1.

Compositional and Inductive Semantic Definitions in
Fixpoint, Equational, Constraint, Closure-condition,

Rule-based and Game-Theoretic Form *
(invited paper)

Patrick Cousot! and Radhia Cousot?

cousot@dmi.ens.fr rcousot@lix.polytechnique.fr

! LIENS, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France
2 LIX, CNRS & Ecole Polytechnique, 91140 Palaiseau cedex, France

Abstract. We present a language and semantics-independent, compo-
sitional and inductive method for specifying formal semantics or seman-
tic properties of programs in equivalent fixpoint, equational, constraint,
closure-condition, rule-based and game-theoretic form. The definitional
method is obtained by extending set-theoretic definitions in the context
of partial orders. It is parameterized by the language syntax, by the
semantic domains and by the semantic transformers corresponding to
atomic and compound program components. The definitional method
is shown to be preserved by abstract interpretation in either fixpoint,
equational, constraint, closure-condition, rule-based or game-theoretic
form. The features common to all possible instantiations are factored
out thus allowing for results of general scope such as well-definedness,
semantic equivalence, soundness and relative completeness of abstract
interpretations, etc. to be proved compositionally in a general language
and semantics-independent framework.

Introduction

Program semantics as well as program proof and analysis methods can be pre-
sented in many different styles:

*

Fixpoint definitions have been introduced to define the denotational semantics
of programming languages (see e.g. [14]);

Equational definitions are of common use e.g. in context-free grammars [3],
abstract interpretation [6], etc;

Constraint-based definitions are used e.g. in set-based program analysis [11]
or in type inference [15];

A typical use of closure-condition-based definitions is to define sets of terms
(see e.g. [19], p. 681);

Rule-based definitions are used e.g. in Hoare-logic [12], in structured opera-
tional semantics [17], type inference [10], program analysis [16];
Game-theoretic definitions have been used to prove full abstraction for PCF

[1].

This work was partly supported by EsPRIT BRA 8130 LOMAPS.

294

We would like to compare these methods for defining program semantics, proofs
and program analyses compositionally, by induction on the program syntax both
in a language-independent way and in an order-theoretic setting (rather than in
the context of set-theory as in [2]).

As far as the language-independent modeling of the semantics of program-
ming languages is concerned, transition systems are a simple model of the op-
erational semantics. No equivalent exists for notions such that Hoare logic or
Scott-Strachey denotational semantics. In order to proceed compositionally by
induction on the program syntax, these notions are often introduced using a
simple programming language [4, 14]. Reasonings using this particular example
are not general enough. It follows that, with the notable exception of opera-
tional semantics modeled by a (labeled) transition system, formal semantics and
program analyses are difficult to present in the abstract, independently of a par-
ticular programming language. In this paper we propose a method to cope with
such problems.

We show that using a meta-syntax scheme and a meta-semantics scheme,
it is possible to propose a general framework for defining the semantics, proofs
and analysis of programs compositionally by induction on the meta-syntax. We
show that the fixpoint, equational, constraint, closure-condition, rule-based, and
game-theoretic styles of definition of the meta-semantics are not fundamentally
different but a simple matter of presentation with equivalent interpretations. We
next show that this definitional method is preserved by abstract interpretation.
This means that the abstraction of a semantics can be presented in the same
style as the semantics. Finally this definitional method is shown to be useful
for proving general language-independent results such well-definedness, semantic
equivalence, soundness and relative completeness of abstract interpretations.

2. Introductory example

Let us first illustrate the definition of the semantics § [¢X+ 0 + aX] of the p-ex-
pression pX+0+ aX [13] in equivalent fixpoint, equational, constraint, closure-
condition, rule-based and game-theoretic form. For the sake of conciseness the
behaviors of p-expressions are described by sets of finite sequences of actions.

In fixpoint form, the semantics S [#X + 0 + aX] is the subset of the set {0, a}*
of finite strings on the alphabet {0,a} defined as:

def

SpX-04+aX] = lpAX-{0} U{ac :0 € X}
In equivalent equational form, this is the C-least solution to the equation:
X ={0tU{ac:0€ X}
In equivalent set-constraint form, this is the C-least solution to the constraint:
x 2 {0}
{ X D{ac:0€ X}

This can also be written as the C-least A" satisfying the closure-condition:

0ex
ceX = ace X

295

The semantics § [#X+ 0+ aX] can also be inductively defined by a formal system
with the following axiom and rule schema:

o€ 8[pX-0+aX]
ac € SpX: 0+ aX]

0€8[pX-0+aX]

which stands for the formal system with rule instances % and lo} , 0 €40,a}*
aoc

P

where the rule instance — means that from the set P of premises one can infer
¢

the conclusion c.

