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1. Introduction

1.1 Conventions

Our conventions is mostly that of Hawking-Ellis and Misner-Thorne-Wheeler. For the
metric tensor in general relativity, we will use the “west coast” signature (−,+,+,+). The
covariant derivative is defined as

∇µV ν = ∂µV
ν + ΓµνσV σ.

Note our rather unconventional placement of indices for the connection coefficients: the
leftmost index is always the differentiation index. We do not assume that the connection
is symmetric, and hence the torsion may not vanish:

Γµνσ 6= Γσνµ, Tµ
ν
σ = Γµνσ − Γσνµ 6= 0.

The Riemann curvature tensor is

Rρσµν = ∂µΓνρσ + ΓµραΓνασ − ∂νΓµρσ − ΓνραΓµασ,

the Ricci tensor and Ricci scalar are

Rσν = Rλσλν , R = Rσσ = Rλσλσ,

and the Einstein field equation is

Rµν −
1
2
Rgµν =

8πG
c4

Tµν .

In places we will be replacing Newton’s constant by

κ2 =
8πG~
c3

.

For spinors, our gamma matrices satisfy

γµγν + γνγµ = 2ηµν

where the Minkowski metric is η = diag(−1, 1, 1, 1). To translate from the convention of
some other books: γµ → −iγµ.

1.2 Dimensions and Planck units

Dimensional analysis is a useful tool for working out some equations and coefficients in a
physical theory, and we will use it in several places throughout the course. Here we will
give a brief overview and establish notation.

The effects of quantum gravity becomes important when half of the Schwarz radius is
comparable to the Compton radius

Gmp

c2
=

~
mpc

.
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From this we can define the Planck mass, length and time

mp =

√
~c
G

' 10−5 grams ' 1019 GeV

lp =

√
G~
c3

=

√
κ2

8π
' 10−33 cm

tp =

√
G~
c5

=

√
κ2

8πc2
' 10−44 seconds

i.e. huge mass (compared to, say, a proton) and very small distance and intervals of time.
The units of relevant quantities are

[κ] = L length

[xµ] = L

[Rµν − 1
2Rgµν ] = L−2

[Tµν ] = MT−2L−1 energy per unit volume

[c4/8πG] = MLT−2 tension.

In this course, we will set ~ = c = 1.

1.3 Motivation for supergravity

Supergravity (SUGRA) is an extension of Einstein’s general relativity to include supersym-
metry (SUSY). General relativity demands extensions since it has shortcomings including
at least the following:

• Spacetime singularities. The singularity theorems of Penrose, Hawking and Geroch
shows that general relativity is incomplete: it predicts its own demise.

• Failure to unify gravity with the strong and electroweak forces. In the Einstein
equation, the left hand side, i.e. spacetime geometry, is “a house of marbles”, whereas
the right hand side, i.e. matter fields, is “lowly hovel”. Historically, Kaluza-Klein
theory addressed this problem. However, it did not give realistic predictions.

• Incompatibility with quantum mechanics. Conceptually, the role of time in general
relativity is very different from its role in quantum theory. If we think of the relativ-
istic “time” as an operator, its unitarity, which is required in a consistent quantum
theory, is not obvious. A Hilbert space based on curved geometry is difficult to define.
Computationally, pure quantum gravity theory is not thought to be renormalizable
and hence has little predictive power.

If we include supersymmetry in a theory of gravity, the situation becomes a little bit better,
since the simplest example of divergences: zero point energy of the vacuum, can potentially
be cancelled by super partners of ordinary particles.
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1.4 Supersymmetry

We here give a very brief overview of supersymmetry, one of the ingredients of supergravity.
Quantum mechanically, a supersymmetric theory is a theory in which the Hilbert space
can be written as a direct sum

H = HB ⊕HF
and there exists self-adjoint operators Qi = Q†i , i = 1, 2, . . . , 4N acting on H, which satisfy

{Qi, Qj} = δijH, [Qi, H] = 0, QiHB ⊆ HF , QiHF ⊆ HB
where H is a certain hamiltonian operator. In a relativistic theory, the operators Qi carry
angular momentum ±1

2 . If a state |φ〉 has spin s, then Qi|φ〉 has spin s ± 1
2 . States fall

into supermultiplets with respect to actions of these operators.
The energy expectation value of a state with superpartners can be calculated

〈ψ|H|ψ〉 = 2〈ψ|Q†iQi|ψ〉 ≥ 0.

So in a supersymmetric theory, the energy is always non-negative.
The simplest supersymmetric theory is the case N = 1

2 . If we define

a =
1√
2

(Q1 + iQ2), a† =
1√
2

(Q1 − iQ2)

we recover the creation and annihilation operator relations for the harmonic oscillator

[a, a] = 0, {a, a†} = H.

In this case, we have a single multiplet with 2 states.
In general, the multiplets are of dimension 4N . These are called the long multiplets

{Qα, Qβ} = −CγµαβPµ, P 0 = H, C = γ0, α, β = 1, . . . , 4.

For example, it is easy to construct a theory in which

{Q1, Q1} = H + P1

{Q2, Q2} = H − P1

{Q3, Q3} = H + P1

{Q4, Q4} = H − P1

where H ≥ |P|. For the special case where states are lightlike H = |P| = |P1|, half of the
states will vanish, and we are left with a short multiplet.

1.5 The current status of supergravity

Currently, supergravity is generally thought of as

• a reliable approximation to M-theory at low energy;

• a valuable technical tool (e.g. Witten’s proof of the positive energy theorem);

• an essential ingredient for supersymmetric phenomenology (minimal supersymmetric
standard model coupled to N = 1 supergravity);

• an essential ingredient for the AdS/CFT correspondence of Maldacena.
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2. General relativity and the action principle

2.1 Moving frames

To define spin structure on spacetime, we will need to formulate general relativity in the
moving frame language. Let

ea = eaµ(x)dxµ

be a basis of 1-forms. The last part of the Greek alphabet denotes world indices, i.e. of
local coordinates, whereas the first part of the Latin alphabet denotes tangent space indices,
i.e. of moving frames. Then

ea = eµa(x) ∂
∂xµ

form a basis of vector fields orthogonal to the basis of 1-forms: ea(eb) = δab. In coordinates

eaµ(x)eµb(x) = δab.

We can think of eaµ as components of the matrix e. Then eµa are just the components of
the inverse matrix e−1. To carry this analogy with matrices further, we will always write
the upstairs index first, even though it really does not matter. If in an expression the
contraction is not between adjacent indices, a matrix transpose is technically needed.

If we contract the tangent space index instead of the world index, we get

eµae
a
ν = δµν .

We can exchange world index for tangent space index, i.e. translating from a holonomic
frame to a moving frame. For example, in the case of a vector,

V µ → V a = eaµV
µ.

For our basis, the metric of the moving frame is pseudo-orthonormal

gab = eµagµνe
ν
b = ηab = diag(−1, 1, 1, 1), gµν = eaµηabe

b
ν .

Tangent space index can be raised and lowered with ηab and ηab.
The volume form on a manifold is η =

√
−g d4x where g = det gµν . Since −det gµν =

−(det e)2, we have

η = |e| d4x

= e0 ∧ e1 ∧ e2 ∧ e3

= e0
µe

1
νe

2
ρe

3
σ dx

µ ∧ dxν ∧ dxρ ∧ dxσ.

The whole expression can be checked using the definition of the determinant and the fact
that dxµ ∧ dxν ∧ dxρ ∧ dxσ = εµνρσ. Our convention is that ε0123 = 1. Note that our wedge
product includes the appropriate normalization factor.
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2.2 Connection 1-forms

Let ∇ be a metric compatible connection, possibly with torsion. Acting on the basis,

∇ea = ωab ⊗ eb, ωab = ecΓcab = ωµ
a
b dx

µ.

Γcab is called the Ricci rotation coefficients (old-fashioned) and ωab the spin connection.
Metric compatibility implies ωab = −ωba, and in this case,

∇ea = ωµ
a
be
b
νdx

µ ⊗ dxν

= 1
2(ωµabebνdxµ ⊗ dxν − ebνωµbadxν ⊗ dxµ)

= ωab ∧ eb.

The covariant derivative acting on a vector V = V aea gives

(∇V )µa = ∂µV
a + ωµ

a
bV

b.

To write this in a more compact way, we think of ∂µV a as a vector-valued 1-form

∂µV
a ∂
∂xµ ⊗ ea = dV a ⊗ ea,

then
∇V a = dV a + ωabV

b.

Cartan’s first structural equation is

dea + ωab ∧ eb = T a, T c = Ta
c
be
a ∧ eb

where the torsion form T c is a vector-valued 2-form. This is derived as follows: expand
∇ea = ωab ⊗ eb in coordinate basis

∂µe
a
ν − Γµνσeaσ − ωµabebν = 0

and antisymmetrise. We see that the our connection decomposes

ωµ
a
b = ω′µ

a
b(e) +Kµ

a
b

where ω′ denotes the Levi-Civita connection in moving frame, and K is the contorsion

Kα
µ
β = −1

2(Tαµβ + Tµαβ + Tµβα).

In a holonomic frame, this is
Γαµβ = {αµβ}+Kα

µ
β.

For a function f ,
(∇µ∇ν −∇ν∇µ)f = −Tµσv∂σf.

The Riemann tensor for this connection is

Rρσµν = ∂µΓνρσ + ΓµραΓνασ − ∂νΓµρσ − ΓνραΓµασ.
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We think of it as a 2-form valued matrix

Rµν = Rµνλρ dx
λ ∧ dxρ

and convert indices using frames

Rab = eaµe
b
νR

µ
νλρ dx

λ ∧ dxρ

then, it easily follows
Rab = dωab + ωac ∧ ωcb.

The important thing to note is that Rab transforms homogeneously under local Lorentz
transformation (or “tetrad rotation”) Λ ∈ SO(3, 1), while ω does not. Indeed,

ẽa = Λabeb

dẽ = Λ de+ dΛ ∧ e = −Λω ∧ e+ dΛ Λ−1 ∧ ẽ
ω̃ = ΛωΛ−1 + dΛ Λ−1

R̃ab = ΛacRcd(Λ−1)db.

The Ricci tensor need not be symmetric in our theory: Rµν 6= Rνµ. We can think of
it as a vector-valued 1-form Raµdx

µ. The Ricci scalar is then R = gµνRµν = ea
µRaµ(ω).

