodei. Introducing the
Lagrange multipliers (congestion prices){ξi(t), i = 1, . . . N}
we consider the corresponding Lagrangian

N∑

i=1

N∑

j=1

U j
i (Rj

i (t))−
N∑

i=1

ξi(t)




N∑

j=1

Rj
i (t)− Cout

i (t)


.

The stationary points of the Lagrangian satisfy

∂U j
i (Rj

i (t))
∂Rj

i (t)
− ξi(t) = 0, i.e., ξi(t) = (U j

i )′(Rj
i (t))

and the optimal flow rates are related to congestion prices
according to

Rj
i (t) = (U j

i )′−1(ξi(t)).

As in [9], a distributed solution to the dual problem can be
sought using subgradient price updates of the form

ξi(t + 1) =


ξi(t) +

1
K




N∑

j=1

Rij(t)− Cout
i (t)







+

(3)

whereK > 0 is a large constant, and setting

Rj
i (t + 1) = (U j

i )′−1(ξi(t)).

A key observation in [11] is that (3) is a Lindley recursion,
whereξi is the scaled queue length, i.e.,

ξi(t) =
Wi(t)

K
, where Wi(t) :=

N∑

j=1

W j
i (t)

is the total local queue length at nodei, i = 1, . . . , N .
Thus the Lagrange multiplier computation is readily available
from the network via local queue lengths. The parameterK
regulates the behavior of the flow control mechanism. Higher
K results in closer approximation of the desired fair operating
point, however queues grow longer, hence delay is greater. In
summary, we have:

Flow Control Based on Local Information
For every time slott = 1, 2, . . . and for each destination

j = 1, . . . , N , each nodei = 1, . . . , N :

1. Removes from the exogenous traffic reservoir amount of
traffic equal to

Rj
i (t) = min

(
(U j

i )′−1(Wi(t− 1)/K), Aj
i (t)

)
,

whereAj
i (t) denotes the current amount of data in the

exogenous traffic reservoir of nodei destined for node
j.

2. Subsequently places these dataRj
i (t) in the respective

outgoing queues with contentW j
i (t).

The algorithm above is to be contrasted with traditional
TCP–based flow control in wireline networks, where paths are
fixed and the congestion price is the sum of node queue lengths
along the path leading from source to destination [9]. Here,
instead, flow control is based exclusively on local information:
The aggregate (over all possible destinations) local queue
length Wi(t) at each nodei = 1, . . . , N , plays the role of
congestion price, which is used to regulate traffic input to
the network. Depending on the chosen flow utility functions
U j

i , flow control expresses different objectives. Routinely
encountered objectives are proportional fairness, maximizing a
weighted sum of throughputs or providing minimum rate guar-
antees; all these can be attained using the present approach.
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B. Proportional Fairness

Proportional fairness can be attained when the flow utility
functions are of the formU j

i (Rj
i ) = aij log(Rj

i ), where the
weights{aij , i, j = 1, . . . , N} determine fair proportion. In
that case the rate updates solvingFAIRNESSare given by

Rj
i (t + 1) =

aij

ξi(t)
=

aijK

Wi(t)
, i, j = 1, . . . , N.

C. Weighted Sum of Throughputs

The objective is to reach the operating point where the
weighted sum of throughputs is maximized (also see [17]),
where{aij , i, j = 1, . . . , N} are now the throughput weights.
This means that service should ensure that

∑N
i=1

∑N
j=1 aijr

j
i

is maximized, whererj
i is the throughput of exogenous traffic

generated at nodei, with destination nodej. HenceU j
i (Rj

i ) =
aijR

j
i , and the solution toFAIRNESSis

Rj
i (t + 1) =

{
Aj

i (t), Wi(t) ≤ aijK
0, Wi(t) > aijK

, i, j = 1, . . . N.

