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ABSTRACT

The MapReduce distributed programming framework has
become popular, despite evidence that current implemen-
tations are inefficient, requiring far more hardware than a
traditional relational databases to complete similar tasks.
MapReduce jobs are amenable to many traditional database
query optimizations (B+Trees for selections, column-store-
style techniques for projections, etc), but existing systems
do not apply them, substantially because free-form user code
obscures the true data operation being performed. For ex-
ample, a selection in SQL is easily detected, but a selection
in a MapReduce program is embedded in Java code along
with lots of other program logic. We could ask the pro-
grammer to provide explicit hints about the program’s data
semantics, but one of MapReduce’s attractions is precisely
that it does not ask the user for such information.

This paper covers MANIMAL, which automatically ana-
lyzes MapReduce programs and applies appropriate data-
aware optimizations, thereby requiring no additional help
at all from the programmer. We show that MANIMAL suc-
cessfully detects optimization opportunities across a range of
data operations, and that it yields speedups of up to 1,121%
on previously-written MapReduce programs.

1. INTRODUCTION

The MapReduce programming framework has become an
extremely popular method for developing distributed data-
processing software. It offers developers an environment
that is quite different from that of a traditional relational
database system, and more similar to standard UNIX de-
velopment: software is written using traditional languages
rather than SQL, data is treated as bytestreams rather than
tuples, and there is no explicitly-declared metadata. Fur-
ther, MapReduce systems have shown they can operate at
extremely large scale with manageable administrative over-
head: Yahoo has announced one that uses 10,000 cores [29].
Although the original motivation of MapReduce’s design-
ers was scalability for Web-scale bulk-processing tasks [11],
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some common MapReduce programs — such as simple selec-
tion and aggregation of log file data — overlap with tradi-
tional relational workloads.

However, MapReduce systems lag far behind RDBMSes in
their query-processing sophistication and runtime efficiency.
For example, Pavlo et al. [22] showed that a MapReduce pro-
gram can run 2-50x slower than a similar relational query
run on an RDBMS, using identical hardware. A recent
paper by Anderson and Tucek [5] suggested that Hadoop
performed bulk data processing at a rate of less than 5
megabytes per second per node (and barely more than half
a megabyte per second per core) [5].

Thus, MapReduce systems may obtain a required level of
performance through sheer scalability, but only at an enor-
mous cost in hardware and power. If MapReduce could
employ the efficient query processing techniques commonly
found in RDBMSes, existing clusters could accomplish sub-
stantially more work, or could accomplish the same work
with much less hardware. Developers would not have to
choose between the appealing MapReduce programming model
and the efficiency of an RDBMS; they could enjoy both.

Our MANIMAL system enables MapReduce program exe-
cution with substantial speedups over conventional systems.
MANIMAL does so using identical hardware, and does not
ask the developer to make any program modifications. We
observed speedups of up to 1,121% on wholly-unmodified
programs published by Pavlo, et al. [22]. Our experiments
evaluate MANIMAL using all of the benchmarks published by
Pavlo, et al., as well as programs we wrote to examine each
individual optimization method.

Previous work in query optimization has mainly focused
on operators in the relational algebra. Of course, the MapRe-
duce framework (like most software in general) does not use
this algebra. However, data-centric programming idioms of-
ten perform work that is similar to that done by the re-
lational algebraic operators. For example, a MapReduce
map() function that only emits data when a deserialized
parameter’s rank is greater than 1 performs work that is
akin to a selection. A map() that only examines a subset of
the fields in its passed-in parameters performs work that is
similar to a projection of fields in the object. We can ap-
ply known query optimization techniques to speed up such
code. For example, in the case of a projection-style MapRe-
duce program, the system can use an alternate serialized
version of the data that stores only the needed fields for a
program, thereby reducing the overall number of bytes that
must be processed (similar to a column-store [25] or an on-
disk binary association table [7]). The goal of MANIMAL is to
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Figure 1: Architecture of the MANIMAL system.

automatically detect and exploit as many of these standard
optimization opportunities as possible.

Of course, relational-style optimizations are tightly linked
to the semantics of the program itself. RDBMSes use query
languages and metadata that make such semantics explicit,
but MapReduce systems do not. Moreover, programmers
likely chose to write a MapReduce program at least par-
tially because such metadata is not required. Thus, a cen-
tral challenge for MANIMAL is to understand users’ programs
well enough so that the optimizations can be applied wholly
automatically, thereby obtaining good performance and pre-
serving MapReduce’s appealing programming model.

This paper describes a static analysis-style mechanism for
detecting optimizable code in already-compiled MapReduce
programs. Like most programming-language optimizers, it
is a best-effort system: MANIMAL does not guarantee that
it will find every possible optimization, and a determined
programmer can elude the detector. Of course, missing an
opportunity for optimization is regrettable, but finding a
false one is catastrophic; MANIMAL should only indicate an
optimization when it is entirely safe to do so. The MANI-
MAL analyzer is designed to sacrifice potential optimizations
when there is a chance of non-safety; however, we show ex-
perimentally that it can find most of the optimizations dis-
covered by a human annotator in a collection of MapReduce
programs.

Note that this static analysis approach is most appropri-
ate for MapReduce programs that are “program-specific,”
with code that is directly related to the user’s end-goals for
the program. For tools layered on top of MapReduce, such
as the Pig query system [21], we believe a better approach
is for the tools to give MANIMAL explicit hints about pro-
gram semantics. We discuss this issue in more depth in
Appendix A.

Background There has been a recent surge of interest in

MapReduce systems. Some projects have applied MapReduce-
inspired techniques to building a traditional relational database

[2, 26], but most have focused on improving MapReduce ex-
ecution performance [3, 8, 12, 27, 28]. However, most of
these projects are either low-level system techniques that
are semantics-free, or ask the user to modify their code to
expose more program semantics. To the best of our knowl-
edge, MANIMAL is the first MapReduce system to use data
semantics-driven optimizations without requiring any code
changes from developers.

We previously presented an outline of the MANIMAL ar-
chitecture and a single experimental result [9]. This paper
substantially expands on that earlier work, with new opti-
mization techniques, a much more detailed technical discus-
sion, more complete discussions of MapReduce workloads,
and full experimental results.

Contributions and Outline The main contributions of
this work include:

e A framework for optimizing wholly-unmodified MapRe-
duce programs, targeting data-centric programming
idioms (in Section 2)

e Algorithms for detecting and exploiting three opti-
mization types: selection, projection, and data com-
pression (Section 3).

e An implemented MANIMAL system that yields substan-
tial performance gains (up to more than 11x) on the
previously-published benchmark programs from Pavlo,
et al. (Section 4).