2.3 Poincaré gauge theory

To make the bundle structure clear and to ease our subsequent introduction of spin struc-
ture, we think of gravity as gauge symmetries. The Poincaré group, i.e. the local symmetry
group of general relativity, is the pseudo-Euclidean group E3,1 = O(3, 1) nR4, a semidirect
product of rotations with translations. We can write its action on spacetime coordinates
in matrix notation (

Λab ab

0 1

)(
xb

1

)
=

(
Λabxb + ab

1

)
.

Its Lie algebra is so(3, 1) n R4. The Lie algebra of R4 is still itself, while for O(3, 1) it is
given by

Λab = δab + λab + . . . , λab = −λba.

So in this gauge theory, infinitesimal gauge transformations are generated by translations
and frame rotations. In any gauge field theory, the gauge field takes values in the Lie
algebra of the group. So we can write a field as

Φ =

(
λab a

a

0 0

)
(c.f. the Higgs field). A covariant derivative is needed to make the gauge symmetry a
local one. Following Cartan, a covariant derivative (connection) in this case is just a Lie
algebra-valued 1-form,

A =

(
ωab e

a

0 0

)
=

(
ωµ

a
b dx

µ eaµ dx
µ

0 0

)
.
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This is the simplest example of a Cartan connection. Its meaning is this: for a function f , df
is “the change in f under infinitesimal displacement”. But an “infinitesimal displacement”
can at best be described by giving a tangent vector, therefore df is a 1-form acting on
tangent vectors to give real numbers. In a similar way, this connection we have constructed
measures how the Lie algebra relevant for the gauge theory changes under “infinitesimal
displacement”.

We can now calculate the curvature for this connection, a Lie algebra valued 2-form:

F = dA+A ∧A

=

(
dωab + ωac ∧ ωcb dea + ωab ∧ eb

0 0

)
=

(
Rab T

a

0 0

)
.

This makes sense: T a is a vector-valued 2-form, while Rab takes value in so(3, 1). The
torsion T a is nothing but the “curvature for translation”.

We introduce a connection symbol D for this gauge theory:

Dea = dea + ωab ∧ eb = T a, Dηab = 0, Dεabcd = 0.

Note that this does not contradict our previous result ∇ea = ωab ∧ eb: ∇ is a connection
on the tangent bundle whereas D is the connection for the gauge field.

To summarise, we have introduced a 4-plane bundle (fibres are isomorphic to R4 as
vector spaces) E over our manifold M , with fibre trivialization {V a} and equipped with
the fibre metric ηab. The principal bundle P with fibres isomorphic to the Poincaré group
acts on E in an affine manner. The frame fields ea provides a local unnatural isomorphism
between TM and E. The frame fields ea are called the soldering form, and in general
dea 6= 0. Our point of view has changed: we started by saying that ea are 1-forms, so at
a point p they belong to T ∗pM , but now they become members of Hom(TpM,R4). In a
similar fashion, ea(p) ∈ Hom(T ∗pM, (R4)∗).

2.4 Action principles

To derive the field equations in general relativity using the action principle, after we have
written down the metric, we vary the metric and its first derivative

S = S(gµν , gµν,λ).

This is called the second order metric formalism. An equivalent procedure, the first order
or Palatini procedure, is varying the metric and the connection independently

S = S(gµν ,Γµνλ).

Translating into moving frame language, we have

S = S(eaµ, eaµ,λ) second order,

S = S(eaµ, ωµab) first order.
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For example, the second order action for gravity with cosmological constant is

S =
∫
M

√
−g d4x

R− 2Λ
16πG

+ . . .

where the dots represent boundary terms. A first order action in terms of frame fields is

S =
1

2κ2

∫
M
|e|d4x eaµebνRµνab(ω).

Let us vary this action. We need

δe−1 = −e−1δe e−1, δ|e| = eµa δe
a
µ = Tr(e−1δe)

then

δS(e, ω) = − 1
κ2

∫
|e|d4xGa

µδeaµ +
1

2κ2

∫
|e|d4x eaµebνδRabµν(ω).

We see immediately from the first integral (variation with respect to eaµ) the Einstein
equation in vacuum Ga

µ = 0. The second term, variation with respect to ω, should give
us relations between the connection and the metric (or the soldering form).

To proceed, we adopt the Poincaré gauge theory point of view: ωab and Rab take
values in Λ2(E) = so(3, 1) and ηab provides an isomorphism between E and E∗. The
exterior product ea ∧ eb is a Λ2-valued 2-form. We need to do some algebra. First,

εabcdAab ∧Bcd = Tr(A ∧B) = Tr(B ∧A)

therefore

εabcde
a ∧ eb ∧Rcd = Tr(e ∧ e ∧R)

Tr(e ∧ e ∧ e ∧ e) = −24|e|d4x

−2|e|Rd4x = Tr(e ∧ e ∧R).

To verify the second expression above, use ea ∧ eb ∧ ec ∧ ed = |e|d4x εabcd and εabcdεabef =
−2(δceδdf − δcfδde) and further contractions. To verify the third expression above, use
εabcde

a ∧ eb ∧Rcd = 1
2εabcde

a ∧ eb ∧Rcdefee ∧ ef . Also note that, by expanding R,

δR = dδωab + δωac ∧ ωcb + ωac ∧ δωcb = Dδω.

Putting everything together, we have

δ

∫
Tr(e ∧ e ∧R) =

∫
Tr(e ∧ e ∧ δR)

=
∫
dTr(e ∧ e ∧ δω)− 2

∫
Tr(De ∧ e ∧ δω)

.= −2
∫

Tr(T ∧ e ∧ δω)
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where in the last line we have thrown away a boundary term having no effect on the
equations of motion (the sign “ .=” will be used to denote equality up to boundary terms).
Now define a tensor V by δωcd = eeVecd, and

Tr(T ∧ e ∧ δω) = 1
2εabcdTr

a
se
r ∧ es ∧ eb ∧ eeVecd

= 1
2εabcdε

rsbeTr
a
sVecd|e|d4x

= (δraδscδed + cyclic permutations)TrasVecd|e|d4x

= (Taacδed + Td
a
aδ
e
c + Tc

e
d)Vecd|e|d4x.

The expression in the parentheses in the last line must vanish. After some further algebra,
this is equivalent to T a = 0, our equation of motion. Hence, if T a = 0 by assumption, then
δω is a total derivative in second order formalism and we are only left with the Einstein
equation. Therefore, no torsion can be present in vacuum.

Now we add to our action a matter piece Sm(e, ω, ψ) where ψ represents the matter
fields. Variation gives

δSm =
∫
|e|d4xTa

µδeaµ +
∫
|e|d4xSc

e
dVecd

where Ta
µ is the canonical (unsymmetrized) energy momentum tensor: Tµν 6= Tνµ in

general, and Sc
e
d denotes the spin current. Besides the Einstein equation coupling the

energy momentum tensor to the Einstein tensor Gaµ = κ2Ta
µ, we also have the following

equation of motion:
Ta

a
cδ
e
d + Td

a
aδ
e
c + Tc

e
d = 2κ2Sc

e
d.

So if matter lagrangian contains ω explicitly, spin is a source of torsion.
Usually, the spin current vanishes for bosonic fields. For example, the lagrangian for

scalar fields
L = −1

2

√
g gµν∂µφ∂νφ

has no spin current, neither have the Maxwell lagrangian

L = −1
4FµνF

µν , Fµν = ∂µAν − ∂νAµ (i.e. F = dA).

However, in this case a little care is needed: if we carry out the procedure of “minimal
coupling” advertised in introductory general relativity courses “∂ → ∇”, we must make
sure that we use the Levi-Civita connection uniquely determined by the metric. Otherwise,
torsion comes into play, and in general

Fwrong
µν = ∇µAν −∇νAµ 6= ∂µAν − ∂νAµ.

For a gauge transformation Aµ → Aµ + ∂µΛ,

(∇µ∇ν −∇ν∇µ)Λ = −Tµσν∂σΛ 6= 0,

hence charge conservation is broken. In this case, we are just unnecessarily asking for
trouble, since the exterior derivative is perfectly well-defined on curved spacetime and is
coordinate-independent.
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2.5 The 1.5 formalism

The 1.5 formalism is the following: for an action S, we have

δS =
δS

δe
δe+

δS

δω
δω first order formalism;

δS =
δS

δe
δe+

δS

δω

δω

δe
δe second order formalism.

However, we can think of ω = ω(e) as defined by δS/δω = 0, then the second term in the
second order formalism can be ignored and we are effectively “1.5”.
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3. Spinors and the Dirac equation

3.1 Clifford algebra and Majorana spinors

To describe fermionic fields we must first define spinors. We will label components of the
gamma matrices using the first part of the Greek alphabet, e.g. α, β = 1, 2, 3, 4 (the other
part of the Greek alphabet is used for holonomic coordinate indices). Our signature for the
metric is (−,+,+,+). Our representation of the Clifford algebra Cliff(3, 1) is generated by
the following four real matrices

γ0 =


0 +1 0 0
−1 0 0 0
0 0 0 −1
0 0 +1 0

 , γ1 =


0 +1 0 0

+1 0 0 0
0 0 0 +1
0 0 +1 0

 ,

γ2 =


+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

 , γ3 =


0 0 0 +1
0 0 −1 0
0 −1 0 0

+1 0 0 0

 ,

which also generates R4×4. Note

γ0 = −γ0 = −(γ0)t, γi = γi = (γi)t. (i = 1, 2, 3)

The gamma matrices relation is
{γa, γb} = 2ηabI.

A basis for the Clifford algebra is obtained by multiplying these matrices together. They
are (the right hand side gives the number independent matrices in each category)

I 1

γa 4

γab = γ[aγb] 6

γabc = γ[aγbγc] 4

γabcd = γ[aγbγcγd] = −γ5ε
abcd 1

where (note everything is real)

γ5 = γ0γ1γ2γ3, γ5 = −(γ5)t, (γ5)2 = −I.

