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Supergravity

Lectures by Prof Gary W Gibbons

Notes typeset by Ziyang Hu

ABSTRACT: These are the unofficial notes for the Part III course given in Easter term
2009 in DAMTP, the University of Cambridge. The (official) books and references for this
course are:

e P. van Nieuwenhuizen, Physics Report 68 (1981) 189;

e P. van Nieuwenhuizen in Supergravity ‘81, CUP, eds. Ferrara and Taylor;

e P. van Nieuwenhuizen in Superstrings and Supergravity, eds. Davies and Sutherland;
e D.Z. Freedman, B. de Witt in Supersymmetry, eds. Dietz et al.

Some examples given in the introduction section are omitted from these notes, but this
should not affect understanding of subsequent material. Please direct any spotted errors,
suggestions etc. to z.hu@damtp.cam.ac.uk.
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1. Introduction

1.1 Conventions

Our conventions is mostly that of Hawking-Ellis and Misner-Thorne-Wheeler. For the
metric tensor in general relativity, we will use the “west coast” signature (—, 4, +,+). The
covariant derivative is defined as

V.V =8,V +T,7, V.

Note our rather unconventional placement of indices for the connection coefficients: the
leftmost index is always the differentiation index. We do not assume that the connection
is symmetric, and hence the torsion may not vanish:

I/ #T6" s T,/ =T —-T5",#0.
The Riemann curvature tensor is
Ry = 0,106 +T,Pal % — 0L o =TT, %,
the Ricci tensor and Ricci scalar are
Ryy =Ry,  R=R’; =R,

and the Einstein field equation is

G

1
Ruy — §Rgl_“_/ = ?Tuy.

In places we will be replacing Newton’s constant by

9 8mGh

R =

3

For spinors, our gamma matrices satisfy
VA A =2

where the Minkowski metric is n = diag(—1,1,1,1). To translate from the convention of
some other books: y* — —iyH.

1.2 Dimensions and Planck units

Dimensional analysis is a useful tool for working out some equations and coefficients in a
physical theory, and we will use it in several places throughout the course. Here we will
give a brief overview and establish notation.

The effects of quantum gravity becomes important when half of the Schwarz radius is
comparable to the Compton radius

Gmy, h



From this we can define the Planck mass, length and time

h
my =4/ 56 ~ 1075 grams ~ 10! GeV
A 2
lp:\/%: g—ﬂ ~ 10733 cm
A 2
t, = G— = P ~ 10~* seconds

i.e. huge mass (compared to, say, a proton) and very small distance and intervals of time.
The units of relevant quantities are

[k] =L length
[z"] = L
Ry — 3 Rgw] = L2
Tw] =M 7271 energy per unit volume
[c/87G] = MLT 2 tension.

In this course, we will set h = ¢ = 1.

1.3 Motivation for supergravity

Supergravity (SUGRA) is an extension of Einstein’s general relativity to include supersym-
metry (SUSY). General relativity demands extensions since it has shortcomings including
at least the following:

e Spacetime singularities. The singularity theorems of Penrose, Hawking and Geroch
shows that general relativity is incomplete: it predicts its own demise.

e Failure to unify gravity with the strong and electroweak forces. In the Einstein
equation, the left hand side, i.e. spacetime geometry, is “a house of marbles”, whereas
the right hand side, i.e. matter fields, is “lowly hovel”. Historically, Kaluza-Klein
theory addressed this problem. However, it did not give realistic predictions.

e Incompatibility with quantum mechanics. Conceptually, the role of time in general
relativity is very different from its role in quantum theory. If we think of the relativ-
istic “time” as an operator, its unitarity, which is required in a consistent quantum
theory, is not obvious. A Hilbert space based on curved geometry is difficult to define.
Computationally, pure quantum gravity theory is not thought to be renormalizable
and hence has little predictive power.

If we include supersymmetry in a theory of gravity, the situation becomes a little bit better,
since the simplest example of divergences: zero point energy of the vacuum, can potentially
be cancelled by super partners of ordinary particles.



1.4 Supersymmetry

We here give a very brief overview of supersymmetry, one of the ingredients of supergravity.
Quantum mechanically, a supersymmetric theory is a theory in which the Hilbert space
can be written as a direct sum

H=Hp®HFr
and there exists self-adjoint operators QQ; = QZT., 1=1,2,...,4N acting on H, which satisfy

{Qi,Q;} = diH, [Qi, H] =0, QiHB C Hp, QiHr C Hp

where H is a certain hamiltonian operator. In a relativistic theory, the operators ); carry
angular momentum j:%. If a state |¢) has spin s, then Q;|¢) has spin s + % States fall
into supermultiplets with respect to actions of these operators.

The energy expectation value of a state with superpartners can be calculated

(W H|v) = 2(4|QIQu[) > 0.

So in a supersymmetric theory, the energy is always non-negative.
The simplest supersymmetric theory is the case N = % If we define

0= 5QitiQ). o= (Qi-iQy)

we recover the creation and annihilation operator relations for the harmonic oscillator
la,a] =0, {a,a'} = H.

In this case, we have a single multiplet with 2 states.
In general, the multiplets are of dimension 4N These are called the long multiplets

{QaaQﬁ}:_C’YZﬂP,UJ PO:H7 C:'Y()a a7ﬁ:17"'74'

For example, it is easy to construct a theory in which

Q1,1 =H+ P

{Q2,Q2}=H - P,
{Q3,Q3} =H+ P,
{Q1,Qu}=H - P,

where H > |P|. For the special case where states are lightlike H = |P| = |P|, half of the
states will vanish, and we are left with a short multiplet.

1.5 The current status of supergravity
Currently, supergravity is generally thought of as

e a reliable approximation to M-theory at low energy;
e a valuable technical tool (e.g. Witten’s proof of the positive energy theorem);

e an essential ingredient for supersymmetric phenomenology (minimal supersymmetric
standard model coupled to N' = 1 supergravity);

e an essential ingredient for the AdS/CFT correspondence of Maldacena.



2. General relativity and the action principle

2.1 Moving frames

To define spin structure on spacetime, we will need to formulate general relativity in the
moving frame language. Let

e = e, (v)dx"

be a basis of 1-forms. The last part of the Greek alphabet denotes world indices, i.e. of
local coordinates, whereas the first part of the Latin alphabet denotes tangent space indices,
i.e. of moving frames. Then

€q = e“a(x)aaw

form a basis of vector fields orthogonal to the basis of 1-forms: e%(ep) = 0%. In coordinates
e’ (z)ety(x) = 0%.

We can think of e, as components of the matrix e. Then e#, are just the components of
the inverse matrix e~!. To carry this analogy with matrices further, we will always write
the upstairs index first, even though it really does not matter. If in an expression the
contraction is not between adjacent indices, a matrix transpose is technically needed.

If we contract the tangent space index instead of the world index, we get

et.et, = oM.

We can exchange world index for tangent space index, i.e. translating from a holonomic
frame to a moving frame. For example, in the case of a vector,

VH -V =e VHE
For our basis, the metric of the moving frame is pseudo-orthonormal
Gab = e'uag;weyb = Tab = diag(_L L1, 1)7 Juv = eaunabebw

Tangent space index can be raised and lowered with 74, and 7.
The volume form on a manifold is n = /—g d*x where g = det G- Since —det g, =
—(det €)?, we have

0= le[d'z
=elnel et ne?
= 60#611,62/)630 dat N dx¥ A dxP N da®.
The whole expression can be checked using the definition of the determinant and the fact

that dz* A dx¥ AdxP Adx® = e*P?. Our convention is that €"'?3 = 1. Note that our wedge

product includes the appropriate normalization factor.



2.2 Connection 1-forms

Let V be a metric compatible connection, possibly with torsion. Acting on the basis,
Ve = w® @ €, wi = T = w, " dat.

I'.%, is called the Ricci rotation coefficients (old-fashioned) and w®, the spin connection.
Metric compatibility implies wqy, = —wpq, and in this case,

Ve® = wuabebl,dx“ ® dx¥
= %(wuabebydl‘” @ da” — e’ ywup’da” @ dzt)

= w A el
The covariant derivative acting on a vector V = V%, gives
(VV)," =0,V + w, V.
To write this in a more compact way, we think of 9,V * as a vector-valued 1-form

VL @eq =dVe @ eq,

oxk

then
VVe =dve + w4 VP,

Cartan’s first structural equation is
de® + w® A e’ =T, T¢ = T,%e® A b

where the torsion form T° is a vector-valued 2-form. This is derived as follows: expand
Vet = w @ e in coordinate basis

oue*y =T, e — w#abeby =0
and antisymmetrise. We see that the our connection decomposes
wyy =w' % (e) + K%
where w’ denotes the Levi-Civita connection in moving frame, and K is the contorsion
Ko'sg = —5(To"s + TVap + T ga).