Finally, we conclude with a discussion of related work in
Section 5. We also discuss MapReduce-related tools in Ap-
pendix A and summarize the state of MapReduce bench-
mark workloads in Appendix B. We present additional in-
formation on program analysis and experimental results in
Appendices C and D. We discuss ideas for future work in
Appendix E.

2. SYSTEM OVERVIEW

MANIMAL comprises three main components that allow
it to optimize a user’s MapReduce program wholly auto-
matically. Figure 1 shows the flow of information through
the system. The analyzer examines a user’s submitted
MapReduce program and sends the resulting optimization
descriptor to the optimizer. The optimizer uses this de-
scriptor, plus a catalog of precomputed indexes, to choose
an optimized execution plan, called an execution descrip-
tor. This descriptor, plus a potentially-modified copy of the
user’s original program, is then sent to the execution fab-
ric for full execution on the cluster. The execution fabric
retains the standard map-shuffle-reduce sequence and is al-
most identical to standard MapReduce (in the case of our
prototype, Apache Hadoop).



The vast majority of MANIMAL is hidden from the user.
The submitted program does not need to be modified by
the programmer in any way, and the final program output
should be the same as what would have been generated by a
conventional MapReduce system. The user should be able to
detect just one difference (aside from improved runtime per-
formance): submitting a job for execution yields not just a
program result, but also an index-generation program. This
program is itself a MapReduce program, and when executed
generates an indexed version of the submitted job’s input
data. This indexed version of the data is used by the opti-
mizer when selecting a best course of action. The decision
to run an index-generation program is left to the system ad-
ministrator, much like the decision to create an index in an
RDBMS.

For the moment, we focus only on single MapReduce pro-
grams, not chains of such programs in which the output of
one phase forms the input of another. However, we would
like to address such pipelines in the future, as we discuss in
Appendix E. Further, MANIMAL currently focuses mainly on
relational-style programs. We have not yet examined some
important classes of MapReduce tasks, such as inverted in-
dex construction. This decision partially reflects the avail-
ability of existing MapReduce workloads (we discuss work-
loads in detail in Section 4.1 and Appendix B). However,
we believe the general analyzer-driven MANIMAL frame-
work could in the future be applied to other program types,
such as text-processing and iterative numeric hill-climbers.

We will now provide some background on each of the op-
timizations MANIMAL currently pursues. We will then give
a brief system walkthrough from the user’s perspective.

2.1 Optimizations
MANIMAL looks for three different kinds of optimizations.

Selections appear in MapReduce code if map() emits data
only when a parameter-dependent conditional test holds true.
For example, the following map() function only emits data
when the input WebPage value has a rank of more than 1:

void map(String k, WebPage v) {
if (v.rank > 1)
emit(k, 1);

This code has the effect of of filtering elements from the
input data. As with a relational selection, there is no point
in executing this code for inputs that will fail the test; any
invocation of map() for data that fails the conditional test
is in a sense wasted work. And just as with a relational
database, we can optimize such code at runtime by using a
B+Tree to scan just the relevant portion of the input data.
(MANIMAL uses the index to skip map invocations that do
not yield output data, even if doing so may also mean skip-
ping generating messages for the debug log.)

Other work has applied selection-appropriate indexing tech-
niques to MapReduce [12]. The critical contribution of MAN-
IMAL is to detect these selections automatically in unmodi-
fied developer code. MANIMAL currently uses a B+Tree, but
in the future could also employ an R-Tree [15] or some other
indexing technique when appropriate.

Projection optimizations modify the on-disk data file to
only store bytes that are actually necessary for executing

the user’s code. For example, the user’s code may take a
WebPage as an argument, but may never examine the large
htmlContent field. Eliminating unnecessary fields from the
file reduces the total number of bytes that must be processed
by MapReduce without changing the program’s behavior.
MANIMAL can apply projection optimizations because it can
examine user code to see which fields are actually critical,
and can examine the serialized class to see which fields are
present. Standard MapReduce cannot automatically deter-
mine which bytes are safe to remove.

This optimization is similar to a simplified version of a
column-store [25]. In the future we could modify MANIMAL
projection to use “column-groups” that break input data
into different smaller files, increasing the number of user
programs that could use an index, at the cost of possibly-
increased program execution time.

Data compression is different from Hadoop’s built-in com-
pression support. Hadoop stores a compressed version of
input data on disk and of intermediate map data. Hadoop de-
compresses the data immediately prior tomap () and reduce().
Hadoop can use any of several compression techniques, but
in all cases applies the technique to the entire data file. In-
stead, MANIMAL enables two semantics-aware forms of com-
pression, both previously used by Abadi, et al. [1]:

First, delta-compression efficiently stores runs of nu-
meric values, by only keeping differences between values, in-
stead of the absolute values. Storing just small deltas, when
combined with a size-sensitive representation, can yield large
storage savings. Standard MapReduce cannot apply this
technique: the system must know which bytes are in the
same field and are numeric. MANIMAL can discover this in-
formation via map()’s serialized input classes.

Second, direct-operation potentially allows the system
to operate directly on compressed values. For example, a
url that is used only in equality tests does not really need
to be decompressed prior to map(); it is possible to use a
compressed version of the url that preserves equality test-
ing, and thus still yields the correct program output.! The
program saves time because the compressed data is smaller
than it would otherwise be, the data does not need to be de-
compressed prior to processing, and operations on the data
may be faster. Direct-operation is possible because MAN-
IMAL can determine when a potentially-compressed value
would be used strictly in safe settings.

2.2 Walkthrough

A MANIMAL user submits a job for processing just as with
conventional MapReduce. She provides:

e The compiled program and libraries, plus metadata
like the name of the class that contains main().

e The input filename(s), plus program parameters and
relevant configuration information

Step 1 — Analysis. The analyzer examines the input,
in particular the compiled program, and attempts to detect
optimization opportunities.

'MANIMAL can use direct-operation compression on the
map ()’s output key as long as the user does not require the
final program output to be in sorted order.



The analyzer uses static program analysis techniques.
These techniques make up MANIMAL’s most novel intellec-
tual contributions, and are described in detail in Section 3
below. The resulting optimization descriptor list has, for
each applicable optimization, a label that identifies the op-
timization and optimization-specific parameters. For exam-
ple, the SELECT descriptor includes includes a description of
which values should be indexed, plus a logical formula over
these values that describes when the map() may emit data.
In Figure 1, the indexed value is V.rank (), and the function
only needs to run when V.rank() > 1.