The matrices R4×4 act on R4 by the usual linear action. We will write M for R4, denoting
Majorana spinors. As a vector space, M has a symplectic form Cαβ = −Cβα, and CγaC−1 =
−(γa)t. This is the representation of the charge conjugation operator exchanging particles
and antiparticles. In our representation, C = γ0. Here are some other useful identities

(Cγa)αβ = (Cγa)βα, (Cγab)αβ = (Cγab)βα,

(Cγabc)αβ = (Cγabc)βα, (Cγ5)αβ = −(Cγ5)βα.
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The Dirac equation is
(γa∂a +m)ψ = 0.

The sign of m is irrelevant: if we apply the operator in the bracket (with the opposite sign)
again, we get the Klein-Gordon equation (−�+m2)ψ = 0. Furthermore, if ψ is a solution,
then γ5ψ is also a solution of the conjugate equation

(γa∂a −m)γ5ψ = 0.

Lorentz transformation leaves the equation invariant by the following action on spinors:
let xa → Λabxb be a Lorentz transformation, and infinitesimally Λab = exp(λab), then

ψ → exp(1
4λabγ

ab)ψ.

3.2 Dirac and Weyl spinors, complex structure

Once we have defined Majorana spinors as a real vector space on which the spin group
acts, Dirac spinors are easy: the complexification of Majorana spinors D = C4 = M⊗R C.
To get Weyl spinors, we claim that Dirac spinor is the direct sum of two Weyl spinors:
D = W ⊕ W̄. We make this decomposition concrete in the following way: take a Dirac
spinor ψ, if γ5ψ = iψ, an eigenstate with eigenvalue i, then ψ ∈W, whereas if γ5ψ = −iψ,
then ψ ∈ W̄. Decomposition of D then gives W = C2 in some basis.

The action of the spin group Spin(3, 1) on a Weyl spinor is via its homomorphism to
SL(2,C): if we write the spacetime coordinates in a matrix

X =

(
t+ z x+ iy

x− iy t− z

)
= X†,

then we see that det(X) = −ηabxaxb. So if S ∈ SL(2,C), under the transformation

X → SXS†,

det(X) is invariant.
Let us examine in more details the above constructions. Let VR be an even-dimensional

real vector space, and J ∈ End(VR) a linear operator satisfying J2 = −I, then J acts as a
complex structure on VR and make it into a complex vector space VC = VR ⊗ C. We can
extend J to VC by complex linearity, and a basis can be chosen such that J is diagonal on
VC. This is just our construction of Dirac spinors from Majorana spinors, with J = γ5 in
our basis. The Weyl spinors are then just the eigenspaces of J .

Let us see some examples other than spinors. The electromagnetic field tensor Fµν is
completely determined by the electric and magnetic fields E and B in a frame, so Fµν ∈ R6.
We have the Hodge star operator that manifests the electromagnetic duality

∗E = −B, ∗B = E, (∗)2 = −1,

so the Hodge star can be chosen as the complex structure. A “Weyl spinor” in this case
can be written as

M = E + iB ∈W
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and the Maxwell equations become

∇ ·M = 0, ∇×M = i
∂M
∂t

.

The symmetry group acting on the usual Maxwell theory SO(3, 1)R then becomes SO(3)C,
and the group action leaves invariant

M ·M = E2 −B2 + 2iE ·B = F 2 + F ∗ F.

Another example is an even-dimensional manifold equipped with a metric gab = g(ab)

and a symplectic form ωab = ω[ab], both of which are covariantly constant under a connec-
tion ∇gab = ∇ωab = 0. Then we can form a complex structure

Jab = gacωab, J2 = −I, ∇Jab = 0.

The complexified tangent space decomposes into “Weyl sums” TCM = WM ⊕WM , and
a tangent vector decomposes into the direct sum of a holomorphic tangent vector and an
antiholomorphic tangent vector. The manifold now has the structure of a Kähler manifold.

3.3 Coupling to gravity

Back to spinors, in supergravity it is convenient to work purely over the reals, and despite
the above constructions, consider a Dirac spinor as the direct sum of two Majorana spinors
D = M⊕M instead of complexification. We write a Dirac spinor as ψi, i = 1, 2. Introduce
a complex structure on this space

J = εij =

(
0 1
−1 0

)
, εijεij = −δik.

Then J induces R4 ⊕ R4 = R8 = C4 = D. Note that εij is the generator of SO(2) = U(1),
and hence in this notation a U(1) gauge field can be written as

Aijµ = −Ajiµ = εijAµ.

The complexification of a Majorana spinor can be written as ψjAij .
Now suppose a field ΦA transforms under a representation of Spin(3, 1). Let (Σab)AB =

−(Σba)AB be a representation of this Lie algebra

[Σab,Σcd] = ηabΣcd − ηacΣbd − ηbdΣac + ηadΣbc,

and the field transforms as

Φ→ exp(1
2λabΣ

ab)ABΦB = S(Λ)Φ.

For example, if Φa is a four-vector, then

(Σab)ef = ηaeδbf − ηbeδaf
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reproduces standard action on vectors. But for a spinor, the representation is

Σab = 1
4 [γa, γb] = 1

2γ
[aγb] = 1

2γ
ab, [γab, γc] = 2(ηacγb − ηbcγa).

For coupling to gravity, we need a covariant derivative. We define it for the general case:

∇µΦ = ∂µΦ + 1
2ωµ

abΣabΦ, or ∇Φ = dΦ + 1
2ω

abΣabΦ.

Under the action Φ→ exp(1
2λabΣ

ab)Φ, we have ∇Φ→ exp(1
2λabΣ

ab)∇Φ. We also need

(∇µ∇µ −∇ν∇µ)Φ = 1
2(RµνabΣab)Φ− Tµσν∇σΦ.

If we specialise to a Dirac spinor ψa, we have

∇ψ = dψ + 1
4ωabγ

abψ

and on background with no torsion,

(∇µ∇ν −∇ν∇µ)ψ = 1
8Rµνabγ

abψ.

We will write the gamma matrices in coordinate basis as γµ = eµaγ
a, and hence

∇µ(γµ)αβ = 0.

The Majorana and Dirac conjugate of a spinor ψ are defined as

ψM = ψtC = ψαCαβ, ψD = ψ†β = ψ∗α̇βα̇β = ψ̄β

and the matrices C and β satisfies

CγµC
−1 = −γtµ, βγµβ

−1 = −γ†µ, β = −β†, βγµ = (βγµ)†.

In our basis, we can choose β = C = γ0. Majorana spinors are exactly those that satisfy
ψM = ψD, and in our basis, a Majorana ψ is purely real.

Finally, we define a symplectic linear product

ψα1Cαβψ
β
2 = ψ̄1ψ2 =

{
−ψ̄2ψ1 for commuting spinors,
+ψ̄2ψ1 for anticommuting spinors.

Now we can write down the lagrangian in flat spacetime for a Dirac spinor

L1/2 = 1
2 ψ̄(/∂ +m)ψ.

The second term vanishes if ψ are commuting. Also,

ψαγµαβ∂µψ
β = 1

2∂µ(ψαγµαβψ
β),

so if the spinors are commuting, L is a total derivative. This motivates thinking of ψα as
taking values in some large (strictly speaking infinite dimensional) real Grassmann algebra
G. Bosons are even elements of G, while fermions are odd elements.
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To calculate the variation, note

δ(ψαCαβψβ) = δψαCαβψ
β + ψαCαβδψ

β = 2δψ̄ ψ

and
δ(1

2 ψ̄/∂ψ) = δψ̄γµ∂µψ + ∂µ(ψ̄γµαβδψ)

so variation gives
δL .= δψ̄(/∂ +m)ψ = 0

therefore we obtain the Dirac equation

(/∂ +m)ψ = 0.

The spin current for a single spinor is

Jµ = ψ̄γµψ = ψαγµαβψ
β

This vanishes for anticommuting objects. Therefore, to have a non-vanishing spin current,
we need two Majorana spinors or one Dirac spinor, in which case

Jµ = ψαi γ
µ
αβψ

β
j εij = ψα1 γ

µ
αβψ

β
2 − ψ

α
1 γ

µ
αβψ

β
2 6= 0.

It is easy to generalise the construction to a purely bosonic background with action

S1/2 =
1
2

∫
|e|d4x ψ̄(γµ∇µ +m)ψ

and variation with respect to ψ gives the Dirac equation in curved background

( /∇+m)ψ = 0.

If we iterate the Dirac operator and hope to get a generalisation of the Klein-Gordon
equation, we get

0 = (γµγν∇µ∇ν −m2)ψ

= (γ(µγν)∇µ∇ν −m2 + γ[µγν]∇µ∇ν)ψ

= (∇2 −m2 + γµγν∇[µ∇ν])ψ

= (∇2 −m2 + 1
8γ

µγνRµναβγ
αγβ)ψ

It may look like that we are getting some spin-curvature coupling in the last step, but this
is false: ∇ here is the Levi-Civita connection, and we have(

∇2 −m2 − 1
4R
)
ψ = 0,

so there is no spin current coupled to the curvature. This calculation is first done by Perez
and Lichnerowicz, is mostly easily verified by substitution: one needs the following formula

γaγbγc = γ[abc] + ηabγc − ηcdγb + ηcbγa

γ[abc] = γaγ[bc] − ηbaγc + ηbcγa
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so

Rabcdγ
bγcγd = −2Rabγb

Rabcdγ
aγbγcγd = −2R

γabcRacefγ
ef = 4Gefγf

and the result follows.
It should be noted that the massless Dirac equation in curved spacetime is conformally

invariant: if (gµν , ψ) is a solution of /∇ψ = 0, then (Ω2gµν , ψ/Ω3/2) is a solution also. We
can use this fact to deduce how R changes under Weyl rescaling.

Let us now investigate the equation under chiral rotations. A chiral rotation is

ψ → exp(θγ5)ψ = (cos θ + γ5 sin θ)ψ

ψ̄ → ψ̄ exp(θγ5) = ψ̄(cos θ + γ5 sin θ).

Since γ5 anticommutes with γα, the kinetic term is invariant but the mass term is not:
ψ̄mψ → ψ̄ exp(2θγ5)mψ. Massless theory has chiral invariance. But consider a theory
where the mass term is replaced by

m→ m1 + γ5m2

where m1 is called the Dirac mass, and m2 the Majorana mass. Using chiral rotation we
can eliminate the m2 term: the quantity

√
m2

1 +m2
2 is invariant.