Finally, the semantics S[uX+0+ aX] can also be inductively defined by the
game with rules (presented in tabular and set of pairs forms):
I 11

0]0 {{0, 0),
as|{o} {ao, {o}) | o € {0,a}"}

The game starts with player I choosing o = o1 € {0, a}*. If after n moves player
I chooses 0, € {0,a}* then player IT must choose some X, such that {¢,, X,)
is allowed by the rules. The answer of player I must be some 6,41 € X,. A
player who is blocked has lost. If the game goes on for ever, player II has lost.
The semantics S [uX+0 4 aX] is the set of initial o for which player IT has a
winning strategy in the game.

Such set-theoretic definitions are now extended in the context of partial-
orders to proceed compositionally, by induction on the syntax of programs.

3. Syntax Scheme

Following [7], we let £ be a non-empty set of program components (or fragments)
and P C L be the non-empty subset of complete programs. We let ['[-] € £
p(L) define the set of immediate strict components of a program fragment. This
set must be finite:
Va € £ : [[x] is finite.
No program fragment can be indefinitely decomposed into strictly smaller com-
ponents:
There is no infinite chain 7g, 71,...,m;,...iIn Lsuch that Vi > 0 : 144 €
Im].
Subcomponents of a program fragment are all different (this can be obtained
e.g. by labeling):
If there are chains mp, ..., 7, and w},..., 7, in £ such that for all 0 <
i<m:my € I'[m], forall 0 < j <mn:myy € I'[r], m = 7 and
T = 7, then m = n and Vi € [0,n] : 7y = 7.

The set of all subcomponents I'™* [-] € £ — (p(L£) — {0}) of a program fragment

F*[[ﬂ']]d:ef{ﬂ'/:37120:37"0,...,7(”E,C:(ﬂ'zﬂ'o)/\
(Vi€ [0,n]: miy1 € I'[m]) A (7n = 7')}

296

The set of all atomic subcomponents I'F[-] € £ — (p(L£) — {0}) of a program

f t is: .
ragment 18 F; [[71']] d:f {ﬂ_, € F* [[71']] T [[71'/]] — @}
The set of all compound subcomponents I'*[-] € £ — (p(L)) of a program

fragment is: I [x] et (' € I*[x]: I [#] £ 0}

FEzample The immediate components of the p-expression puX.0 4+ aX are
I'[pX-0+ aX] = {0+aX}. Its subcomponents are I'™* [u X+ 0+ aX] = {pX 0+
aX,0+aX,0,aX,a,X}. Its atomic components are ['F [uX+0+ aX] = {0,a, X}.
Its compound components are X [uX+-0+aX] = {uX-04+aX,0+4 aX,aX}.
Depending upon the structural induction which is used other decompositions
may also be used. a

The following proposition 1s useful to justify definitions and proofs by structural

induction on the syntax of programs:
def

Proposition 1. For all programs II € P, the binary relation 7' < 7 = 7' €
def

Ir] and o <7 = (7' < 7) V(7" = 7) is a well-founded partial ordering on
r=[mj.

4. Semantic Domains Scheme

The definition of the semantic scheme of program II € P is parameterized by
a semantic domain D, associated with each component = € I'* [II] of program
II € P, such that:

Hypothesis 2. The semantic domain Dy, 7 € I'™[II] is a complele partial
order (cpo) (Dr,C, L,||) so that C-increasing chains have a least upper-bound
(lub) denoted | |.

5. Semantic Transformers Scheme

The definition of the semantic scheme of program II is parameterized by mono-
tonic semantic transformers F, associated with each subcomponent = of II.
Their signatures are defined by induction on the syntax of the program II:

Hypothesis 3. The semantic transformers Fr of all components = € I'*[II] of
program II € P satisfy:

— for atomic program components ®# € I'x [II], Fr € Dy — Dy

— for compound program components w € I'*[II]:

Fr € (Hw’er[w]] pﬂ,) - (D 2 D)

6. Semantic Scheme

The semantic scheme of a program Il associates an element of the semantic
domain D, to each component @ of I1. We consider several styles of presentation
of this semantics by structural induction on the syntax of the program and prove
them to be equivalent.

297

6.1 Fixpoints
The fixpoint definition of the semantics uses the least fixpoint operator Ifp €
(L V= L)+ L such that given F' € L —— L on the poset (L, C):

F(fpF)=1fp F if /(X)=X then lfp FC X (1)
For all monotonic operators F' € L —— L on a cpo (L,C, L |]), lfp exists and is
such that (O is the class of ordinals) Ifp F' = |—|ne© F'® where the approzimants
are Fr = F(|_|>\<,,Q FA) where L) = L. Let us also recall the fixpoint induction
proof method. For all X € L:

FX)CX=IfpFCX (2)

6.2 Fixpoint semantic definition scheme

The fixpoint semantic scheme is parameterized by semantic domains D, and se-
mantic transformers F, associated with each program subcomponent = € I'™* [I7]
according to Hyp. 2 and Hyp. 3. It is defined compositionally, by induction on
the syntax of the program II.