This component also creates an index generation program
that runs on the same input data as the user’s program. For
example, the selection optimization yields a program that
creates a B+Tree-based index. When indexes are eventu-
ally combined with the optimization descriptors, MANIMAL
has all the information needed to invoke map() only when
needed, thereby avoiding substantial amounts of work. Each
run of an index generation program is tracked in the filesys-
tem catalog.

Of course, MapReduce inputs are flat files, not structured
tables, so any notion of indexing is somewhat surprising.
But such files are usually a series of serialized objects, the
names of which can be obtained via the declared types for
the user’s map() function and other supporting code. The
program above operates on files that consist of serialized
String and WebPage pairs. The code that serializes and de-
serializes these classes effectively declares the file’s schema.

Put another way, output from the analyzer is akin to a
description of a view on the data from the user’s input file,
which is materialized by the index generation program, and
processed by the user’s MapReduce program.

Anything that does not impact the program’s final output
is fair game for the analyzer to consider for downstream
removal or modification, including code that has side effects
such as debugging statements, network connections, and file-
writes. MANIMAL can currently detect, though not optimize,
such side effects.?

Indexes that arise from the analyzer’s work carry cost in
disk space and in computational time to be created. Thus,
as with relational data, MANIMAL indexing is not worth the
effort for ephemeral “read-once” data files that are thrown
away after processing just once. We believe this is acceptable
for many MapReduce-related datasets, especially when one
considers that different parties may analyze the same raw
data: web access logs, crawls, etc.

The analyzer may find several orthogonal optimization
opportunities in a given program, and so could emit several
possible different index-generation programs. For example,
a program that would benefit from both selection and pro-
jection could make use of several different indexes: one ver-
sion that supports selection, one that supports projection,
or one that supports both. The “best” index to compute de-
pends partially on the system’s index space budget and par-
tially on the expected future workload. For example, it may
not be wise to compute the combined selection-projection
index if 9 out of 10 future jobs do no projections. MANIMAL
does not yet attempt to address this issue in a disciplined
way; the current analyzer always chooses the index pro-
gram that exploits as many optimizations as possible.

2Tt would be possible to add a MANIMAL “safe mode” that
avoids optimizations that modify side effects, at the possible
cost of reduced optimization opportunities.

Step 2 — Optimization. The analyzer sends its list of
optimization descriptors to the optimizer component. The
optimizer examines the descriptors, the user’s input file,
and the catalog to choose the most efficient execution plan
currently possible. The resulting execution descriptor indi-
cates to the final execution fabric which index file to use,
and which optimizations should be applied.

The optimizer faces two planning questions which in the
long run should be determined by a cost-based approach, but
for now are solved with simple rule-based heuristics. First,
some MANIMAL optimizations may not be combinable for
low-level implementation reasons; the optimizer may need to
decide between multiple options.> Second, the optimizer
may have to decide among several indexes compatible with
the submitted program. It currently decides using a simple
hard-coded ranking of applicable optimizations.

Step 3 — Execution. Finally, the execution fabric uses
the execution descriptor to actually run the program. Most
of the execution fabric is identical to a traditional MapRe-
duce system. Our Hadoop-based prototype has a few modifi-
cations to support B+Tree-indexed input formats and delta-
compression. The other optimizations — column-oriented
files to support project, and direct operation on compressed
data — can be performed without any infrastructure-level
support at all.

3. ANALYZER IN DEPTH

The architecture described in the Section above is clearly
inspired by the traditional RDBMS query-optimization-and-
execution loop. However, MapReduce systems to date have
rarely attempted any semantics-aware optimization at all;
user programs have been treated as wholly-opaque binary
objects. The analyzer is what moves user code into the
realm of identifiable data operations, and thus is absolutely
critical to MANIMAL’s ability to provide automatic MapRe-
duce optimization.

We view this ability to apply ezisting optimizations as
MANIMAL’s core contribution. While many published MapRe-
duce research projects have found possible performance im-
provements, we are unaware of any that have been broadly
deployed; we believe MANIMAL can be a “force multiplier”
that eases many MapReduce optimization techniques into
wider use.

MapReduce languages are usually Turing-complete ones,
such as C and Java, and it is not a priori obvious that a
successful analyzer can be built. For example, consider
the daunting level of analysis required to apply HaLoop [8],
which optimizes gradient-ascent-style MapReduce programs
that iterate repeatedly over a dataset. An analyzer that
detects such code would have to track data flows across
multiple individually-launched MapReduce jobs. A user’s
MapReduce code for join, which could be improved by us-
ing a proper join algorithm, can also be very complicated: it
may consume map() data from multiple files, in which each
joined table’s data comes from a different source file. Our
current analyzer successfully addresses a subset of possi-
ble optimizations: the above-listed selection, projection, and
compression approaches.

The static analysis approaches employed by the analyzer

30ur current optimization set presents just one conflict; we
currently favor selection over delta-compression.



are well-known in the programming languages and compiler
community [4]. In this section we provide a brief background
on static analysis techniques for control flow analysis and
data flow analysis. We then describe how we use these tools
to construct the MANIMAL analyzer.

3.1 Background: Static Analysis

Static analysis uses code inspection, rather than any kind
of live program instrumentation, to learn about a piece of
software. The analysis techniques used by MANIMAL are
well-known and can be found in compiler texts such as Aho,
et al. [4]. One of the most basic tools for control flow anal-
ysis is the control flow graph (CFG). A CFG for a method
contains a node for each block of statements, and directed
edges that represent control transitions from one block to
another. A sequence of statements that employ no control-
flow primitives yield a region of code with one entrance and
one exit point; such sequences can be merged into a single
basic block. Therefore, the CFG encapsulates all possible
paths the program might take during execution. Edges lead
from each node in the graph to all potential immediate suc-
cessors. We also create two special nodes, one for “function
entry” and one for “function exit.” Figure 4 shows the CFG
for the map() function from Section 2.

Another technique we use is dataflow analysis, in partic-
ular the computation of reaching definitions. The definition
of a variable (that is, an assignment to the variable) at state-
ment d is said to reach a use of that variable at statement u,
as long as u is reachable from d in the CFG, and there is no
intervening definition for the variable between d and u. A
use-def chain for a variable consists of a use of the variable
at statement u, and all reaching definitions of the variable.
We thus construct a node for u, with an edge pointing from
u to each definition node d that can be reached without
any intervening definition. Figure 5 shows an example of
the use-def chains computed for various statements in the
map () in the previous Section.