In general, given n Majorana spinors ψi

L =
1
2

n∑
i=1

ψ̄i /∇ψ +
1
2

n∑
i,j=1

ψ̄iMijψ
j ,

the mass matrix Mij = m1
ij + γ5m

2
ij where both m1

ij and m2
ij are symmetric, a chiral

rotation of the form

exp(αij + γ5βij) ∈ U(n), αij = −αji, βij = βji

can make the mass matrix Mij diagonal.

3.4 Einstein-Cartan-Weyl-Sciama-Kibble theory

In this theory, one adds torsion to the connection and attempt to couple matter fields
(fermions) to gravity. The lagrangian is

L = −R
2
κ2 +

1
2
ψ̄ /∇ψ.

Since ψ̄ /∇ψ contains ωµab, spin density couples to torsion. The spin density is given by

Sa
µ
b = 1

8 ψ̄γ
µγabψ
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so that Sabc = S[abc], which implies Tabc = T[abc]. The additional equation of motion is

Tabc = −κ
2

4
ψ̄γabcψ.

In this case, we have a totally antisymmetric torsion. A theory with totally antisymmetric
torsion has the following characterisation. Autoparallels are defined by solution curves
to the following “geodesic equation” (the connection is not Levi-Civita, and hence the
quotation marks):

d2xα

dλ2
+ Γµαν

dxµ

dλ

dxν

dλ
= 0,

while geodesics are defined by the extremal curves as defined by the length functional with
respect to the metric, i.e. solution curves to the same equation but with the Levi-Civita
connection. Now

Γµαν = {µαν}+Kµ
α
ν

and
Kαµβ = −1

2(Tαµβ + Tµαβ + Tµβα) = −1
2Tαµβ

since T is totally antisymmetric. So K(α
µ
β) = 0, and hence geodesics and autoparallels

coincide.
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4. Supergravity lagrangian and super invariance

4.1 Rarita-Schwinger equation in flat spacetime

We will write, as our first attempt at a supergravity lagrangian (a lagrangian for spin-3
2

fields), the following massless action for Majorana fermions:

S =
1
2

∫
d4x ψ̄αa γ

abc
αβ ∂bψ

β
c .

Note that γabcαβ = γcbaβα . Variation gives

δS
.=
∫
d4x δψ̄aγ

abc∂bψc

and the equation of motion is
γabc∂bψc = 0.

This equation is invariant under chiral rotations, and also fermionic gauge transformations
ψa → ψa + ∂aλ, analogous to the bosoinc gauge transformations for spin-1 fields.

We can simplify the equation further. Start with

γaγ
abc = 2γbc, γaγ

ab = 3γb, γab = γaγb − ηab

and hitting the equation with γa, we get

/∂ψa − ∂a/ψ = 0.

We now attempt to answer the Cauchy question: find how many (real) functions are
needed to give the Cauchy data to this equation so that it has a unique solution. We first
choose a gauge, i.e. use gauge invariance to set

γiψi = 0, ∀t, i = 1, 2, 3.

This amounts to the following. Under a gauge transformation, γiψi → γiψi + /∂λ, so if we
“solve” the highly non-local equation λ = − 1

/∂(3)
(γiψi), we can set what we require to zero.

Now write spatial and time part of the equation of motion separately

(γ0∂0 + γ · ∇)ψµ − ∂µ(γ0ψ0 + γiψi) = 0.

The µ = 0 equation of motion then gives

(γ · ∇)ψ0 = 0

iteration gives ∇2ψ0 = 0, so ψ0 = 0. Therefore, γiψi = 0, and we are left with the equation
∂iψ

i = 0. We conclude that, the equation of motion in this gauge is just

/∂ψi = 0.

Now ψi, having a spatial vector index, includes 3 × 4 = 12 functions. The constraints
are γiψi = 0 and ∂iψ

i = 0, each gives four constraints on functions (these are matrix
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equations). So we are left with 4 free functions. Four free functions gives two degrees of
freedom for Majorana fermions.

What we have done is similar to the Coulumb gauge in electromagnetism: i.e. we set

A0 = 0, ∇ ·A = 0

using the gauge transformation Ai → Ai + ∂iΛ.
We can also use a covariant gauge, the Lorenz gauge: set γaψa = 0, then ∂aψ

a =
0 and the equation of motion is /∂ψa = 0. This is analogous to setting ∂µA

µ = 0 in
electromagnetism.

In quantum field theory we complexify ψa and take it to be proportional to the plane
wave solutions eik·x. Then we have

k2 = 0, kaψ
a = 0, γaψa = 0.

Therefore ψa lies in a null plane with null normal ka. We still have freedom to add to ψa

any multiples of ka. So we can set

ka = (1, 1, 0, 0), ψa = (0, 0, ψ2, ψ3).

So we have as many degrees of freedom as two vectors and two spinors have, minus the
following constraint:

γ2ψ3 + γ3ψ2 = 0.

Hence, the spin content of ψi is the following: ψi transforms as spin 1⊗ 1
2 = 3

2 ⊕
1
2 under

SU(2), but the spin-1
2 part is killed by the constraints. So the field ψi is a spin-3

2 field.
To add a mass term to our gravitino, we also look for analogies with electromagnetism.

The massive analogue of the Maxwell equation is the Proca equation

∂µF
µν = m2Aν

from the following lagrangian

L = −1
4FµνF

µν − 1
2m

2AµA
µ.

This includes the Klein-Gordon equation: if we hit both sides with ∂ν we obtain m2∂νA
ν =

0, back substitution gives ∂2Aν = m2Aν .
Therefore, for gravitino, we use the following lagrangian

L = 1
2 ψ̄aγ

abc∂bψc + 1
2mψ̄aγ

abψb.

Note that γabαβ = γ
[ab]
αβ = γab(αβ). The equation of motion is

γabc∂bψc +mγabψb = 0.

Hit with ∂a, we get
mγab∂aψb = 0.
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But γab = γaγb − ηab, so
∂ · ψ = /∂/ψ.

Also γaγab = 3γb, which implies 3mγaψa = 0, or /ψ = 0, so ∂ · ψ = 0. Now

γabc = γaγbc + ηacγb − ηabγc,

expanding our original equation, we get

/∂ψa − ∂a/ψ +mγa/ψ −mψa = 0

therefore our final equation of motion is

(/∂ −m)ψa = 0 subject to ∂ · ψ = /ψ = 0.

To analyse further, we again complexify and take ψa ∝ eik·x, kaka = −m2. Set

ka = (m, 0, 0, 0), ψa = (0, ψ1, ψ2, ψ3),

then
γ1ψ1 + γ2ψ2 + γ3ψ3 = 0.

As a representation of SU(2) we have vector together with spinor again, but this time it
is 1 ⊕ 1

2 ⊕
3
2 ⊕

1
2 , with the last 1

2 eliminated by the residual gauge freedom. So we have
2× 3

2 + 1 = 4 degrees of freedom in the massive case.
To couple our theory to gravity, we could try the “minimal coupling” ∂ → ∇, but it

doesn’t work. This procedure actually only works for spin 1 and below. For example, for
spin 2 in flat spacetime, we have

∇2hµν = 0, hµ
µ = 0, ∂µh

µν = 0,

but letting ∂ → ∇ gives too many conditions on hµν .

4.2 N = 1 supergravity

We want to generalise the Rarita-Schwinger equation to curved spacetime. Again, we start
with the massless case. Our action is

S3/2 =
∫
d4x
√
g

1
2
ψ̄a(γabcDbψc), Dµψν = ∂µψν +

1
4
ωµabγ

abψµ

note that we have omitted the Levi-Civita term {µσν}ψσ in Dµψν , since it vanishes when
we anti-symmetrise with respect to µ, ν. We consider ψ = ψµdx

µ as a spinor-valued 1-form.
The equation of motion is

γabcDbψc = 0.

What about gauge invariance for this theory? Let us start with a “pure gauge” spinor

ψ = Dλ = dλ+ 1
2ωabγ

abλ
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then
γabcDbDcλ = γabcD[bDc]λ = 0

so
γabcRbcefγ

efλ = 0, or Gbfγ
fλ = 0.

In general det(Gbfγf ) 6= 0 and det(aaγa) = (aaaa)2, so this term do not vanish. Therefore,
spin-3

2 field in curved background with Gab 6= 0 is inconsistent! This is a generic problem
with spin greater than 1, known as the Buchdahl condition.

One method of overcoming this problem is by cancelling this term using the Einstein
action. Let a symmetry transformation be

δψµ =
1
κ
Dµε

where ε is a spinor field with dimension [ε] = L1/2. Remember [ψ] = L−3/2. Then the
variation of our gravitino action gives

δS3/2 =
1
κ

∫
d4x
√
−g ψ̄aγabcDbDcε

.=
1
κ

∫
d4x
√
−g ψ̄Gabγbε.

For the Einstein action
S2 =

∫
d4x
√
−g R

2κ2
,

we have
δS2

.= − 1
κ2

∫
d4x
√
−g Gµbδebµ.

Hence, by choosing “1
2 = 1

2”, i.e. use the specific symmetry variation

δeaµ = ψ̄µγ
aε, [e] = 0, [κ] = L

we can show that

δ

(∫
d4x
√
−g R

2κ2
+ 1

2 ψ̄aγ
abcDbψc

)
= 0.

This is to the lowest order (ignoring “4-Fermi terms”) a proof of the invariance of N = 1
supergravity lagrangian under supersymmetry variations (and we see why this lagrangian
is called the supergravity lagrangian).

For a proof of the invariance in the exact theory, in second order formalism, we write
the spin connection as

ωµ
ab = ω′µ

ab(e) + 1
2κ

2(ψ̄µγaψb − ψ̄µγbψa + ψ̄aγµψ
b)

where ω′ denotes the Levi-Civita connection. The expression in bracket are the 4-Fermi
terms which needs to be cancelled using Fierz identities discussed later. Note that

Tabc = −1
2κ

2ψ̄aγ
bψc

is in general not totally antisymmetric, and hence the Bianchi identities are modified

dω + ω ∧ ω = R, de+ ω ∧ e = T
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which imply

dω ∧ e− ω ∧ de = dT, (R− ω ∧ ω) ∧ e = ω ∧ (T − ω ∧ e), R ∧ e = DT.

An extension of this N = 1 theory is addition of the cosmological constant, first
considered by Townsend

Dµ → D̂µ = Dµ +
1
2
aγµ, R→ R− 2Λ, Λ = − 3

a2
< 0

where a is a constant. D̂µ is an example of a super-covariant derivative:

δψµ = 1
κD̂µε.

