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1. Introduction 
The choice of optimum parameters of technical system 

depending on its functional characteristics is the main 
objective of the computer-aided engineering system 
(CAD). One of the directions of design is connected with 
creation of mathematical models of technical systems. On 
the basis of the developed models we conduct research, 
modeling and we choose optimum parameters of technical 
systems. Such direction of researches considerably 
reduces terms of design and increases quality of the 
created technical systems. Therefore to a problem of 
mathematical modeling of technical systems as much 
attention is paid to a component of system of the 
automated design as in Russia [1-13], and abroad in 
theoretical [15,17,18] and applied aspects [16,19,20,21]. 

Functioning of technical object, system is defined by 
some set of the characteristics which are functionally 
dependent on parameters of system. Improvement of one 
of these characteristics leads another to deterioration. 
There is a problem of determination of such parameters 
which would improve all functional characteristics of 
technical system at the same time. These problems are 
solved now, both at technological (experimental) level, 
and at the mathematical (model) level. The model in this 

case can be created in the form of a vector problem of 
mathematical programming in which the vector criterion 
defines characteristics of technical system [3,5,9,10,11,12,13]. 

For the solution of a vector task we use the methods 
based on normalization of criteria and the principle of the 
guaranteed result [4]. Further we used these methods 
when modeling technical systems [3,5,7,13]. We use 
methods at the solution of vector problems with 
equivalent criteria [3,8,13] and to the set priority of 
criterion [3,10]. If functional dependence of each 
characteristic and restrictions on parameters is known, we 
formulate mathematical model of technical system in the 
conditions of definiteness [6,7,13]. If functional dependence 
of each characteristic and restrictions on parameters isn't 
known, we formulate mathematical model of technical 
system in the conditions of uncertainty [7,13]. Works are 
directed to the solution of these problems in the conditions 
of definiteness and uncertainty of set [6,13]. In real life we 
have to investigate all set of possible parameters of 
technical system (Pareto's great number) and to choose the 
most preferred (optimum) solution. This work is in total 
directed on the solution of these problems. 

The purpose of this work consists in creation of 
methodology of creation of mathematical model of 
technical system in the form of a vector problem of 
mathematical programming. Solutions of a vector problem 
in the conditions of definiteness and uncertainty in total. 
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Researches, modeling and the system choice of optimum 
parameters at design of technical systems from all 
admissible set of parameters (Pareto's great number). In 
the simulation, we use decision methods at equivalent 
criteria and with the set criterion priority. 

For realization of a goal in work it is presented: creation 
of model of technical system in the form of a vector 
problem of mathematical programming; the methodology 
of creation of mathematical model of technical system 
conditions of definiteness and uncertainty in total is 
shown;  

decision-making realization (i.e. the choice of optimum 
parameters of technical system) at equivalent criteria;  

realization of decision-making at the set criterion 
priority, i.e. the choice of any optimum point from Pareto's 
great number; we have developed the software for the 
solution of vector tasks with equivalent criteria and with 
the set criterion priority.  

The methodology of modeling is illustrated on a 
numerical example of model of the technical system, in 
the form of a vector problem of nonlinear programming 
realized in Matlab [14] system. The methodology has 
system character and can be used as for technical and 
economic problems, [11,12]. 

2. Statement of a Problem. Methodology 
of Modeling of Technical Systems in the 
Conditions of Definiteness and Uncertainty 

The problem of a choice of optimum parameters of 
technical systems according to functional characteristics 
arises during the studying, the analysis and design of 
technical systems and is connected with quality production.  

The problem includes the solution of the following 
tasks: 

Creation of mathematical model which defines interrelation 
of each functional characteristic from parameters of 
technical system i.e. is formed of the vector problem of 
mathematical programming;  

Choice of methods of the decision: we suggest using 
the methods based on normalization of criteria and the 
principle of the guaranteed result with equivalent criteria 
and with the set criterion priority; 

The software which realizes these methods is developed. 
Statement of a problem is executed according to [3].  

2.1. Creation of Mathematical Model of 
Technical System 

The technical system which functioning depends on N - 
a set of design data is considered: Х={х1 х2 … хN},  
N - number of parameters, each of which lies in the set 
limits 

 min max , 1, , min max
j j jx х x j N or X X X≤ ≤ = ≤ ≤  (1) 

где х min
j , х max

j , ∀j∈N - lower and top limits of change of 
a vector of parameters of technical system. 

The result of functioning of technical system is defined 
by a set К to technical characteristics of fk(X), k=

K,1

K,1  

which functionally depend on design data Х={хj, j= N,1 }, 
in total they represent a vector function: 

 ( ) ( ) ( ) ( )( )1 2 ... .T
KF X f X f X f X=  (2) 

The set of characteristics (criteria) to is subdivided into 
two subsets K1 and K2: К=K1∪K2 

K1 is a subset of technical characteristics which 
numerical sizes it is desirable to receive as it is possible 
above: fk(X) →max, k= 1,1 K .  

K2 - it subsets of technical characteristics which 
numerical sizes it is desirable to receive as it is possible 
below: fk(X)→min, k= KK ,11 + , K2≡ KK ,11 + . 

Mathematical model of technical system which solves 
in general a problem of a choice of the optimum design 
decision (a choice of optimum parameters), we will 
present in the form of a vector problem of mathematical 
programming. 

 ( ) ( ) ( ){ }1 1{ , 1, ,kOpt F X F X f X k K= = =max max (3) 

 ( ) ( ){ }2 2, 1, }kF X f X k K= =min min  (4) 

 ( ) 0,G X ≤  (5) 

 min max , 1, ,j j jx х x j N≤ ≤ =  (6) 

where X - a vector of operated variable (design data) from 
(1);  
F(X)={fk(X), k= K,1 } - criterion which everyone a 
component submits the characteristic of technical system 
(2) which is functionally depending on a vector of 
variables X;  
in (5) G(X)=(g1(X) g2(X) … gM(X))T – vector function of 
the restrictions imposed on functioning of technical 
system, M – a set of restrictions.  

Restrictions are defined proceeding in them 
technological, physical and to that similar processes and 
can be presented by functional restrictions, for example, f
min
k ≤ fk(X)≤ f max

k , k= K,1 . 

It is supposed that the fk(X), k= K,1  functions are 
differentiated and convex, gi(X), i= M,1 are continuous, 
and (5)-(6) set of admissible points of S set by restrictions 
isn't empty and represents a compact: 

 ( )| .{ 0, }N min maxS X R G X X X X∈ ≤ ≤ ≤ ≠ ∅=  

Criteria and restrictions (3)-(6) form mathematical 
model of technical system. It is required to find such 
vector of the Хo∈S parameters at which everyone a 
component the vector - functions F1(X)={fk(X), k= 1,1 K } 
accepts the greatest possible value, and a vector - 
functions F2(X)={fk(X), k= 2,1 K } are accepted by the 
minimum value. 

To a substantial class of technical systems which can be 
presented by a vector task (3)-(6), it is possible to refer 
their rather large number of tasks from various branches 
of economy of the state: electrotechnical, aerospace, 
metallurgical (choice of optimal structure of material), etc. 
In this article for technical system are considered in a 
statics. But technical systems can be considered in 
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dynamics [22], using differential-difference methods of 
transformation [5], conducting research for a small 
discrete period Δt ∈ T. 

2.2. Creation of Mathematical Model of 
Technical System in the Conditions of 
Definiteness and Uncertainty in Total 

At creation of mathematical model of technical system 
(3)-(6) conditions are possible: definiteness and uncertainty. 

Conditions of definiteness are characterized by that 
functional dependence of each characteristic and 
restrictions on parameters of technical system [6,8,13] is 
known. 

Conditions of uncertainty are characterized by that there 
is no sufficient information on functional dependence of each 
characteristic and restrictions from parameters [6,9,13,15]. 

In real life of a condition of definiteness and 
uncertainty are combined. The model of technical system 
also has to reflect these conditions. We will present model 
of technical system in the conditions of definiteness and 
uncertainty in total [13]: 

( )

( ) ( )

( ) ( ){ }
1 1

2 1

{ { , 1, },

{ , 1, , 1, },

def
k

T unc
k i

Opt F X

F X f X k K

I X f X i M k K

= = =

= = =

max max

max max

(7) 

 
( ) ( ){ }
( ) ( ){ }

2 2

2 2

, 1, ,

{ , 1, , 1, }},

def
k

T unc
k i

F X f X k K

I X f X i M k K

= =

= = =

min min

min min
(8) 

at restrictions 

 ( )min max , 1, ,k k kf f X f k K≤ ≤ =  (9) 

 min max , 1, ,j j jx x x j N≤ ≤ =  (10) 

where X - a vector of operated variable (design data) 
equivalent (1); F(X)={ F1(X) F2(X) I1(X), I2(X)} - vector 
criterion which everyone a component represents a vector 
of criteria (characteristics) of technical system (2) 
which functionally depend on discrete values of a vector 
of variables X ; F1(X), F2(X) - a set of the max and min 
functions respectively; I1(X) и I2(X) set of matrixes of max 
and min respectively; K def

1 , K def
2  (definiteness), K unc

1 , K
unc
2  (uncertainty) the set of criteria of max and min created 
in the conditions of definiteness and uncertainty; 

in (9) f min
k ≤ fk(X)≤ f max

k , k= K,1  – a vector function of the 
restrictions imposed on functioning of technical system x
min
j ≤ xj ≤ x max

j , j = N,1 – parametrical restrictions. 