3.2 Mechanism: Selection

Our current analyzer searches for several traditional op-
timizations: selection, projection, and compression. It does
so at the “micro-scale,” and only optimizes the map() func-
tion. (We plan to examine reduce () in future work.) It thus

resembles single-function optimization more closely than inter-

method analysis. Such an approach works well because for
these MapReduce code idioms in observed code are small
and mainly fit in a single function. In this section we de-
scribe how analysis works for selection. We cover projection
and data compression in Appendix C.

Much of the analyzer machinery focuses on ensuring that
all discovered optimizations are safe — that is, optimizations
that observe the semantics of the original program and pro-
duce the same outputs from the reduce stage.

The MANIMAL analyzer takes as input the compiled Java
class files that contain the target MapReduce job, plus basic
user parameters such as the input file, etc. We use the ASM
bytecode manipulation library to process the compiled pro-
gram [6]. Although the analyzer is currently implemented
for Java, the same principles apply for any compiled lan-
guage in which the CFG and use-def chains can be accu-
rately computed.?

4Languages that permit arbitrary pointer arithmetic and

void map(String k, WebPage v) {
numMapsRun++;
if (v.rank > 1 || numMapsRun > 200)
emit(k, 1);
}

Figure 2: The flow of control for this function re-
lies on member variable numMapsRun. Because output
may not strictly depend on the function’s parameter
inputs, MANIMAL cannot safely optimize this code.

The analyzer starts by examining map() for optimiza-
tion opportunities. The algorithm for selection appears in
Figure 3. There are several auxiliary functions. isEmit(s)
tests whether a statement s emits data to the reduce()
step. paths(s) returns all possible CFG paths that reach
s. conds(s) returns all conditional statements that appear
in the given CFG path.

In addition, we define two methods — getUseDef(s) and
tsFunc(useDefChain) — to test whether optimizations are
safe. The former computes a use-def DAG for s. getUseDef()
starts as a single use-def chain, but for each def node, ana-
lyzer treats the def as a new use and recursively obtains its
use-def chain, bottoming out when the uses have no more de-
pendent def statements inside the map(). This can happen
when a use depends on passed-in parameters or externally-
defined member variables. The result is a directed acyclic
graph that represents all the points in the map() that might
influence the value of the initial statement s.

The functional test isFunc(useDefChain) succeeds when
all of the following hold:

e The use depends only on map() parameters or con-
stants, not class members or other external variables.

e The use-def DAG contains no calls to methods which
themselves may not be functional in terms of their in-
puts. That is: we must be careful the map() does not
simply push its dependence on a class member off to
some other method. The analyzer has built-in knowl-
edge of standard language operations and some com-
mon class library methods, such as those associated
with String, Pattern, etc.

A functional chain from input parameters to tuple-emission
means that map()’s output is entirely determined by the in-
put record, guaranteeing MANIMAL that its optimization de-
cisions will be safe as long as the map inputs are preserved.
As an example of code that fails the isFunc(useDe fChain)
test, consider the code in Figure 2. It shows a map() whose
output depends on both v.rank and the member variable
numMapsRun. MANIMAL cannot optimize this code, because
the indexed values that MANIMAL reads from disk and passes
tomap () are no longer sufficient for determining the method’s
output. If MANIMAL were to optimize the program by us-
ing a B+Tree to avoid unproductive invocations of map (), it
would have the unintended side-effect of changing the value
of numMapsRun, and thus also change data emit decisions.
The analyzer considers programs like the one in Figure 2
to be unsafe and unoptimizable.

We can now examine the selection analysis algorithm in
detail. The primary goal is to compute a logical formula over
map()’s variables and input parameters that evaluates to

jumps can induce control flow patterns that cannot neces-
sarily be detected using static analysis.



: function findSelect(mapperStmts):
: allFunc «— true, condPaths — {}, dnf «— false
for s € mapperStmts do
if isEmit(s) then
for all path € paths(s) do
condPaths «— condPaths U conds(path)
dnf «— dnf OR conj(conds(path))
: for all condPath € condPaths do
for all cond € condPath do
10: if not isFunc(getUseDef(cond)) then
11: all Func + false
12: if allF'unc return dnf else return {}

PSSP

©

Figure 3: The analyzer detection algorithm for se-
lection. conj() returns a conjunction of the logical
conditional expressions in its input.

true if and only if the function emits a tuple. In particular,
the selection algorithm constructs a conditional statement in
disjunctive normal form, in which there is a disjunct for each
unique path to an emit() statement. Each of the disjuncts
contain a conjunction of the conditional tests that must hold
true to reach the emit() through its respective path. The
algorithm is presented in Figure 3.

4. EXPERIMENTS

We ran three types of experiments to show that MANIMAL
can effectively optimize users’ programs. First, we show that
the analyzer can detect most of the optimization opportu-
nities in users’ code. Second, we show that MANIMAL ob-
tains substantial runtime improvements on these programs.
Third, we tested the performance gain to be found using
each individual optimization type; we discuss selection re-
sults briefly here, and discuss full results in Appendix D.

All of the experiments in this Section were performed us-
ing a small 5-node cluster, running Hadoop version 0.20.1.
We used benchmark programs and data published as part
of the work by Pavlo, et al. [22]. Result times are averaged
over 3 runs.

4.1 Analyzer Recall

For MANIMAL to be broadly useful, its analyzer must be
able to detect optimization opportunities in real MapReduce
code. Here we test the analyzer’s recall on four benchmark
programs made available as part of the work in Pavlo, et al..

Unfortunately, while MapReduce has become very popu-
lar, the number of open-source MapReduce programs that
we can examine is relatively small. Although the programs
from Pavlo, et al. are well-known, simple, and downloadable,
they are not ideal. In particular, they may overrepresent
database-style operations and underrepresent text-centric
and numeric processing. However, the tasks do fit reason-
ably well with the results of a recent survey that showed
business data analysis and log processing to be the most
popular Hadoop applications (ahead of Extract-Transform-
Load and scientific applications) [17]. Indeed, these pro-
grams have already been used for evaluation purposes by
Abouzeid, et al. [2] and Dittrich, et al. [12]. We discuss our
choice of workload in more detail in Appendix B.