Definition 4. The fixpoint semantics S;; [7], 7 € I'* [II] of program II € P is
defined such that:

~ for atomic program components 7 € I'F [IT], Sy [7] = p Fir;

— for compound program components = € I'* [II]:

def
Sq [x] = lip 7 (Hﬁlep -
The fixpoint semantics Sy [I7] is well-defined:
Proposition 5. For all m € I'*[IT], S;[7] € Dx.

Sy [[7"/]])

6.3 Equational semantic definition scheme

The definition of the equational semantics 8., [7], # € I'* [II] uses variables X
associated with each component 7 of program I chosen such that = # 7’ <—
Xy # Xp. This definition is compositional, by induction on the syntax of the
program I7.

Definition 6. The equational semantics S, [x], 7 € I'* [IT] of program II € P

is the C-least solution to the following system of equations:

— the semantic equation corresponding to an atomic program component = €
Ir) is Xy = Fr(Xr);

— the semantic equation corresponding to a compound program component 7 €

[is:
Xy = fﬂ< 11 Xﬁl)(;\fﬂ)

7' el [r]

Proposition 7. For all # € I'™ [II], the equational definition of the semantics
of program component ¥ is equivalent to its fizpoint definition: S.,[7] = Sy [7].

298

6.4 Constraint-based semantic definition scheme

By the fixpoint induction proof method (2), lfp F' is the C-least solution to the
constraint X O F(X). This remark leads to the definition of the constraint-
based semantics 8., [7], # € I'* [II]. Again the definition is compositional, by
induction on the syntax of the program:

Definition 8. The constraint-based semantics S., [#]], 7 € I'* [II] of program

I € P is the C-least solution to the following system of semantic constraints:

— the semantic constraint corresponding to an atomic program component 7 €
I [is Xy 3 Fo(y)

— the semantic constraint corresponding to a compound program component

e IF[]is Xy 3 Fr (Hw'er[[w]] xﬂ,)(xﬁ).

Usually the constraint can be decomposed into a system of more elementary
set-constraints using simple set-theoretic algebraic identities. For example:

X||J]YEZ <= XCZAYLCZ
and, in a complete lattice, if F((X) = | {g(z) : f(x) E X} then:
XJFX) <= Vz: f(e) CX =yg(x)C X
Proposition 9. For all program components = € I'™ [II], the constraini-based

definition of the semantics of 7 is equivalent to ils fizpoint definition: S, [x] =

Si [#].

6.5 Closure semantic definition scheme

Given a poset (L, E), a closure-condition is C' € p(L x L) which is monotonic in
its second component, that is, for all 2, X, Y € L, C(#, X)AX CY = C(z,Y)
where C(z, X) is true if and only if (z, X) € C. A closure-definition has the
form:

X is the C-least element X of L satisfying: Ve € L : C(2,X) =2 C X

The closure-definition 1s said to be well-formed if X exists. This order-theoretic
definition generalizes the usual set-theoretic definition [2] of the least set X of
Lsuchthat Ve e L: C(x,X) =z € X.

A closure-definition can be presented in fixpoint form:

def

Proposition 10. If (L,C) is a cpo and Z(X) = | [{z € L : C(z, X)} is well-
defined then the closure-definition s well-formed and X = Ifp=.

Reciprocally, a fixpoint definition can be presented as a closure-definition:
Proposition11. If L(C, L,]) is a cpo and F € L —— L then the closure-
definition with condition C(x,X) = « € F(X) is well-formed and defines lfp F'.
This leads to the compositional definition of the closure-condition-based seman-
tics S, [x], # € ™[], by induction on the syntax of the program:

Definition 12. The closure-condition-based semantics S, [7], # € I'*[II] of
program II € P is the C-least element Ay of D, satisfying the following closure-
condition Cr(z, Xr):

299

— the closure-condition C(#, X;) corresponding to an atomic program compo-
nent 7 € I'*[I] is ¢ C Fr(Xr);

— the closure-condition C(x, X;) corresponding to a compound program com-
ponent w € I'* [II] is « C Fy (Hn’er[[n]] XW/) (Xr).