In a holonomic frame, this is
Lats = {a"s} + Ko''p.

For a function f,
(VuV, =V, V) f =-T,700sf.

The Riemann tensor for this connection is

Rpa;u/ = 8/LFVPO' + Fuparuaa - 81/1_‘up¢7 - Fl/paruaa-



We think of it as a 2-form valued matrix
RF, = R*,,dz™ A da?
and convert indices using frames
R = e“uebl,R“w\p da A dx?
then, it easily follows
R% = dw® + w A w%,.

The important thing to note is that R%, transforms homogeneously under local Lorentz
transformation (or “tetrad rotation”) A € SO(3,1), while w does not. Indeed,

e = A%eb
dé=Ade+dAne=—-AwAe+dAA" NG
= AwA™" +dAATT
R% = A".R°q(A™ 1),
The Ricci tensor need not be symmetric in our theory: R,, # R,,. We can think of
it as a vector-valued 1-form R®,dxz". The Ricci scalar is then R = g" R, = e, R*,(w).

2.3 Poincaré gauge theory

To make the bundle structure clear and to ease our subsequent introduction of spin struc-
ture, we think of gravity as gauge symmetries. The Poincaré group, i.e. the local symmetry
group of general relativity, is the pseudo-Euclidean group E>! = O(3,1) x R*, a semidirect
product of rotations with translations. We can write its action on spacetime coordinates

A% ab x? _ A%ab + ab
0 1 1) 1 '
Its Lie algebra is s0(3,1) x R*. The Lie algebra of R? is still itself, while for O(3,1) it is
given by

in matrix notation

A =6% + %+ ..., Aab = —Mba-

So in this gauge theory, infinitesimal gauge transformations are generated by translations
and frame rotations. In any gauge field theory, the gauge field takes values in the Lie
algebra of the group. So we can write a field as

o — A% a®
0 O

(c.f. the Higgs field). A covariant derivative is needed to make the gauge symmetry a
local one. Following Cartan, a covariant derivative (connection) in this case is just a Lie

A= wh e\  [wypdxt e, dzt
~\o o) 0 0 '

algebra-valued 1-form,



This is the simplest example of a Cartan connection. Its meaning is this: for a function f, df
is “the change in f under infinitesimal displacement”. But an “infinitesimal displacement”
can at best be described by giving a tangent vector, therefore df is a 1-form acting on
tangent vectors to give real numbers. In a similar way, this connection we have constructed
measures how the Lie algebra relevant for the gauge theory changes under “infinitesimal
displacement”.

We can now calculate the curvature for this connection, a Lie algebra valued 2-form:

F=dA+ANA
[ dwf + W A w€y de® + w A b [ R% T
B 0 0 Lo o0)°

This makes sense: T% is a vector-valued 2-form, while R, takes value in so(3,1). The
torsion 7% is nothing but the “curvature for translation”.
We introduce a connection symbol D for this gauge theory:

De® = de® + w A e = T, Dng, =0, Detbed — (.

Note that this does not contradict our previous result Ve? = w® A e?: V is a connection
on the tangent bundle whereas D is the connection for the gauge field.

To summarise, we have introduced a 4-plane bundle (fibres are isomorphic to R* as
vector spaces) E over our manifold M, with fibre trivialization {V*} and equipped with
the fibre metric 7,3. The principal bundle P with fibres isomorphic to the Poincaré group
acts on F in an affine manner. The frame fields e® provides a local unnatural isomorphism
between TM and E. The frame fields e* are called the soldering form, and in general
de® # 0. Our point of view has changed: we started by saying that e are 1-forms, so at
a point p they belong to T; M, but now they become members of Hom(7},,M, R*). In a
similar fashion, eq(p) € Hom(T; M, (R*)*).

2.4 Action principles

To derive the field equations in general relativity using the action principle, after we have
written down the metric, we vary the metric and its first derivative

S = S(gum g,uu,)\)'

This is called the second order metric formalism. An equivalent procedure, the first order
or Palatini procedure, is varying the metric and the connection independently

S = S(gu, L")
Translating into moving frame language, we have

S =S(e"u ey second order,

S = S(e"u,wu) first order.



For example, the second order action for gravity with cosmological constant is

R —2A N
167G

S = / V—gdiz
M
where the dots represent boundary terms. A first order action in terms of frame fields is

1
S = 21%2/ le|d*z e e Ryyan(w).
M
Let us vary this action. We need
Se !l = —etsee!, Sle| = ety e, = Tr(e de)
then

1 1
dS(e,w) = —K2/|e|d4x G loe”, + M/|e|d4:cea“eb”6RabW(w).

We see immediately from the first integral (variation with respect to e®,) the Einstein
equation in vacuum Gg,* = 0. The second term, variation with respect to w, should give
us relations between the connection and the metric (or the soldering form).

To proceed, we adopt the Poincaré gauge theory point of view: w?, and R%, take
values in A%(E) = so0(3,1) and 7, provides an isomorphism between E and E*. The
exterior product e® A e’ is a A2-valued 2-form. We need to do some algebra. First,

€l A A Bog = Tr(AA B) = Tr(B A A)
therefore

€apede® N e? N R = Tr(eNe A R)
Tr(e AeAeAe) = —24|e|d
—2|e|Rd*z = Tr(e Ae A R).

To verify the second expression above, use e A e? A € A e? = |e|d*z €2? and e, =
—2(8¢.6% ;=0 f5de) and further contractions. To verify the third expression above, use
€abede® N e? N R4 = %eabcdea Aeb A R, Fe°N ef. Also note that, by expanding R,

OR = dow + dw?: A W + w: A dw, = Déw.
Putting everything together, we have
5/Tr(e/\e/\R) :/Tr(e/\e/\éR)
= /dTr(e/\e/\éw) —2/Tr(De/\e/\5w)

i—Q/Tr(T/\e/\cSw)



where in the last line we have thrown away a boundary term having no effect on the
w_"

equations of motion (the sign “=" will be used to denote equality up to boundary terms).
Now define a tensor V by 6w = eV, and

Tr(T NeAdw) = %eabchr‘lser Aes A el A eV,
— %eabcdersbeTraSvecd|€|d4x
= (0"40°.0% + cyclic permutations)TraSVeCd\e]dA‘:U
= (Tu"e8% + Ty"a0% + Te ) Ve e|d x.

The expression in the parentheses in the last line must vanish. After some further algebra,
this is equivalent to T = 0, our equation of motion. Hence, if 7% = 0 by assumption, then
dw is a total derivative in second order formalism and we are only left with the Einstein
equation. Therefore, no torsion can be present in vacuum.

Now we add to our action a matter piece Sy, (e,w,1)) where 1 represents the matter
fields. Variation gives

68y, = / le|d*x T,"5e”,, + / le|d*a Se Ve

where T,# is the canonical (unsymmetrized) energy momentum tensor: 7T, # T,, in
general, and S.¢; denotes the spin current. Besides the Einstein equation coupling the
energy momentum tensor to the Einstein tensor G,* = k?T,*, we also have the following
equation of motion:

Toc0%a +T3%0% +T.50 = 2/<c2Sced.

So if matter lagrangian contains w explicitly, spin is a source of torsion.
Usually, the spin current vanishes for bosonic fields. For example, the lagrangian for
scalar fields

L=—5v99" 8,00,
has no spin current, neither have the Maxwell lagrangian

L=—LF,Fmw F, =0,A, — 0,4, (ie F=dA).

However, in this case a little care is needed: if we carry out the procedure of “minimal
coupling” advertised in introductory general relativity courses “0 — V”, we must make
sure that we use the Levi-Civita connection uniquely determined by the metric. Otherwise,
torsion comes into play, and in general

P =V, A, =V, Ay # 0uAy — 0, A,
For a gauge transformation A, — A, + 9, A,
(VuV, =V, VA =-T,°,0,A #0,

hence charge conservation is broken. In this case, we are just unnecessarily asking for
trouble, since the exterior derivative is perfectly well-defined on curved spacetime and is
coordinate-independent.