Table 1 shows the results of these experiments. We do
not show results for direct-operation, as none of the tested
benchmark programs permitted this optimization. For each
cell in the table, we show whether the optimization was suc-

cessfully Detected, or went Undetected, or was simply Not
Present. A human observer examined the programs to see
which optimizations were present. The analyzer emits no
false positives. It fails to detect just three optimizations:

e Benchmark 1, projection and delta-compression
fail because the authors employed an unusual custom
class for the map() function’s value parameter. The
AbstractTuple class essentially creates its own serial-
ization format, and contains no direct program-specific
clues as to its function. The analyzer is thus unable
to distinguish between different fields in the serialized
data. This method of serializing data is inefficient and
surprising; if the class were rewritten to employ stan-
dard topic-specific serialization, we could detect the
optimization.

e Benchmark 4, selection fails because the code em-
ploys a Java Hashtable as part of the filtering process.
The current version of MANIMAL does not have builtin
knowledge of how Hashtable works, and so cannot
tell that testing for a key in the Hashtable will only
succeed if it had been inserted previously. However,
Hashtable is a very commonly-used class, and adding
custom handling of it would not be unreasonable.

Overall, we view the analyzer as successful. Not only
does it pick up most available optimizations, two of the three
mistakes are due to a programming approach that is likely
to be fairly unusual. Moreover, the missed optimizations
in the case of Benchmark 1 are likely to have little impact:
delta-compression cannot be combined with selection, and
experiments showed that gains from the missed projection
opportunity were undetectable next to the huge selection
gains.

The only serious optimization overlooked by MANIMAL is
the selection condition in Benchmark 4. Note that one rea-
son it is difficult to detect is that the code is the most text-
centric of any of the Benchmarks; it does not directly map
to a relational-style operation. Such programs are exactly
where the performance gap between conventional MapRe-
duce and RDBMSes is already relatively small, as Pavlo, et
al. showed.

4.2 End-to-end Performance

We now evaluate MANIMAL’s overall end-to-end runtime
improvement on the above benchmarks. Of course, the run-
times here only reflect optimizations that were detected by
the analyzer, described above. As much as possible, we
chose our experimental parameters to match those in Pavlo,
et al. [22]. We used the same code, used the same tools
to generate test data, and used similar selectivities. How-
ever, the number and quality of our cluster machines differ,
and so the data sizes here are unavoidably different. It is
therefore inappropriate to directly compare our absolute ex-
ecution times to those from the previous paper.

The experimental results are shown in Table 2. The MAN-
IMAL programs described here used only the detected opti-
mizations as described in Section 4.1 above. All times are
averaged over three runs, and are end-to-end measurements
that include start-up. In all of these cases, the time neces-
sary to compute the index is at most 50% more than the
time needed to execute the original Hadoop program; thus,
even files that are examined relatively infrequently can po-
tentially benefit from MANIMAL optimization. Note that all



Test Description Select Project Delta-Compression
Benchmark-1 | Selection Detected Undetected Undetected
Benchmark-2 | Aggregation Not Present | Detected Detected
Benchmark-3 | Join Detected Not Present | Detected
Benchmark-4 | UDF Aggregation | Undetected | Not Present | Not Present

Table 1: The results of running the MANIMAL analyzer on various MapReduce programs.

reported times include Hadoop startup times and standard
serialization costs. Any future efforts to reduce startup time
or improve serialization (e.g., the Avro project) are likely to
result in better runtimes.

Benchmark 1 By employing a selection index on Bench-
mark 1, MANIMAL can obtain a greater than 11x speed in-
crease over standard Hadoop. We ran this benchmark with
a threshold chosen to obtain the same selectivity as Pavlo,
et al.: 0.02%. As mentioned above, the analyzer fails to de-
tect a potential projection optimization for this task. How-
ever, the original file contains relatively few fields, and per-
forming the projection yields an index that is smaller than
the non-projected index by just 5.5%, and results in no fur-
ther detectable performance improvements. It is interesting
to note that MANIMAL’s performance relative to Hadoop for
this task is roughly midway between what Pavlo, et al. re-
ported for their “DBMS-X” and Vertica results.

Benchmark 2 Benchmark 2 offers opportunities for both
projection and delta-compression optimizations, and MAN-
IMAL detects both. Because so much of the original input
file does not need to be read in order to produce the final
result, the index is fairly small: 20% of the original file’s
size.> MANIMAL can run an optimized version of the task
in roughly 1/3 of the time required by Hadoop. MANIMAL’s
running time relative to Hadoop is similar to the difference
reported by Pavlo, et al., when comparing Hadoop to both
DBMS-X and Vertica.

Benchmark 3’s join operation yields very interesting re-
sults. Unlike standard relational databases, MANIMAL has
absolutely no knowledge of join processing. However, the
map () task for this benchmark imposes a selection predicate
that removes all but 0.095% of the UserVisits data from con-
sideration. By recognizing the selection, and only scanning
the records that can pass this filter, MANIMAL can hugely
reduce the number of bytes that pass through the overall
processing pipeline.

The impact is substantial: MANIMAL obtains a speedup of
6.73x. This number is not as good as what can be obtained
by systems that are join-aware, and MANIMAL’s performance
relative to Hadoop does not approach the 18x gains seen by
Pavlo, et al.. In the future, it may be possible for the ana-
lyzer to detect joins, by testing whether conditional tests in
map() effectively mirror the differences between tuples from
multiple files sent to the MapReduce job. Doing so would
enable MANIMAL to implement distributed join-processing
and possibly obtain similar gains.

4.3 Individual Optimizations

We also show MANIMAL’s effectiveness in obtaining im-

SWe ran the “standard” version of the benchmark, which
sums revenues for unique IP addresses, not the subnet-
oriented version.

proved MapReduce performance using each of the individ-
ual optimization types. Here we present just the selection
results. Other results, and details on the dataset used, are
presented in Appendix D.

For selection, we examine MapReduce programs that im-
plement the following query:

SELECT pageRank, Count(url) FROM WebPages
WHERE pageRank > Threshold GROUPBY pageRank

where Threshold is chosen to yield one of various selectiv-
ities. (The full results are seen in Table 3 in Appendix D.)
The WebPage objects are generated to roughly match real-
world Web conditions, as described in Appendix D. Of
course, for this experiment we examine only the selection
optimization, even though others may apply to the query.
These selectivities admit much more output data than those
in our end-to-end experiments from Section 4.2. Perfor-
mance is roughly linear with selectivity; for selectivities be-
tween 60% and 10%, MANIMAL obtains speedups between
1.59x and 7.10x.