2.3. Transformation of a Problem of  
Decision-making in the Conditions of 
Uncertainty into a Problem of Vector 
Optimization in the Conditions of Definiteness 

Elimination of uncertainty consists in use of qualitative 
and quantitative descriptions of technical system which 
can be received, for example, by the principle "entrance 

exit". Transformation of basic data "entrance exit" to 
functional dependence is carried out by use of 
mathematical methods (the regression analysis). 

The technical system in which experimental data are 
presented in the form of a matrix I1(X), I2(X) in (7)-(8) is 
considered in the following designations: 

 
( ) ... ( )1 1 1 1

...
( )... ( )1

, ,
X y X y XK

X y X y XM M K M
orI I X Y 

= = 
 

 (11) 

where is considered: X={Xi ={xij, j= N,1 }, i= M,1 } - 
design data of technical system, N – a set of parameters of 
system, M - a set of alternatives (experiments);  
Y={yik, k= K,1 , i= M,1 }, K – a set of criteria 
(characteristics) by which each alternative is estimated, 
[15]. 

Construction a vector - function (criteria) is carried out 

on a method of the smallest squares 2

1
min ( )

M

i i
i

y y
=

−∑ , 

where by yi, i=1, M  - really observed sizes, and iy , i=

1, M  their estimates received for one-factorial model by 
means of function iy = f(Xi,А), Xi ={x i}. As f(Xi, А) we 
use a polynom. In applied part of work the polynom of the 
second degree is used: 

 
22

0 1 1 2 1 3 2
2

1 4 2 5 1 2

min ( , ) ,
*

M
i i i

j
A i i i i

a a x a x a x
f A X y

a x a x x=

  + + +  ≡ −
  + +  

∑  

Result: Basic data {{fk(Xi, i= M,1 }T, k= uncK1,1 }, {fk(Xi, 

i= M,1 }T, k= uncK 2,1 }} in problems of decision-making in 
the conditions of uncertainty (7), (8) the functions - fk(X) , 
k= uncK1,1 , fk(X), k= uncK 2,1  are transformed. 

As a result the vector problem (13)-(16) will be 
transformed into a vector problem in the conditions of 
definiteness: 

 

( )
( ) ( ){ }
( ) ( ){ }

1 1

2 2

 

, 1, ,
,

, 1,

k

k

Opt F X

F X f X k K

F X f X k K

 = = =  
= =  

max max

min min

 (12) 

at restrictions 

 
( )min max

min max

, 1, ,

, 1, ,
k k k

j j j

f f X f k K

x x x j N

≤ ≤ =

≤ ≤ =
 (13) 

where F(X)={fk(X), k= K,1 } - vector criterion which 
everyone a component submits the characteristic of 
technical system which is functionally depending on a 
vector of variables X; subset of criteria K1= K def

1 UK unc
1 , 

K2= K def
2 UK unc

2 . 

3. Theory of Vector Optimization 
The theory of vector optimization includes theoretical 

foundations (axiomatics) and methods of the solution of 
vector problems with equivalent criteria and with the 
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given criterion priority. The theory is a basis of 
mathematical apparatus of modeling of technical systems 
which allows you to select any point from a set of points, 
optimum across Pareto and to show why she is optimum. 

We will present axiomatics and methods of vector 
optimization, first, at equivalent criteria (sections 3.1, 3.2 
in compliance [3] - it is short), and, secondly, at the set 
criterion priority in a vector problem (sections 3.3, 3.4). 

3.1. Axiomatics of Vector Optimization with 
Equivalent Criteria 
Definition 1. (Definition of a relative assessment of 
criterion). 

In a vector problem (12)-(13) we will enter designation: 

λk(X) =
of (X) - f  k k

* of fk k−
, ∀k ∈ K is the relative estimate of a 

point X∈S k-th criterion;  
fk(X) - k-th criterion at the point X∈S; *

kf  - value of the  

k-th criterion at the point of optimum *
kX , obtained in 

vector problem (3)-(6) of individual k-th criterion; 0
kf  is 

the worst value of the k-th criterion (antioptimum) at the 
point 0

kX  (Superscript 0 - zero) on the admissible set S in 
vector problem (3)-(6); the task at max (3), (5), (6) the 
value of 0

kf  is the lowest value of the k-th criterion 0
kf =

min
X S∈

fk(X) ∀k∈K1 and task min 0
kf  is the greatest: 0

kf =

max
X S∈

fk(X) ∀k∈K2. The relative estimate of the λk(X), 

∀k∈K is first, measured in relative units; secondly, the 
relative assessment of the λk(X) ∀k∈K on the admissible 
set is changed from zero in a point of 0

kX : ∀k∈K lim
oX Xk→

λk(X)=0, to the unit at the point of an optimum of X
*
k :∀k∈K 

*
lim

X Xk→
λk(X)=1 i.e.: ∀k∈ 0≤λk(X) ≤1, X∈S  

this allows the comparison criteria, measured in relative 
units, among themselves by joint optimization. 
Axiom 1. (About equality and equivalence of criteria in 
an admissible point of vector problems of mathematical 
programming) 

In of vector problems of mathematical programming 
two criteria with the indexes k∈K, q∈K shall be 
considered as equal in Х∈S point if relative estimates on 
k-th and q-th to criterion are equal among themselves in 
this point, i.e. λk(X) = λq(X), k, q ∈ K.  

We will consider criteria equivalent in vector problems 
of mathematical programming if in X∈S point when 
comparing in the numerical size of relative estimates of 
λk(X), k= K,1 , among themselves, on each criterion of 
fk(X), k= K,1 , and, respectively, relative estimates of λk(X), 
isn't imposed conditions about priorities of criteria. 
Definition 2. (Definition of a minimum level among all 
relative estimates of criteria). 

The relative level λ in a vector problem represents the 
lower assessment of a point of X∈S among all relative 
estimates of λk(X), k = K,1 : 

 ( ), , 1, ,kX S X k Kλ λ∀ ∈ ≤ =  (14) 

the lower level for performance of a condition (14) in an 
admissible point of X∈S is defined by a formula 

 ( ), min .k
k K

X S Xλ λ
∈

∀ ∈ =  (15) 

Ratios (14) and (15) are interconnected. They serve as 
transition from operation (15) of definition of min to 
restrictions (14) and vice versa. 

The level λ allows to unite all criteria in a vector 
problem one numerical characteristic of λ and to make 
over her certain operations, thereby, carrying out these 
operations over all criteria measured in relative units. The 
level λ functionally depends on the X∈S variable, 
changing X, we can change the lower level - λ. From here 
we will formulate the rule of search of the optimum 
decision. 
Definition 3. (The principle of an optimality with 
equivalent criteria). 

The vector problem of mathematical programming at 
equivalent criteria is solved, if the point of Xo∈S and a 
maximum level of λo (the top index o - optimum) among 
all relative estimates such that is found 

 ( )max min .о
k

k KX S
Xλ λ

∈∈
=  (16) 

Using interrelation of expressions (14) and (15), we 
will transform a maximine problem (16) to an extreme 
problem 

 max ,о
X S

λ λ
∈

=  (17) 

 ( ) , 1, .k X k Kλ λ≤ =  (18) 

The resulting problem (17)-(18) let's call the λ-problem. 
λ-problem (17)-(18) has (N+1) dimension, as a 

consequence of the result of the solution of λ-problem 
(17)-(18) represents an optimum vector of Xо∈RN+1, (N+1) 
which component an essence of the value of the λo, i.e. 
Xo={x o

1 , x o
2 , ..., x o

N , x o
N 1+ }, thus x o

N 1+ = λo, and (N+1) a 
component of a vector of Xo selected in view of its 
specificity. 

The received a pair of {λo, Xo}=Xо characterizes the 
optimum solution of λ-problem (17)-(18) and according to 
vector problem of mathematical programming (12)-(13) 
with the equivalent criteria, solved on the basis of 
normalization of criteria and the principle of the 
guaranteed result. We will call in the optimum solution of 
Xо={Xo, λo}, Xo - an optimal point, and λo - a maximum 
level. 

An important result of the algorithm for solving vector 
problems (12)-(13) with equivalent criteria is the 
following theorem. 
Theorem 1. (The theorem of two most contradictory 
criteria in a vector problem of mathematical 
programming with equivalent criteria). 

In convex vector problems of mathematical programming 
at the equivalent criteria which is solved on the basis of 
normalization of criteria and the principle of the 
guaranteed result, in an optimum point of Xo={λo, Xo} two 
criteria are always - denote their indexes q∈K, p∈K 
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(which in a sense are the most contradiction of the criteria 
k = K,1 ), for which equality is carried out: 

 ( ) ( ) , , , ,о о о
q pX X q p K X Sλ λ λ= = ∈ ∈  (19) 

and other criteria are defined by inequalities: 

 ( ) , .о о
k X k K q p kλ λ= ∀ ∈ ≠ ≠  (20) 

3.2. Mathematical Algorithm of the Solution 
of a Vector Problem with Equivalent Criteria 

For the solution of vector problems of mathematical 
programming (12)-(13) the methods based on axiomatics 
of normalization of criteria and the principle of the 
guaranteed result [3,8] are offered. Methods follow from 
an axiom 1 and the principle of an optimality 1. We will 
present in the form of a number of steps:  
Algorithm 1 of the solution of a vector task (12)-(13) 
with equivalent criteria [3]. 