This change would appear to introduce a “mass term” into the lagrangian

1
2a
ψ̄aγ

abcγbγc = − 1
2a
ψ̄aγ

acγc

but this is not really a mass, since the lagrangian is still invariant. We have maintained
gauge invariance at the expense of changing our ground state, i.e.

Rµν = 0 → Rµν = Λgµν

and Minkowski spacetime is no longer a solution. The ground state is now AdS4 =
SO(3, 2)/SO(3, 1). This is the homogeneous hypersurface defined in E3,2 by the equation

(x1)2 + (x2)2 + (x3)3 − (x4)4 − (x5)5 = −a2

homogenous meaning that the metric tensor completely determines the Riemann tensor
(no derivatives):

Rµνλρ = − 1
a2

(gµλgνρ − gµρgνλ).

In flat spacetime, the covariant derivative commutes: D[µDν] = 0. In anti-de Sitter space
it does not, but the super covariant derivative does:

D̂[µD̂ν] = 0.

This only works in anti-de Sitter spacetime, not in de Sitter spacetime, since in that case
an i has to be introduced, rendering the lagrangian complex.

4.3 N = 2 supergravity

In a N = 2 theory, to the lowest order, our fields are the metric, the gauge field and two
Majorana spinors

gµν , Aµ, ψiµ (i = 1, 2).

To the usual gauge lagrangian piece

L1 = −1
4FµνF

µν , Fµν = ∂µAν − ∂νAµ
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we add the Pauli term

LPauli =
κ

2
√

2
ψ̄iµ(Fµν + ∗Fµνγ5)ψjνεij , ∗Fµν =

1
2
εµνλρF

λρ.

The supersymmetry variations of the various fields are

δeaµ =
1
2
κψ̄iµγ

aεi, δAµ =
1√
2
κε̄iψjµεij , δψiµ =

1
κ
D̂µε

i

where in the last case the super-covariant derivative is

D̂µε
i = Dµε

i +
1

2
√

2
κεij(Fµνγλ + ∗Fµνγλγ5)εj .

A feature of this theory is that the equation of motion (but not action) is chiral-duality
invariant, i.e. invariant under

ψiµ → exp(θγ5)ψi, Fµν → exp(eθ∗)Fµν .

4.4 Super invariance of the exact theory

For easier manipulation in showing the super invariance of the exact theory, we write our
theory using spinor-valued 1-forms ψ = ψµdx

µ = ψae
a. Note that the wedge product on

spinors now commutes, since the wedge product and Grassmann variables both contribute
a minus sign. We have

ψ1 ∧ ψ2 = ψ2 ∧ ψ1, ψ̄ ∧ ψ = 0, ea ∧ ψ = −ψ ∧ ea, ψ̄γabc ∧ ψ = 0

while the combination ψ̄γa ∧ ψ 6= 0. Also recall that γabc = γ5γdγ
abcd and εabcd|e|d4x =

e1 ∧ e2 ∧ e3 ∧ e4. The gravitino part of the lagrangian is

L3/2 = 1
2 ψ̄aγ

abcDbψc|e|d4x

= 1
2 ψ̄ ∧ γ

5γ ∧Dψ
= − 1

12 ψ̄ ∧ γ
abcDψ ∧ edεabcd

where ψ = ψµdx
µ is a matrix-valued 1-form and

Dψ = dψ + 1
4ωabγ

ab ∧ ψ.

The total lagrangian is

L = − 1
4κ2

Tr(e ∧ e ∧R) +
1
2
ψ̄γ5γ ∧Dψ.

If we now do the variation, we get a term proportional to Dδωab for variation of Rab with
respect to the connection, and ε̄Dψ ∧ Des for variation of δψ̄ = Dε̄/κ and integration
by parts, ψ̄γmnrγklψεmnrs = −6ψ̄γmψεmkls for variation respect to the connection in Dψ

and finally 1
2κε̄γ

aψ for variation of the “metric” ea and using the Fierz identities. Putting
everything together, we have

δL .=
1

2κ2
(δωmn ∧ er − 1

6
ε̄γmnrDψ) ∧ (Des − 1

4
κ2ψ̄γsψ)εmnrs.

The interpretation of this variation depends on the formalism used: in second order form-
alism, δωmn = 0 since by definition ω = ω(e, ψ); in the first order formalism, this defines
the variation of δωmn since we really only have δe and δψ; in the 1.5 formalism, δωmn

vanishes as well because of the equation of motion coming for ωmn.
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4.5 Fierz identities

Now we come to the Fierz identities that is referred to previously. Cliff(3, 1) has a basis
I, γµ, γµν , γ5γµ, γ5 and we write them as {ΓA} for A = 1, . . . , 16. We consider the matrices
ΓAαβ as endomorphisms of the spinor vector space. We claim that, except for I, Tr ΓA = 0.
This can be shown by, e.g.

γ5γµγ5 = γµ, Tr(γ5γµγ5) = Tr(γµ) = −Tr(γµ) = 0

due to cyclicity of trace. For those involving γ5, we use γ5 = −γ1γ5γ1. Similarly, we obtain
relations for Tr ΓAΓB. Putting them together,

Tr ΓA = 0 ΓA 6= I, Tr ΓAΓB = 4ηAB ηAB = diag(±1).

Let us determine the signs of ηAB: we write (m,n) for m plus signatures and n minus
signatures for generators. We get

I (1, 0)

γµ (3, 1)

γµν (3, 3)

γ5γµν (3, 1)

γ5 (0, 1)

So adding everything together, we have Cliff(3, 1) = R10,6.
Note that as a vector space (ignoring the product structure), Cliff(3, 1) = Λ(R3,1) has

a natural inner product induced from ηab:

(Fp, F ′p) =
1
p!

(Fµ1...µpF
′
ν1...νpη

µ1ν1 . . . ηµpνp).

Taking into consideration of the product structure, however, the counting goes

1 (1, 0)

eµ (3, 1)

eµ ∧ eν (3, 3)

eµ ∧ eν ∧ eλ (1, 3)

eµ ∧ eν ∧ eλ ∧ eρ (0, 1)

The Fierz identities is used to simplify the following expression

(ψ̄1Mψ2)(ψ̄3Nψ4) = ψ1αM
α
βψ

β
2ψ3γN

γ
δψ

δ
4.

Use the complete basis, we write

Mα
βN

γ
δ = CAαδΓAγβ

multiply by ΓBβγ to obtain
CAαδ = 1

4M
α
βN

γ
δΓAβγ
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therefore
Mα

β = 1
4(MΓaN)αδΓAαβ = 1

4ΓAαδ(NΓAM)γβ.

Using this, for anticommuting spinors

(ψ̄1Mψ2)(ψ̄3Nψ4) = −1
4(ψ̄1MΓANψ4)(ψ̄3ΓAψ2) = −1

4(ψ̄1ΓAψ4)(ψ̄3NΓAMψ2).

Therefore,

(ψ̄1Mψ2)(ψ̄3Nψ4) =− 1
4(ψ̄1ψ4)(ψ̄3NMψ2)

− 1
4(ψ̄1γ

µψ4)(ψ̄3NγµMψ2)

+ 1
4(ψ̄1γ5ψ4)(ψ̄3Nγ5ΓAMψ2)

− 1
4(ψ̄1γ5γ

µψ4)(ψ̄3Nγ5γµMψ2)

+ 1
8(ψ̄1γ

µνψ4)(ψ̄3γµνNMψ2).

The signs are opposite if the spinors are commuting. Therefore

ψ1ψ̄2 = −1
4(ψ̄2ψ1)I + 1

4(ψ̄2γ5ψ1)γ5 − 1
4(ψ̄2γ

µψ1)γµ + 1
4(ψ̄2γ5γ

µψ1)γ5γµ + 1
8(ψ̄2γ

µνψ1)γµν

so that
ψ1ψ̄2 − ψ2ψ̄1 = 1

2(ψ̄1γ
µψ2)γµ − 1

4(ψ̄2γ
µνψ1)γµν .

The Fierz identities are useful in establishing the commutator of 2 supersymmetry trans-
formations and thus checking the algebra.

The following identities

γµγµ = 4, γλγµγλ = −3γµ, γλγµνγλ = 0, γλγ5γµγλ = 3γ5γµ, γλγ5γλ = −4,

allow we to simplify expressions and we can obtain interesting consequences, including the
fact that ε̄γµε is lightlike and future-pointing for commuting Majorana spinors:

(ψ̄γµψ)(ψ̄γµψ) = 0, ψtγ0γ
0ψ > 0,

also
ψ̄γ5γ

µψ = 0,

by setting M = γλ, N = γλ and ψ1 = ψ2 = ψ3 = ψ4 = ψ.

4.6 Supersymmetric background

In flat background, schematically a supersymmetry variation gives

δεB ∝ ε̄F, δεF ∝ (γµ∂µB)ε, [δε1 , δε2 ] ∝ −1
2 ε̄1γ

µε2∂µ

where B is bosonic and F is fermionic. The dimensions are

[F ] = L−3/2, [B] = L−1, [ε] = L1/2.
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A purely bosonic background has F = 0, is a solution of the equation of motion, and is
invariant under any supersymmetry transformations ε satisfying

(γµ∂µB)ε = 0.

(A background is called supersymmetric or BPS if it is invariant under action of at least
one supersymmetry. This gives extra constraint on B, e.g. B = constant.)

Let us give a concrete example: the Wess-Zumino model. In flat spacetime, consider
free and massless fields

L = −1
2(∂A)2 − 1

2(∂B)2 + 1
2 λ̄/∂λ.

Variation gives

δL = ∂2AδA+ ∂2BδB + λ̄γµ∂µδλ− ∂µ(∂µAδA+ ∂µBδB − 1
2δλ̄γ

µλ)

where
δA = 1

2 ε̄λ, δB = 1
2 ε̄γ5λ, δλ = −1

2γ
µ(∂µ(A+ γ5B))ε.

So the equations of motion are

∂2(A+ γ5B) = 0, /∂λ = 0.

And once the equation of motion is satisfied, we see that δL = ∂µJ
µ, where the conserved

supercurrent Jµ is
Jµ = −1

4(ε̄∂µ(A+ γ5B)λ).