Summary We have found that across four real-life MapRe-
duce programs designed to model real tasks, MANIMAL au-
tomatically obtained substantial speedups for three of them.
In two of these cases, it obtained performance gains roughly
commensurate with those obtained by a traditional rela-
tional system described in Pavlo, et al., and we obtained
still-substantial speedup on a third. While MANIMAL’s an-
alyzer failed to discover potential optimizations, test runs
showed that the benefits of applying them would have been
negligible. Finally, we have shown that the analyzer can
effectively discover data semantics in natural MapReduce
programs, and can yield substantial performance gains.

S. RELATED WORK

There has been a large amount of recent work on MapRe-
duce [3, 8, 12, 27, 28], though none that takes system’s
wholly-automated approach to optimization. Several efforts
have explored the problem of scheduling task execution [16,
28]. Afrati and Ullman [3] investigated how to efficiently
perform joins using MapReduce. Yang, et al. [27] extended
the programming model to Map-Reduce-Merge, allowing the
user to express different join types and algorithms.

HadoopDB [2] attempts to combine relational and MapRe-
duce qualities into a single system. However, HadoopDB is
designed to be a scalable parallel relational database; it uses
Hadoop internally but does not optimize MapReduce pro-
grams.

There have been several recent index-style attempts to im-
prove MapReduce performance, such as Dittrich, et al. [12]’s
Hadoop++ system, and the column-oriented work of Floratou,
et al. [14]. The former requires explicit support from the
programmer, while the latter only requires physical storage
reorganization; both could be used as targets for MANIMAL.



Test Description Space Overhead | Hadoop MANIMAL Speedup
Benchmark-1 | Selection 0.1% 429.78 secs 38.35 secs 11.21
Benchmark-2 | Aggregation 20% 5,496.29 secs | 1,855.65 secs | 2.96
Benchmark-3 | Join 11.7% 6,077.97 secs | 903.752 secs | 6.73
Benchmark-4 | UDF Aggregation | 0% N/A N/A 0

Table 2: Overall performance improvement provided by MANIMAL, across the Pavlo benchmark tasks.

MANIMAL’s analyzer employs compiler techniques for database- [12] J. Dittrich, J.-A. Quiane-Ruiz, A. Jindal, Y. Kargin,

style optimizations. Chilimbi, et al. [10] tried to reorder in-
memory data representations to improve cache behavior, a
systems-level improvement suggested by program semantics.
They did not examine disk-based approaches. MANIMAL has
some qualities in common with work optimizing XQuery
(e.g., Ré, et al. [24]). In particular, MANIMAL follows the
same general approach of using static analysis to automat-
ically apply well-known optimizations to a novel language.
There has also been work in integrating data-manipulation
primitives with traditional programming languages, as in
LINQ [19]. Such tools side-step the need for MANIMAL’s an-
alyzer but also require the programmer to use a potentially-
novel programming language.

6. CONCLUSIONS

We have described the MANIMAL system for optimizing
MapReduce programs. MANIMAL automatically obtains sub-
stantial speedups, ranging from 296% to 1,121% on real
MapReduce code. Moreover, MANIMAL provides an appeal-
ing framework for deploying many other achievements in
MapReduce-optimization research.
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APPENDIX
A. LAYERED TOOLS

Certain popular tools, such as Pig, Hive, and Mahout,
are layered on top of the MapReduce infrastructure. Users
of these tools generally never see the MapReduce program-
mer interface, but instead use a tool-specific language. The
tools then implement the user features with a MapReduce
job (or set of jobs) that is executed on a MapReduce clus-
ter. For example, Hive processes queries written in SQL,
using MapReduce as the distributed query execution infras-
tructure. It would be very possible for these systems to be
implemented on top of a different execution system.

The actual MapReduce source code for Pig and Hive jobs
essentially work as interpreters for user code, and do not
reflect the semantics of the user’s program. This level of
indirection makes it extremely difficult, if not impossible,
for a static analysis-based tool to obtain performance gains
from program-specific semantics. Similarly, Mahout tasks
consume a generic textual data format that is designed to
model any domain: it reflects nothing about the user’s task
at hand and so cannot be easily optimized.

Some anecdotal evidence suggests these jobs comprise a
large and growing percentage of total MapReduce work. A
recommended list of Hadoop ”best practices” from a promi-
nent Yahoo engineer suggested that raw Java tasks only be
used when "really necessary.” [20] A recent survey of Hadoop
users [17] found that over the coming year users on average
plan to increase their use of MapReduce-layered tools (e.g.,
Hive from 44% to 52%; Mahout from 14% to 24%) while de-
creasing their use of raw Java (from 86% to 74%). We con-
firmed this trend in personal discussions with executives at
the Hadoop company Cloudera, who suggested that Hadoop
users show a pattern of migrating to higher-level tools over
time, and away from lower-level Java programs [23]. Of
course, there is still a substantial set of MapReduce jobs
that these tools do not handle, especially those that involve
lots of user-written code or process raw text or parse-heavy
log formats.

Luckily, such tools usually have access to a very high-
level description of the user’s desired job semantics, which
can be even better information than what can be recovered
from a traditional MapReduce program using the MANIMAL
analyzer. For such tools, MANIMAL is designed to be able to
sidestep the analyzer and accept optimization descriptions
directly, allowing the resulting synthesized jobs to still make
use of the MANIMAL physical optimizations.

B. BENCHMARKS AND WORKLOADS

Evaluating MANIMAL’s practical impact is difficult, sub-

stantially because there is no agreed-upon workload of MapRe-

duce programs. In addition to the layered tools described
above, some candidate workloads include the following.

e MapReduce task collections such as those suggested
by Dean and Ghemawat, including distributed grep,
wordcount, and counting URLs in an access log. These
are uniquely tailored for MapReduce, as many of them
would be difficult using an RDBMS. However, they
also very text- and graph-heavy, and are skewed to-
ward Web search tasks. MapReduce has obtained wide
popularity beyond its Web search beginnings, and it
would be surprising if most of these tasks (except for

fn entry |—>| v.rank > 1 end block |—>| fn exit

Figure 4: The control flow graph for the function
in Section 2. Nodes represent basic blocks. Edges
represent possible control flow paths.

the access log) were broadly representative today. Web
page and graph-processing applications were not listed
as a motivation for Hadoop users in a recent survey [17]
(except perhaps as part of the “Other” category, which
appealed to 8% of respondents).

