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Abstract

We propose a general class of analytically tractable models for the dynamics of
an asset price leading to smiles or skews in the implied volatility structure. The
considered asset can be an exchange rate, a stock index, or even a forward Libor
rate. The class is based on an explicit SDE under a given forward measure. The
models we propose feature i) explicit asset-price dynamics, ii) virtually unlimited
number of parameters, iii) analytical formulas for European options.

We then consider the fundamental case where the asset price density is given,
at every time, by a mixture of lognormal densities. We also derive an explicit ap-
proximation of the implied volatility function in terms of the option moneyness. We
finally introduce two other examples: the first is still based on lognormal densities,
but it allows for different means in the distributions; the second is instead based on
processes of hyperbolic-sine type.
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1 Introduction

It is widely known that the Black and Scholes (1973) assumption of a constant volatility for
pricing derivative securities with the same underlying asset fails to hold true in practice. In
fact, one commonly observes that the term structure of implied volatilities features some
particular shapes that are termed “skews” and “smiles”. The term skew is used to indicate
those structures where, for a fixed maturity, low-strikes implied-volatilities are higher than
high-strikes implied-volatilities. The term smile is used instead to denote those structures
where, again for a fixed maturity, the volatility has a minimum value around the underlying
forward price.

If the implied volatilities for different strikes were equal for each fixed maturity (but
different for different maturities), a simple extension of the Black-Scholes model would
exactly reproduce the market option prices: one has just to introduce a time-dependent
(deterministic) volatility σt in the Black-Scholes dynamics for the asset price

dSt = µStdt + σtStdWt,

and, given the N increasing maturities T1, . . . , TN , to recursively solve
∫ Ti

0
σ2

t dt = v2
i Ti,

where vi is the implied volatility for the maturity Ti.1 Unfortunately, this extended Black-
Scholes model can not describe options data in a satisfactory way, because more complex
volatility structures are present in real financial markets. This issue can then be tackled by
introducing a more articulated form of the volatility coefficient in the asset-price dynamics.
This is the approach we follow in this paper. We in fact propose several asset-price models
by specifying the asset price dynamics under a specific forward measure. The volatility σt

we introduce is a function of time t and of the asset price St at the same time.
Several works have tried to address the problem of a good, possibly exact, fitting of

market option data. We now briefly review the major approaches that have been proposed.
A first approach is based on assuming an alternative explicit dynamics for the asset-

price process that immediately leads to volatility smiles or skews. In general this approach
does not provide sufficient flexibility to properly calibrate the whole volatility surface.
Examples are the general CEV process of Cox (1975) and Cox and Ross (1976) and the
hyperbolic diffusion model of Bibby and Sørensen (1997). A general class of processes is
due to Carr et al. (1999).

A second approach is based on the assumption of a continuum of traded strikes and
goes back to Breeden and Litzenberger (1978). Successive developments are due to Dupire
(1994, 1997), Derman and Kani (1994, 1998) and Dempster and Richard (1999) who derive
an explicit expression for the Black-Scholes volatility as a function of strike and maturity.

1In principle, we may get imaginary values for σt. However, if the term structure of implied volatilities
is sufficiently smooth, this problem is not encountered.
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This approach has the major drawback that one needs to smoothly interpolate option prices
between consecutive strikes in order to be able to differentiate them twice with respect to
the strike. Explicit expressions for the risk-neutral asset price dynamics are also derived
by Avellaneda et al. (1997) by minimizing the relative entropy to a prior distribution, and
by Brown and Randall (1999) by assuming a quite flexible analytical function describing
the volatility surface.

Another approach, pioneered by Rubinstein (1994), consists in finding the risk-neutral
probabilities in a binomial/trinomial model for the asset price that lead to a best fitting of
market option prices due to some smoothness criterion. We refer to this approach as to the
lattice approach. Further examples are in Jackwerth and Rubinstein (1996) and Andersen
and Brotherton-Ratcliffe (1997) who use instead finite-difference grids. A different lattice
approach is due to Britten-Jones and Neuberger (1999).

A further approach is given by what we may refer to as incomplete-market approach.
It includes stochastic-volatility models, such as those of Hull and White (1987), Heston
(1993) and Tompkins (2000a, 2000b),2 and jump-diffusion models, such as those of Merton
(1976) and Prigent, Renault and Scaillet (2001).

A last approach is based on the so called market model for implied volatility. The
first examples are in Schönbucher(1999) and Ledoit and Santa Clara (1998). A recent
application in case of the forward Libor market model is due to Brace et al. (2001).

In general the problem of finding a risk-neutral distribution that consistently prices all
quoted options is largely undetermined. A possible solution is given by assuming a par-
ticular parametric risk-neutral distribution depending on several, possibly time-dependent,
parameters and then use such parameters for the volatility calibration.3 By applying an
approach similar to that of Dupire (1994, 1997), we address this question and find dynam-
ics leading to parametric risk-neutral distributions that are flexible enough for practical
purposes. The resulting processes combine therefore the parametric risk-neutral distribu-
tion approach with the alternative dynamics approach, providing explicit dynamics that
lead to flexible parametric risk-neutral densities.

The major challenge our class of models is fit to face is the introduction of a forward-
measure distribution that features i) analytical formulas for European options, so that
the calibration to market data and the computation of Greeks can be extremely rapid, ii)
high number of model parameters, so as to imply a satisfactory fitting of market data, iii)
explicit asset-price dynamics, so that exotic claims can be priced through a Monte Carlo
simulation.4

2In the context of the forward Libor market model, we must also mention the recent work of Rebonato
(2001).