Step 1. The problem (12)-(13) by each criterion 
separately is solved, i.e. for ∀k ∈ K1 is solved at the 
maximum, and for ∀k ∈ K2 is solved at a minimum. As a 
result of the decision we will receive: *

kX  - an optimum 

point by the corresponding criterion, k= K,1 ; *
kf =fk( *

kX ) 
– the criterion size k-th in this point, k= K,1 . 

Step 2. We define the worst value of each criterion on S: 
0
kf , k= K,1 . For what the problem (12)-(13) for each 

criterion of k= K,1 1 on a minimum is solved: 0
kf =min 

fk(X), G(X) ≤ B, X ≥ 0, k= K,1 1. 
The problem (12)-(13) for each criterion on a maximum 

is solved: 0
kf  = max fk(X), G(X) ≤ B, X ≥ 0, k= K,1 2. 

As a result of the decision we will receive: 0
kX ={xj, j=

N,1 } - an optimum point by the corresponding criterion, 

k= K,1 ; 0
kf =fk( 0

kX ) – the criterion size k-th a point, 0
kX , 

k= K,1 . 
Step 3. The analysis of a set of points, optimum across 

Pareto, for this purpose in optimum points of  
*X ={ *

kX , k= K,1 } are defined sizes of criterion functions 

of F(X*) and relative estimates λ( *X ), λk(X) =
of (X) - f  k k

* of fk k−
, 

∀k ∈ K:  

 

( ) { }

( ) { }

*

1 1 1

1

* *

1 1 1

1

( ), 1, , 1,

,

( ), 1, , 1,

.

q

* *
k

* *
k k k

q k

* *
k

* *
k k k

F X f X q K k K

f (X ),..., f (X ),
...

f (X ),..., f (X )

X X q K k K

λ (X ),..., λ (X ),
...

λ (X ),..., λ (X )

λ λ

= = =

=

= = =

=

 (21) 

As a whole on a problem of accordance with (9) ∀k∈К 
the relative assessment of λk(X), k= K,1  lies within 0 ≤ 
λk(X) ≤ 1, ∀k ∈ К . 

Step 4. Creation of the λ-problem. 
Creation of λ-problem is carried out in two stages: 

initially built the maximine problem of optimization with 
the normalized criteria which at the second stage will be 
transformed to the standard problem of mathematical 
programming called λ-problem. 

For construction maximine a problem of optimization 
we use definition - relative level ∀X∈S λ=

Kk∈
min λk(X). 

The bottom λ level is maximized on X∈S, as a result we 
will receive a maximine problem of optimization with the 
normalized criteria. 

 ( ) ( )max min , , 0.o
k

kx
λ X G X B Xλ= ≤ ≥  (22) 

At the second stage we will transform a problem (22) to 
a standard problem of mathematical programming: 

 max , max ,o oλ λ λ λ= =  (23) 

( ) 0, 1, 0, 1, ,
o

k k
k * o

k k

f (X) - f  
λ X k K λ k K

f f
λ− ≤ = → − ≤ =

−
(24) 

 ( ) ( ), 0, , 0,G X B X G X B X≤ ≥ ≤ ≥ (25) 

where the vector of unknown of X has dimension of N+1: 
X={λ, x1, … , xN}. 

Step 5. Solution of λ-problem. 
λ-problem (23)-(25) is a standard problem of convex 

programming and for its decision standard methods are 
used. 

As a result of the solution of λ-problem it is received: 
Xo={λo, Xo} - an optimum point; 
fk(Xo), k= K,1  - values of the criteria in this point; 

λk(Xo) =
o

k
*
k

o
k

o
k

ff
 ) - f(Xf

−
, k= K,1  - sizes of relative 

estimates; 
λo - the maximum relative estimates which is the 

maximum bottom level for all relative estimates of λk(Xo), 
or the guaranteed result in relative units, λo guarantees that 
all relative estimates of λk(Xo) more or are equal λo : 

 
( )

( )
, 1,

, 1, , ,

o o
k

o o o
k

X λ k K

or λ X k K X S

λ

λ

≥ =

≤ = ∈
 (26) 

and according to the theorem the 2 [3,8] point of  
Xo={λo, x1, … , xN} is optimum across Pareto. 

3.3. Axiomatics of Vector Optimization with a 
Criterion Priority 

For development of methods of the solution of 
problems of vector optimization with a priority of criterion 
we will enter definitions: 

• priority of one criterion of vector problems with a 
criterion priority over others criteria; 

• numerical expression of a priority; 
• the set priority of criterion; 
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• the lower (minimum) level from all criteria with a 
priority of one of them; 

• about a subset of points, priority by criterion (Axiom 
2); 

• the principle of an optimality of the solution of 
problems of vector optimization with the set priority of 
one of criteria; 
and related theorems. For more details see [4,6,11]. 
Definition 4. (About the priority of one criterion over the 
other). 

The criterion of q∈K in vector problem (12)-(13) in a 
point of X∈S has a priority over other criteria of k = K,1  
relative estimate of λq(X) by this criterion more or is equal 
relative estimates of λk(X) of other criteria, i.e.: 

 ( ) ( ) , 1, ,q kX X k Kλ λ≥ =  

and a strict priority, if at least for one criterion of t∈K, 

 ( ) ( ) , ,q tX X t qλ λ≥ ≠  

and for other criteria of λq(X) ≥ λk(X), k= K,1 , k≠t≠q. 
Introduction of definition of a priority of criterion in 

vector problem (12)-(13) executed redefinition of early 
concept of a priority. If earlier in it the intuitive concept 
about importance of this criterion was put, now this 
"importance" is defined by mathematical concept: the 
more the relative estimate of q-th of criterion over others, 
the it is more important (more priority), and the highest 
priority in a point of an optimum of *

kX , ∀q ∈ K. 
From definition of a priority of criterion of q∈K in 

vector problem (12)-(13) follows that it is possible to 
reveal a set of points of Sq⊂S which is characterized by 
that λq(X)≥λk(X) ∀k≠q ∀X∈Sq. But the answer to a 
question of, as far as criterion of q∈K in this or other point 
of a set of Sq is more priority than the others, remains open. 
For clarification of this question we will enter 
communication coefficient between couple of relative 
estimates of q and k which in total represent a vector:  
Pq(X) = {p q

k (X) | k= K,1 } q∈K ∀X∈Sq. 
Definition 5. (About numerical expression of a priority of 
one criterion over another). 

In vector problem (12)-(13) with a priority of criterion 
of q-th over other criteria of k = K,1 , for ∀X∈Sq, a vector 
of Pq(X) which everyone component shows in how many 
time a relative estimate of λq(X), q∈K, is more than other 
relative estimates of λk(X), k= K,1 , we will call numerical 
expression of a priority of q-th of criterion over other 
criteria of k = K,1 , i.e. 

 
( ) ( ) ( ) ( ){ }
( )

/ , 1, ,

1, , 1, , .

qq
q kk

q
qk

P X p X X X k K

p X X S S k K q K

λ λ= = =

≥ ∀ ∈ ⊂ = ∀ ∈
 (27) 

Definition 6. (About the set numerical expression of a 
priority of one criterion over another). 

In vector problem (12)-(13) with a priority of criterion 
of q∈K for ∀X∈S vector Pq={p q

k , k= K,1 }, is considered 
the set person making decisions, (decision-maker) if 
everyone is set a component of this vector. Set by the 
decision-maker of a component p q

k , from the point of 

view of the decision-maker, shows in how many time a 
relative estimate of λk(X), k = K,1  is more than other 

relative estimates of λk(X), k = K,1 . The vector of p q
k , k =

1, K  is the set numerical expression of a priority of q-th of 
criterion over other criteria of k= K,1  

 
( ) { }, 1, ,

1, , 1, , .

qq
k

q
qk

P X p K K

p X S S k K q K

= =

≥ ∀ ∈ ⊂ = ∀ ∈
 (28) 

Vector problem (12)-(13) in which the priority any of 
criteria is set, call Vector problem with the set priority of 
criterion. 

The problem of a task of a vector of priorities arises 
when it is necessary to determine Xo∈S point by the set 
vector of priorities. 

At operation of comparison of relative estimates with a 
priority of criterion of q∈K, similarly, as well as in a task 
with equivalent criteria, we will enter the additional 
numerical characteristic of λ which we will call level. 
Definition 7. (About the lower level among all relative 
estimates with a criterion priority). 

The λ level is the lowest among all relative estimates 
with a priority of criterion of q∈such that 

 ( ) , 1, , , ;q
k qkp X k K q K X S Sλ λ≤ = ∈ ∀ ∈ ⊂  (29) 

the lower level for performance of a condition (29) is 
defined 

 ( )min , , .q
k qkk K

p X q K X S Sλ λ
∈

= ∈ ∀ ∈ ⊂  (30) 

Ratios (29) and (30) are interconnected and serve 
further as transition from operation of definition of min to 
restrictions and vice versa. 