~10 -



2.5 The 1.5 formalism

The 1.5 formalism is the following: for an action S, we have

0S8 = —de+ —dw first order formalism;
de ow

0S = ﬁée ﬁé—wée second order formalism.
de dw de

However, we can think of w = w(e) as defined by §5/éw = 0, then the second term in the
second order formalism can be ignored and we are effectively “1.5”.

11 -



3. Spinors and the Dirac equation

3.1 Clifford algebra and Majorana spinors

To describe fermionic fields we must first define spinors. We will label components of the
gamma matrices using the first part of the Greek alphabet, e.g. a, 8 = 1,2, 3,4 (the other
part of the Greek alphabet is used for holonomic coordinate indices). Our signature for the
metric is (—, +, 4+, +). Our representation of the Clifford algebra Cliff (3, 1) is generated by
the following four real matrices

0 41 0 0 0 41 0 0
o |10 0 0 L l+10 00
710 0 01" T 7]o o0 041
0 0 41 0 0 0 +1 0
410 0 0 0 0 0 +1
, | o=10 0 N S
TTloo+10|” T Tlo-10 0]
00 0 -1 410 0 0

which also generates R**4. Note

0

P=-n=-0"" F=rn=0"" (i=1,23)

The gamma matrices relation is

{7%4") = 29I
A basis for the Clifford algebra is obtained by multiplying these matrices together. They
are (the right hand side gives the number independent matrices in each category)

I 1

v 4
O — Alanb] 6
e — lanbodl 4
yabed — ylaboed) . cabed 1

where (note everything is real)

Y5 = Y0123, v5 = —(75)", (v5)? = —L.

The matrices R**4 act on R* by the usual linear action. We will write M for R*, denoting
Majorana spinors. As a vector space, M has a symplectic form C3 = —Clzq, and C,C -1 =
—(7a)t. This is the representation of the charge conjugation operator exchanging particles
and antiparticles. In our representation, C' = vy. Here are some other useful identities

(C’Ya)aﬁ = (C’Ya)ﬁav (C’Yab)aﬁ = (C’Yab)ﬁou
(C'Yabc)aﬂ = (C'Vabc)ﬁom (075)aﬁ = _(0'75)&34'

- 12 —



The Dirac equation is
(v*0q +m)p = 0.

The sign of m is irrelevant: if we apply the operator in the bracket (with the opposite sign)
again, we get the Klein-Gordon equation (—+m?)y = 0. Furthermore, if 1 is a solution,
then 51 is also a solution of the conjugate equation

(v 0a —m)v5¢ = 0.

Lorentz transformation leaves the equation invariant by the following action on spinors:
let 2% — A%a® be a Lorentz transformation, and infinitesimally A%, = exp(A%), then

% — exp($Aap7™) .
3.2 Dirac and Weyl spinors, complex structure

Once we have defined Majorana spinors as a real vector space on which the spin group
acts, Dirac spinors are easy: the complexification of Majorana spinors D = C* = M ®g C.
To get Weyl spinors, we claim that Dirac spinor is the direct sum of two Weyl spinors:
D =W @ W. We make this decomposition concrete in the following way: take a Dirac
spinor v, if y51 = i1, an eigenstate with eigenvalue ¢, then ¢y € W, whereas if y5¢ = —i,
then ¢ € W. Decomposition of D then gives W = C? in some basis.

The action of the spin group Spin(3,1) on a Weyl spinor is via its homomorphism to
SL(2,C): if we write the spacetime coordinates in a matrix

v (t—i—‘z x—i—z’y) _xt,
T—1y t—=z2
then we see that det(X) = —ngz®zb. So if S € SL(2,C), under the transformation

X — SX5T,

det(X) is invariant.

Let us examine in more details the above constructions. Let Vg be an even-dimensional
real vector space, and J € End(VR) a linear operator satisfying J? = —I, then J acts as a
complex structure on Vg and make it into a complex vector space Ve = Vg ® C. We can
extend J to V¢ by complex linearity, and a basis can be chosen such that J is diagonal on
Ve. This is just our construction of Dirac spinors from Majorana spinors, with J = ~5 in
our basis. The Weyl spinors are then just the eigenspaces of J.

Let us see some examples other than spinors. The electromagnetic field tensor F),, is
completely determined by the electric and magnetic fields E and B in a frame, so F},, € IRS.
We have the Hodge star operator that manifests the electromagnetic duality

sE=-B, *«B=E, (%)% = -1,

so the Hodge star can be chosen as the complex structure. A “Weyl spinor” in this case

can be written as
M=E+:BeW

~13 -



and the Maxwell equations become

V.M =0, vxmoiM
ot

The symmetry group acting on the usual Maxwell theory SO(3,1)r then becomes SO(3)c,
and the group action leaves invariant

M- M=E?>-B*>+2E-B=F>+FxF.

Another example is an even-dimensional manifold equipped with a metric gs» = g(ap)
and a symplectic form wap = wjgp), both of which are covariantly constant under a connec-
tion Vgap = Vwg = 0. Then we can form a complex structure

J% =g%wa,  JP=-1,  VJ% =0,

The complexified tangent space decomposes into “Weyl sums” TeM = WM & WM, and
a tangent vector decomposes into the direct sum of a holomorphic tangent vector and an
antiholomorphic tangent vector. The manifold now has the structure of a Kéhler manifold.

3.3 Coupling to gravity

Back to spinors, in supergravity it is convenient to work purely over the reals, and despite
the above constructions, consider a Dirac spinor as the direct sum of two Majorana spinors
D = M ¢ M instead of complexification. We write a Dirac spinor as ;, ¢ = 1,2. Introduce
a complex structure on this space

01
J=e€ij = (_1 0> ; €ij€ij = —Oik

Then J induces R* @ R* = R® = C* = . Note that ¢;; is the generator of SO(2) = U(1),
and hence in this notation a U(1) gauge field can be written as

oo ATt
A, = — AT, = A,

The complexification of a Majorana spinor can be written as 1, A%.
Now suppose a field @4 transforms under a representation of Spin(3, 1). Let (3q)p =
—(Z40)” B be a representation of this Lie algebra

[Xabs Zed] = NabXed — NacXbd — MbdXac + MadSbes
and the field transforms as
P — exp(3ApX?) 4 50F = S(A)D.
For example, if &% is a four-vector, then

(Zab)ef — naeébf . nbeéaf

— 14 —



reproduces standard action on vectors. But for a spinor, the representation is
D% = 2%, A% = Sl = 3420, [y, 4] = 2(5% — pPey®).
For coupling to gravity, we need a covariant derivative. We define it for the general case:
Vu® = 9,0 + 1w, "2, @, or V& =dd+ JwSyd.
Under the action ® — exp(3A\;X%)®, we have V& — exp(5A,;5%)VE®. We also need
(VY= VoV, @ = 3R ™L0p)® — 1,7,V ®.
If we specialise to a Dirac spinor v, we have
Vi = dip + jway ™
and on background with no torsion,
(ViuVu = ViV = §Ruay ™.
We will write the gamma matrices in coordinate basis as v* = e#,v%, and hence
V(") = 0.
The Majorana and Dirac conjugate of a spinor v are defined as
Y =90 =y"Cap, YD =9'0=19""Pag =1

and the matrices C' and [ satisfies

CwC™ = Bubt=—l  B=-6 By= )"

In our basis, we can choose § = C' = 7. Majorana spinors are exactly those that satisfy
Yy = ¥p, and in our basis, a Majorana 1 is purely real.
Finally, we define a symplectic linear product

—po1)y for commuting spinors,

U Copthhy = hr1ihe = {

+pp1py for anticommuting spinors.
Now we can write down the lagrangian in flat spacetime for a Dirac spinor
L= V@D +m)y.
The second term vanishes if ¥ are commuting. Also,
0" = §0,( ht”),

so if the spinors are commuting, £ is a total derivative. This motivates thinking of ¢* as
taking values in some large (strictly speaking infinite dimensional) real Grassmann algebra
G. Bosons are even elements of G, while fermions are odd elements.