3An example of this approach is due to Shimko (1993).

4Alternative methods of extracting a risk-neutral distribution from option prices are in Malz (1997) and
Pirkner et al. (1999). Alternative models with explicit formulas for European options have been proposed
by Li (1998) and Bouchouev (2000).
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The paper is structured as follows. Section 2 proposes a general class of analytical
asset-price models whose associated density is the mixture of some given densities. The
example of a mixture of lognormal distributions is then considered in Section 3. Section
4 extends the previous result to case of lognormal densities with different means. Section
5 considers a further example based on basic processes of hyperbolic-sine type. Section 6
concludes the paper.

2 A class of analytically tractable models allowing for
volatility smiles

Brigo and Mercurio (2001a) proposed a class of analytically tractable models for an asset-
price dynamics that are flexible enough to recover a large variety of market volatility
structures. The considered asset underlies a given option market and, as such, needs not
be tradable itself. Indeed, we can think of an exchange rate, a stock index, or even a
forward Libor rate, since caps and floors are nothing but options on Libor rates.

The diffusion processes they obtained follow from assuming a particular distribution for
the asset price S under a specific measure. In order to properly introduce the fundamental
examples developed in the next sections, we now quickly review their main results.

We fix a time T and denote by P (0, T ) the price at time 0 of a zero-coupon bond with
maturity T . We then assume that the T -forward risk-adjusted measure QT exists and that
the marginal density of S under QT is equal to the weighted average of the known densities
of some given diffusion processes. This is equivalent to view S as a process whose density
at time t coincides with a basic density with probability given by the corresponding weight.
The reason for imposing such a marginal density is to achieve analytical tractability with
no computational efforts, as formula (12) below will easily show.

Let the dynamics of the asset price S under the forward measure QT be expressed by

dSt = µStdt + σ(t, St)StdWt, (1)

where µ is a constant, W is a QT -standard Brownian motion and σ is a well-behaved
deterministic function.

The µ parameter is completely specified by the definition of QT . In fact, if the asset is
a stock paying a continuous dividend yield q and rates are deterministic, then µ = r − q,
where r is the time T (continuously compounded) risk-free rate. If the asset is an exchange
rate and rates are deterministic, then µ = r − rf , where rf is the foreign risk-free rate for
the maturity T . If the asset is a forward Libor rate spanning the interval [T0, T ], T0 < T ,
then µ = 0 due to the martingale property of forward rates under their corresponding
measure. Notice, moreover, that under deterministic interest rates, the (assumed unique)
risk-neutral measure coincides with each of the possible forward measures.

The function σ, which is usually termed local volatility in the financial literature, must
be chosen so as to grant a unique strong solution to the SDE (1). In particular, we assume
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that σ(·, ·) satisfies, for a suitable positive constant L, the linear-growth condition

σ2(t, y)y2 ≤ L(1 + y2) uniformly in t, (2)

which basically prevents from explosion in finite time.
Let us then consider N diffusion processes with dynamics given by

dSi
t = µSi

tdt + vi(t, Si
t)dWt, i = 1, . . . , N, Si

0 = S0 , (3)

with common initial value S0, and where vi(t, y)’s are real functions satisfying regularity
conditions to ensure existence and uniqueness of the solution to the SDE (3). In particular
we assume that, for suitable positive constants Li’s, the following linear-growth conditions
hold:

v2
i (t, y) ≤ Li(1 + y2) uniformly in t, i = 1, . . . , N. (4)

For each t, we denote by pi
t(·) the density function of Si

t , i.e., pi
t(y) = d(QT{Si

t ≤ y})/dy,
where, in particular, pi

0 is the δ-Dirac function centered in Si
0.

The problem addressed by Brigo and Mercurio (2001a) is the derivation of the local
volatility σ(t, St) such that the QT -density of S satisfies, for each time t,

pt(y) :=
d
dy

QT{St ≤ y} =
N

∑

i=1

λi
d
dy

QT{Si
t ≤ y} =

N
∑

i=1

λipi
t(y), (5)

where the λi’s are strictly positive constants such that
∑N

i=1 λi = 1. Notice that pt(·) is a
proper QT -density function since, by definition,

∫ +∞

0
ypt(y)dy =

N
∑

i=1

λi

∫ +∞

0
ypi

t(y)dy =
N

∑

i=1

λiS0eµt = S0eµt.

As in Dupire (1997), the volatility coefficient σ is found by solving the Fokker-Planck
equation

∂
∂t

pt(y) = − ∂
∂y

(µypt(y)) +
1
2

∂2

∂y2

(

σ2(t, y)y2pt(y)
)

, (6)

given that each density pi
t(y) satisfies the Fokker-Planck equation

∂
∂t

pi
t(y) = − ∂

∂y
(

µypi
t(y)

)

+
1
2

∂2

∂y2

(

v2
i (t, y)pi

t(y)
)

. (7)

After straightforward calculations, Brigo and Mercurio (2001a) obtained that the expres-
sion for σ(t, y) that is consistent with the marginal density (5) and with the regularity
constraint (2) is, for (t, y) > (0, 0),

σ(t, y) =

√

∑N
i=1 λiv2

i (t, y)pi
t(y)

∑N
i=1 λiy2pi

t(y)
, (8)
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whose square can be characterized as

σ2(t, y) =
N

∑

i=1

Λi(t, y)
v2

i (t, y)
y2 , (9)

where we set, for each i = 1, . . . , N and (t, y) > (0, 0),

Λi(t, y) :=
λipi

t(y)
∑N

i=1 λipi
t(y)

. (10)

The square of the local volatility σ can thus be written as a (stochastic) convex combination
of the squared volatilities of the basic processes (3), since Λi(t, y) ≥ 0 for each i and (t, y),
and

∑N
i=1 Λi(t, y) = 1.