In section 3.1 we have given definition of a point of 
Xo∈S, optimum across Pareto, with equivalent criteria.  

Considering this definition as initial, we will construct a 
number of the axioms dividing an admissible set of S, first, 
into a subset of points of Sо, optimum across Pareto, and, 
secondly, on subsets of points of Sq⊂S, q∈K, priority on 
q-th to criterion. 
Axiom 2. (About a subset of points, priority by criterion). 

In vector problem (12)-(13) the subset of points of  
Sq ⊂ S is called as area of a priority of criterion of q∈K 
over other criteria, if ∀X ∈ Sq ∀k∈K λq(X) ≥ λk(X), q ≠ k. 

This definition extends and on a set of points of Sо, 
optimum across Pareto that is given by the following 
definition. 
Axiom 2a. (About a subset of points, priority by criterion, 
on Pareto's great number in Vector problem). 

In a vector problem of mathematical programming the 
subset of points of o

qS ⊂So⊂S is called as area of a priority 

of criterion of q∈K over other criteria, if  

 ( ) ( ) , .o
q q kX S k K X X q kλ λ∀ ∈ ∀ ∈ ≥ ≠  

We will give some explanations. 
Axiom 2 and 2а allowed to break in vector problem 

(12)-(13) an admissible set of points of S, including a 
subset of points, optimum across Pareto, Sо ⊂ S, into 
subsets: 
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one subset of points of S'∈S where criteria are equivalent, 
and a subset of points of S', being crossed with a subset of 
points of So, allocates a subset of points, optimum across 
Pareto, at equivalent criteria of Soo =S'∩So which as it will 
be shown further, consists of one point of Xo∈S, i.e. 
Xo=Soo=S'∩So, S'∈S, So∈S; 
"K" of subsets of points where each criterion of q= K,1  

has a priority over other criteria of k= K,1 , q ≠ k, thus 
breaks, first, sets of all admissible points of S, into subsets 
of Sq⊂S, q= K,1  and, secondly, a set of points, optimum 

across Pareto, Sо, into subsets o
qS ⊂So⊂S, q= K,1 ,  

From here the following ratios are right:  

 'U , , 1, .o o o o
q q

q K
S U S S S S S q K

∈

 
= ⊂ ⊂ = 

 
 

We will notice that the subset of points of S o
q on the one 

hand is included in area (a subset of points) priority of 
criterion of q∈K over other criteria: 

 ,o
q qS S S⊂ ⊂  (31) 

and with another, in a subset of points, optimum across 
Pareto: 

 .o o
qS S S⊂ ⊂  (32) 

The axiom 2 and numerical expression of a priority of 
criterion (Definition 5) allow to identify each admissible 
point of X∈S (by means of vector Pq(X)={ q

kp (X) 

=λq(X)/λk(X), k= K,1 }), to form and choose: 
• subset of points by priority criterion of Sq which is 

included in a set of points of S, ∀q∈K X∈Sq⊂S, (such 
subset of points can be used in problems of a clustering, 
but it is beyond article); 

• subset of points by priority criterion of S o
q which is 

included in a set of points of So, optimum across Pareto, 
∀q∈K, X∈S o

q ⊂So. 
Thus, full identification of all points in a vector 

problem (12)-(13) in sequence is executed: 

Set of admissible points of X∈S→ Subset of points, optimum across 
Pareto, X∈So⊂S → 

Subset of points, optimum across 
Pareto X∈ o

qS ⊂ So⊂ S→ 
Separate point of а ∀X∈S X∈ o

qS
⊂ So⊂ S 

 
It is the most important result which will allow to 

output the principle of an optimality and to construct 
methods of a choice of any point of Pareto's great number. 
Definition 8. (Principle of an optimality 2. The solution of 
a vector problem with the set criterion priority). 

Vector problem (12)-(13) with the set priority of q-th of 
criterion of p q

k , k = K,1  is considered solved if the point 
of Xo and a maximum level of λo among all relative 
estimates such that is found 

 ( )max min , .qo
kkk KX S

p X q Kλ λ
∈∈

= ∈  (33) 

Using interrelation (29) and (30), we will transform a 
maximine problem (33) to an extreme problem of the form 

 max ,o
X S

λ λ
∈

=  (34) 

 ( ) , 1, .q
kkp X k Kλ λ≤ =  (35) 

Problem (34)-(35) we will call λ-problem with a 
priority of q-th of criterion. 

The result of solution the λ-problem will be point 
Xo={Xo, λo} – it is result also of the solution of vector 
problem (12)-(13) with the set priority of the criterion, 
solved on the basis of normalization of criteria and the 
principle of the guaranteed result. In the optimum solution 
of Xo={Xo, λo}, Xo - an optimum point, and λo - the 
maximum bottom level. The point of Xo and the λo level 
correspond to restrictions (15), which can be written as: 

 ( ) , 1, .qo o
kkp X k Kλ λ≤ =  (36) 

These restrictions are a basis of an assessment of 
correctness of results of the decision in practical vector 
problems of optimization. 

Definition 1 and 2 "Principles of optimality" follows 
the opportunity to formulate the concept of the operation 
«opt». 

Definition 9. (Mathematical operation "opt"). 
In vector problem (12)-(13) which part criteria of 

"max" and "min" are, the mathematical operation "opt" 
consists in definition of a point of Xo and the maximum λo 
bottom level to which all criteria measured in relative 
units are lifted: 

 ( ) , 1, .
o

o o k k
k * o

k k

f (X) - f  
X k K

f f
λ λ≤ = =

−
 (37) 

i.e. all criteria of λk(Xo), k= K,1  are equal or more 
maximum level of λo, (therefore λo also is called as the 
guaranteed result). 
Theorem 2. (The theorem of the most inconsistent criteria 
in vector problem with the set priority). 

If in a convex vector problem of mathematical 
programming of maximizing (12)-(13) the priority of q-th 
of criterion of p q

k , k = K,1 , ∀q ∈ K over other criteria is 
set, in a point of an optimum of Xo ∈ S received on the 
basis of normalization of criteria and the principle of 
guaranteed result, always there will be two criteria with 
the indexes r ∈ K, t ∈ K, for which strict equality is 
carried out: 

 ( ) ( ) , , ,o r o t o
k r k tp X p X r t Kλ λ λ= = ∈  (38) 

and other criteria are defined by inequalities: 

 ( ) , 1, , , .qo o
kp X k k K q K q r tλ ≤ = = ∀ ∈ ≠ ≠  (39) 

Criteria with the indexes r∈K, t∈K for which equality 
(38) is carried out are called the most inconsistent. 

Proof. Similar to the theorem 2 [7]. 
We will notice that in (38) and (39) indexes of criteria 

of r, t ∈ K can coincide with the q ∈ K index. 
Consequence of the theorem 1. About equality of an 
optimum level and relative estimates in vector problem 
with two criteria with a priority of one of them. 
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In a convex vector problem of mathematical programming 
with two equivalent criteria, solved on the basis of 
normalization of criteria and the principle of the 
guaranteed result, in an optimum point of Xo equality is 
always carried out: at a priority of the first criterion over 
the second: 

 
( ) ( ) ( )
( ) ( ) ( )

1
1 2 2

1
2 1 2

, , ,

where / ,

o o o o o

o o o

X p X X X S

p X X X

λ λ λ

λ λ

= ∈

=
 (40) 

at a priority of the second criterion over the first:  

 
( ) ( ) ( )
( ) ( ) ( )

2
1 1 2

2
1 2 1

, ,

where / .

o o o o o

o o o

p X X X X S

p X X X

λ λ λ

λ λ

= = ∈

=
 

Algorithm 2 of the decision in problems of vector 
optimization with a criterion priority [4]. 

Step 1. We solve a vector problem with equivalent 
criteria. The algorithm of the decision is presented in 
section 3.2. As a result of the decision we will receive: 
optimum points by each criterion separately X *

k , k= K,1  

and sizes of criterion functions in these points of f *
k =fk(X

*
k ), k= K,1  which represent boundary of a set of points, 
optimum across Pareto; 
anti-optimum points by each criterion of X 0

k ={xj, j= N,1 } 

and the worst unchangeable part of criterion of f 0
k =fk(X 0

k ), 

k= K,1 ; 
Xo={λo, Xo} - an optimum point, as result of the 

solution of VPMP at equivalent criteria, i.e. result of the 
solution of a maximine problem and λ-problem 
constructed on its basis; 
λo - the maximum relative assessment which is the 

maximum lower level for all relative estimates of λk(Xo), 
or the guaranteed result in relative units, λo guarantees that 
all relative estimates of λk(Xo) more or are equal to λo: 

 ( ) , 1, , .o o o
k X k K X Sλ λ≤ = ∈  (41) 

The person making the decision, carries out the analysis 
of results of the solution of vector problem at equivalent 
criteria. If the received results satisfy the decision-maker, 
the end, differently the subsequent calculations. 