~15 —



To calculate the variation, note
(Y Capth?) = 69 Capth” + 4 Copdt? = 269

and
5(%&@"@ = 5157“@@ + 8#(7;75357#)
so variation gives

0L = 5%(P+m) =0
therefore we obtain the Dirac equation
(@ +m)y = 0.
The spin current for a single spinor is
T =yt = b

This vanishes for anticommuting objects. Therefore, to have a non-vanishing spin current,
we need two Majorana spinors or one Dirac spinor, in which case

JH = ?’Yﬁg%@@j = ¢1a7g5¢26 - W’Yﬁﬁngﬁ # 0.

It is easy to generalise the construction to a purely bosonic background with action

1 _
S =5 |€|d493 VYV +m)y
2
and variation with respect to ¥ gives the Dirac equation in curved background

(V +m)y = 0.

If we iterate the Dirac operator and hope to get a generalisation of the Klein-Gordon
equation, we get
0= (VH'YVV;LVV - m2)¢

= (Y¥IV VY, = m? + Ay v,V )g

= (V2 =m® + 9"V, V)0

= (V2 = m? + Iv"v Rypagy™y" )0
It may look like that we are getting some spin-curvature coupling in the last step, but this
is false: V here is the Levi-Civita connection, and we have

(V2=m?—LiR)y =0,
so there is no spin current coupled to the curvature. This calculation is first done by Perez
and Lichnerowicz, is mostly easily verified by substitution: one needs the following formula
ab,.c cd, b chb.a

7iyPye = Alabel 4 pabye — pedab 4 ey

,Y[abc] _ ,ya,y[bc} _ nba,yc + nbc,ya
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SO

Rabcd'yb’YC’Yd = _2Rab7b
Rapea?" " vy* = —2R

7abCRacef7€f = 4G6f7f

and the result follows.

It should be noted that the massless Dirac equation in curved spacetime is conformally
invariant: if (g,.,1) is a solution of ¥t = 0, then (Q2g,,,v/Q3/?) is a solution also. We
can use this fact to deduce how R changes under Weyl rescaling.

Let us now investigate the equation under chiral rotations. A chiral rotation is

¥ — exp(075)1) = (cosf + 5 sin )y
Y — 1 exp(6ys) = (cos b + 5 sin 6).

Since 5 anticommutes with v*, the kinetic term is invariant but the mass term is not:
Yma) — 1pexp(20vs)map. Massless theory has chiral invariance. But consider a theory
where the mass term is replaced by

m — m1 + Y5msa

where m; is called the Dirac mass, and mo the Majorana mass. Using chiral rotation we
can eliminate the my term: the quantity \/m? + m3 is invariant.
In general, given n Majorana spinors ;

1 o 1 & - :
L= 00+ > My,
i=1 ij=1
the mass matrix M;; = milj + ’y5m§j where both m}j and m?j are symmetric, a chiral

rotation of the form
exp(aij +7°Bi5) € U(n), Qjj = —Qjj, Bij = Bji
can make the mass matrix M;; diagonal.

3.4 Einstein-Cartan-Weyl-Sciama-Kibble theory

In this theory, one adds torsion to the connection and attempt to couple matter fields
(fermions) to gravity. The lagrangian is

R, 1.

Since 1 Y1) contains w,ﬂb, spin density couples to torsion. The spin density is given by

Sty = %&’Y“%W
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so that Supe = S[ape), Which implies Tope = Tjgpq- The additional equation of motion is

I€2 -
Tabc = _Zw’Yabcw'

In this case, we have a totally antisymmetric torsion. A theory with totally antisymmetric
torsion has the following characterisation. Autoparallels are defined by solution curves
to the following “geodesic equation” (the connection is not Levi-Civita, and hence the
quotation marks):

dQLO[ + «a @ dx” —

d\? BYdax dx 7
while geodesics are defined by the extremal curves as defined by the length functional with

respect to the metric, i.e. solution curves to the same equation but with the Levi-Civita
connection. Now

Fuau = {uau} + K,ual/
and

Kopp = =5(Topp + Tuop + Tupa) = —5Taup

since T is totally antisymmetric. So K(,"3 = 0, and hence geodesics and autoparallels
coincide.
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4. Supergravity lagrangian and super invariance

4.1 Rarita-Schwinger equation in flat spacetime

We will write, as our first attempt at a supergravity lagrangian (a lagrangian for spin—%
fields), the following massless action for Majorana fermions:

1 T, abc
S = 2/d4x Dl d0 R

cba

Note that vgbﬁc = Y54, Variation gives

5= [ s o,
and the equation of motion is
,Yabcabwc = 0.

This equation is invariant under chiral rotations, and also fermionic gauge transformations
W — Pq + Og A, analogous to the bosoinc gauge transformations for spin-1 fields.
We can simplify the equation further. Start with

b

o =3 AP =y

Yay™ = 2y

and hitting the equation with ~,, we get
Do — Datp = 0.

We now attempt to answer the Cauchy question: find how many (real) functions are
needed to give the Cauchy data to this equation so that it has a unique solution. We first
choose a gauge, i.e. use gauge invariance to set

Niapy =0, Vi, i=1,2,3.

This amounts to the following. Under a gauge transformation, v1; — v%b; + @A, so if we

“solve” the highly non-local equation A = —ﬁ(y%i), we can set what we require to zero.
3

Now write spatial and time part of the equation of motion separately
(Y°80 + 7 - V)b — 8u(7 "0 + 7'4) = 0.
The p = 0 equation of motion then gives
(v V)o=0

iteration gives V29 = 0, so 19 = 0. Therefore, y1); = 0, and we are left with the equation
0" = 0. We conclude that, the equation of motion in this gauge is just

Py = 0.

Now 1;, having a spatial vector index, includes 3 x 4 = 12 functions. The constraints
are yp; = 0 and 9;9° = 0, each gives four constraints on functions (these are matrix
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equations). So we are left with 4 free functions. Four free functions gives two degrees of
freedom for Majorana fermions.
What we have done is similar to the Coulumb gauge in electromagnetism: i.e. we set

Ao =0, V-A=0

using the gauge transformation A; — A; + 9;A.

We can also use a covariant gauge, the Lorenz gauge: set v%i), = 0, then 9,9* =
0 and the equation of motion is @), = 0. This is analogous to setting OuA* = 0 in
electromagnetism.

In quantum field theory we complexify ® and take it to be proportional to the plane
wave solutions e**. Then we have

k2 =0, k,® = 0, Y4ha = 0.

Therefore ¥ lies in a null plane with null normal £%. We still have freedom to add to
any multiples of k%. So we can set

k" = (1’ 1,070)5 ’QDG = (0a05w27¢3)'

So we have as many degrees of freedom as two vectors and two spinors have, minus the
following constraint:

,72%&3 + 731112 =0.
Hence, the spin content of ¢; is the following: ¢; transforms as spin 1 ® % = % e % under
SU(2), but the spin—% part is killed by the constraints. So the field 1); is a spin—% field.

To add a mass term to our gravitino, we also look for analogies with electromagnetism.
The massive analogue of the Maxwell equation is the Proca equation

O FH = m?2AY
from the following lagrangian
L=-1F,F" —im?4, A"

This includes the Klein-Gordon equation: if we hit both sides with 9, we obtain m?9, A" =
0, back substitution gives 0?A” = m?A.
Therefore, for gravitino, we use the following lagrangian

L= %&aﬁ)/abcabwc + %mlﬁa’yabwb-

Note that vg% = 7([;15] = 'ygolj ) The equation of motion is

Y. + my ey, = 0.

Hit with 0,, we get
my* 1y, = 0.
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But ,.Yab — ,Ya,yb _ nabj S0
99 =Py
Also 7,7" = 34°, which implies 3m~y%), = 0, or ¢ =0, s0 9 - 1) = 0. Now

a, bc

OB — anbe 4 pacab e
expanding our original equation, we get
P — O+ m"yp — my” = 0
therefore our final equation of motion is
(@ —m)y® =0 subject to 0-1Y=1=0.
To analyse further, we again complexify and take ¥® o e*?, k%, = —m?. Set

k® = (m,0,0,0), wa = (0»7/)171#27?/)3),

then
1 2 3.,
YY1+ Y Yo + 73 = 0.

As a representation of SU(2) we have vector together with spinor again, but this time it

is 1 % <) % <) %, with the last % eliminated by the residual gauge freedom. So we have

2 X % 4+ 1 = 4 degrees of freedom in the massive case.

To couple our theory to gravity, we could try the “minimal coupling” 0 — V, but it
doesn’t work. This procedure actually only works for spin 1 and below. For example, for
spin 2 in flat spacetime, we have

VZh =0, R =0, 9" =0,
but letting  — V gives too many conditions on h,,.