The function σ may be extended to the semi-axes {(t, 0) : t > 0} and {(0, y) : y > 0}
according to the specific choice of the basic densities pi

t(·).
Formula (8) leads to the following SDE for the asset price under the forward mea-

sure QT :

dSt = µStdt +

√

∑N
i=1 λiv2

i (t, St)pi
t(St)

∑N
i=1 λiS2

t pi
t(St)

StdWt. (11)

Similarly to what happens in the general Dupire’s (1997) approach, this SDE, however,
must be regarded as defining some candidate dynamics that leads to the marginal density
(5). In fact, the conditions we have imposed so far are not sufficient to grant existence
and uniqueness of a strong solution, so that a verification must be done on a case-by-case
basis.

We are now in a position to fully understand the assumption that the asset marginal
density is given by the mixture of known basic densities. When proposing alternative asset-
price dynamics, the derivation of closed-form formulas for European options is usually
quite problematic. Here, instead, such a problem can be easily avoided by starting from
analytically-tractable densities pi. In fact, assuming that the SDE (11) has a unique strong
solution,5 the time-0 price of a European option with maturity T , strike K and written on
the asset is immediately given by

O(K,T, ω) = P (0, T )ET {

[ω(ST −K)]+
}

= P (0, T )
∫ +∞

0
[ω(y −K)]+

N
∑

i=1

λipi
T (y)dy

=
N

∑

i=1

λiOi(K,T, ω),

(12)

where ω = 1 for a call and ω = −1 for a put, ET denotes expectation under QT and Oi

denotes the option price associated with (3).

5Two fundamental cases where this assumption holds will be considered in the next sections.
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Brigo and Mercurio (2001a) also noticed that, due to the linearity of the derivative
operator, the same convex combination applies to all option Greeks. Moreover, since N is
arbitrary, the number of parameters that can be introduced in the dynamics and used for
a better calibration to market data is virtually unlimited.

3 The mixture-of-lognormals case

Let us now consider the particular case where the densities pi
t’s are all lognormal. Precisely,

we assume that, for each i,
vi(t, y) = σi(t)y, (13)

where all σi’s are deterministic functions of time defined on the interval [0, T ∗], T ∗ > 0 a
given time horizon. Then, the marginal density of Si

t conditional on S0 is given by

pi
t(y) =

1
yVi(t)

√
2π

exp

{

− 1
2V 2

i (t)

[

ln
y
S0
− µt + 1

2V
2
i (t)

]2
}

,

Vi(t) :=

√

∫ t

0
σ2

i (u)du.

(14)

The reason for considering such basic densities is due to their analytical tractability and
obvious connection with the Black and Scholes (1973) model. Moreover, mixtures of lognor-
mal densities turn out to work well in practice when used to reproduce market volatility
structures. We mention for instance the works of Ritchey (1990)6, Melick and Thomas
(1997), Bhupinder (1998) and Guo (1998). However, these are mainly empirical works
where the assumption of a lognormal-mixture risk-neutral density is introduced for a sat-
isfactory (static) calibration to options data.

Brigo and Mercurio (2001a) developed the asset-price model based on a lognormal-
mixture risk-neutral density and derived the asset-price (diffusion) dynamics that implies
the given distribution. In this section, we review their major result.

Proposition 3.1 (Brigo and Mercurio (2001a)). Let us assume that each σi is con-
tinuous and bounded from below by a positive constant, and that there exists an ε > 0 such
that σi(t) = σ0 > 0, for each t in [0, ε] and i = 1, . . . , N . Then, if we set

ν(t, y) =

√

√

√

√

√

√

√

∑N
i=1 λiσ2

i (t)
1

Vi(t)
exp

{

− 1
2V 2

i (t)

[

ln y
S0
− µt + 1

2V
2
i (t)

]2
}

∑N
i=1 λi

1
Vi(t)

exp
{

− 1
2V 2

i (t)

[

ln y
S0
− µt + 1

2V
2
i (t)

]2
} , (15)

6Indeed, Ritchey (1990) assumed a mixture of normal densities for the density of the asset log-returns.
However, it can be easily shown that this is equivalent to assuming a mixture of lognormal densities for
the density of the asset price.
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for (t, y) > (0, 0) and ν(t, y) = σ0 for (t, y) = (0, S0), the SDE

dSt = µStdt + ν(t, St)StdWt (16)

has a unique strong solution whose marginal density is given by the mixture of lognormals

pt(y) =
N

∑

i=1

λi
1

yVi(t)
√

2π
exp

{

− 1
2V 2

i (t)

[

ln
y
S0
− µt + 1

2V
2
i (t)

]2
}

. (17)

Moreover, for (t, y) > (0, 0), we can write

ν2(t, y) =
N

∑

i=1

Λi(t, y)σ2
i (t), (18)

where, for each (t, y) and i, Λi(t, y) is defined in (10) through (14), Λi(t, y) ≥ 0 and
∑N

i=1 Λi(t, y) = 1. As a consequence

0 < σ̃ ≤ ν(t, y) ≤ σ̂ < +∞ for each t, y > 0, (19)

where

σ̃ := inf
t≥0

{

min
i=1,...,N

σi(t)
}

,

σ̂ := sup
t≥0

{

max
i=1,...,N

σi(t)
}

.