We will in addition calculate: 
• in each point of X *

k , k= K,1  we will determine sizes of 
all criteria of q= K,1 : 
{fq( *

kX ), q= K,1 }, k= K,1 , and relative estimates λ( *X ) 

={λq( *
kX ), q= K,1 , k= K,1 }, λk(X) =

o
k

*
k

o
kk

ff
 (X) - ff

−
, ∀k ∈ K: 

 

( )

( )

1 1 1
*

1

1 1 1
*

1

,

.

* *
k

* *
k k k

* *
k

* *
k k k

f (X ),..., f (X ),
F X ...

f (X ),..., f (X )

λ (X ),..., λ (X ),
X ...

λ (X ),..., λ (X )

λ

=

=

 (42) 

Matrixes of criteria of F(X*) and relative estimates of 
λ(X*) show sizes of each criterion of k= K,1  upon 

transition from one optimum point of X *
k , k∈K to another 

to X *
q
, q∈K, i.e. on border of a great number of Pareto. 

• in an optimum point at equivalent criteria of Xo we 
will calculate sizes of criteria and relative estimates: 

 ( ) ( ), 1, ; , 1, ,o o
k kf X k K X k Kλ= =  (43) 

which satisfy to an inequality (41). In other points of 
X∈So smaller of criteria in relative units of λ = min

k K∈
λk(X) 

is always less than λo. Are remembered given λ-problem 
(23)-(25). 

This information also is a basis for further studying of 
structure of a great number of Pareto. 

Step 2. Choice of priority criterion of q∈K. 
From the theory (see the theorem 1) it is known that in 

an optimum point of Xo always there are two most 
inconsistent criteria, q∈K and v∈K for which in relative 
units exact equality is carried out: 

 ( ) ( ) , , , ,o o o
q vX X q v K X Sλ λ λ= = ∈ ∈  (44) 

and for the others it is carried out inequalities: λo ≤ λk(Xo) 
∀k ∈ K, q ≠ v ≠ k. 

As a rule, the criterion which the decision-maker would 
like to improve gets out of this couple, such criterion is 
called as "priority criterion", we will designate it q∈K. 

Step 3. Numerical limits of change of size of a priority 
of criterion of q∈K are defined. 

For priority criterion of q∈K from a matrix (42) we will 
define numerical limits of change of size of criterion: 

• in physical units of 

 ( ) ( ) ( )* , ,o
q q q qf X f X f X k K≤ ≤ ∈  (45) 

where fq( *
qX ) undertakes from a matrix (42) F(X*), all 

criteria showing sizes measured in physical units;  
• in relative units of 

 ( ) ( ) ( )* , ,o
q q q qX X X k Kλ λ λ≤ ≤ ∈  (46) 

where λq(X *
q

*
k

) undertakes from a matrix (42) λ(X*), all 
criteria showing sizes measured in relative units (we will 
notice that λq(X *

q
*
k

)=1); λq(Xo) from (43). 
As a rule, results (45)-(46) are given for the display for 

the analysis. 
Step 4. Choice of size of priority criterion. (Decision-

making). 
The person making the decision, carries out the analysis 

of results of calculations (42) and from an inequality (45) 
chooses the numerical size fq of criterion of q∈K: 

 ( ) ( )* , .o
q q q qf X f f X q K≤ ≤ ∈  (47) 

For the chosen size of criterion of fq it is necessary to 
define a vector of unknown Xoo, for this purpose we carry 
out the subsequent calculations. 

Step 5. Calculation of a relative assessment. 
For the chosen size of priority criterion of fq the relative 

assessment is calculated: 
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 ,
o

q q
q * o

q q

f  - f  

f f
λ =

−
 (48) 

which upon transition from Xo point to *
qX  according to 

(46) lies in limits: λq(Xo) ≤λq≤λq(X *
q )=1. 

Step 6. Calculation of coefficient of linear 
approximation. 

Assuming linear nature of change of criterion of fq(X) in 
(45) and according to a relative assessment of λq(X) in 
(29), using standard methods of linear approximation, we 
will calculate proportionality coefficient between λq(Xo), 
λq, which we will call ρ: 

 , .
o

q q
* o

q q q

λ - λ (X ) 
q K

λ (X ) λ (X )
ρ = ∈

−
 (49) 

Step 7. Calculation of coordinates of priority criterion 
with the size fq. 

Assuming linear nature of change of a vector of X =  
{x1 x2} we will determine coordinates of a point of 
priority criterion with the size fq with a relative assessment 
(48): 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

*
1
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2

1 1 1 ,
.
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o o
qq

o o
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x X X X
x

x X X X

ρ

ρ

 = + − =  
 = + −
 

 (50) 

Step 8. Calculation of the main indicators of a point of 
xq. 

For the received xq point, we will calculate: 
all criteria in physical units fk(xq)={fk(xq), k=1, K }; 

all relative estimates of criteria λq ={λ q
k , k=1, K }, λk(xq)=

( )q o
k k

* o
k k

f x  - f  
f f−

, k=1, K 1, K ; 

vector of priorities Pq ={p q
k =

q
q

q
k

λ (x ) 

λ (x )
, k=1, K }; 

maximum relative assessment λoq=min (p q
k λk(xq), k=1, K ). 

Any point from Pareto's set X o
t ={λ o

t , X o
t }∈So can be 

similarly calculated  
Analysis of results. The calculated size of criterion  

fq(X o
t ), q∈K is usually not equal to the set fq. The error of 

the choice of ∆fq=|fq(X o
t ) - fq| is defined by an error of 

linear approximation 

4. Results. Numerical Problem of 
Modeling of Technical System (Research 
and the Solution of a Problem with 
Equivalent Criteria and with the Set 
Criterion Priority) 

We will consider a task "Numerical modeling of 
technical system" in which data on some set of functional 
characteristics (definiteness conditions), discrete values of 
characteristics (an uncertainty condition) and the 

restrictions imposed on functioning of technical system 
are known [3]. We will add the fifth criterion to a vector 
task [3]. We will conduct research, first, as the set of 
points will change, optimum across Pareto, secondly, we 
will calculate a point on a great number of Pareto in which 
one of criteria has a priority over other criteria.  

The numerical problem of modeling of technical system 
is considered with equivalent criteria and with the set 
criterion priority. 

It is given. The technical system, which functioning is 
defined by two parameters 1  X={x1, x2} – a vector 
(operated) variables. Basic data for the solution of a task 
are five characteristics (criterion) of  

 ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3 4 5, , , , ,F X f X f X f X f X f X=  

which size of an assessment depends on a vector of X. For 
characteristics of f1(X), f2(X), f5(X) functional dependence 
on parameters X (a definiteness condition) is known: 

 

( )

( )

2
1 1 1

2
2 2 1 2

2
2 1 1

2
2 2 1 2

2
5 1 1 2

2
2 1 2

67.425 0.02225* 0.00239*

0.05625* 0.00029* 0.0021232* * ,
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f X x x

x x x x

f X x x x

x x x

= + +

− + +

= − +

+ − −

= − + +

− +

(51) 

Functional restrictions: 

 
( ) 2

2 1 1
2

2 2 1 2

3800 4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * 5500

f X x x

x x x x

≤ ≡ − +

+ − − ≤
 (52) 

Parametrical restrictions: 

 1 225 100,25 100.x x≤ ≤ ≤ ≤  (53) 

For the third and fourth characteristic results of 
experimental data are known: sizes of parameters and 
corresponding characteristics (uncertainty condition). 
Numerical values of parameters X and characteristics of 
y3(X), y4(X) are presented in Table 1. 

Table 1. Numerical values of parameters and characteristics of 
technical system 

x1 x2 y3(X)→max y4(X)→min 
25 25 1148 490.9 
25 50 1473 483.1 
25 75 1798 557.3 
25 100 2122 521.5 
50 25 725 498.1 
50 50 968 521.5 
50 75 1212 549.9 
50 100 1456 578.3 
75 25 440 507.3 
75 50 572 549.9 
75 75 734 592.5 
75 100 897 635.1 
100 25 202 521.5 
100 50 284 578.3 
100 75 385 635.1 
100 100 446 691.9 

                                                           
1 Practical problems of simulation of technical systems on this algorithm 
can be solved with dimensionality of parameters X more than two N>2. 
The structure of the software becomes complicated. Geometrical 
interpretation of N=3,4 … isn't possible. The choice of two parameters 
selected from three (N '=2) ∁ (N=3) is possible. In this direction it is 
carried further researches and development of the appropriate algorithms. 
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In the made decision, assessment size of the first, 
second and the third characteristic (criterion) is possible to 
receive above (max), for the fourth and five characteristic 
is possible below (min). Parameters X={x1, x2} change in 
the following limits: x1, x2 ∈ [25. 50. 75. 100]. 

It is required. To construct model of technical system in 
the form of a vector problem. To solve a vector problem 
with equivalent criteria. To choose priority criterion. To 
establish numerical value of priority criterion. To make 
the best decision (optimum). 

Methodology of modeling of technical system in the 
conditions of definiteness and uncertainty. 