Proposition 13. For all program components w € I'* [IT], the closure-condition-
based definition of the semantics of © is equivalent to its fizpoint definition:

S, [x] = Sa[=]-
6.6 Rule-based formal systems

The semantics can also be specified by a formal system based on a poset (L, C)

with rule instances :
P
R= { 1 E A}
C

such that for all i € A, P, € L and C; € L [8]. By definition, this denotes:
Ifp & (3)

where the R-operator ® is ® = AX-| [{C; : i € A: P;C X}. R is well-defined
if and only if:

VXEL:U{C’Z':EIZ'EA:PZ'EX} exists (4)
which is the case e.g. if (L, C) is a complete lattice.

Proposition 14. (4) implies that @ is monotonic hence that (3) is well-defined.

This generalizes the set-theoretic formal systems considered in [2] where L is
(p(U),C,0,U,U,N) for a given universe UU. Rules in [2] are written:

b
{ :iEA}
¢

where P; C U and ¢; € U. Their meaning is defined to be Ifp ¥ where ¥ =
AX{e;:FieA: P, C X}. In an order-theoretic setting, we would write them:

{{f} ieal

with equivalent meaning Ifp @ since: @ = AX - J{{e;} :Fi€e A: P, C X} = V.

6.7 Rule-based semantic definition scheme

Again, the rule-based semantics S,, [/7] is defined compositionally, by induction
on the syntax of the program IT. In practice the formal system uses axioms (with
P = 1) and rule schemata which are interpreted as rule instances.

Definition 15. The rule-based semantics S,, [7], 7 € I'* [II] is defined by the
following rule instances:

300

— for atomic program components = € I'* [II]:

P
C m
PCD, NCLCF.(P)
— for compound program components = € I'F [II]:
P

-

PCD,ACC F; (H S [[W’]])(P)

Proposition 16. For all 7 € I'™* [IT], the rule-based definition of the semantics
of program component 7 is equivalent lo ils fizpoint definition: 8., [r] = Ss [#].

mler =]

6.8 Games

Given a poset (L, C), a game is defined by rules R C L x L. The rules are
well-defined if and only if VX € L : |[{C : I{C, P) € R : P C X} exists.
The corresponding R-operator @ is @ = AX-| [{C : 3(C, P) € R : PC X}.
The game G(R, a) with rules R starting from initial position a € L is played
by two players I and II. Player I must start by choosing zq = a. If player 1
chooses #,, in the n-th move, then player IT must respond by X, € p(L) such
that z, = ¢(| | X,,). For the next move, player I must choose some z,41 € X,.
A player who is blocked has lost. If the game goes on forever then player II has
lost. We define W(R) as the set of initial winning positions for player II:

W(R) = {a € L : player IT has a winning strategy in game G(R, a)}
Proposition 17. If the rules R are well-defined then lfp® = | JW(R)
Now a fixpoint definition can be given an equivalent game-theoretic form:

Proposition 18. If (L, C) is a cpo and F € L — L is monotonic then lfp F
= |UW(R) for the game with rules R = {{(C, P): P € LACC F(P)}.

6.9 Game-theoretic semantic definition scheme

Again, the game-theoretic semantics S, [/7] is defined compositionally, by in-
duction on the syntax of the program II.

Definition 19. The game-theoretic semantics S,, [7], 7 € I'* [II] is defined by
the following rules R:
— for atomic program components = € I'* [II]:

Re = {(C, P : PC Dy AC C Fo(P)}

— for compound program components 7 € I'* [IT]:

R ={(C, P): PCD, NCC F, (waep[[ﬂ]] S [[w’]])(P)}

Proposition 20. For all # € I'*[II], the game-theorelic definition of the se-
mantics of program component w is equivalent {o its fizpoint definition: S, [7]

=8 [=]

301

6.10 Equivalence of the semantic definitions
We conclude that the fixpoint, equational, constraint-based, closure-condition-
based, rule-based and game-theoretic semantic definitions are all equivalent:

Proposition 21. For all components = € I'*[II] of program II € P, S;[x] =
S..I7] = S..[7] = S.[7]=S..[7].

7. Example

p-expressions [13] provide a simple example of semantics definition. p-expres-
sions are defined by the following grammar:

E:=0|X|aF |E1+Ey | pX F
where a € A is an action and X € V is a variable.
The immediate strict components " [F] of p-expression E are:
rpp=o9 I'[eE] ={F} rixj=¢90
T'[Er+ E2] = {E1, B2} I'a] =0 rpX-E]=A{F£}

We define the following semantic domains:

a: A ={0JUA action alphabet
c: S ZAT nonempty finite strings
v: VOE p(S) values
p: B EV—V environments
o D ETE—V semantic domain
6: T, ED+=D atomic semantic transformer domain
@ :T," =D" =T, n >0, compound semantical transformer domain