The function ν(t, y) can be extended by continuity to the semi-axes {(0, y) : y > 0}
and {(t, 0) : t ≥ 0} by setting ν(0, y) = σ0 and ν(t, 0) = σ∗(t), where σ∗(t) := σi∗(t) and
i∗ = i∗(t) is such that Vi∗(t) = maxi=1,...,N Vi(t). In particular, ν(0, 0) = σ0. Indeed, for
every ȳ > 0 and every t̄ ≥ 0,

lim
t→0

ν(t, ȳ) = σ0,

lim
y→0

ν(t̄, y) = σ∗(t̄).

The function σ∗ can in principle be discontinuous. However, we can easily make it a
continuous function by assuming that σ1(t) ≤ σ2(t) ≤ · · · ≤ σN(t) for each t, so that
σ∗(t) = σN(t) for each t. The continuity of the extension of ν on {(t, 0) : t ≥ 0} can then
be straightforwardly proved.

Remark 3.2. The above proposition provides us with the analytical expression for the
diffusion coefficient in the SDE (16) such that the resulting equation has a unique strong
solution whose marginal density is given by (17), i.e. (5) with pi’s as in (14). Moreover,
the square of the “local volatility” ν(t, y) can be viewed as a weighted average of the squared
“basic volatilities” σ2

1(t), . . . , σ
2
N(t), where the weights are all functions of the lognormal
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marginal densities (14). In particular, the “local volatility” ν(t, y) lies in the interval
[σ̃, σ̂].7 In case σ1(t) ≤ σ2(t) ≤ · · · ≤ σN(t) for each t, we can actually prove, for each
fixed t, the tighter inequalities

σ̃ ≤ min
y

ν(t, y) =

√

√

√

√

∑N
i=1

λiσ2
i (t)

Vi(t)
e−

1
8V 2

i (t)

∑N
i=1

λi
Vi(t)

e−
1
8V 2

i (t)
≤ ν(t, y) ≤ max

i=1,...,N
σi(t) = σ∗(t) ≤ σ̂.

Brigo and Mercurio (2001a) also remarked that, under deterministic interest rates,
one can actually prove the existence of a unique risk-neutral measure, and hence forward
measure. Indeed, let us assume that under the real-world measure Q0, the asset price
process evolves according to

dSt = µ0Stdt + ν(t, St)StdW 0
t ,

where µ0 is a real constant and W 0 is a Q0-standard Brownian motion. Then the Radon-
Nicodym derivative defining the change of measure from Q0 to QT is expressed in terms
of the “market price of risk”

θ(t, St) =
µ0 − µ
ν(t, St)

,

which is bounded due to (19). As a consequence, the Novikov condition, ensuring the
feasibility of such a change of measure, is immediately fulfilled, and dWt = dW 0

t +θ(t, St)dt.
As already pointed out, the pricing of European options under the asset-price model (16)

with “local volatility” (15) is quite straightforward, see also Brigo and Mercurio (2001a).

Proposition 3.3. Consider a European call option with maturity T , strike K and written
on the asset S following the dynamics (16,15). Then, the option value at the initial time
t = 0 is given by the following convex combination of Black-Scholes prices

C(K, T ) = P (0, T )
N

∑

i=1

λi

[

S0eµT Φ

(

ln S0
K +

(

µ + 1
2η

2
i

)

T

ηi
√

T

)

−KΦ

(

ln S0
K +

(

µ− 1
2η

2
i

)

T

ηi
√

T

)]

,

(20)
where

ηi :=
Vi(T )√

T
=

√

∫ T
0 σ2

i (t)dt
T

. (21)

Proof. We just have to apply (12) and notice that, in case of a call, Oi = P (t, T )
∫ +∞
0 [(y−

K)]+pi
T (y)dy is nothing but the Black-Scholes call price corresponding to the volatility

coefficient ηi.

7This property relates our model to that of Avellaneda et al. (1995) who considered a stochastic
volatility evolving within a predefined band.
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The option price (20) leads to smiles in the implied volatility structure. An example
of the shape that can be reproduced in shown in Figure 1. Observe that the volatility
implied by the option prices (20) has a minimum exactly at a strike equal to the forward
asset price S0eµT (ATM forward strike). This property, which is formally proved in Brigo
and Mercurio (2001a), makes the model suitable for recovering the smile-shaped volatility
surfaces that are often observed in option markets. In fact, also skewed shapes can be
retrieved, but with zero slope at the ATM-forward level.

80 85 90 95 100 105 110 115 120
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Figure 1: Implied volatility curve produced by the option price (20), where we set µ =
0.035, T = 1, N = 3, (η1, η2, η3) = (0.6, 0.2, 0.1), (λ1, λ2, λ3) = (0.1, 0.3, 0.6) and S0 = 100.

Given the above analytical tractability, we can easily derive an explicit approximation
for the implied volatility as a function of the option strike price. More precisely, defining
the moneyness m as the logarithm of the ratio between the forward asset price and the
strike price, i.e.,

m := ln
S0

K
+ µT,

we have the following.

Definition 3.4. The Black-Scholes volatility that, for the given maturity T , is implied by
the price (20) is the function σ̂(m) of the option moneyness that is implicitly defined by
the equation

P (0, T )S0eµT
[

Φ
(

m + 1
2 σ̂(m)2T

σ̂(m)
√

T

)

− e−mΦ
(

m− 1
2 σ̂(m)2T

σ̂(m)
√

T

)]

= P (0, T )S0eµT
N

∑

i=1

λi

[

Φ
(

m + 1
2η

2
i T

ηi
√

T

)

− e−mΦ
(

m− 1
2η

2
i T

ηi
√

T

)]

.