e The Gridmix workload [13] was designed and used
by Yahoo! as a low-level Hadoop performance testing
tool. Is not designed to be a workload that is repre-
sentative of a broader class of jobs. Instead, it is a
pure “byte-level task” designed to stress and consume
cluster resources in ways that correspond to a recorded
cluster workload. For example, a Hadoop cluster that
is running the Gridmix workload and a cluster that is
running the recorded productive workload should ex-
hibit the same number of map () and reduce () tasks per
job, the same number of input and output bytes per
job, the same access distribution over file blocks, the
same job inter-arrival interval, etc. The actual work
performed by Gridmix is meaningless: it simply con-
sumes and emits random bytes according to recorded
parameters. However well Gridmix may exercise the
underlying Hadoop implementation, without any true
task semantics to analyze, there is nothing MANIMAL
can do to improve its execution.

e TPC-H is a standard benchmark for evaluating the
performance of report-generation queries in RDBM-
Ses, and has been used by Kim, et al. [18] to evaluate
MapReduce. However, TPC-H has no special affinity
with MapReduce and its queries do not exercise many
of its interesting features, such as easy text parsing.

e Analytical tasks described by Pavlo, et al.. Beyond
the original grep task, these include selection, aggre-
gation, join, and UDF-driven aggregation. These are
designed to roughly model a log- and crawl-processing
workload. One possible weakness of this suite is that it
consists of just a few programs, and does not attempt
to emulate any well-documented workload.

Thus, our current approach is to study end-to-end MANI-
MAL performance on the tasks suggested Pavlo, et al.. These
programs are diverse in terms of potential optimizations,
appear to fit MapReduce practice reasonably well, and are
small enough to easily describe. However, the workload de-
scribed is fairly particular and mixes several optimizations
in single tasks. Thus, we also show MANIMAL performance
on a number of synthetic per-optimization tasks.

C. ADDITIONAL ANALYSIS

In this section we provide additional details on the ana-
lyzer, in particular how it works with projection and data
compression.

Optimizing for projections means enumerating which
fields of the map()’s inputs are never used. We only care



| WebPage v | | String k |
|if(v.rank>1)| | emit(k, 1) |

Figure 5: Some use-def chains for the map() func-
tion in Section 2. Nodes represent instructions or
variable definitions; each edge’s source requires data
from its target. We show Java statements for clarity,
but the actual graph is computed on bytecodes.

1: function findProject(mapper Stmts, paramFields):
2: allPaths «— {}, usedFields — {}
3: for s € mapperStmts do

4:  if isEmit(s) then

5: for all path € paths(s) do
6: allPaths < allPaths U conds(path) U s
7: for all path € allPaths do

8 for all stmt € path do

9 usedF'ields —

fieldsIn(getUseDef(stmt))

10: return paramFields — usedFields

usedF'ields U

Figure 6: The analyzer detection algorithm for pro-
jection. The paramFields enumerates all the fields
from the serialized key, value pair. The function
fieldsIn(useDefChain) returns the parameter fields
that appear in the passed-in series of statements.

about calls to emit () and control-flow decisions that lead up
to emit () calls. Other reasons to use inputs — log messages,
debugging text, etc— we optimize away. The algorithm for
projection is seen in Figure 6.

For the sake of space, we discuss compression-related
techniques only briefly. For direct-operation, analyzer first
obtains a list of input parameters that are actually used
in map(). Input parameters for which all uses are equality
tests are suitable for direct-operation on compressed data.
Finding opportunities for delta-compression is straightfor-
ward: analyzer simply tests whether the serialized key and
value inputs to map() contain numeric values. If so, delta-
compression can be applied to those fields.

D. ADDITIONAL EXPERIMENTS

Here we discuss additional individual optimization results,
first presented in Section 4.3. Table 3 shows the detailed se-
lection results. We also discuss projection and compression.
We examine them using test data defined in Figure 7, which
is modeled after that used in Pavlo, et al.. For the sake
of these single-optimization experiments, we changed their
format slightly to allow for more interesting queries and a
simpler presentation.

For WebPages data, we randomly generated unique pages
with Zipfian popularity and created the link structure ac-
cordingly. The total size of the test WebPages file is 129.5
GB. The UserVisits data has fields that are all uniformly
picked at random from real-world data sets, with the excep-
tion of destURL. That field was picked from the WebPages list
of randomly generated URLs (again, according to a Zipfian
distribution). The format of this data is nearly the same as
with Pavlo, et al., with a few minor typing differences for
ease of implementation. We tested the system with 123.7GB

WebPages (
String url;
int rank;
String content) ;

UserVisits (
String sourcelP;
String destURL;
long visitDate;
int adRevenue;
String userAgent;
String countryCode;
String languageCode;
String searchWord;
int duration;);

Figure 7: SQL-formatted description of the two
kinds of test data we generate to evaluate MANIMAL.

of UserVisits data.

Finally, we represented all of the raw input data in a
binary, not textual, format. All runs, whether standard
Hadoop or MANIMAL, use this binary format.

D.0.1 Projection

The projection query consists of the following;:

SELECT destURL, pageRank from
FROM WebPages WHERE pageRank > threshold

Our projection results in Table 4 show that simply remov-
ing unneeded serialized fields can have a huge impact on
MapReduce job performance. We ran it for three configura-
tions: a Large configuration in which the average WebPage
content field is 10K (and the total file size is over 123GB),
and two Small configurations in which the average content
field is just 510 bytes (and the total file size is just under
20GB). Of course, for real-life Web content, the Large con-
figuration is much closer to reality.

We ran two different versions of Small in order to avoid
distorting effects of Hadoop startup time. Small-1 has the
same number of tuples as Large, but its runtime is so small
that typical Hadoop startup periods (which can be up to
15 seconds) may have an outsized impact on the result.
Small-2 increases the number of documents, and thus the
runtime. The ideal solution be to run a Large experiment
with the same number of documents as Small-2, but storage
constraints prevented us from doing this.

The query does not use content in either case, and so
it is projected away; the point in using multiple sizes is to
show the relative impact of projection optimization when
the percentage of optimized-away data is changed. We can
see here that even in the Small-1 case, we obtain a 2.4x
speedup (and Small-2 is somewhat higher). In the much
more realistic Large case, the speedup is more than 27x.