D. Minimum Rates

Flow control tries to distribute some minimum requested
ratesrj

i,min for each flow with origin nodei and destination
j. Assume that such rates are indeed feasible, i.e., lie inside
the stable throughput region of the network. These can be ap-
proximately provisioned by considering the concave function

U j
i (Rj

i ) = δ log(Rj
i − rj

i,min)

where δ > 0 is sufficiently small. With this utility function
the source perceives little gain in receiving rates that are
substantially larger than the minimum ones. The resulting rate
updates are given by

Rj
i (t + 1) = rj

i,min +
δK

Wi(t)
, i, j = 1, . . . N.

E. Joint Real–Time Operation

The joint network design, involving flow control, routing
scheduling and power control, is obtained by concatenating
the flow control algorithm with any one of the energy effi-
cient algorithms listed in Section IV. Real–time energy and
flow control operations take place simultaneously. Note that
average delay is affected by both control parametersV and
K. Also note that different layers are coupled through queue
length information, in an instance of cross–layer interaction:
Local queue lengthsWi are used as congestion prices for
flow control at network nodes, whereas differential queue
length (along with interference related) information exchanged
between links drives the physical layer power control func-
tion. Whenever arrival rates lie outside the network stable
throughput region, power control still operates as in the
stable scenario. In that case, the (unstable) flow arrival rates
are essentially substituted by the arrival rates of the desired
fair operating point. Also, as mentioned before, flow control
decisions do not depend upon control information sent to
the source across the network. The rate of each flow can be
determined locally at each source, since only local information
is used to determine allowable rates: 1) local total queue length
and 2) flow specific utility function. Hence, flow control does
not incur additional communication overhead.

Similar flow control techniques have been proposed and
used before [8], [11]. However, the present work proposes
real–time interaction of components across different layers:
Flow control, depending on local queue lengthsWi, interacts
in real–time (through the queue lengths) with the adaptive
power control algorithms, that run in parallel with system
evolution, to determine the instantaneous service ratesCout

i (t)
and hence affect queue lengths and flow control decision at
the next time slot. Consequently, correct real–time operations
of the resulting suite of algorithms under dynamic traffic
patterns is not a priori guaranteed. In Section VI we provide
extensive simulation results that illustrate convergence of the
joint algorithms; these results verify that the desired real–time
network control is indeed achieved.

Lastly, we comment that the present model did not account
for time variations in the wireless channel. This important
issue is a subject for further work.

VI. SIMULATION RESULTS

We start by demonstrating that, with the proposed power
updates, energy expenditure, regulated by the parameterV ,
can get arbitrarily close to the minimum possible. A simple
scenario with two single–hop flows, i.e., two pairs of trans-
mitters and receivers is considered. In Figure 2, we show the
evolution of the power levels and the queue lengths over time,
for two different values of the regulating parameterV = 5
andV = 50. We run the best–response algorithm, but similar
results hold for the gradient–projection algorithm as well. The
arrival rates are close to the boundary of (but inside) the system
stable throughput region, with the one flow having almost
double rate as the other. The horizontal black lines are the
transmit powers that give target SINRs whose corresponding
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Fig. 4. Multihop network: Proportional fairness (left), maximum weighted sum of throughputs (center) and minimum rates (right)
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Fig. 3. Throughput region for energy regulating algorithms

constant channel transmission rates are equal to the (unknown
to the algorithm) arrival rates. For a small valueV = 5 the
powers of the two flows fluctuate heavily around the minimum
powers (black horizontal lines). For a larger valueV = 50
fluctuations around the minimum powers are much lower.
However, the corresponding (see color code) queue lengths
and delays for flows are significantly larger whenV = 50.
The tradeoff between energy consumption and queueing delay
is clear.

In general, energy regulation may not imply throughput
optimality. We show that the proposed schemes address both
objectives simultaneously. Figure 3 depicts the feasible rate
region for the single–hop, two receivers/transmitters pair net-
work. In [5], the rate region achieved in the simulation exper-
iments indeed approximated the Pareto surface, determined in
terms of the Perron–Frobenius eigenvalue [12]; this provides
the theoretical throughput region of the system in the high
SNIR regime. Here, in Figure 3, we verify that the theoretical
maximum throughput region is again achieved while also
regulating energy consumption withV = 20. The results
shown concern the best–response scheme, however similar
results hold for the gradient–projection algorithm too.