The semantic domain (D, C, Ape @,./\p- S,U,N) is a complete lattice hence a cpo
for the pointwise partial ordering C.
In the definition of the fixpoint semantics Sy [E] € D of p-expression F, we
have p[X = v](X) = v while p[X :=0](Y) = p(Y) when X £V
S [0] = Ap-{0} Si[E1 + Bo] = Sa[E1]USs [E2]
Ss [X] = Ape p(X) Su[uX+ E] = Mp AX+ Ap- Su [E]0[X := X(p)]
Su[aE] = Ap-{ao : 0 € 84 [E]p}

These fixpoint definitions can be written in the form required by Hyp. 3:

i [0] = 1p Fo Si[Er + B2] = Up Fi, 10, ((Se [B1], Sa[E:]1))
Sy [X] & Up Fx Si[uX -+ E] = Up Fux- 5(Ss [E])

def

Ss [[aE]] = lfp Fur (Sfi [[E]])
by defining the following semantic transformers:
Fo = AX Ap+{0} Foirm = Mg,) AX -0 Ut
def

Fx EAXApe p(X) Fuxen = Me) A Ape o([X := X(p)])
Far S XM@) MY Xp{ao : 0 € o(p)} (5)

302

In the equational definition of the semantics, we use the usual convention of
naming [E] the variable associated with program component F:
[0] = Ap-{0} [+ E2] = [EA] U[£2]
[XT = Ao+ p(X) [nX- E] = Ap- [E]P[X := [nX - E](p)]
[aE] = Ap-{ac : o € [E]p}

For the constraint-based definition we use simple identities such as Ap+{z} C
X if and only if Vp : « € X(p) and free variables are universally quantified:

0 € [0]p [£1] € B + E2]

p(X) C [X]p [E.] C [E1 + E:]

{ac 0 € [E]p} C[aE]p [E]P[X :=[nX- E](p)] C [0X- E]p

For the closure-condition-based definition we use the identity X C Y if and
only if Ve € X : € Y. Free variables are universally quantified:

0 €[0]p o €[E1] = o €[E1 + E2]
cep(X)=0€[X]p o €[E2] = o € [E1 + E2]
o €[F]p = ac €[aF]p o € [E]o[X :=[pX- E](p)] = o € [uX- E]p

For the rule-based definition of the semantics S,, [E] of p-expression F, the
axioms and rule schemata of the formal system are:

o€ p(X o€ S [F o €SP
0 ¢ 5. o]0 p(X) [E]p [E:]p
o€ 8. [X]p ac € 8. [aE]p o €S8P+ E:p
5 € SulE:lp 7€ S [EJAIX = S [0~ F1(0)]
o€ Sn[F1+ E2]p o€ 8. [uXElp

The interpretation of these axioms and rule schemata in terms of rule instances,
the meaning of which is provided by (3), is as follows:

0 0 0
0 X aE
{Ap-{0}} {Ap- p(X)} {Ap-{ao : 0 € Siu[E]p}}
0] P
————Ei+E - BE4B, — ux-g forall PC S ands € 8,,[E]o[X := P]
S [£4] S [£2] {Ap- o}

For the game-theoretic definition of the semantics S,, [E] of p-expression E,
the rules are:

Ro ={{{Ap-{0}},)} Rx ={{Ap-p(X)}, 0)}
Raog = {({)\p-{aa SRS Sga H:E]]p}, ®>} Rp 4B, = {<Sga H:El]]’ ®>’ <Sga H:E2]]’ ®>}
R.xe5={{Xp:o}, P): PCS A o€ S8.[F]e[X := P]}

8. Abstraction Scheme

We now show that abstract interpretation preserves the fixpoint, equational,
constraint, closure-condition, rule-based and game-theoretic definitional method
for specifying abstract semantic properties of programs.

303

8.1 Galois Connections

The abstraction process is formalized using Galois connections between posets
[6, 9] .

Definition 22. A Galois connection between posets (L, C) and (L*, C") is a
pair {a, ¥} of functions & € L — L* and v € L* — L such that for all z € L and
y€e L a(x) C'y <= = Cv(y) which is denoted as (L,C) % (L4).

In a Galois connection, « is surjective if and only if 7 is injective if and only if
aoy =1 (where 1 = Az-).

8.2 Abstract Domains Scheme

Given a semantics Sy [#] € Dy, # € I'™ [II] of program IT € P, we consider an
abstract interpretation given by Galois connections [6]:

Hypothesis 23. The abstract semantic domains D:, # € I'™[II] are posels
(D%, C*) such that (D,,C) == (Di,CY).