We can calculate the commutator of two supersymmetry transformations in this theory:

[δε1 , δε2 ] = 1
2 ε̄1γ

µε2∂µ.

This is a translation, and this algebra closes “on shell”, i.e. we need to impose the equations
of motions to get this.

Let us try to solve the equations of motions for bosonic background. For the wave-like
equation, we write

A+ γ5B = exp(γ5k · x)(A0 +B0γ5).

Substituting into the equation of motion, we see that the wave vector is lightlike

kµk
µ = 0.

In order to have bosonic solutions, the variation δλ = 0, so we must also have

(kµγµ)ε = 0.

This is an equation of constraint on ε. As det(kµγµ) = k2 = 0, kµγµ has a non-trivial
kernel. Now let us go into the frame where

kµ = (1, 1, 0, 0)
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we have
(γ0 + γ1)ε = 0

which, using (γ0γ1)2 = I and Tr(γ0γ1) = 0, we get

γ0γ1ε = −ε.

Now we can introduce

P+ = 1
2(1 + γ0γ1), P− = 1

2(1− γ0γ1)

which are projection operators

P 2
+ = P+, P 2

− = P−, P+P− = P−P+ = 0, P+ + P− = I.

These projection operators can be used to split the Majorana spinors into direct sums:
M = M+ ⊕M− where ψ± ∈ M± if and only if P±ψ± = ψ± and any spinor decomposes
uniquely as ψ = ψ+ + ψ−. Also note γ0γ1ψ+ = ψ+ and γ0γ1ψ− = ψ−. In terms of these
operators, our Killing spinor belongs to the minus part of the space: ε ∈ M−. Now write
ε = aψ̄− with a anticommuting and ψ− commuting, we have

ψ̄−γ
µψ− = (ψt−ψ−, ψ

t
−γ0γ

1ψ−, ψ
t
−γ0γ

2ψ−, ψ
t
−γ0γ

3ψ−)

= (ψt−ψ−, ψ
t
−ψ−, ψ

t
−γ0γ

2ψ−, ψ
t
−γ0γ

3ψ−)

= ψtψ(1, 1, 0, 0) ∝ kµ.

To get the last equality, we need to do some gamma matrices manipulations:

γt−γ0γ
2ψ− = ψt−(γ0γ

2γ1γ0γ1)ψ− = ψt−γ
0γ1γ0γ

2ψ−

and use
γt−γ0γ

2ψ− = −ψt−γ0γ
2ψ− = 0.

In a curved spacetime, the supersymmetry variation on the spinor field is δεψµ = 1
κD̂µε

where we have used the super covariant derivative. From the previous analysis we see that
there is no harm in assuming ε to be a commuting (and possibly Dirac) spinor. We can
obtain a vector by setting kµ = ψ̄γµψ. Typically, kµ is covariantly constant ∇λkµ = 0
and Killing ∇(νκµ) = 0. Moreover, k0 = ψ†ψ (remember ψ̄ = ψ†γ0) in a local frame,
hence k0 > 0 in all Lorentz frames: it is future directed and causal. If ψ is actually
Majorana, then it is lightlike. The probability current for the Dirac equation in this theory
is Jµ = ψ†γµψ. Note that in such theories we typically get a supply of covariantly constant
tensor fields like ψ̄γµνψ, etc.

In the simplest case of such a theory N = 1, Λ = 0, we have D̂ = ∇, the Levi-Civita
connection. In this case we would have ∇µψ = 0, i.e. ψ is a covariantly constant Killing
spinor field. The kµ = ψ̄γµψ is covariantly constant and null, also

∇λ(ψ̄γµνψ) = 0

where the expression in bracket is a covariantly constant 2-form.
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From the result in general relativity, if we use lightcone coordinates u = t − x1 and
v = t+ x1, then in this case we can write the metric as

ds2 = −2du dv +H(u, xi)du2

and then
∂

∂v
= kµ

∂

∂xµ

is a covariantly constant null Killing vector field. If the spacetime we are considering is
Ricci flat, then ∂i∂iH = 0 for arbitrary u. An example in this case would be

H = α(u)((x1)2 − (x2)2) + 2β(u)x2x3

for arbitrary α(u) and β(u). Observe that the α and β represent polarisations (+) and (×)
of a quadruple moment, i.e. describing the behaviour of a classical graviton. Therefore,
that classical gravitons are invariant under 2 of the 4 supersymmetry transformations.
(For N = 1, Λ = 0, the vacuum ground state E3,1 is invariant under all 4 supersymmetry
transformations.)

4.7 Super Poincaré group and gauge theory

We now attempt to make the supersymmetry that we have used in previous discussions
systematic. We will do this by introducing a superspace and a super group acting on it,
and finally define a gauge theory analogous to the general relativity case. The action of
super Poincaré group on a superspace isΛab −1

4 ε̄γ
a aa

0 S(Λ)αβ εα

0 0 1


xbθβ

1


where the action on spinors is S(Λ) = exp(1

4λabγ
aγb) for Λab = expλab. The dimensions

of various quantities are

[ε] = L1/2, [θ] = L1/2, [a] = L.

The “superspace” (xb, θβ) is identified with E3,1 ⊕M. We have the Grassmann variables
θ and ε here, so we need to be careful with signs. As matrix multiplication, this is a
left action, and we can interpret this group action as a semidirect product of Lorentz
transformations with translations and supertranslations, where supertranslations are

θ → θ + ε

with the associated translation
xµ → xµ − 1

4 ε̄γ
µθ.

Translations and supertranslations together form an invariant subgroup of the whole super
Poincaré group. The superspace is then the quotient manifold of the super Poincaré group
by the Lorentz group in the usual way.
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We can consider functions on this superspace f(x, θ). When we do “Taylor expansion”,
the series in θ terminates at finite power: to be exact, at θ4 due to the Grassmann nature
of θ. Consider

δεf = δxµ
∂f

∂xµ
+ δθα

∂f

∂θα

= −1
4γ

µθ∂µf + εα
∂f

∂θα
≡ εαRαf

where we have defined
Rα =

∂

∂θα
+

1
4
θβγµβα

∂

∂xµ
.

We need to be careful about position of δθα in the variation since it is anticommuting.
Actually, ∂

∂θα behaves like an inner multiplication. For Rα, we think of as right invariant
vector fields generating left translations on superspace and thus commuting with generators
of right translations

{Lα, Rβ} = 0, Lα =
∂

∂θα
+

1
4
θβγµβα

∂

∂xµ

the analogy with right and left invariant vector fields on a Lie group is exact (note that
left invariant vector fields generate right translations, etc.). To make this analogy more
concrete, let us introduce left invariant 1-forms

λα = dθα, λµ = dxµ + 1
4θ
αγµαβdθ

β,

and right invariant 1-forms

ρα = dθα, ρµ = dxµ − 1
4θ
αγµαβdθ

β.

Let us recall the following Maurer-Cartan relations from the theory of Lie groups and
Lie algebras, where CABC are the structural constants and A,B, . . . = 1, 2, . . .dim g:

dλC = −CACB λA ∧ λB

dρC = +CACB ρA ∧ ρB

[LA, LB] = +CACB LC
[RA, RB] = −CACB RC
[LA, RB] = 0

δAB = ρA(RB) = λA(LB).

The Maurer-Cartan form for the Lie group can be written g−1dg = λATA where TA are
the basis for the Lie algebra. Also, dg g−1 = ρATA. In quantum theories, one usually
defines the generators after division by i so they can act as quantum mechanical hermitian
operators.

Now let us write down similar formulae for our super theory:

dλµ = +1
4dθ

αγµαβdθ
β

dρµ = −1
4dθ

αγµαβdθ
β

{Rα, Rβ} = +1
2γ

µ
αβ

∂
∂xµ

{Lα, Lβ} = −1
2γ

µ
αβ

∂
∂xµ ,
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and now the structural constants are

Cα
µ
β = Cβ

µ
α = −1

2γ
µ
αβ.

Note that for anticommuting objects, dθα ∧ dθβ = +dθβ ∧ dθα. In the literature, the
usual practice is to call our Rα by Qα, the “generators” and our Lα by Dα, the “covariant
derivatives”. The anti-commutation relation then reads

{Qα, Qβ} = 1
2γ

µ
αβ

∂
∂xµ .

Let us also use this notation from now on.
Consider Q(ε1) = εα1 Tα where T is an R-valued (anti-hermitian) matrix. To write out

this matrix representation in full,

Q(ε1) =

0 −1
4 ε̄1γ 0

0 0 ε1
0 0 0

 , Tα =

0 −1
4γ

µ
αβ 0

0 0 δβα
0 0 0

 , Tµ =

0 0 δµν

0 0 0
0 0 0

 ,

with
TαTβ + TβTα = −1

2γ
µ
αβTµ (4.1)

Then one can check

Q(ε1)Q(ε2)−Q(ε2)Q(ε1) = εα1 Tαε
β
2Tβ − εα2 Tαε

β
1Tβ = εα1 ε

β
2{Tα,Tβ}.

A supersymmetry transformation acting on a superfield then can be written as

δf = εαQαf = εαRαf.

Again, quantum mechanically, we would write

Tα →
Q̂α

i1/2
, Tµ →

P̂µ
i
, P̂µ =

∂µ
i
,

and then
Q̂αQ̂β + Q̂βQ̂α = −1

2(Cγµ)P̂µ.

which is 1
2 P̂

0δαβ in the rest frame. Since the left hand side is non-negative, The total
expectation value is then 〈P̂µ〉 ≥ 0. Taking the trace, we get 〈P̂ 0〉 > 0, and hence 〈P̂µ〉
is future directed timelike or null. This is the positive energy property of supersymmetric
theories.

We can now formulate a super Poincaré gauge theory, similar to the Poincaré case.
The connection 1-form is

A =

ωab −1
4 ψ̄γ

a ea

0 1
4ωabγ

ab κψ

0 0 0


where

ψ = ψµdx
µ, [ω] = L−1.
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The curvature is

F =

dω + ω ∧ ω ∗ dea + ωab ∧ eb − 1
4κ

2ψ̄γaψ

0 1
4γ

ab(dω + ω ∧ ω) κ(dψ + 1
4ωefγ

eγfψ)
0 0 0

 .