1. Creation of mathematical model of technical 
system. 

1.1. Construction in the conditions of definiteness is 
defined by functional dependence of each characteristic 
and restrictions on parameters of technical system. In our 
example three characteristics (35) and restrictions (36)-(37) 
are known: 
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0.05625* 0.00029* 0.0021232* * ,
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2.805* 0.037* 0.22192* * ,
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f X x x
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(54) 

Functional restrictions: 

 
( ) 2

2 1 1
2

2 2 1 2

3800 4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * 5500

f X x x

x x x x

≤ ≡ − +

+ − − ≤
 (55) 

Parametrical restrictions: 

 1 225 100,  25 100.x x≤ ≤ ≤ ≤  (56) 

These data are used further at creation of mathematical 
model of technical system. 

1.2. Construction in the conditions of uncertainty 
consists in use of the qualitative and quantitative 
descriptions of technical system received by the principle 
"entrance exit" in Table 1. Transformation of information 
(basic data of y3(X), y4(X)) to a functional type of f3(X), 
f4(X) is carried out by use of mathematical methods (the 
regression analysis). 

Basic data of Table 1 are created in Matlab system in 
the form of a matrix  

 { }1 2 3 4, , 1, .i i i iI X Y x x y y i M= = =  (57) 

For each set experimental these yk, k= 4,3  function of 
regression on a method of the smallest squares in Matlab 
system is formed. Ak,- polynom defining interrelation of 
factors of Xi ={x1i, x2i} (57) and functions 

kiy = f(Xi,Аk),  

k= 4,3  is constructed.  
As a result of calculations we received system of 

coefficients of Ak={A0k, A1k, A2k, Ak3, A4k, A5k} which 
define coefficients of a polynom (function): 
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( , )

* , 3, 4
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k k k

f X A A A x A x

A x A x A x x k

= + +

+ + + =
 (58) 

As a result of calculations of coefficients of Ak, k=3, we 
received the f3(X) function: 
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3 1 1
2

2 2 1 2

1273.5 19.919* 0.0854*

16.071* 0.001* 0.13034* * ,

f X x x

x x x x

= − +

+ + −
 (59) 

The graphical representation of the f3(X) function is 
shown in Figure 1[3]. 

We showed in Figure 1 [13].X3
*, X3

0 the best (maximum) 
and worst (minimum) decision, according to f3(X3

*), f3(X3
0) 

– sizes of functions. 
As a result of calculations of coefficients of Ak, k =4, 

we received the f4(X) function: 

 
( ) 2

4 1 1
2

2 2 1 2

481.7 0.6915* 0.0047*

0.3535* 0.0023* 0.021808* * ,

f X x x

x x x x

= − +

+ − +
 (60) 

The graphical representation of the f4(X) function is 
shown in Figure 2 [3]. 

We showed in Figure 2 [3] X4
*, X4

0 the best (minimum) 
and worst (maximum) decision, according to f4(X4

*), f4(X4
0) 

– sizes of functions.  
Parametrical restrictions are similar (56): 25≤x1≤100, 

25≤x2≤100. 
1.3. Creation of mathematical model of technical 

system (The general part for conditions of definiteness and 
uncertainty). 

For creation of mathematical model of technical system 
we used: 
the functions received conditions of definiteness (54) and 
uncertainty (59), (60); 
functional restrictions (55); 
parametrical restrictions (56). 

We considered functions (54) and (59), (60) as the 
criteria defining focus of functioning of technical system. 
A set of criteria K=5 included three criteria of f1(X), f2(X), 
f3(X) →max and two f4(X), f5(X) →min. As a result model 
of functioning of technical system was presented a vector 
problem of mathematical programming: 

 

( ) 1
2

1 1 1
2

2 2 1 2

 {  ( )

{  ( ) 67.425 0.02225* 0.00239*

 0.05625* 0.00029* 0.0021232* * ,

opt F X max F X

max f X x x

x x x x

=

= ≡ + +

− + +

(61) 

 
( ) 2

2 1 1
2

2 2 1 2

4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * ,

max f X x x

x x x x

≡ − +

+ − −
 (62) 

 
( ) 2

3 1 1
2

2 2 1 2

 1273.5 19.919* 0.0854*

16.071* 0.001* 0.13034* * },

max f X x x

x x x x

≡ − +

+ + −
 (63) 

 

( )
( )

( )

2
2

4 1 1
2

2 2 1 2
2

5 1 1
2

2 2 1 2

 

{  481.7 0.6915* 0.0047*

0.3535* 0.0023* 0.021808* * ,

 281.7 0.7* 0.01*

0.36* 0.019* 0.022* * }}

min F X

min f X x x

x x x x

min f X x x

x x x x

= ≡ − +

+ − +

= − +

+ − +

 (64) 

at restrictions 

 
( ) 2

2 1 1
2

2 2 1 2

3800 4456.3 2.315* 0.239*

2.805* 0.037* 0.22192* * 5500

f X x x

x x x x

≤ ≡ − +

+ − − ≤
 (65) 
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 1 225 100,  25 100.x x≤ ≤ ≤ ≤  (66) 

The vector problem of mathematical programming 
represents model of adoption of the optimum decision in 
the conditions of definiteness and uncertainty in total. 

2. The solution of a vector problem of mathematical 
programming - model of technical system with 
equivalent criteria and with the set criterion priority. 

2.1. Algorithm 1 of the decision in problems of vector 
optimization with equivalent criteria 

The solution of a vector problem (61)-(62) with was 
submitted as sequence of steps. 

Step 1. Problems (61)-(66) were solved by each 
criterion separately, thus used the function fmincon (…) of 
Matlab system [14], the appeal to the function fmincon 
(…) is considered in [8]. 

As a result of calculation for each criterion we received 
optimum points: X *

k  and f *
k =fk(X *

k ), k= K,1  – sizes of 
criteria in this point, i.e. the best decision on each criterion: 

 

{ } ( )
{ } ( )
{ } ( )
{ } ( )
{ } ( )

* * *
11 1 2 1

* * *
22 1 2 2 2

* * *
33 1 2 3 3

* * *
44 1 2 4 4

* * *
55 1 2 5 5

100, 100 , 112.06;

97.16, 48.09 , 5500.0;

25.0, 100.0 , 2120.15;

25.0, 25.0 , 488.38;

25.0, 68.41 , 243.78.

X f X

X f X

X f X

X f X

X f X

x x f

x x f

x x f

x x f

x x f

= =

= = = −

= = = −

= = =

= = =

= = = −

= =

= =

= =

= =

 

Restrictions (66) and points of an optimum in 
coordinates {x1, x2} are presented on Figure 1. (Compare 
to Figure 3 [3]). 

 
Figure 1. Pareto's great number, So⊂S in two-dimensional system of coordinates 

Step 2. We defined the worst unchangeable part of each 
criterion (anti-optimum): 

 

{ } ( )
{ } ( )
{ } ( )
{ } ( )

0 0 0
1 1 2 1 1 1
0 0 0
2 1 2 2 2 2
0 0 0
3 1 2 3 3 3
0 0 0
4 1 2 4 4 4

25.0, 25.0 , 69.57;

37.32, 98.88 , 3800;

 83.1, 25.0 , 339.7;

 83.1, 25.0 , 689.9.

f X

f X

f X

f X

X x x f

X x x f

X x x f

X x x f

= = =

= =

= = =

= = =

= =

= = =

= =

= = −

 

(Top index zero). 
Step 3. We made the analysis of a set of points, 

optimum across Pareto. In points of an optimum of X* 

={X1
*, X2

*, X3
*, X4, X5

**} sizes of criterion functions of 
F(X*)= Kk

Kqkq Xf
,1

,1

* )(
=

=
 determined. Calculated a vector of 

D=(d1 d2 d3 d4 d5)T - deviations by each criterion on an 
admissible set of S: dk =fk

*-fk
0, k= 5,1 , and matrix of 

relative estimates of 

 ( )
( )

1,* *
1,

* 0

( ) ,

where ( ) / .

k K
q k q K

k k k k

X X

X f f d

λ λ

λ

=

=
=

= −

 

 

( )*

-112.1   -4306.1   -449.3    690.0 377.7
-100.0   -5500.0   -310.5    572.5 384.3
-72.1   -3903.5   -2120.2    534.2 171,4 ,
-69.6   -4456.1   -1149.8    488.4 281.3
-70.6 4187.0 1710.1 518.1 243.8

 42.48
170

D

F X =

−

=

( )*

0.0
1780.5 ,
-201.6
-154.2

1.0000    0.2977    0.0616         0 0.1312
0.7170    1.0000   -0.0164   0.5829 0.0887
0.0584    0.0609    1.0000    0.7726 1.4692
0             0.3859    0.4550    1.0000 0.7564
0.0

Xλ = .

244 0.2276 0.7697 0.8527 1.0000

 

Discussion. The analysis of sizes of criteria in relative 
estimates showed that in points of an optimum of X *={X1

*, 
X2

*, X3
*, X4

*, X5
*} the relative assessment is equal to unit. 
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Other criteria there is much less than unit. It is required to 
find such point (parameters) at which relative estimates 
are closest to unit. The step 4 is directed on the solution of 
this problem. 