In a Galois connection, « preserves lubs so that if (L,C) is a cpo and (L,C) %
(L#,C*) then (a(L),C*) is also a cpo . Tt follows that by restricting D% to ar (D5),
Hyp. 23 implies that all abstract semantic domains are cpos:

Proposition 24. For all 7 € T*[I], if Dt = ar(Dy) (where (L) = {p(x) :
x € L}) then (DL, CF, L* L) is a cpo with L = ar(L) and W* X = ar(L] ve(2)).
rzeX

8.3 Abstract Transformers Scheme

The abstraction (o, v5) can be lifted to higher-order monotonic functionals:

(P, D, B) == (D} D3, C)

by defining the functional abstraction [5]:

— def def

Ar = AFeag o0 F oy, Yo = A evp 0 FPo ay

The same way for products:

((Hw’er[[ﬂ]] Dﬂl)’ E) % ((Hw’erl[ﬂ]] Dfrl)’ En)

we define the product abstraction [6]:

. def . def
r = AX- o (X - = Ad*t. = (X,
& | O IL gy 7= (X5

Combining the product and functional abstractions:
((II Dﬂ,) - (Dy 2 Dy, g) = ((I1 p;,) (D DR, g”)
m'er] 7'el [x]

we define:

def def

G DOANFeGroFodn 7, % AF' 910 F¥ o dy

304

It follows that the semantic transformers Fr, 7 € I'* [IT] associated with the
program I1 can be abstracted compositionally into F%, = € ™ [II], by induction
on the program syntax:

Definition 25. The abstract semantic transformers F* associated with compo-
nents m € I'™* [II] of program II € P are defined such that:

— for atomic component 7 € I'F [II] of I, F& = @x(Fr);

~ for compound components = € I'* [II] of IT, Ft = &, (Fr). (6)

Observe that the abstractions of Hyp. 23 completely determine the semantic
transformers for all program subcomponents. We will show that this construction
ensures the soundness of the abstraction. For completeness, we say that:

Definition 26. The abstraction « is ezxact, faithful or complete if and only if
for all m € I [II] and @ = [[/¢ o Su [7']:
{Ozﬁo}"ﬁ:}""oogT if we I'r []

m

p 0 Fr(®) = F(an(P)) oy if m€ I []

8.4 Abstract semantic definitions

The abstract semantics is defined compositionally, by induction on the syntax
of the program II in the same way as the concrete semantics:

Definition 27. S [I1] is defined as in Def. 4 (respectively S! [I1] as in Def. 6,
S!] as in Def. 8, 8% [I] as in Def. 12, 8! [/I] as in Def. 15 and 8%, [I/1] as
in Def. 19) using the abstract semantic transformers F% in place of the concrete
transformers Fr, 7 € I'* [IT].

For all program subcomponents, the abstractions of Hyp. 23 ensure the sound-
ness of the abstract semantics Def. 27:

Proposition 28. Let S [-] be either g [-], S.o[-], Seo], Sal], S [] o7 S [
and S*[-] be respectively either SL[-], S! [-], SL 1 SLI SLITT or SLIT
The abstract semantics S*[x] is sound i.e. for all m € '™ [II], we have S*[x]
C* ax(S[x])-

Proposition 29. Moreover, if the absiraction is complete, then the abstract
semantics S*[x] is also complete i.e. for all # € I'*[I], we have S*[x] =

ar (S [7])-

9. Example

As a very simple example of abstraction, we consider the collecting of letters
occurring in the sentences of a language and apply it to approximate the seman-
tics of p-expressions. This illustrates the formal compositional derivation of the
abstract semantics from its definition.

The theory of abstract interpretation provides various ways of approximating
each constructor (sum, lift, (smash) product, function space, powerset/domain,

305

ete.) of set/domain theory [6, 9]. Since semantic domains are defined inductively
using these constructors, abstraction can be lifted compositionally to abstract se-
mantic domains, in general by induction on the rank (measuring the complexity)
of the semantic domain. For example, in the case of p-expressions, the basis 1s
given by the abstraction of a language L by the set of letters appearing in sen-
tences o of L. a, € 9(S) — p(A) is defined as a, (0) = 0, a, (L) = U,er (o)
where a,(a) = {a} and a,(ac) = {a} Ua,(c). Let us define the abstract value
domain V¥ = p(A). Since oy is a complete U-morphism, there exists a unique
7v such that

(V,Q) == (V',Q) (7

is a Galois connection. Defining abstract environments ¥ = V — V* and the
pointwise abstraction:

def

ac(p) Z ANy (p(X)) 7elpt) = AX- 7 (pH(X)) (8)

we get the Galois connection:
(E,C) == (B,$) (9)
The abstract semantic domain IF &' ¥ — V* is defined with the functional

abstraction:
def def
alp) = ayopore YY) = Yoptoa. (10)

which is a Galois connection (D,C) == (D* C). The abstract atomic trans-

former domain is T = D* ~== D*. The correspondence with the concrete atomic
transformer domain is defined by the functional abstraction

d(p) Z aopoy Ap) Evoptoa (11)

This is a Galois connection (T, é) = (T, é) Finally, the abstract compound
(a3

m

transformer domains are T%" =D T*, for n > 0. The correspondence with
the concrete transformer domains is defined by the functional abstraction:

ANP) =E Ao oA TP Z F o P o 4" (12)
where:

@ (w1, xn)) = {p(1),- o plaa) (13)

This is a Galois connection (Tc",i) % (Tﬁcn,é)

Prop. 28 provides the foundation for designing the abstract semantics compo-
sitionally. The only remaining work consists in designing the abstract predicate
transformers.