We see that now κ(dψ + 1
4ωefγ

eγfψ) is the curvature associated with supertranslations,
while dea + ωab ∧ eb − 1

4κ
2ψ̄γaψ is the curvature associated with translations. We want no

curvature for translations, so setting the appropriate term to zero, we get

dea + ωab ∧ eb = 1
4κ

2ψ̄γaψ = T a

— fermionic contribution to torsion.
The super Poincaré group is relevant for Minkowski spacetime. For AdS4, because

Spin(3, 2) = Sp(4,R), the supergroup relevant in this case is the orthosymplectic group
Osp(1|4), i.e. those matrices leaving invariant the quadratic form

δijx
ixj + Cαβθ

αθβ

where Cαβ = Cβα is the symplectic form. We can pass from Osp(1|4) to the super Poincaré
group by a process called Wigner-Inönü contraction, which we will outline below.

The orthosymplectic group Osp(M |N) has a diagonal subgroup SO(M) × Sp(N,R),
i.e. matrices of the form (

SO(M) 0
0 Sp(N,R)

)
where elements of the symplectic group Sp(N,R) preserves the symplectic form Cab. The
dimensions are

dimRSO(M) = 1
2M(M − 1), dimRSp(N,R) = 1

2N(N + 1).

The action of Osp(M |N) on superspace is(
Λij Λib
Λaj Λab

)(
xj

θb

)

where

Λij = δij + λij + . . . λij = δikλ
k
j , λij = −λji,

Λab = δab + λab + . . . λab = Cacλ
c
b, λab = +λba.

For the isometry group of AdS4, Sp(4,R) = Spin(3, 2), we have the generators

ΓA = (γµ, γ5), A = 0, 1, 2, 3, 4

and
ΓAΓB + ΓBΓA = 2ηAB, ηAB = diag(−1, 1, 1, 1,−1).
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For a real (i.e. Majorana) representation of Cliff(4, 1),

C5 = γ0γ5, C5 = −Ct5

we have the basis which generate Sp(4,R)

C5 1 skew,

C5ΓA 5 skew,

C5ΓAB 10 symmetric.

Pass into the supersymmetric case, Osp(1|4) is the super anti-de Sitter group for N = 1,
and Osp(N|4) is the N -extended super anti-de Sitter group.

Now consider the generators of SO(3, 2), which we will call MAB. In these, the gener-
ators Mµν generate Lorentz rotations, while M4,ν generators non-commuting translations:[

M4µ

a
,
M4ν

a

]
∝ Mµν

a

where a is a length scale set by the radius of the anti de Sitter space. Note the dimension

[Mµν ] = 1, [Pµ] = L

so the above can be written as
[Pµ, Pν ] ∝ a−2Mµν .

To proceed with the Wigner-Inönü contraction, we take the limit a → ∞. Then in the
limit [Pµ, Pν ] = 0, i.e. Minkowski spacetime. Recall that the anti de Sitter space is defined
by

xAxBηAB = −a2,

so the limit a→∞ corresponds to setting the radius of curvature to infinity, and hence

Λ = − 3
a2
→ 0.

If we do a similar analysis for the de Sitter spacetime, the algebra is anti-unitary
instead of unitary.
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5. Witten’s proof of the positive energy theorem

In general relativity, the positive energy theorem states that, assuming the dominant energy
condition, the mass of an asymptotically flat spacetime is non-negative; furthermore, the
mass is zero only for Minkowski spacetime. This theorem is important not only in physics,
but in pure mathematics as well, where it is more commonly known as the positive mass
theorem. By far the simplest and most elegant proof is given by Edward Witten in 1981,
which is a very good illustration of the power of using spinors and supergravity in doing
essentially classical calculations. We will briefly outline Witten’s proof in this section.

We begin by defining the Nestor 2-form

Nµν = ε̄γµνρ∇ρε

where ε is a commuting Dirac spinor. To manipulate this, we will use Stokes’ theorem.
Let ∇νNµν = Jµ, and suppose Σ is a spacelike hypersurface in spacetime, e.g. a Cauchy
surface. For a domain D with boundary ∂D, Stokes theorem states that

1
2

∮
∂D

= ∇µνdΣµν =
∫
D
JµdΣµ

Now, take increasing domains D such that limD = Σ, lim ∂D = S2
∞. Also assume space-

time (M, gab) is asymptotically flat. Then we have

∇νNµν = ∇ν ε̄γµνρ∇ρε+ ε̄γµνρ∇ν∇ρε
= ∇ν ε̄γµνρ∇ρε+ ε̄γµνρ∇[ν∇ρ]ε

= ∇ν ε̄γµνρ∇ρε+ 1
8 ε̄Rνραβγ

αβε

= ∇ν ε̄γµνρ∇ρε+ 1
2 ε̄γ

λεGµλ

= ∇ν ε̄γµνρ∇ρε+ 1
2κ

2ε̄γλεTµλ.

To proceed, we assume the dominant energy condition: TαβV
αW β ≥ 0. Consider this

equation for all future directed timelike vectors V α, W β, we see that it implies T00 ≥ 0.
An equivalent statement is that T0̂0̂ ≥ |Tµ̂ν̂ | in all Lorentz frames, where hatted indices
denote local pseudo orthonormal frames. Hence, TαβW β is past directed and timelike for
any future directed timelike W β. Note that in our sign convention, T 0

0 < 0. Putting all
these together, we see that 1

2κ
2ε̄γλεTµλ is past directed and timelike.

Now the second term in the expansion of ∇νNµν has been taken care of, let us come to
the first term. We will use a local pseudo-orthonormal frame ei adapted to the hypersurface
Σ, with e0 orthonormal to Σ. The zeroth component of the first term in the expansion
reads

(∇iε)†γ0γ
ij∇jε = (∇iε)†(γiγj − δij)∇jε

= (γi∇iε)2 − (∇ε)2

where
∇iε = (∂iε+ 1

4ωi rsγ
rγs) + 1

2ωi rsγ
rγsε.
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In this expression for the connection, we recognise the first term as the Levi-Civita con-
nection, whereas the second term can be thought of the second fundamental form of Σ.

Now we impose the following conditions: first, we require γi∇iε = 0 on Σ. This is
called the Witten equation. It is different from the Dirac equation since the Dirac one
uses the Levi-Civita connection induced by the metric. Second, we require the boundary
condition ε = ε0, a constant spinor at spatial infinity. These conditions together with the
above calculation implies Jµ = ∇νNµν is past directed and timelike.

For further manipulation of the second fundamental form introduced above, we will
work in a Gaussian normal coordinate. Locally, we write the metric as

ds2 = −dt2 + gij(x, t)dxidxj

so, to connect with our frame,

e0 = dt, de0 = 0 = −ω0
i ∧ ei, dei =

∂ei

∂t
∧ dt+ dxe

i = −ωi0 ∧ dt− ωik ∧ ek.

We see the emergence of the Levi-Civita connection with respect to gij in the last expression
above.

We write −ω0
j = eiKij , then −ω0

j = Kjie
i. Also note that de0 = 0 is equivalent to

Kij = Kji. Then,
∂ei
∂t

= Kije
j ,

∂

∂t
(ei ⊗S ej) = 2Kije

i ⊗S ej

so in our coordinate system,

Kij =
1
2
∂gij
∂t

=
1
2
£ngij .

The constraint equations that needs to be required in this coordinate are

(3)R = KijK
ij −Ki

iKj
j , (Kij − gijKk

k);l = 0.

Covariantly, this is
Kαβ = (∇αnβ)⊥ = −Γα0

β

where n is the unit normal to the hypersurface, nαnβ = −1, and ⊥ is the projection onto
Σ using hαβ = δαβ + nαnβ.

We now take a detour and outline several applications using this second fundamental
form approach. The first is that we can see for the Witten equation

∇iε = ∇L.C.
i ε+ 1

2Kijγ
0γjε,

multiplication by γi gives γi∇iε = 0. The second is for the Einstein-Hilbert action

S =
1

2κ2

∫
D
R|e|d4x+ 2

∫
∂D

(TrKij)
√
g d3x

variation contains only δg terms on boundary and no terms form δ(∂gij/∂n). The third
application is for the necessary condition for the existence of Killing spinors in anti-de
Sitter spacetime. Let A = 0, 1, 2, 3, 4 label the coordinates in E3,2, on which the anti-de
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Sitter spacetime is defined using the usual quadric. The super covariant derivatives on AdS
commutes: [D̂µ, D̂ν ] = 0, and the existence of Killing spinors is the existence of ε satisfying
D̂µε = 0. This can be constructed as follows. Let ε now denotes a constant spinor in E3,2,
so ∇Aε = 0. Then it is easy to see

∇⊥Aε = 0, ∇⊥µ ε = 0

and in this case, Kµν ∝ gµν where gµν is the induced metric.
Let us return to Witten’s proof of the positive mass theorem. We now need to solve the

equation γi∇iε = 0 subject to ε→ ε0 at spatial infinity. Since this equation is an elliptical
equation, existence of solution follows from standard results from differential equations. For
uniqueness, suppose ε1 and ε2 are both solutions satisfying the same boundary conditions.
Then ε = ε1 − ε2 satisfies the formula and the boundary term vanishes. Since ∇µε̄εµνρ∇ρε
is (subject to the Witten condition) past directed and timelike, the volume term has a fixed
sign. The boundary term, however, vanishes, since it only depends on ε0. Hence ε1 = ε0.

The last step in the proof is to note that

2
κ2

∫
S2
∞

1
2
NµνdΣµν = ε̄0γ

µε0P
ADM
µ ≤ 0 (5.1)

where PADM
µ is the ADM 4-momentum of spacetime. Hence PADM

µ is future directed and
timelike, if (M, gµν) is asymptotically flat.

We can identify the boundary term with the ADM mass in this theory. First we analyse
in more details the ADM mass/momentum. The metric at infinity is:

ds2 → −
(

1− 2MG

r

)
dt2 +

dr2

1− 2MG
r

+ r2(dθ2 + sin2 θdφ2),

where M is the ADM mass. We can write this in isotropic coordinates

ds2 =
(1− GM

2ρ )2

(1 + GM
2ρ )2

dt2 +
(

1 +
GM

2ρ

)4

d2x.

This has a momentum Pµ = (M, 0, 0, 0). We can boost it such that P i 6= 0. This will
introduce cross terms in the metric.