4.2 N =1 supergravity

We want to generalise the Rarita-Schwinger equation to curved spacetime. Again, we start
with the massless case. Our action is

1- 1
Sup = [ oG GHu0 ™ Dib, Dby = s + L™

note that we have omitted the Levi-Civita term {,7,}¢o in Dy, since it vanishes when
we anti-symmetrise with respect to u,v. We consider ¢ = 1, dx* as a spinor-valued 1-form.
The equation of motion is

Wabcwac =0.

What about gauge invariance for this theory? Let us start with a “pure gauge” spinor

¥ =D\ =d\+ 2w\
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then
Y DyDeX = "Dy DgA = 0

SO
’)/abCRbcef’Yef)\ = 07 or be’yf)\ =0.

In general det(G®y/) # 0 and det(a%y,) = (a%a4)?, so this term do not vanish. Therefore,
spin—% field in curved background with G, # 0 is inconsistent! This is a generic problem
with spin greater than 1, known as the Buchdahl condition.

One method of overcoming this problem is by cancelling this term using the Einstein
action. Let a symmetry transformation be

1
(51#/1 = ;Dﬂﬁ

where ¢ is a spinor field with dimension [¢] = LY2. Remember [¢)] = L=3/2. Then the
variation of our gravitino action gives

1 — 1 _
Sy = [ d'oy=g ™ DD = [ dey=giGunte
For the Einstein action R
Sm [dava
2K2

we have

1
052 = —— /d4x\/—g G“béebu.
K
Hence, by choosing “% = %”, i.e. use the specific symmetry variation
de®,, = 1/7)“7“67 le] =0, [k] =L
we can show that R
o </ diz/—g—s + lzl)a'y“bchﬂbC) = 0.
A2 2

This is to the lowest order (ignoring “4-Fermi terms”) a proof of the invariance of N' =1
supergravity lagrangian under supersymmetry variations (and we see why this lagrangian
is called the supergravity lagrangian).

For a proof of the invariance in the exact theory, in second order formalism, we write
the spin connection as

"‘),uab = wluab(e) + %/{2 (&u'yaq/}b - &u'waa + 7/_)(1’7#77[}())

where w’ denotes the Levi-Civita connection. The expression in bracket are the 4-Fermi
terms which needs to be cancelled using Fierz identities discussed later. Note that

Tabe = _%KQ@Zja'yb"ch
is in general not totally antisymmetric, and hence the Bianchi identities are modified

dw+wAw=R, det+wNhe=T
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which imply
dwNe—wAde=dT, (R—wAw)hNe=wA (T —wAe), RAe=DT.

An extension of this N' = 1 theory is addition of the cosmological constant, first
considered by Townsend

. 1 3
Du—>D#:DN—|—§a’yN, R — R —2A, A:—?<O

N

where a is a constant. D, is an example of a super-covariant derivative:
0y, = %]_A)Me.
This change would appear to introduce a “mass term” into the lagrangian
%@w“bc%% = —i@a'y“%

but this is not really a mass, since the lagrangian is still invariant. We have maintained
gauge invariance at the expense of changing our ground state, i.e.

RHV =0 - R/W = Agl“/

and Minkowski spacetime is no longer a solution. The ground state is now AdS; =
S0(3,2)/S0(3,1). This is the homogeneous hypersurface defined in E*? by the equation

($1)2 + (.IZ)Q + (:L,S)ZS _ ($4)4 _ (.CC5)5 — _a2

homogenous meaning that the metric tensor completely determines the Riemann tensor
(no derivatives):

1
Ruy)\p = _g(gu)\gl/p - g,upgy)\)'

In flat spacetime, the covariant derivative commutes: D, D, = 0. In anti-de Sitter space
it does not, but the super covariant derivative does:

DD, =0.

This only works in anti-de Sitter spacetime, not in de Sitter spacetime, since in that case
an ¢ has to be introduced, rendering the lagrangian complex.

4.3 N = 2 supergravity

In a N = 2 theory, to the lowest order, our fields are the metric, the gauge field and two
Majorana spinors

Guv, A;u wiu (Z = 172)-

To the usual gauge lagrangian piece

L1 =—1F,F", F. =0,A, —0,A,
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we add the Pauli term

K o v v j 1
Lpauli = ﬁWM(F“ + xFM s )bl e, *F, = ieul/)\pFAp
The supersymmetry variations of the various fields are
1 - 1 A 1 . .
de®, = 5%1/1;’)/(161, 0A, = ﬁﬁengﬂeij, ', = EDNEZ

where in the last case the super-covariant derivative is

lA)#ei =D, + € (Fm,y)‘ + *FMV’}/)\’}/g,)Ej.

1
— K
2v/2
A feature of this theory is that the equation of motion (but not action) is chiral-duality
invariant, i.e. invariant under
¢Z — exp(@*yg,)l/;i, Fl, — exp(ed*)F),.

4.4 Super invariance of the exact theory

For easier manipulation in showing the super invariance of the exact theory, we write our
theory using spinor-valued 1-forms ¢ = 9,dz" = 1),e®. Note that the wedge product on
spinors now commutes, since the wedge product and Grassmann variables both contribute
a minus sign. We have

VA =ta Y, DAY=0,  ECAP=—pAel, Py AY=0
while the combination 1)y® A1) # 0. Also recall that 7% = v5v,7%°? and €®“d|e|d*z =
el Ae? Aed Aet. The gravitino part of the lagrangian is
Lo = 597" Dytbeleld'a

= 3% A"y A DY

= _%& A fYabch A edeabcd
where 1) = 9, dx# is a matrix-valued 1-form and

Dy = dyp + iwab’y“b A,

The total lagrangian is

1-
L= Tr(eNeAR) + 5@D’y57 A Dp.

4k
If we now do the variation, we get a term proportional to Ddw® for variation of R* with
respect to the connection, and €Dy A De® for variation of 61 = Dé/k and integration

by parts, ¥y
and finally %/ié’yaw for variation of the “metric” e® and using the Fierz identities. Putting

T 1 €mnrs = —Gzﬁvmwemkls for variation respect to the connection in D

everything together, we have
1 | 1 .-
oL = 2—&2(&4)7”” Ne' — éefym” D) A (De® — ZKQvaSw)emnm.
The interpretation of this variation depends on the formalism used: in second order form-
alism, 0w™" = 0 since by definition w = w(e,v); in the first order formalism, this defines

mn

the variation of dw™" since we really only have de and d; in the 1.5 formalism, Jw™"

vanishes as well because of the equation of motion coming for w™".
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4.5 Fierz identities

Now we come to the Fierz identities that is referred to previously. Cliff(3,1) has a basis
LYy Yuw, ¥5Yus 5 and we write them as {I'4} for A =1,...,16. We consider the matrices
I' 4“3 as endomorphisms of the spinor vector space. We claim that, except for I, TrI'y = 0.
This can be shown by, e.g.

V5V Y5 = Yu Tr(v57.75) = Tr(y) = — Tr(y,) =0

due to cyclicity of trace. For those involving 5, we use v5 = —7v17v57y1. Similarly, we obtain
relations for TrI'4I'g. Putting them together,

TrTa=0 Ta#l, TrI'4l'p = 4nap nap = diag(£1).

Let us determine the signs of n4p: we write (m,n) for m plus signatures and n minus
signatures for generators. We get

I (1,0)
T (3,1)
Yuv (3,3)
V5 Vv (3,1)
75 (0,1)

So adding everything together, we have Cliff(3,1) = R!06,
Note that as a vector space (ignoring the product structure), Cliff(3,1) = A(R3!) has
a natural inner product induced from 74:

1
(Fp7 F/p) - E(Ful_._u,pFlyl...l/pnulyl o .. n“pyp).