Step 4. Creation of λ-problem is carried out in two 
stages: originally the maximine problem of optimization 
with the normalized criteria is under construction: 

 ( ) ( )max min , 0, 0,o
k

kx
X G X Xλ λ= ≤ ≥  

which at the second stage was transformed to a standard 
problem of mathematical programming (λ-problem): 

 max ,oλ λ=  (67) 

at restrictions 

 

2
1 1

2
2 2

1 2 1

1 1

67 4 0 02225 0.0024

0.05625 0.00029

0 002123
0,

o

* o

. + . * x * x

* x * x

+ . * x * x  - f

f f
λ

 +
 
 − +
 
 
 − ≤

−
 (68) 

2
1 1 2

2
2 1 2 2

2 2

4456 3 2 315 0 239 2 605

0 037 0 222
0,

o

* o

. . * x . * x + . * x

. * x . * x * x  f

f f
λ

 − +
 
 − − − − ≤

−
(69) 

2
1 1 2

2
2 1 2 3

3 3

1273 5 19 92 0 0854 16 07

0 01 0 1303
0,

o

* o

. - . * x . * x + . * x

+ . * x . * x * x  f

f f
λ

 +
 
 − − − ≤

−
(70) 

 

2
1 1

2
2 2

1 2 4

4 4

481 7 0 6915 0 0047

0 3535 0 0023

0 0218
0,

o

* o

. . * x + . * x

. * x . * x

. * x * x  f

f f
λ

 −
 
 + −
 
 + − − ≤

−
 (71) 

 

2
1 1 2

2
2 1 2 5

5 5

281 7 0 7 0 01 0 36

0 019 0 022
0,

o

* o

. . * x + . * x . * x

. * x . * x * x f

f f
λ

 − +
 
 − + − − ≤

−
 (72) 

 ( )2

1 2

3800 5500;0 1,
25 100,25 100,

f x
x x

λ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
 (73) 

where the vector of unknown had dimension of N+1: 
X={x1, … , xN, λ}. Appeal to function fmincon(…), [14]: 

[Xo,Lo]=fmincon('Z_TehnSist_4Krit_L',X0,Ao,bo,Aeq
,beq,lbo,ubo,'Z_TehnSist_LConst',options). 

As a result of the solution of a vector problem of 
mathematical programming (61)-(66) at equivalent criteria 
and λ-problem corresponding to it (67)-(73) received: 

Xo={Xo, λo}={Xo={x1=60.36, x2=64.52, λo=0.3236} - an 
optimum point – design data of technical system, point Xo 
is presented in Figure 1; 

fk(Xo), k= K,1  - sizes of criteria (characteristics of 
technical system): 

( ) ( )
( ) ( ) ( )

1 2

3 4 5

83.3, 4350.1,
;

915.8, 555.2, 305.7

o o

o o o

f X f X

f X f X f X

 = = 
 
 = = =
 

(74) 

λk(Xo), k= K,1  - sizes of relative estimates: 

 

( ) ( )
( )
( ) ( )

1 2

3

4 5

0.3236, 0.3236,

0.3236, ;

0.6683, 0.5984

o o

o

o o

X X

X

X X

λ λ

λ

λ λ

 = =
 
 

= 
 
 = =
 

 (75) 

λo=0.3236 is the maximum lower level among all 
relative estimates measured in relative units: : λo=min 
(λ1(Xo), λ2(Xo), λ3(Xo), λ4(Xo), λ5(Xo))=0.3236. A relative 
assessment - λo call the guaranteed result in relative units, 
i.e. λk(Xo) and according to the characteristic of technical 
fk(Xo) system it is impossible to improve, without 
worsening thus other characteristics. 

Discussion. We will notice that according to the 
theorem 1, in Xo point criteria 1, 2, 3 are contradictory. 
This contradiction is defined by equality of λ1(Xo)= 
λ2(Xo)= λ3(Xo)=λo=0.3236, and other criteria an inequality 
of {λ4(Xo)=0.6683, λ5(Xo)=0.5984}>λo. 

Thus, the theorem 1 forms a basis for determination of 
correctness of the solution of a vector task. In a vector 
problem of mathematical programming, as a rule, for two 
criteria equality is carried out: 

 ( ) ( )
( )

, , , ,

in our example of such criteria three

o o o
q pX X q p K X Sλ λ λ= = ∈ ∈

 

and for other criteria is defined as an inequality: λo ≤ λk(Xo) 
∀k ∈ K, q ≠ p ≠ k.  

In an admissible set of points of S formed by 
restrictions (73), optimum points X1

*, X2
*, X3

*, X4
*, X5

* 
united in a contour, presented a set of points, optimum 
across Pareto, to So⊂S . For specification of border of a 
great number of Pareto calculated additional points: X o

12 , 

X o
13 , X o

35 , X o
54 , X o

42  which lie between the corresponding 
criteria.  

For definition of a point of X o
12  the vector problem was 

solved with two criteria (68), (69), (73).  
Results of the decision: 12

oX ={79.99 62.31}, λo( 12
oX ) 

=0.5445; F12 ={92.7 4725.6 582.1 578.3 348.0};  
L12 = {0.5445 0.5445 0.1362 0.5541 0.3238}. 

Other points were similarly defined: X o
13 ={62.94 

98.44}, λo(X o
13 )=0. 4507; F13 = {88.7 3800.0 1142.2 604.4 

264.9}; L13 = (0.4507 0.0 0.4507 0.4243 0.8630}; X o
35

={45.0 80.0}, λo(X o
35 )=0. 83; F35 = {-78.3 -4024.8 -

1372.9 552.2 256.9}; L35 = {0.2045 0.1322 0.5803 0.6836 
0.9152}; X o

54 ={30.0 60.0}, λo(X o
54 )=0. 83; F35 = {-71.7 -

4236.7 -1486.0 517.4 262.5}; L54 = {0.0508 0.2574 
0.6429 0.8562 0.8786}; X o

42 ={78.14 25.0}, λo(X
o
42 )=0.9108; F42 = {86.7 5348.3 386.2 506.4 382.2}; L42 = 
{0.4026 0.9108 0.0261 0.9108 0.4526}. 

Points: 12
oX , 13

oX , 35
oX , 54

oX , 42
oX  are presented in 

Figure 1. Coordinates of these points, and also characteristics 
of technical system in relative units of λ1(X), λ2(X), λ3(X) , 
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λ4(X), λ5(X) are shown in Figure 5 in three measured 
space, where the third axis of λ - a relative assessment. 

 
Figure 2. The solution of λ-problem in three-dimensional system of 
coordinates of x1, x2 and λ 

2.2. Algorithm 2 of the decision in problems of vector 
optimization with a criterion priority 

Step 1. We solve a vector problem with equivalent 
criteria. The algorithm of the decision is presented in 
section 3.2. Numerical results of the solution of a vector 
task are given above. Pareto's great number of So⊂S lies 
between optimum points *

1X X 13
o *

3X 35
oX  *

5X 54
oX *

4X

42
oX  *

2X 12
oX *

1X . 
We will carry out the analysis of a great number of 

Pareto So⊂S. For this purpose we will connect auxiliary 
points: 12

oX , 13
oX , 35

oX , 54
oX , 42

oX  with a point Xo which 
conditionally represents the center of a great number of 
Pareto. As a result have received five subsets of points  
X∈ o

qS ⊂So⊂S, q= 5,1 . The subset of 1
oS ⊂So⊂S is 

characterized by the fact that the relative assessment of λ1 
≥λ2, λ3 , λ4, λ5, i.e. in the field of S first criterion has a 

priority over the others. Similar to S o
2 , S o

3 , S o
4 , S o

5 - 
subsets of points where the second - the fifth criterion has 
a priority over the others respectively. Set of points, 
optimum across Pareto we will designate So=S o

1 ∪S o
2 ∪S

o
3 ∪S o

4 ∪S o
5 . Coordinates of all received points and 

relative estimates are presented in two-dimensional space 
in Figure 1. These coordinates are shown in three 
measured space {x1, x2, λ} from a point of X *

4  in Figure 2 
where the third axis of λ- a relative assessment. 
Restrictions of a set of points, optimum across Pareto, in 
Figure 2 it is lowered to-0.5 (that restrictions were visible). 
This information is also a basis for further research of 
structure of a great number of Pareto. The person making 
decisions, as a rule, is the designer of technical system. If 
results of the solution of a vector task with equivalent 
criteria don't satisfy the person making the decision, then 
the choice of the optimal solution is carried out from any 

subset of points of S o
1 , S o

2 , S o
3 , S o

4 , S o
5 .  

Step 2. Choice of priority criterion of q∈K. From the 
theory (see the theorem 1) it is known that in an optimum 

point of Xo always there are two most inconsistent criteria, 
q∈K and v∈K for which in relative units exact equality is 
carried out: λo =λq(Xo) =λp(Xo), q, v∈K, X∈S, and for the 
others it is carried out inequalities: λo ≤ λk(Xo) ∀k∈K, 
q≠v≠k. 

In model of technical system (61)-(66) and the 
corresponding λ-problem (67)-(73) such criteria are the 
first, second and third: 

 ( ) ( ) ( )1 2 3 0.3236.o o o oX X Xλ λ λ λ= = = =  (76) 

We will show them in Figure 3. 