We can solve the Witten equation in this metric and evaluate the boundary term. The
metric is

gµν = ηµν +O(r−1)

so the connection
ω = O(r−2)

with a factor of M . For ε = ε0 + . . ., we get

Dµε = ε̄0γ
0ε0

M

r2
+ . . . .
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For the integrand in (5.1), it is of order O(Mr−2)ε, and dΣµν is of order O(r2). The
boundary term therefore is of order M(ε̄0γ0ε0). For its coefficient, we can either work it
out (it is complicated), or we can look at the identity

ε̄0γ
µε0P

ADM
µ =

∫
−Tµλε̄γλεdV +

2
κ2

(. . .)dV.

Evaluating near flat spacetime, we get the integrand as∫
(−Tµλε̄0γλε0)d3x+ . . .

Now ε0 is a constant spinor in Minkowski spacetime, and hence ε̄0γµε0 is a Killing vector
of the background. The whole expression is like a total energy. By the linearised Einstein
equation this is the total mass M of the linearised theory. However, the boundary term
depends only on the asymptotic metric, not on the interior. Thus we can always identify
the boundary term with the ADM mass.

We now consider the case where PADM
µ = 0, i.e. the case of equality in equation (5.1).

Then ∇iε|Σ = 0, and some components of Tµν |Σ = 0. Consider another Cauchy surface
Σ′, with the same boundary at infinity ∂Σ′ = S2

∞ (i.e. a finite variation of Σ), we also
have ∇iε|Σ′ = 0 and Tµν |Σ′ = 0. Thus ε is actually covariantly constant, ∇µε = 0, and
the dominant energy condition becomes Tµν = 0. Therefore, kµ = ε̄γµε is a covariantly
constant Killing field, and Rµν = 0 (the Einstein equation). Now, if kµ is null, and then
we have gravitational waves, the spacetime is not asymptotically flat, and hence this case
is not allowed. If kµ is timelike, then it is hypersurface orthogonal by ∇λkµ = 0 and has
constant norm gµνkµkν . Then the metric is ultrastatic:

ds2 = −dt2 + gij(x)dxµdxν

and gij must admit constant spinor ∇iε = 0. Then

Rµν = 0→ (3)Rij = 0→ (3)Rijrs = 0→ gij = δij ,

i.e. the hypersurface is flat. This remains true in higher dimensions if we quote the theorem
that asymptotically flatness and Ricci flatness together imply flatness.

There are some global issues with this approach to the proof of the positive energy
theorem: the existence and uniqueness of spin structures. For the moving frames we
use, global frames are not essential but convenient. If a global frame exists there is no
difficulty in introducing a spin structure. However, uniqueness is more problematic. If the
fundamental group is non-trivial, H2(M,Z2) 6= 0, then there exists more than one spin
structure. They can be odd or even as non-trivial closed curves. If no global frame exists
at all, there may not be a spin structure on the manifold. The obstruction in this case is
called the second Stiefel-Witney class W2 ∈ H2(M,Z2), which vanishes if all 2-cycles are
topologically trivial.

In four spacetime dimensions, a globally hyperbolic spacetime always admit a global
framing: M = R×Σ and Σ is spacelike. Also, every 3-manifold is parallelizable, and hence
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M admits a global framing and at least one spin structure. If it is not simply connected,
it may admit more than one. For our argument of the positive mass theorem to work, we
need a spin structure which allows constant spinors at infinity.

If black holes are present in this spacetime, then we can work on the exterior only and
use boundary condition on the horizon. Typically, ε = 0 on horizon.

The positive mass theorem has extensions: instead of asymptotic flatness, we can
require asymptotic AdS4 behaviour, e.g. the Kottler solution

ds2 = −
(

1− 2GM
r
− Λr2

3

)
dt2 +

dr2

(. . .)
+ r2dΩ2.

Here M is called the Abbot-Deser mass. Using D̂µε as defined with a cosmological constant,
we can prove that M ≥ 0. The case M = 0 corresponds to AdS4 spacetime. The solutions
of Witten equation γiD̂iε = 0 tend to Killing spinors of AdS4 at infinity.
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6. Central charges and BPS states

BPS stands for Bogomol’nyi, Prasad and Sommerfield. BPS bounds refers to a series
of inequalities for solutions of field equations depending only asymptotic behaviour the
solutions at infinity (actually, only on the homotopy class of the solution). A BPS state is
a solution which saturates this bound. In supersymmetric theories, the BPS bound usually
is saturated when half of the SUSY generators are unbroken. This happens when the
mass is equal to the central extension, which can be interpreted as a topological conserved
charge. In this section we will investigate BPS states briefly.

For N ≥ 1, the supersymmetry algebra admits a central extension:

{Q̂iα, Q̂
j
β} = −1

2(PµCγµ)αβδij + 1
2CαβX

ij + 1
2(Cγ5)αβY ij , Xij = −Xji, Y ij = −Y ji,

where X and Y commutes with all elements of the algebra and can be thought of electric
and magnetic charges respectively. In fact, we can obtain this algebra by contraction of
Osp(N|4). Witten and Olive showed that such conserved central charges can arise as
boundary terms in supersymmetric field theories.

For example, for N = 2, Xij = Xεij , they showed that M ≥
√
X2 + Y 2 and the

equality case is invariant under half of the maximal supersymmetry transformations. In
the rest frame, the right hand side of the algebra relation is

Mδij + (Xγ0 + Y γ0γ5)εij ,

which is a 8 × 8 matrix. Passing into Dirac notation εij →
√
−1 = i, it becomes a 4 × 4

hermitian matrix
A = M + iR, R = Xγ0 + Y γ0γ5.

Then R2 = −(X2 + Y 2) implies

A2 = M2 + 2iMR−R2 = 2MA−M2 +X2 + Y 2

hence we have the characteristic equation

A2 − 2MA+M2 − (X2 + Y 2) = 0.

The eigenvalues are obtained from the characteristic equation as

λ± = M ±
√
X2 + Y 2.

Since TrA = 4M , we see that λ± are both doubly degenerate. The BPS state has M =√
X2 + Y 2 and A has a kernel the dimension of which is half of the dimension of A,

i.e. half of the maximal supersymmetry. Another way to say this is that there exists 2
linear combinations of the supersymmetry generators which annihilate the BPS states.

Let us now focus on BPS states in N = 2 supergravity. The BPS states are invariant
under 4N/2 = 2N supersymmetries. After diagonalisation,

A = diag(M +
√
X2 + Y 2,M +

√
X2 + Y 2,M +

√
X2 − Y 2,M +

√
X2 − Y 2).
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We implement it as follows. The bosonic part of the supergravity lagrangian is the Einstein-
Maxwell theory. Define

LB =
R

4M2
− 1

2
FµνF

µν ,

then
Tµν = (FµλFνλ − 1

4gµνFλρF
λρ)

satisfies the dominant energy condition. We have

D̂εε = ∇µε+
iκ

2
√

2
(Fρσγργσ)γµε.

We can now identify boundary terms. Nµν contains Fρσ, and

X =
Q√
4πG

, Y =
P√
4πG

where Q and P are the electric and magnetic charges. Since the electromagnetic potential
is asymptotically

Aµdx
µ → Q

4πr
+
P cos θ

4π
dφ,

the first term can be thought of as the Coulomb potential and the second the Dirac mono-
pole. Because we are ungauged since the charges are central, neither Q or P is quantised.
The BPS bound on the mass is

M ≥
√

2Q2

κ2
+

2P 2

κ2

and for BPS states, the equality holds.
We can compare this with the Reissner-Nordström black hole:

ds2 = −
(

1− 2M
r

+
Q2 + P 2

4πr2

)
dt2 +

dr2

(. . .)
+ r2dΩ2

in which case we have

M ≤
√
Q2 + P 2

4πG
.

Then
r±
G

= M ±
√
M2 − (Q2 + P 2)

4πG
.

The extremal case is that for r+ = r−. If we draw Penrose diagrams for the black hole case
and the supergravity case, we see that they complement each other.

The Hawking temperature for this black hole can be calculated

TH =
1

2πG

√
M2 − 1

4πG(P 2 +Q2)(
M +

√
M2 − 1

4πG(P 2 +Q2)
)2

the temperature T ↘ 0 as M ↘
√

1
4πG(P 2 +Q2). For non-extremal cases, k = ∂

∂t becomes
spacelike for r− < r < r+, so it cannot be a BPS state. Also note that the Hawking temper-
ature is finite, so the theory can never be supersymmetric, since the Fermi-Dirac statistics
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is different from the Bose-Einstein statistics at all finite temperatures. The supersymmetric
generators cannot even act in such a case.

The extremal black hole case is compatible with the BPS condition, for which

TH =

√
M2 − 1

4πG(P 2 +Q2)

Gr2
+

.

Let us calculate the Killing spinors. D̂µε = 0 implies the Dirac equation γµ∇µε = 0, hence

γµγαβγµ = 0.

Let us solve the Dirac equation. If

ds2 = Ω2gµνdx
µdxν = g̃µνdx

µdxν .

Then /Dψ = Ω−(n+1)/2 /̃Dψ̃ where ψ = Ω−(n−1)/2ψ̃. Introduce isotropic coordinates A =
A(x) and B = B(x), we have

ds2 = −A2dt2 +B2dx2 = A2

(
−dt2 +

B2

A2
dx2

)
,

an ultra static metric. Then
(γ0∂0 + γi∇̃i)ψ̃ = 0.

Assume ∂tψ̃ = 0 on the 3-dimensional surface, we have

γi∇̃iψ̃ = 0.

Then
γi∂i

˜̃
ψ = 0,

for the flat Dirac operator on E3. Hence

ψ =
1√
AB

1√
B

˜̃
ψ.

Let us try the solution ˜̃
ψ = ε0 a constant. Then

ψ̄γµψ ∝ ε̄0γµε0.

Now choose γ0ε0 = iε0, then
ψ̄γµψ ∝ kµ = δµ0,

however, the factor involved here is not a constant.
In general, the solution is not regular near horizon at which A = 0. The exceptional

case occurs when AB = 1. There if

ds2 = −H−2dt2 +H2dx2, H = 1 +
k∑
a=1

GMa

|x− x0|
,

we have the Majumdar-Papeptrou solution. For k = 1, we have the extremal Reissner-
Nordström solution again, and

ψ̄γµψ
∂

∂xµ
=

∂

∂t
.
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