D.0.2 Compression

As discussed in Section 3, MANIMAL pursues two strate-
gies for improved performance via data compression. First,
MANIMAL performs delta-compression on relevant numeric
fields in the data. Second, it operates directly on compressed
data when program semantics allow it. We can now show
runtime results for each of these cases. Note that both of
these approaches are orthogonal to builtin MapReduce or
filesystem compression mechanisms.



Selectivity 60% 50% 40% 30% 20% 10%
Intermediate output size 8.6GB 7.2GB 5.8GB 4.3GB 2.9GB 1.4GB
Final output size 72KB 60KB 48KB 36KB 24KB 12KB
Hadoop Running Time (secs) 2,004.9 1,971.12 1,982.80 | 1,995.16 | 1,977.27 | 1,966.94
MANIMAL Running Time (secs) | 1,265.13 | 1,064.69 | 867.91 | 669.09 | 471.66 | 276.72
Speedup 1.59 1.85 2.29 2.98 4.19 7.10

Table 3: Selection times for MANIMAL on the WebPage data at various levels of selectivity. The indexed input

size is 129.5GB.

Small-1 Small-2 Large

Original file size 8.13GB 19.72 GB | 123.63 GB
Number tuples 11.1M 27TM 11.1M
Average content field size 510 bytes | 510 bytes | 10K
Index size 743.2 MB | 1.76 GB 743.2 MB
Hadoop running time (secs) 78.1 216.8 1,473.8
MANIMAL running time (secs) | 32.5 72.2 52.9
Speedup 2.4 3 27.8

Table 4: Projecting out irrelevant columns allows MANIMAL to complete a job while processing very few bytes.
Creating the index for this task took just slightly longer than running the original task.

One compression strategy we did not pursue is traditional
dictionary-style compression of the overall input file. Hadoop
MapReduce already offers automatic compression and de-
compression of its inputs, which does not require any se-
mantic insight provided by the MANIMAL analyzer. All of
our experiments show performance increases beyond those
enabled by Hadoop’s built-in compression support.

We ran a MapReduce program that sums all duration val-
ues from UserVisits. It groups these sums by destURL, but
does not in the end emit the URL; it simply uses destURL as
the key parameter to reduce (). Thus, most of the program
does not actually need the true destURL value to operate.
We could compress destURL and leave it compressed, while
still retaining the same group-by-destURL behavior.

Delta Compression We attempted to perform the same
experiment using only delta compression on numeric values
in the input. Delta compression takes advantage of the fact
that sequential data items generally have numeric values
that only change slightly. By storing deltas instead of the
original values, and by employing a size-sensitive encoding
that uses fewer bytes to store smaller values, delta compres-
sion can dramatically reduce the amount of space needed to
store numeric datasets.

We applied delta compression to the UserVisits data and
ran the query described above. The results are described in
Table 5. In order to more clearly show the impact of delta
compression, we first projected out all non-numeric fields;
this post-projection size is listed in the second row of the
table. We then delta-compressed visitDate, adRevenue,
duration.

Delta compression here gives a large space savings (roughly
47%), but here yields only a moderate performance boost.
However, we note that results described by Abadi, et al. [1]
on compressing a columnar relational system only show per-
formance improvements when space savings are much larger
than the savings we obtain here. Overall, we regard delta
compression as an acceptable, though not spectacular, po-

Hadoop MANIMAL
Original file size 123.65 GB | 123.65 GB
Post-projection size 20.99 GB | 20.99 GB
Input size (delta-compression) | 20.99 GB | 11.05 GB
Running time (secs) 935.6 892.6
Speedup 1.05

Table 5: Delta compression on numeric data yields
a 47% space savings over the uncompressed ver-
sion, yielding a moderate performance boost. While
delta compression does reduce the amount of bytes
that need to be consumed by map(), that func-
tion’s computational effort is if anything slightly in-
creased, and the shuffle and reduce() loads remain
unchanged.

tential optimization.

Operating on Compressed Data We configured an ex-
periment to use dictionary compression on only the destURL
field prior to processing; all other fields remained uncom-
pressed. During actual program execution, destURL is im-
plemented as an integer instead of a String. As can be seen
in Table 6, MANIMAL obtains a roughly 2.3x speedup over
conventional Hadoop MapReduce. These speedups come
from several sources: reduced input size, reduced intermedi-
ate data, and faster sorting. We were unable to find oppor-
tunities for this optimization in our test set, but the speedup
that it permits is substantial; eventually, we would like to
examine a larger set of MapReduce programs to see if this
optimization can be broadly applied.

E. FUTURE WORK

An obvious avenue of future work for MANIMAL is to ex-
amine additional optimization techniques, many of which



Hadoop MANIMAL
Original file size 123.65 GB | 123.65 GB
Indexed file size 123.65 GB | 76.87 GB
Running time (secs) | 4,048 1,727
Speedup 2.34

Table 6: Operating on compressed data allows MAN-
IMAL to execute aggregation-style MapReduce pro-
grams with an approximately 2.3x speedup over
standard Hadoop MapReduce.

have been mentioned in this paper. In particular, we have
done preliminary work on extending analysis beyond the
map phase. We note that the combined map-shuffle-reduce
sequence is akin to a GROUPBY query, with the map’s out-
put key as the GROUPBY value. When results from the re-
duce function are filtered with a conditional clause, the user’s
program resembles a GROUPBY with a WHERE clause. If
we could accurately predict which temporary map outputs
will be removed by the WHEREFE-related filtering clause in-
side reduce, then we could delete this temporary data prior
to shuffle-reduce without any impact on final program out-
put. We have implemented some infrastructure to perform
these optimizations, but performance results are still incon-
clusive.

Another promising area is to extend MANIMAL techniques
to optimize processing pipelines. One common form of pipeline
is chained MapReduce jobs, in which the output of a given
job forms the input of a separate job. One potential dif-
ficulty is in simply detecting that two jobs are chained to-
gether. However, assuming we can detect the link, it should
be quite possible to track relational-style operations across
jobs.

Even more ambitious would be to detect heterogeneous
pipelines that are not strictly limited to MapReduce pro-
grams. For example, there might be a Web crawler written
in C that feeds content to a MapReduce job, which then
yields output that is analyzed with a Python program. We
believe these heterogeneous pipelines may be quite common
in practice; for example, consider all the data streams and
processing that contribute to Web ad pricing or financial
trading decisions. For large enough processing tasks, it is
probably unreasonable to ever hope that the entire process-
ing stream will ever be rewritten using a single language or
framework. We believe they make a very exciting topic for
future investigation.