Next, we illustrate the operation of the proposed joint suite
of algorithms, including flow control, routing, scheduling and
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Fig. 5. Multihop network topology

power control. We consider the multihop network of Figure 5.
Three flows originating from nodes 0, 1 and 5 have destination
nodes 8, 7 and 4 respectively. The throughput region in Figure
4 is convex, as expected. A sequence of increasing arrival rates
(red color) is considered, and as long as these remain inside
the stable throughput region, they coincide with the service
rates (black color) provided by the network. Since we intend
to maximize network throughput, the desired operating point
is given by the intersection of the fair regions and the Pareto
surface. For the case of proportionally fair utilities (left), fair
points lie on the line

λ1

5
= λ2 =

λ3

3
.

For maximizing a weighted sum of throughputs (center), the
operating point is given by the intersection of the Pareto
surface with the plane5λ1+6λ2+4λ3 = c, with the maximum
possible value ofc = 106. Finally, for providing minimum
rates (right), fair points lie on the line

r1 − 3 = r2 − 8 = r3 − 5.

We confirm that when arrival rates (red color) are beyond
the throughput region of the network, service rates (black
color) move along the boundary in the right direction, so as to
approach the fair point. Thus, the proposed energy regulating
algorithms successfully interact with the flow control scheme
to jointly determine resource allocation in real–time.

A final, cleaner example on the joint algorithm operation
is provided by a single–hop network with two flows. In all
cases of Figure 6 we generate a sequence of Poisson arrival
processes, and show the arrival rates and corresponding service



0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

rate λ
1

ra
te

 λ
2

Throughput Region
Arrival Rates
Throughput without flow control
Throughput with flow control
λ

2
=3*λ

1
λ

2
=a

2
*λ

1
/a

1

0 5 10 15
0

5

10

15

rate λ
1

ra
te

 λ
2

Troughput Region
Arrival Rates
Throughput with flow control, k=100
Throughput with flow control, k=1000
a

1
*λ

1
+a

2
*λ

2
=max

0 5 10 15
0

5

10

15

rate λ
1

ra
te

 λ
2

Throughput Region
Arrival Rates
Throughput with flow control, k=100
Throughput with flow control, k=1000
λ

2
=λ

1
+r

min2
−r

min1

Fig. 6. Two traffic flows: Proportional fairness (left), maximum weighted sum of throughputs (center) and minimum rates (right)

rates, as well as the fair lines. When considering proportional
fairness, we also show the performance of flow control in
comparison to the uncontrolled case. It is seen that in the
uncontrolled case one flow is lead to starvation. As far as other
notions of fairness are concerned, we illustrate the difference
in the precision of approximating the fair operating point, for
different values of the control parameterK. Recall that better
tracking takes places for higherK at the expense of larger
backlogs. As expected, allocated service rates are equal to the
arrival rates when the latter lie inside the network’s throughput
region, otherwise they are steered towards the targeted fair
operating point.

VII. C ONCLUSION

In this paper we considered a CDMA wireless ad–hoc
network in the high SINR regime, and extended work ini-
tiated in [5], where distributed maximum throughput power
control schemes were introduced. We presented algorithms
that jointly solve the flow control, routing, scheduling and
power control problems. Main ingredients of the approach are
back–pressure routing, and flow control at each node, based on
local queue length information. The proposed algorithms lever-
age on iterative distributed solutions to convex optimization
problems, and can be tuned to provide fairness and minimize
energy consumption by trading off for queueing delay. A
prime feature of the proposed schemes is that they operate
in real–time, i.e., in parallel with system evolution, without
knowledge of traffic statistics. Simulation results confirming
desired operations abound.
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