Taking into consideration of the product structure, however, the counting goes
1 (1,0)
€ (3,1)
eu ey (3,3)
eu/\ey Aey (1 3)
epNey NexNey (0,1)

The Fierz identities is used to simplify the following expression
(o1 Mb2) (V3 N1pa) = th1a M g1 by N7 5053,
Use the complete basis, we write
M%gN"7s = CA%T 475

multiply by I‘B’ﬁ7 to obtain

A A
CA% = LM N TA5
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therefore
M®g = L(MT“N)*T 2% = 1T 4% (NTA M) 5

Using this, for anticommuting spinors
(1 M) (V3Na) = — 3 (G MTANYa) (3T az) = — 5 (01T ) (U3 NTAM2).
Therefore,

Y114) (V3N Mjo)
U1y a) (Y3 Ny Maps)

(11 Mho) (P3N py) = — X(
—1(

+ 1 (P1v514) (V3 NysT A M o)
- 1(
8

V157" 4) (V3N Y57, M12)

+ £ (V17" a) (Y37, N M o).

The signs are opposite if the spinors are commuting. Therefore
P1he = — 3 (Pa01)) L+ 1 (V2v591) 75 — 3 (W2v" Y1)V + T (D25 V 1) 570 + & (Vv 11 ) Yy

so that
PY11ha — hathy = S(D1y o)y — 5 (W2r" 1) Yw-

The Fierz identities are useful in establishing the commutator of 2 supersymmetry trans-
formations and thus checking the algebra.
The following identities

Yy =4, Y= =370 Y =0, YT = 3570 VA = —4,

allow we to simplify expressions and we can obtain interesting consequences, including the
fact that éy*e is lightlike and future-pointing for commuting Majorana spinors:

(DY) (Wyup) =0, P07y > 0,

also
Pysyi = 0,

by setting M = ~,, N:'y)‘ and 1 = hg = P3 = Py = 1.

4.6 Supersymmetric background

In flat background, schematically a supersymmetry variation gives
d¢B x €F, 0eF o (v#0,B)e, [0ey, 0ey] X —3E17 €20,
where B is bosonic and F' is fermionic. The dimensions are

[Fl=L7%?%  [Bl=L", |[=LY2
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A purely bosonic background has F' = 0, is a solution of the equation of motion, and is
invariant under any supersymmetry transformations e satisfying

(v"0,B)e = 0.

(A background is called supersymmetric or BPS if it is invariant under action of at least
one supersymmetry. This gives extra constraint on B, e.g. B = constant.)

Let us give a concrete example: the Wess-Zumino model. In flat spacetime, consider
free and massless fields

L=-%(04)? — 1(0B)* + S I
Variation gives
6L = 9°ASA + 0*BOB + MH 0,0\ — 0, (0" ASA + 0" BB — 16X ))

where

WA O = =57 (Ou(A+ 5B))e.
So the equations of motion are
P?(A+~vB)=0, Pr=0.

And once the equation of motion is satisfied, we see that 0L = 0, J#, where the conserved

supercurrent J# is

JH = —1(€0,(A+ 15B)N).
We can calculate the commutator of two supersymmetry transformations in this theory:
[561,562] = %EW“@@M.

This is a translation, and this algebra closes “on shell”, i.e. we need to impose the equations
of motions to get this.
Let us try to solve the equations of motions for bosonic background. For the wave-like
equation, we write
A+ 5B = exp(ys5k - ) (Ao + Bovs)-

Substituting into the equation of motion, we see that the wave vector is lightlike
k k' = 0.
In order to have bosonic solutions, the variation dA = 0, so we must also have
(KHyu)e = 0.

This is an equation of constraint on e. As det(k*y,) = k* = 0, kv, has a non-trivial
kernel. Now let us go into the frame where

k= (1,1,0,0)
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we have
(Yo+m)e=0
which, using (7°y!)2 =T and Tr(7%9') = 0, we get

Yote = —e.
Now we can introduce
Py =3(1+7%"Y,  Po=301-1""
which are projection operators
pP?=p,, P’=P, PP =PP. =0, Pi+P =1L

These projection operators can be used to split the Majorana spinors into direct sums:
M = My & M_ where ¥+ € My if and only if Py = 14 and any spinor decomposes
uniquely as ¥ = 4 +1_. Also note 7°y'p, = 1p;, and 7°y'p_ = 1)_. In terms of these
operators, our Killing spinor belongs to the minus part of the space: ¢ € M_. Now write
€ = ap_ with a anticommuting and 1_ commuting, we have

Pyt = (YL, P oy Yo, Pl yov Y, Pl yoy yo)
= (YL, YLy Pl yoy o, bl oy o)
= p"(1,1,0,0) o< k*.

To get the last equality, we need to do some gamma matrices manipulations:
Y072 - = 9L (07 Yy Y- = Py y ey -

and use
Yoy — = ¢ yey*p- = 0.

In a curved spacetime, the supersymmetry variation on the spinor field is 6.1, = %ﬁue
where we have used the super covariant derivative. From the previous analysis we see that
there is no harm in assuming € to be a commuting (and possibly Dirac) spinor. We can
obtain a vector by setting k* = ¢y*1). Typically, k, is covariantly constant Vk, = 0
and Killing V(,,) = 0. Moreover, k0 = oty (remember ¢ = ¥14%) in a local frame,
hence kY > 0 in all Lorentz frames: it is future directed and causal. If 9 is actually
Majorana, then it is lightlike. The probability current for the Dirac equation in this theory
is J* = 1pT~yH). Note that in such theories we typically get a supply of covariantly constant
tensor fields like 1,1, etc.

In the simplest case of such a theory N/ =1, A = 0, we have D =V, the Levi-Civita
connection. In this case we would have V 2 = 0, i.e. 9 is a covariantly constant Killing

spinor field. The k* = ~*1) is covariantly constant and null, also

Va (&Wﬂvw) =0

where the expression in bracket is a covariantly constant 2-form.
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From the result in general relativity, if we use lightcone coordinates u = ¢t — ! and
v =t + 2!, then in this case we can write the metric as

ds* = —2dudv + H(u, z")du?

and then
9 _u9
ov Ozt

is a covariantly constant null Killing vector field. If the spacetime we are considering is
Ricci flat, then 9;0;H = 0 for arbitrary u. An example in this case would be

H = a(u)((z')? - (2%)?) + 26(u)a’z’

for arbitrary a(u) and G(u). Observe that the @ and (3 represent polarisations (+) and (x)
of a quadruple moment, i.e. describing the behaviour of a classical graviton. Therefore,
that classical gravitons are invariant under 2 of the 4 supersymmetry transformations.
(For N' =1, A = 0, the vacuum ground state E>! is invariant under all 4 supersymmetry
transformations.)

4.7 Super Poincaré group and gauge theory

We now attempt to make the supersymmetry that we have used in previous discussions
systematic. We will do this by introducing a superspace and a super group acting on it,
and finally define a gauge theory analogous to the general relativity case. The action of
super Poincaré group on a superspace is

Aab 7%€ a 40 l‘b
0 S(A) e | |07

0 0 1 1

where the action on spinors is S(A) = exp(3Aap7*7”) for A% = exp A%. The dimensions
of various quantities are

(] =LY2, [0 =L"% = [d=L.

The “superspace” (a:b, 95) is identified with E3! @ M. We have the Grassmann variables
0 and € here, so we need to be careful with signs. As matrix multiplication, this is a
left action, and we can interpret this group action as a semidirect product of Lorentz
transformations with translations and supertranslations, where supertranslations are

00— 0+c¢

with the associated translation
¥ — ot — %67”9.

Translations and supertranslations together form an invariant subgroup of the whole super
Poincaré group. The superspace is then the quotient manifold of the super Poincaré group
by the Lorentz group in the usual way.
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We can consider functions on this superspace f(z, ). When we do “Taylor expansion”,
the series in # terminates at finite power: to be exact, at 8% due to the Grassmann nature
of #. Consider
0 0
OF | e OF
ozt 00«

of

= —%’y“@@#f + 60‘% =e“Rof

S.f = ot

where we have defined 5 . 5
— Z Bk
i R G
We need to be careful about position of §6% in the variation since it is anticommuting.
Actually, aaTa behaves like an inner multiplication. For R,, we think of as right invariant
vector fields generating left translations on superspace and thus commuting with generators
of right translations
0 1 0
STy 1 A
g6e 17 Ve

the analogy with right and left invariant vector fields on a Lie group is exact (note that

{La,R,@} =0, Ly, =

left invariant vector fields generate right translations, etc.). To make this analogy more
concrete, let us introduce left invariant 1-forms

2\ = do°, M = dat + ie%gﬁdeﬁ,
and right invariant 1-forms
p* =do*, M =dat — 0%yl d6"°.