 
Figure 3. The solution of λ-problem (1, 2, 3 criterion) in three-
dimensional system of coordinates of x1, x2 and λ 

As a rule, the criterion which the decision-maker would 
like to improve gets out of couple of contradictory criteria. 
Such criterion is called "priority criterion", we will 
designate it q=2∈K. This criterion is investigated in 
interaction with the third criterion of k=3∈K. We will 
allocate these two criteria from all set of the criteria K=5 
shown in Figure 3. We will present criteria of q=2 k=3 in 
separate drawing of Figure 4 in order that was the picture 
of construction and choice of size of priority criterion is 
visible. 

 
Figure 4. The solution of λ-problem (2, 3 criterion) in three-dimensional 
system of coordinates of x1, x2 and λ 

On the display the message is given:  
q=input ('Enter priority criterion (number) of q =') - 

Have entered: q=2. 
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Step 3. Numerical limits of change of size of a priority 
of criterion of q=2∈K are defined. 

For priority criterion of q=2 numerical limits in 
physical units upon transition from a point of an optimum 
of Xo (74) to the point of *

qX  received on the first step are 
defined. 

Information about the criteria for q=2 are given on the 
screen: 

( ) ( ) ( )*=4350.06 5500 , .o
q q q qf X f X f X q K≤ ≤ = ∈ (77) 

In relative units the criterion of q=2 changes in the 
following limits: 

 ( ) ( ) *0.3236 ( ), 2 .o
q q q qX X X q Kλ λ λ λ= ≤ ≤ = = ∈ (78) 

These data it is analyzed.  
Step 4. Choice of size of priority criterion. q∈K. 

(Decision-making). 
The message is displayed: "Enter the size of priority 

criterion fq=" - we enter, for example, fq =5000. 
Step 5. Calculation of a relative assessment. 
For the chosen size of priority criterion of fq =5000 the 

relative assessment is calculated: 

 5000 - 3800 0.7059,
5500 3800

o
q q

q * o
q q

f  - f  

f f
λ = = =

−−
 (78) 

which upon transition from Xo point to X *
q  according to 

(75) lies in limits: 0. 3236 =λ2(Xo) ≤λ2=0.7059≤λ2(X *
2 )=1, 

q∈K. 
Step 6. Calculation of coefficient of linear approximation. 
Assuming linear nature of change of criterion of fq(X) in 

(77) and according to a relative assessment of λq(X), using 
standard methods of linear approximation, we will 
calculate proportionality coefficient between λq(Xo), λq, 
which we will call ρ: 

 
0.7059 0.3236 0.5652,

1 0.3236

2 .

o
q q

* o
q q q

λ - λ (X ) 

λ (X ) λ (X )

q K

ρ −
= = =

−−

= ∈

(79) 

Step 7. Calculation of coordinates of priority criterion 
with the size fq. 

Assuming linear nature of change of a vector of Xq={x1 
x2}, q=2 we will determine coordinates of a point of 
priority criterion with the size fq with a relative assessment 
(79): 

 

( ) ( ) ( )( )
( ) ( ) ( )( )

*
1

*
2

1 2

1 1 1 ,
.

2 2 2

{ 76.5478, 42.9348}.

o o
qq

o o
q

q

x X X X
X

x X X X

X x x

ρ

ρ

 = + − =  
 = + −
 

= = =

 (80) 

where Xo={x1=60.36, x2=64.52}, *
2X ={x1=97.16, x2=48.09}. 

As a result of calculations we have received point 
coordinates: Xq={x1=76.5478, x2=42.9348}. 

Step 8. Calculation of the main indicators of a point of 
Xq. 

For the received Xq point, we will calculate: 
all criteria in physical units fk(Xq)={fk(Xq), k= K,1 }: 

 ( )
( ) ( )
( ) ( )
( )

1 2

3 4

5

92.3, 4889.9,

525.8, 566.8, ;

351.3

q q

q q q

q

f X f X

f X f X f X

f X

 = =
 
 

= = = 
 
 =
 

 

all relative estimates of criteria λq ={λ q
k , k= K,1 }, λk(Xq)=

o
k

*
k

o
k

q
k

ff
  - fXf

−
)( , k= K,1

K,1

:  

 ( )
( ) ( )
( ) ( )
( )

1 2

3 4

5

 0.5342, 0.6411,

0.1045, 0.6110, ;

0.3025

q q

q q q
k

q

X X

X X X

X

λ λ

λ λ λ

λ

 = =
 
 

= = = 
 
 =
 

 

vector of priorities Pq ={p q
k =

)(Xλ
) (Xλ

q
k

q
q , k= K,1 }: 

 1.2002, 1.0, 6.1325,
;

1.0493, 2.1193
q p p p

P
p p
= = = 

=  = = 
 

minimum relative assessment: minLXq=min(LXq): 
minLXq=min(λk(Xq)) = 0.1045;  
relative assessment taking into account a criterion priority: 
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the minimum relative assessment taking into account a 
criterion priority: 
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Any point from Pareto's set X o
t ={λ o

t , X o
t }∈So can be 

similarly calculated: X o
t ={x1=76.5478, x2=42.9348}. 

Analysis of results. The calculated size of criterion 
fq( o

tX ), q∈K is usually not equal to the set fq. The error of 

the choice of ∆fq=|fq(X o
t ) - fq| =|4889.9 - 5000|=110.1 is 

defined by an error of linear approximation, ∆fq%= 2.2%. 
In the course of modeling parametrical restrictions (66), 

functional restrictions (65) can be changed, i.e. some set 
of optimum decisions is received. Choose a final version 
which in our example included from this set of optimum 
decisions: 
• parameters of technical system Xo={x1=60.36, 

x2=64.52}; 
• the parameters of the technical system at a given 

priority criterion q=2: Xq={x1=76.5478, 
x2=42.9348}. 

We represent these parameters in a two-dimensional x1, 
x2 and three dimensional coordinate system x1, x2 and λ in 
Figure 1, Figure 3, Figure 4, and also in physical units for 
each function f1(X), … , f5(X) on Figure 5, ..., Figure 9, 
respectively. 
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The first characteristic f1(X) in physical units show in 
Figure 5. 

 
Figure 5. The first characteristics of f1(X) of technical system in natural 
indicator 

In point Xo, Xq of the second characteristic of f2(X) will 
assume to the look presented in Figure 6. 

 
Figure 6. The second characteristics of f2(X) of technical system in 
natural indicator  

In point Xo, Xq of the third characteristic of f3(X) will 
assume to the look presented in Figure 7; 

 
Figure 7. The third characteristics of f3(X) of technical system in natural 
indicator 

In point Xo, Xq of the fourth characteristic of f4(X) will 
assume to the look presented in Figure 8; 

 
Figure 8. The fourth characteristics of f4(X) of technical system in 
natural indicator  

In point Xo, Xq of the five characteristic of f5(X) will 
assume to the look presented in Figure 9. 

 
Figure 9. The fourth characteristics of f5(X) of technical system in 
natural indicator  

Collectively, the submitted version: 
• point - Xo; characteristics of f1(Xo), f2(Xo), f3(Xo), f4(Xo), 

f5(Xo); 
• relative estimates of λ1(Xo), λ2(Xo), λ3(Xo) , λ4(Xo), 

λ5(Xo);  
• maximum λo relative level such that λo ≤ λk(Xo) ∀k ∈ 

K  
- there is an optimum decision at equivalent criteria 

(characteristics), and procedure of receiving is adoption of 
the optimum decision at equivalent criteria (characteristics). 

• point – Xq; characteristics of f1(Xq), f2(Xq), f3(Xq), f4(Xq), 
f5(Xq); 

• relative estimates of λ1(Xq), λ2(Xq), λ3(Xq) , λ4(Xq), 
λ5(Xq);  

• maximum λo relative level such that λo ≤ λk(Xq) ∀k ∈ 
K  

- there is an optimal solution at the set priority of the 
second criterion (characteristic) in relation to other criteria. 
Procedure of receiving a point is Xq adoption of the 
optimal solution at the set priority of the second criterion. 
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Theory of vector optimization, methods of solution of 
the vector problems with equivalent criteria and given 
priority of criterion can choose any point from the set of 
points, optimum across Pareto, and show the optimality of 
this point. 

5. Conclusions 
The problem of adoption of the optimum decision in 

difficult technical system on some set of functional 
characteristics is one of the most important tasks of the 
system analysis and design. In work the new technology 
(methodology) of creation of mathematical model of 
technical system in the conditions of definiteness and 
uncertainty in the form of a vector problem of 
mathematical programming is presented. 

For the first time in domestic and foreign literature, we 
have submitted the theory of vector optimization and 
methods for the choice of any point, from Pareto's great 
number. The principles of an optimality of a point are 
shown in the theory, first, at equivalent criteria, secondly, 
at the set criterion priority. These methods can be used at 
design of technical systems of various branches: electro 
technical 2, aerospace, metallurgical, etc. 

At creation of characteristics in the conditions of 
uncertainty regression methods of transformation of 
information are used. The methodology of modeling and 
adoption of the optimum decision is based on 
normalization of criteria and the principle of the 
guaranteed result (maxmin). Methods allow solving vector 
problems at equivalent criteria and with the set criterion 
priority. Results of the decision are a basis for decision-
making on the studied technical system on all set of 
point’s optimum across Pareto. 

This methodology has system character and can be used 
when modeling both technical and economic systems. 
Authors are ready to participate in the solution of vector 
problems of linear and nonlinear programming. 
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