(22)
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Proposition 3.5. The Black-Scholes volatility that is implied by the price (20) is given by

σ̂(m) = σ̂(0) +
1

2σ̂(0)T

N
∑

i=1

λi

[

σ̂(0)
ηi

e
1
8(σ̂(0)2−η2

i )T − 1
]

m2 + o(m2), (23)

where σ̂(0) is the ATM-forward implied volatility, which is explicitly given by

σ̂(0) =
2√
T

Φ−1

(

N
∑

i=1

λiΦ
(

1
2
ηi

√
T

)

)

. (24)

Proof. The definition (22) for m = 0 immediately leads to (24). As to the expansion,
we just have to apply Dini’s implicit function theorem and calculate the first and second
derivatives in m = 0, obtaining

dσ̂
dm

(0) =

∑N
i=1 λiΦ

(

−1
2ηi
√

T
)

− Φ
(

−1
2 σ̂(0)

√
T

)

√
T√
2π

e−
1
8 σ̂(0)2T

= 0

d2σ̂
dm2 (0) =

∑N
i=1 λi

e−
1
8 η2

i T

ηi
√

2πT
− e−

1
8 σ̂(0)2T

σ̂(0)
√

2πT
√

T√
2π

e−
1
8 σ̂(0)2T

,

where the first derivative is zero due to (24). Straightforward algebra then leads to (23).

The above model is quite appealing when pricing exotic derivatives. Notice, indeed, that
having explicit dynamics implies that the asset-price paths can be simulated by discretizing
the associated SDE with a numerical scheme. Hence we can use Monte Carlo procedures
to price path-depending derivatives. Claims with early-exercise features can be priced with
grids or lattices that can be constructed given the explicit form of the asset-price diffusion
dynamics. However, the presence of a relative minimum at the ATM-forward level may
be a severe drawback in case of highly skewed or asymmetric implied volatility curves. In
such situations the following two models are in fact more suitable.

4 Lognormal-Mixtures with Different Means

We now consider the case where the densities pi
t’s are still lognormal but with different

means. Precisely, we assume that the instrumental processes Si’s evolve, under QT , ac-
cording to

dSi(t) = µi(t)Si(t)dt + σi(t)Si(t) dWt, i = 1, . . . , N, Si(0) = S0 ,

where σi’s are the same deterministic functions as in (13) satisfying the conditions of Propo-
sition 3.1, and µi’s are deterministic functions of time defined on [0, T ∗]. The unconditional
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density of Si at time t is thus given by

pi
t(y) =

1
yVi(t)

√
2π

exp

{

− 1
2V 2

i (t)

[

ln
y
S0
−Mi(t) + 1

2V
2
i (t)

]2
}

,

Mi(t) :=
∫ t

0
µi(u)du,

(25)

with Vi defined as before. The functions µi’s can not be defined arbitrarily, but must be
chosen so that

N
∑

i=1

λieMi(t) = eµt, ∀t > 0. (26)

This is because, to be a proper QT -density, pt(y) =
∑N

i=1 λipi
t(y) must have a mean equal

to S0eµt.
Differentiating both sides of (26) with respect to t we get

N
∑

i=1

λiµi(t)eMi(t) = µeµt = µ
N

∑

i=1

λieMi(t), ∀t > 0,

⇔
N

∑

i=1

λi(µi(t)− µ)eMi(t) = 0, ∀t > 0,

which implies that some µi’s must be larger and some smaller than (or equal to) µ.
The results of Section 2 can not be applied here because the instrumental processes Si’s

no longer share the same drift rate µ. Nevertheless, we can apply a procedure similar to
that of Brigo and Mercurio (2001a), see also Brigo and Mercurio (2002) for a more general
treatment, and look for a diffusion coefficient ψ(·, ·) such that

dS(t) = µS(t)dt + ψ(t, S(t))S(t) dWt (27)

has a solution with marginal density pt(y) =
∑N

i=1 λipi
t(y). As before, we then use the

Fokker-Planck equations for processes S and Si’s to find, after some manipulations and
simplifications, that

ψ(t, y)2 =
∑N

i=1 λiσi(t)2pi
t(y)

∑M
i=1 λipi

t(y)
+

2
∑N

i=1 λi(µi(t)− µ)
∫ +∞

y xpi
t(x)dx

y2
∑N

i=1 λipi
t(y)

=
∑N

i=1 λiσi(t)2pi
t(y)

∑M
i=1 λipi

t(y)
+

2S0
∑N

i=1 λi(µi(t)− µ)eMi(t)Φ
(

ln S0
y +Mi(t)+ 1

2V 2
i (t)

Vi(t)

)

y2
∑N

i=1 λipi
t(y)

.

(28)

Notice that the first term in (28) coincides with ν2(t, y) in (15) where the old densities (14)
are now replaced with the new ones (25). Moreover, the integrals in the numerator of the
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second term in the RHS of (28) are quantities proportional to the Black-Scholes prices of
asset or nothing options for the instrumental processes Si.

The coefficient ψ is not necessarily well defined, since the second term in the RHS of
(28) can become negative for some choices of the basic parameters, given that some µi’s
must be smaller than µ. However, it is possible to derive conditions under which (strict)
positivity of ψ(t, y)2 is granted. A set of sufficient conditions, not too restrictive from a
practical viewpoint, is given in the following.