Let us recall the following Maurer-Cartan relations from the theory of Lie groups and
Lie algebras, where C 4B are the structural constants and A4, B,...=1,2,...dimg:

AN = —Cx“p M AN

dp® = +Ca%p p* A p?
[La,Lp]=+Ca%p Lc
[Ra, Rp] = —Ca%E Rc
[La,Rp] =0

045 = p*(Rp) = X (Lp).

The Maurer-Cartan form for the Lie group can be written g~ 'dg = ATy where T4 are

1

the basis for the Lie algebra. Also, dgg~! = pAT4. In quantum theories, one usually

defines the generators after division by ¢ so they can act as quantum mechanical hermitian
operators.
Now let us write down similar formulae for our super theory:

AN = +5d0°~t 5d6”
1 fo
dpt = —1d6“y) 4d6°
{Ra, Rg} = +%75568W
{La; Lg} = _%75586?’
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and now the structural constants are

Note that for anticommuting objects, d8® A df® = +d6® A d#®. In the literature, the
usual practice is to call our R, by Qq, the “generators” and our L, by D,, the “covariant
derivatives”. The anti-commutation relation then reads

{Qar Qs} = 375

Let us also use this notation from now on.
Consider Q(e1) = €{'T, where T is an R-valued (anti-hermitian) matrix. To write out

this matrix representation in full,

0 —fe1y 0 0 —47hs O 006,”
Qlea)=10 0 e, To=]|0 0 6°1, T,=]00 0 |,
0 0 0 0 0 0 00 0
with
ToTps+ TpTo = —3745 T, (4.1)

Then one can check
Qe1)Q(e2) — Q(e2)Q(e1) = e?Tae/gTﬂ — 6§Tae’16T5 = e?eg{Ta, Tgs}.
A supersymmetry transformation acting on a superfield then can be written as
0f =" Qaf = €“Raf.

Again, quantum mechanically, we would write

and then
QaQs + QpQa = —5(C7") Py
which is %]505&5 in the rest frame. Since the left hand side is non-negative, The total
expectation value is then <pu> > (. Taking the trace, we get (P°) > 0, and hence (P*)
is future directed timelike or null. This is the positive energy property of supersymmetric
theories.
We can now formulate a super Poincaré gauge theory, similar to the Poincaré case.

The connection 1-form is

w —iypye et

A=1 0 %wabﬁy“b K

where
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The curvature is

dw+wAw * de® + wy N el — %Fﬂvﬁwaw
F = 0 i’yab(dw +wAw) K(dy + %wef’ye’yf@b)
0 0 0

We see that now r(dy) + iwef'yevf 1) is the curvature associated with supertranslations,
while de® + w® A b — ili%/_}’y(”ﬁ is the curvature associated with translations. We want no
curvature for translations, so setting the appropriate term to zero, we get

de® + wy A e’ = 1r*py ey = T°

— fermionic contribution to torsion.

The super Poincaré group is relevant for Minkowski spacetime. For AdSy, because
Spin(3,2) = Sp(4,R), the supergroup relevant in this case is the orthosymplectic group
Osp(1]4), i.e. those matrices leaving invariant the quadratic form

Sijata! + Copt®0”

where Cog = Cp, is the symplectic form. We can pass from Osp(1]4) to the super Poincaré
group by a process called Wigner-Inonii contraction, which we will outline below.
The orthosymplectic group Osp(M|N) has a diagonal subgroup SO(M) x Sp(N,R),

i.e. matrices of the form
SO(M) 0
0 Sp(N,R)

where elements of the symplectic group Sp(N,R) preserves the symplectic form Cg,. The
dimensions are

dimpSO(M) = M (M —1),  dimgSp(N,R) = IN(N +1).

The action of Osp(M|N) on superspace is
At A [
Aaj AC b il

Ay =8+ N+ Aij = A", Aij = = Ajis
A% =6%+ X%+ ... Aap = CacA%, Aab = +Aba-

where

For the isometry group of AdSy, Sp(4,R) = Spin(3,2), we have the generators
F'a=(Yus), A=0,1,2,3,4

and
FAFB +FB]-_‘A = 2771437 NAB :dlag(_1717171)_1)
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For a real (i.e. Majorana) representation of Cliff(4, 1),
Cs =y, C5=—Cj

we have the basis which generate Sp(4,R)

Cs 1 skew,
Cs'4 5 skew,
CsTaB 10 symmetric.

Pass into the supersymmetric case, Osp(1]4) is the super anti-de Sitter group for N' = 1,
and Osp(N|4) is the N-extended super anti-de Sitter group.

Now consider the generators of SO(3,2), which we will call M4p. In these, the gener-
ators M, generate Lorentz rotations, while My, generators non-commuting translations:

M4M M41/ O(M'uy
a’ a a

where a is a length scale set by the radius of the anti de Sitter space. Note the dimension
(M) =1, [P, =L
so the above can be written as
[Py, P)] occa™2M,,.

To proceed with the Wigner-Inonii contraction, we take the limit a — co. Then in the
limit [P,, P,] = 0, i.e. Minkowski spacetime. Recall that the anti de Sitter space is defined
by

A B 2
r T NAB = —a -,

so the limit @ — oo corresponds to setting the radius of curvature to infinity, and hence

A:—i—>0.

a2

If we do a similar analysis for the de Sitter spacetime, the algebra is anti-unitary
instead of unitary.
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5. Witten’s proof of the positive energy theorem

In general relativity, the positive energy theorem states that, assuming the dominant energy
condition, the mass of an asymptotically flat spacetime is non-negative; furthermore, the
mass is zero only for Minkowski spacetime. This theorem is important not only in physics,
but in pure mathematics as well, where it is more commonly known as the positive mass
theorem. By far the simplest and most elegant proof is given by Edward Witten in 1981,
which is a very good illustration of the power of using spinors and supergravity in doing
essentially classical calculations. We will briefly outline Witten’s proof in this section.
We begin by defining the Nestor 2-form

NH = eyhPV e

where € is a commuting Dirac spinor. To manipulate this, we will use Stokes’ theorem.
Let V,N# = JF and suppose X is a spacelike hypersurface in spacetime, e.g. a Cauchy
surface. For a domain D with boundary 0D, Stokes theorem states that

1
jf :V“”dZW:/ JHds,
2 Jap D

Now, take increasing domains D such that lim D = X, limdD = S2%. Also assume space-
time (M, gqp) is asymptotically flat. Then we have

V,NH =V ,ey'"'PV e + ey''PV ,V pe
= V,ey"PV pe + ey, V €
= V,ey"PV pe + 2eR,pap7* e
=V, &PV e + %E’y)‘eG“)\

= V,ey"PV pe + Sr2ey eTH .

To proceed, we assume the dominant energy condition: TaﬁV‘)‘Wﬁ > 0. Consider this
equation for all future directed timelike vectors V@, W8, we see that it implies Tpho > O.
An equivalent statement is that Ty > |T;»| in all Lorentz frames, where hatted indices
denote local pseudo orthonormal frames. Hence, TangB is past directed and timelike for
any future directed timelike W5, Note that in our sign convention, 7% < 0. Putting all
these together, we see that %n2€’y)‘eT“ » is past directed and timelike.

Now the second term in the expansion of V,, N#* has been taken care of, let us come to
the first term. We will use a local pseudo-orthonormal frame e; adapted to the hypersurface
>, with eg orthonormal to 3. The zeroth component of the first term in the expansion
reads

(ViE)T’yo’yijVje = (Vie)T(’yi’yj — (5ij)Vj6
= (7'Vie)? = (Ve)?

where
Ve = (816 + %Wi rs')/r'ys) + %Wi rs’YT’yse'
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In this expression for the connection, we recognise the first term as the Levi-Civita con-
nection, whereas the second term can be thought of the second fundamental form of X.

Now we impose the following conditions: first, we require 4'V;e = 0 on ¥. This is
called the Witten equation. It is different from the Dirac equation since the Dirac one
uses the Levi-Civita connection induced by the metric. Second, we require the boundary
condition € = €, a constant spinor at spatial infinity. These conditions together with the
above calculation implies J* =V, N*¥ is past directed and timelike.