The abstract predicate transformers can be derived formally from their spec-
ification Def. 25 by algebraic computation. We illustrate this derivation for:

Foxep € T
Za (Fux-r) by definition (6)
=doFux-g oA by definition (12) of &

306

= M) d(Fux- 6(11((#°)) since ¢ o 1 = Az p(¥(x))
= M) d(Fux- 6)((7(£))) by definition (13) of 4
= Mef) @A)+ AX - Ap o(P[X = X (p)])((v(£%))) by def. (5) of Fyux- g
= M) d(AX - Ape v (*)(P[X == X(p)])) since A(z)- e1((e2)) = ex[r := €]
= A" a0 AX Ap (") (P[X = X(p)]) o ¥ by definition (11) of &
= M) A (AL Ap- (") (PLX = X(p)])(7(A7))) by @ o b = Az- o(¥(x))
= A" AX " a(Ap- v (") (P[X = v(X")(p)]) since Axeeq(ey) = e1[w := €]
= A" AX e ay 0 Apey(@")(PIX = (X)) (P)]) o Ye by definition (10) of «
= Apf) - AL Apte oy (Ap- () (PLX = 1 (XF)(0)D(7e(p")))

since ¢ 0 ¥ = Aa p(1(2))
A(@f) s AXE ApPe 0 (7 (%) (e (PF)[X = 7 (A7) (e (p*)])
since A{z)+e1({e2)) = e1[z = ea]
= Mp") AT Apte oy (70 0 9* 0 ac (1 (p°)[X = 7(AF) (7 (p"))]))by def. (10) of y
= Mph) s A Aphe o (ae (e (P [X = v (%) (e (p")]))
since oy, is surjective 80 oy o ¥y = 1 by (7)
= M) AE Apte o (e (7 (P)[X 1= 70 0 X% 0 ae(7:(p%))])) by def. (10) of ¥
= M) AE Apte o (e (76 ()X := 70 0 X%(p7)]))
since «, is surjective so a, o v, = 1 by (9)
= Mef) e AL Apte o (ae(AZ+ 70 (pF(2))[X i= 70 0 X¥(p*)])) by def. (8) of e
= M) A At @ (@ (AZ+(Z = X 7 70 0 XF(pF) 170 (0 (£)))))
since AZ«k(Z)[X =v]=A7(Z =X "v:&(72))
Mty AL AP QFAY iy (AZ+(Z = X Ty 0 X¥(pF) - 70 (p7(2)))(Y)))
by definition (8) of a.
= M) A At F(AY - (Y = X 7y 0 X5(p") 2 70(pF(Y)))))
since Ax-ej(e) = er[w := €3]
Mgh) A A O g o 70 ((Y = X 2 4 (5) - pH(V))))
since (b7 ¢(e1) s wl(e2)) = o((b7 ey : e2))
= M) AXE At P (AY (Y = X 7 X8 (p") < p*(Y)))
since ay, is surjective 8o &, o ¥, = 1 by (7)
= M@ AR A PP 1= ()
since AY+(Y = X 7v: k(Y)) = 6[X = v]
The other abstract semantic transformers are obtained constructively in the
same way:
Fi = AXte2pte{0} FLoyp = Mgt 08)s AEe of Uy
Fho= Axt dpt pt(X) TﬁX,E = M"Y AXE Apte oF ([X = ("))
Fop = Meh) AXFApf{a} U o?
It should be noted that the method for designing the abstract semantics is sys-
tematic as opposed to empirical conception with a posteriori verification of the

307

soundness.
The abstract fixpoint semantics S [E] of p-expression F is:

ani [[0]] dZEf)\Pﬁ {0} ani [[El + E2]] d:d ani [[El]] O ani [[E2]]
SEIX] = Apf- pH(X) Si[nX- E] = p AX* Apfe SELE]PHX = X% ()]

def

Si[al] = Ap*{a} USL[E]

The equivalent abstract equational semantics S! [£] of p-expression E is the
C-least solution to the system of equations:

[0]* = Xp*-{0} [E: + E2]* = [Ea] O[E2]
[XT* = A"+ p*(X) [0X+ EY = Ap*+ [ETp*[X := [uX - ET*(p")]
[BT = Apf+{a} U[E]
The equivalent abstract constraint-based semantics S* [E] of p-expression F is
the C-least solution to the system of constraints:

0 € [o]*p* [€ [B + BT
P(X) CIXT [E] C [Ey + E2]
a € [aEYp* [ETPPIX = [nX- EI(p")] C [nX- ETpF
[ET* C [« E]*
The equivalent abstract closure-condition-based semantics S% [E] of p-expres-
sion E is the C-least solution to the closure-conditions:

0 € [o]*p* v € [Ba] 0 = v € [B1 + E2]'p
v € pH(X) = v € [XT'4* v € [B] 0 = v € [B1 + E2]'p
a € [aL]’p? v € [E]'P*[X = [uX- EI ()] = @ € [pX- E]'pF

v € [EFF = o € [aEJ

The equivalent abstract rule-based semantics S?, [E] of p-expression E is defined
by the following formal system:

© € pH(X z € 8! [E]Y
0 € S [0]0" A a € S [aE]p ¢
e € S5, [X]pf v € 8, [aL]p*
e € S, [E1]p' v € 8L, [E2]p z € SL[E]P[X = 8L [uX- E](p")]
z € 8 [E1 + E2]pf z €8I, [E1 + E2]pf €8 [nX-E]p’

Finally, the game-theoretic abstract semantics S*, [£] of p-expression £ is de-
fined by the rules:

By = {({Ap-{0}}, 1)} R = {({Xp: p(X)}, 0)}
Rop = {{o{a} USLIEL,)} Ry ip, = (SLIE] 0), (S [E2], 0)}
Rix.p={({Xp-x}, P): PCS A z €8 [E]r[X := P]}
Proposition 30. The abstraction o defined in (10) is complete.

Corollary 31. For all p-expressions I, SE[E] = S, [E] = S, [£] = S4[£]
= SLIE] = SLIE] = a(Ss [ED).

308

References

[1] S. Abramsky, R. Jagadeesan, & P. Malacaria. Full abstraction for PCF (extended
abstract). Proc. TACS’94, LNCS 789, 1-15, 1994.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, ed., Handbook
of Mathematical Logic, vol. 90, 739-782. Elsevier, 1977.

3] J. Berstel & L. Boasson. Context-free languages. In [18], ch. 2, 61-102.

P. Cousot. Methods and logics for proving programs. In [18], ch. 15, 843-993.

P. Cousot et R. Cousot. Static determination of dynamic properties of recur-

sive procedures. In E. Neuhold, ed., IFIP Conference on Formal Description of

Programming Concepts, St-Andrews, N.B., Canada, 237-277. North-Holland Pub.

Co., 1977.

[6] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In
6" ACM POPL, 269-282, 1979.

[7] P. Cousot & R. Cousot. A language independent proof of the soundness and
completeness of generalized Hoare logic. Inf. & Comp., 80(2):165-191, 1989.

[8] P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpreta-
tion. In 19"* ACM POPL, 83-94, 1992.

[9] P. Cousot & R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). In Proc. IEEE 1994 ICCL, 95-112, 1994.

[10] L. Damas & R. Milner. Principle type schemes for functional programs. In
ACM POPL, 207-212, 1982.

[11] N. Heintze. Set-based analysis of ML programs (extended abstract). In Proc.
ACM Conf. Lisp & Func. Prog., 1994.

[12] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576-580, 583, 1969.

[13] R. Milner. A complete axiomatization for observational congruence of finite state
behaviors. Inf. & Comp., 81:227-247, 1989.

[14] P. D. Mosses. Denotational semantics. In [18], ch. 11, 575-631.

[15] J. Palsberg & P. O’Keefe. A type system equivalent to flow analysis. In 29th AcM
POPL, 367378, 1995.

[16] J. Palsberg & M. I. Schwartzbach. Binding-time analysis: Abstract interpretation
versus type inference. In Proc. IEEF 1994 ICCL, 289-298, 1994.

[17] G. D. Plotkin. A structural approach to operational semantics. Tech. Rep.
DAIMI FN-19, Aarhus University, (DK), Sept. 1981.

[18] J. van Leeuwen, ed. Formal Models and Semantics, vol. B of Handbook of Theo-
retical Computer Science. Elsevier, 1990.

[19] M. Wirsing. Algebraic specifications. In [18], ch. 13, 675-788.

———
(@2 SN
S

gth

This article appeared in:

Lecture Notes in Computer Science 939
Pierre Wolper (Ed.)

Computer Aided Verification

7'" International Conference, CAV ’95
Liége, Belgium, July 3 - 5, 1995
Proceedings, pages 293-308

Springer, Berlin, 1995