Lemma 4.1. Assume that:

i) there exists n ∈ {1, 2, . . . , N} such that, for each t ∈ [0, T ∗], µi(t) ≥ µ for each
i = 1, . . . , N , i 6= n, and µn(t) ≤ µ;

ii) the condition

V 2
i (t)
2

− 2V 2
i (t)

σ2
i (t)

(µi(t)− µ) >
V 2

n (t)
2

− 2V 2
n (t)

σ2
n(t)

(µn(t)− µ) (29)

is satisfied for each t ∈ (0, T ∗] and for each i 6= n,

then the function ψ2 in (28) is strictly positive on (0, T ∗]× (0, +∞).

Proof. See Appendix A.

If our model parameters and functions satisfy the assumptions of this lemma, it is then
meaningful to deal with our candidate asset-price SDE (27). Further conditions ensuring
existence and uniqueness of the solution of such an SDE are given in the following.

Proposition 4.2. Let us assume that each σi is continuous and bounded from below by a
positive constant, and that there exists an ε > 0 such that σi(t) = σ0 > 0, for each t in [0, ε]
and i = 1, . . . , N . Let us further assume that each µi is continuous, that the no arbitrage
condition (26) is satisfied, and that µi(t) = µ > 0, for each t in [0, ε] and i = 1, . . . , N .
Then, under the assumptions of Lemma 4.1, the SDE (27) has a unique strong solution
whose marginal density is given by the mixture of lognormal densities (25).

Proof. See Appendix B.

The pricing of options, under dynamics (27), is again quite straightforward. In fact, the
European call option price C(K, T ), at time t = 0, is again given by a convex combination
of Black-Scholes prices, namely

C(K,T )

= P (0, T )
N

∑

i=1

λi

[

S0eMi(T )Φ

(

ln S0
K + Mi(T ) + 1

2η
2
i T

ηi
√

T

)

−KΦ

(

ln S0
K + Mi(T )− 1

2η
2
i T

ηi
√

T

)]

,

(30)

where ηi is defined as in (21). Also this price leads to smiles in the implied volatility
structure. However, the non-constant drift rates in the Si-dynamics allows us to reproduce
steeper and more skewed curves than in the zero-drifts case, with minimums that can be
shifted far away from the ATM level.
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5 The Case of Hyperbolic-Sine Processes

The third example we consider is another one lying in the class of dynamics (11). We
in fact assume that the basic processes Si evolve, under QT , according to hyperbolic-sine
processes, i.e.8

Si(t) = βi(t) sinh
[∫ t

0
αi(u)dWu − Li

]

, i = 1, . . . , N, Si(0) = S0, (31)

where αi’s are positive and deterministic functions of time, Li’s are negative constants,
and βi’s are chosen so as to make Si’s drift rate equal to µ, namely

βi(t) =
S0 eµt− 1

2

R t
0 α2

i (u)du

sinh(−Li)
.

The SDE followed by each Si is thus given by

dSi(t) = µSi(t)dt + αi(t)
√

β2
i (t) + S2

i (t) dWt, i = 1, . . . , N.

Looking at this SDE’s diffusion coefficient we immediately notice that it is roughly de-
terministic for small values of Si(t), whereas it is roughly proportional to Si(t) for large
values of Si(t). Therefore in the former case, the dynamics are approximately of Gaussian
type, whereas in the latter they are approximately of lognormal type. For further details
on such a process we refer to Carr et al. (1999).9

The hyperbolic-sine process (31) shares all the analytical tractability of the classical
geometric Brownian motion. This is intuitive, since (31) is basically the difference of two
geometric Brownian motions (with perfectly negatively correlated logarithms).

Setting Ai(t) :=
√

∫ t
0 α2

i (u)du, the cumulative distribution function of process Si at
each time t is easily derived as follows:

QT{Si(t) ≤ y} = QT
{∫ t

0
αi(u)dWu ≤ Li + sinh−1

(

y
βi(t)

)}

= Φ
(

Li

Ai(t)
+

1
Ai(t)

sinh−1
(

y
βi(t)

))

,

so that the time-t marginal density of Si is

pi
t(y) =

exp
{

− 1
2A2

i (t)

[

Li + sinh−1
(

y
βi(t)

)]2
}

Ai(t)
√

2π
√

β2
i (t) + y2

. (32)

8We remind that sinh(x) = ex−e−x

2 , and that sinh−1(x) = ln(x +
√

1 + x2).

9Carr et al. (1999) actually consider a process where negative values are absorbed into zero. Their
process is slightly more complicated, though not losing in analytical tractability.
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Moreover, through a straightforward integration, we obtain that the price of a European
call with maturity T and strike K is

C(T, K) = P (0, T )

[

S0 eµT
(

e−LiΦ[ȳi(T ) + Ai(T )]− eLiΦ[ȳi(T )− Ai(T )]
)

2 sinh(−Li)
−KΦ

(

ȳi(T )
)

]

,

(33)
where we set

ȳi(T ) := − Li

Ai(T )
− 1

Ai(T )
sinh−1

(

K
βi(T )

)

.

The pricing function (33) leads to steeply decreasing patterns in the implied volatility
curve. Therefore, we can hope that a mixture of densities (32) leads to steeper implied
volatility skews than in the lognormal-mixture model. Indeed, this turns out to be the
case.

The results in Section 2, and equation (11) in particular, immediately yield the following
SDE for the asset price process under measure QT :

dS(t) = µS(t)dt + χ(t, S(t)) dWt

χ(t, y) =

√

√

√

√

√

√

√

∑N
i=1 λi

α2
i (t)
√

βi(t)2+y2

Ai(t)
exp

{

− 1
2A2

i (t)

[

Li + sinh−1
(

y
βi(t)

)]2
}

∑N
i=1

λi

Ai(t)
√

βi(t)2+y2
exp

{

− 1
2A2

i (t)

[

Li + sinh−1
(

y
βi(t)

)]2
} (t, y) > (0, 0).

(34)

As in the previous lognormal-mixtures cases, this equation must be handled with due care
since the function χ is in general discontinuous in (0, S0) no matter what the value of
χ(0, S(0)) is. However, the existence and uniqueness of a solution of such SDE can again
be proved under mild assumptions on the model coefficients. This is stated in the following.

Proposition 5.1. Let us assume that each αi is continuous and bounded from below by a
positive constant, that there exists an ε > 0 such that αi(t) = α0 > 0, for each t in [0, ε]
and i = 1, . . . , N , and that all Li’s are equal. Then, setting χ(0, S(0)) = α0, we have that
for t ∈ [0, T ], T a finite time horizon,

C ≤ χ2(t, y) ≤ D(1 + y2). (35)

Moreover, the SDE (34) admits a unique strong solution.

Proof. See Appendix C.

The general treatment of Section 2 implies that the option price associated to (34) can
be expressed in a closed form as follows.



Alternative Dynamics and Volatility Smile 16

Proposition 5.2. Consider a European option with maturity T , strike K and written on
the asset S following the dynamics (34). Then, the option value at the initial time t = 0
is given by the convex combination of prices (33), i.e.

C(T, K)

=P (0, T )
N

∑

i=1

λi

[

S0 eµT

2 sinh(−Li)

(

e−LiΦ[ȳi(T ) + Ai(T )]− eLiΦ[ȳi(T )− Ai(T )]
)

−KΦ
(

ȳi(T )
)

]

.

(36)

As anticipated, this option price leads to steep skews in the implied volatility curve.
An example of the shape that can be reproduced is shown in Figure 2.
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Figure 2: Implied volatility curve produced by the option price (36), where we set, T = 1,
N = 2, (A1(1), A2(1)) = (0.01, 0.04), (L1, L2) = (−0.056,−0.408), (λ1, λ2) = (0.1, 0.9),
µ = 0 and S0 = 0.055.

6 Conclusions

We have reviewed the general class of asset-price models introduced by Brigo and Mercurio
(2001a). This class is based on asset-price processes whose marginal density is given by
the mixture of some suitably chosen densities. In particular, if the basic densities are
associated to specific QT -asset-price dynamics that imply an analytical option price, so
does their mixture.

We have then considered three fundamental cases. The first example is based on a
mixture of lognormal densities with equal means and is particularly useful in case of smile-
shaped implied volatilities. The second is still based on lognormal densities, but with
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possibly different means, whereas the third is built upon hyperbolic-sine basic processes.
These last two models are instead advised for a calibration to skew-shaped (asymmetric)
structures.

We can construct more general processes by applying affine transformations. For in-
stance, in the case of lognormal densities with equal means, an alternative asset-price
process, under QT , is defined, for any γ 6= 0, by

dSt = µStdt+

√

√

√

√

√

√

√

∑N
i=1 λiσ2

i (t)
1

Vi(t)
exp

{

− 1
2V 2

i (t)

[

ln St−γeµt

S0−γ − µt + 1
2V

2
i (t)

]2
}

∑N
i=1 λi

1
Vi(t)

exp
{

− 1
2V 2

i (t)

[

ln St−γeµt

S0−γ − µt + 1
2V

2
i (t)

]2
} (St−γeµt)dWt,

which has a marginal density that is given by shifting a mixture of lognormal densities
by the quantity γeµt at each time t. The corresponding option prices lead to an implied
volatility structure whose minimum point is shifted from the asset forward price. We
are thus able to obtain slightly more flexible structures to better fit the market volatility
data. Examples of this model fitting quality to real market data have been investigated
by Brigo and Mercurio (2000) using option prices on the Italian stock index and by Brigo
and Mercurio (2001b) using Euro caplet volatilities.

Finally, our models can be applied to all situations where the basic Black and Scholes
paradigm is used, such as the equity market (Black and Scholes’ formula), the FX market
(Garman and Kohlhagen’s formula) and the interest-rate cap market (Black’s formula).
In particular, our formulations can be used to introduce an analytically tractable forward
Libor model for recovering the smile in the caps and floors markets, see also Brigo and
Mercurio (2001c).
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Appendix A: Proof of Lemma 4.1

When y 6= 0, the function ψ(t, y)2 in (28) is positive if and only if the function

y →
N

∑

i=1

λi

[

σi(t)2pi
t(y)y2 + 2(µi(t)− µ)

∫ +∞

y
xpi

t(x)dx
]

(37)

is positive in (0, +∞) for each t ∈ (0, T ∗]. We set

hi(t, y) := σi(t)2pi
t(y)y2 + 2(µi(t)− µ)

∫ +∞

y
xpi

t(x)dx, (38)

which, for each t and i, can be extended by continuity in y = 0 by setting

hi(t, 0) := lim
y→0

hi(t, y) = 2(µi(t)− µ)S0eMi(t).
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Let us fix t ∈ (0, T ∗]. As a function of y, hi is strictly increasing up to the point

yi := Mi(t) +
V 2

i (t)
2

− 2V 2
i (t)

σ2
i (t)

(µi(t)− µ),

where it reaches a positive maximum, and then decreasing to 0, which is its limit for
y → +∞.

Now, thanks to the no-arbitrage condition,
∑

i λihi(t, 0) = 0, and we also know that all
hi’s are strictly increasing up to y∗ := mini yi, so that

∑

i λihi must be strictly positive up
to this point. Since Mi(t) ≥ Mn(t) for all i 6= n, (29) implies that y∗ = yn. Moreover, all
hi’s, i 6= n, are strictly positive everywhere and hn is strictly positive for y ≥ yn, so that
∑

i λihi is strictly positive also for y ≥ yn.

Appendix B: Proof of Proposition 4.2

We first introduce the following.

Lemma 6.1. The function ψ2 in (28) is bounded on [0, T ]× [0, +∞) for any T ∈ (0, T ∗].

Proof. Let T > 0 be fixed. We will first show that, for any z > 0, ψ2 is bounded on
[0, T ]×[0, z], and then we will show that, for a suitable z̄, ψ2 is bounded on [0, T ]×(z̄, +∞).
By combining these results, and setting z = z̄, we will finally obtain that ψ2 is bounded
on the whole domain [0, T ]× [0, +∞).

We define the following constants (which only depend on T ):

V := max
i

sup
t∈[0,T ]

Vi(t) M := max
i

sup
t∈[0,T ]

Mi(t) m := min
i

inf
t∈[0,T ]

Mi(t). (39)

We denote by φ(t, y) the second term in (28). Since the first term in (28) is bounded, we
need only show that φ(t, y) is bounded.

We first show that φ is continuous on [0, T ]×[0, +∞). We point out that φ is continuous
on [0, T ]× (0, +∞) by its very definition, and it is equal to zero on the set [0, T ]× {0}. It
is not hard to show that if limy→0 ψ2(t, y) = 0 uniformly with respect to t ∈ [0, T ], then
ψ2(t, y) is continuous on the points (t, 0), t ∈ [0, T ] too. To this end we could find an upper
bound for the function φ which is uniform in t ∈ [0, T ] and converges to zero when y → 0.
However, as shown in Brigo et al. (2002), the limit is uniform in t also when there exists
an upper bound for the ratio of the derivatives of the numerator and denominator in φ. In
fact, for each y < S0em, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
∑

i λi(µ− µi(t))pi
t(y)

∑

i λipi
t(y)

(

1−
ln y

S0
−Mi(t)+

1
2V 2

i (t)

V 2
i (t)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2 sup
t∈[0,T ]

(

∑

i

|µ− µi(t)|

)

· V 2

m− ln(y/S0)
,

which implies boundedness on [0, T ]× [0, z] for any z > 0.
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The boundedness of ψ2 on [0, T ] × (z̄, +∞) is implied by the following bound which
holds true for y > S0eM+V 2/2, see Brigo et al. (2002),

∣

∣

∣

∣

∣

2
∑

i λ
i(µi(t)− µ)

∫ +∞
y xpi

t(x)dx

y2
∑

i λipi
t(z)

∣

∣

∣

∣

∣

≤ 2( sup
t∈[0,T ]

∑

i

|µi(t)− µ|)
∫ +∞

0
exp

(

−1
2

u
V 2 [u + 2 ln(y/S0)− 2M − V 2]

)

du.

The limit of the RHS of this inequality for y → 0 is 0 thanks to the Lebesgue dominated
convergence theorem. This implies that limy→0 φ(t, y) = 0 uniformly in t ∈ [0, T ], and
hence there exists a z̄ such that |φ(t, y)| ≤ 1 on [0, T ]× [z̄, +∞).

We can now move to the proof of Proposition 4.2. We apply the transformation Xt =
ln(St) and study the equation

dXt =
(

µ− ψ(t, eXt)2

2

)

dt + ψ(t, eXt)dWt. (40)

To show existence and uniqueness of the solution to this equation we exploit Theorem
12.1, Section V.12, of Rogers and Williams (1996). We need to show that the drift and
diffusion coefficients of this equation have linear growth with respect to y on domains like
[0, T ] × (−∞, +∞), T > 0, and are locally Lipschitz on domains like [0, T ] × [−K, K],
T > 0, K > 0.

The linear growth condition is satisfied due to the boundedness of both coefficients,
which follows from the boundedness of ψ(t, ey) on those domains (see the lemma above).
Moreover, the local Lipschitz condition is satisfied due to the fact that ψ(t, ey)2 is con-
tinuous, positive (see Lemma 4.1) and has a continuous derivative with respect to y on
each set [0, T ] × (−∞, +∞), T > 0. As a consequence, ψ(t, ey)2 is bounded from above
and below by positive constants, and its y-partial derivative is bounded on each domain
[0, T ] × [−K, K], K > 0. Then, since ∂

∂yψ(t, ey) = 1
2ψ(t,ey)

∂
∂yψ(t, ey)2, also ψ(t, ey) has a

bounded y-partial derivative on [0, T ]× [−K, K].

Appendix C: Proof of Proposition 5.1

Inequalities (35) immediately follow from the representation (9) and the assumptions on
αi’s and Li’s.

The proof of the existence and uniqueness of the solution to the SDE (34), which is
similar to that of Proposition 3.1, is again based on Theorem 12.1 in Section V.12 of Rogers
and Williams (1996).

Given that the linear-growth condition is implied by (35), we just have to show that
χ(t, y) is locally Lipschitz in the sense of this theorem. This is true since ∂χ2

∂y (t, y) is well
defined and continuous for each (t, y) ∈ [0,M ] × IR, M > 0, and hence bounded on each
compact set [0,M ]× [−M, M ]. In fact, the same applies to ∂χ

∂y (t, y) = 1
2χ(t,y)

∂χ2

∂y (t, y) since
χ(t, y) is bounded from below by a positive constant.