For further manipulation of the second fundamental form introduced above, we will
work in a Gaussian normal coordinate. Locally, we write the metric as

ds? = —dt* + g;j(z, t)dx'da?
S0, to connect with our frame,

: 9 . .
e’ = dt, de® =0=—w) Aée, de’fa—et/\dt—i—de —wly Adt — Wi A eF.

We see the emergence of the Levi-Civita connection with respect to g;; in the last expression

above.

0

We write —w"; = eiKij, then —wy! = jiei. Also note that de® = 0 is equivalent to

Kij = K]z Then,

de; . o . A . .
E = Kijeja &(6’z Xs 6]) = 2K@'j82 Rg €’
so in our coordinate system,
1 6gij
=5 T gtndi

The constraint equations that needs to be required in this coordinate are
(3)R = Kinij - Kiinj, (KU - gl’ijk);l =0.

Covariantly, this is
Kuog = (Vang)L = —Tu%

where n is the unit normal to the hypersurface, non® = —1, and L is the projection onto
Y using hg = d%g + n“ng.

We now take a detour and outline several applications using this second fundamental
form approach. The first is that we can see for the Witten equation

Vie=VEkCe+ %Kij*yofyje,
multiplication by v¢ gives v*V;e = 0. The second is for the Einstein-Hilbert action
1
S = By / Rle|d*z + 2/ (Tr Kij)\/g d*x

variation contains only dg terms on boundary and no terms form §(0g;;/0n). The third
application is for the necessary condition for the existence of Killing spinors in anti-de
Sitter spacetime. Let A = 0,1,2,3,4 label the coordinates in E32, on which the anti-de
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Sitter spacetime is defined using the usual quadric. The super covariant derivatives on AdS
commutes: [f)u, ﬁ,,] = 0, and the existence of Killing spinors is the existence of € satisfying
ﬁue = 0. This can be constructed as follows. Let € now denotes a constant spinor in E??2,
so Ve = 0. Then it is easy to see

Vﬁe =0, Vte =0

and in this case, K, « g,,, where g,, is the induced metric.

Let us return to Witten’s proof of the positive mass theorem. We now need to solve the
equation 7'V;e = 0 subject to € — €y at spatial infinity. Since this equation is an elliptical
equation, existence of solution follows from standard results from differential equations. For
uniqueness, suppose €1 and €5 are both solutions satisfying the same boundary conditions.
Then € = €1 — €3 satisfies the formula and the boundary term vanishes. Since V ee""?V ,e
is (subject to the Witten condition) past directed and timelike, the volume term has a fixed
sign. The boundary term, however, vanishes, since it only depends on €¢y;. Hence €1 = €.

The last step in the proof is to note that

2 1
= | o Nwd" = 7" eoPPM < 0 (5.1)
SZ

where P/fDM is the ADM 4-momentum of spacetime. Hence PjDM is future directed and
timelike, if (M, g,.) is asymptotically flat.

We can identify the boundary term with the ADM mass in this theory. First we analyse
in more details the ADM mass/momentum. The metric at infinity is:

2MG dr?
ds? s _ (1 — 7,) dt? + 1+MG + 72(d6* + sin? 0dg?),

where M is the ADM mass. We can write this in isotropic coordinates

1— GM\2 M 4
ds® = El n G%@;dtz + (1 + —Gz ) d*x.
TS P
2p

This has a momentum P* = (M,0,0,0). We can boost it such that P® # 0. This will
introduce cross terms in the metric.

We can solve the Witten equation in this metric and evaluate the boundary term. The
metric is

Juv = Nuv + O(T_l)
so the connection
w=0("?)
with a factor of M. For e = ¢y + ..., we get

M

_ 0
D,e = €yy eor—2+....
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For the integrand in (5.1), it is of order O(Mr~?)e, and d¥,, is of order O(r?). The
boundary term therefore is of order M (€9yY¢p). For its coefficient, we can either work it
out (it is complicated), or we can look at the identity

2
7" eo Py PM = / —THyevtedV + = (...)dV.
K
Evaluating near flat spacetime, we get the integrand as

/(—T“,\Eow/\eo)d?’a: +...

Now ¢ is a constant spinor in Minkowski spacetime, and hence €yy*¢g is a Killing vector
of the background. The whole expression is like a total energy. By the linearised Einstein
equation this is the total mass M of the linearised theory. However, the boundary term
depends only on the asymptotic metric, not on the interior. Thus we can always identify
the boundary term with the ADM mass.

We now consider the case where PjDM

= 0, i.e. the case of equality in equation (5.1).
Then V;e|s, = 0, and some components of T#,|s, = 0. Consider another Cauchy surface
Y/, with the same boundary at infinity 9%’ = S2 (i.e. a finite variation of %), we also
have Vie|sy = 0 and T#,|sy = 0. Thus € is actually covariantly constant, V,e = 0, and
the dominant energy condition becomes T#, = 0. Therefore, k* = ey*e is a covariantly
constant Killing field, and R, = 0 (the Einstein equation). Now, if £# is null, and then
we have gravitational waves, the spacetime is not asymptotically flat, and hence this case
is not allowed. If k# is timelike, then it is hypersurface orthogonal by V 1k, = 0 and has

constant norm g*”k,k,. Then the metric is ultrastatic:
ds? = —dt* + g;j(x)dz"dz”
and g;; must admit constant spinor V;e = 0. Then
Ry =0— @R =0— ®Ry, =0 gij = b,

i.e. the hypersurface is flat. This remains true in higher dimensions if we quote the theorem
that asymptotically flatness and Ricci flatness together imply flatness.

There are some global issues with this approach to the proof of the positive energy
theorem: the existence and uniqueness of spin structures. For the moving frames we
use, global frames are not essential but convenient. If a global frame exists there is no
difficulty in introducing a spin structure. However, uniqueness is more problematic. If the
fundamental group is non-trivial, H?(M,Zy) # 0, then there exists more than one spin
structure. They can be odd or even as non-trivial closed curves. If no global frame exists
at all, there may not be a spin structure on the manifold. The obstruction in this case is
called the second Stiefel-Witney class Wo € H?(M,Zs), which vanishes if all 2-cycles are
topologically trivial.

In four spacetime dimensions, a globally hyperbolic spacetime always admit a global
framing: M = R x X and X is spacelike. Also, every 3-manifold is parallelizable, and hence
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M admits a global framing and at least one spin structure. If it is not simply connected,
it may admit more than one. For our argument of the positive mass theorem to work, we
need a spin structure which allows constant spinors at infinity.

If black holes are present in this spacetime, then we can work on the exterior only and
use boundary condition on the horizon. Typically, € = 0 on horizon.

The positive mass theorem has extensions: instead of asymptotic flatness, we can
require asymptotic AdSy behaviour, e.g. the Kottler solution

2 2
ds? = — (1 _2GM AT) a2+ I 20
r 3 (...)

Here M is called the Abbot-Deser mass. Using ﬁue as defined with a cosmological constant,

we can prove that M > 0. The case M = 0 corresponds to AdSy4 spacetime. The solutions
of Witten equation vzf)ie = 0 tend to Killing spinors of AdSy at infinity.
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6. Central charges and BPS states

BPS stands for Bogomol'nyi, Prasad and Sommerfield. BPS bounds refers to a series
of inequalities for solutions of field equations depending only asymptotic behaviour the
solutions at infinity (actually, only on the homotopy class of the solution). A BPS state is
a solution which saturates this bound. In supersymmetric theories, the BPS bound usually
is saturated when half of the SUSY generators are unbroken. This happens when the
mass is equal to the central extension, which can be interpreted as a topological conserved
charge. In this section we will investigate BPS states briefly.
For N > 1, the supersymmetry algebra admits a central extension:

{QL QLY = —5(PuCy")apd" + 1CapX " + 5(C5)apY™, X9 =X YU =y,

where X and Y commutes with all elements of the algebra and can be thought of electric
and magnetic charges respectively. In fact, we can obtain this algebra by contraction of
Osp(N]4). Witten and Olive showed that such conserved central charges can arise as
boundary terms in supersymmetric field theories.

For example, for N' = 2, X% = XeY, they showed that M > /X2 +Y?2 and the
equality case is invariant under half of the maximal supersymmetry transformations. In
the rest frame, the right hand side of the algebra relation is

M§9 + (X~ + Yyoys)e,

which is a 8 x 8 matrix. Passing into Dirac notation €7/ — \/—1 = i, it becomes a 4 x 4
hermitian matrix

A=M+iR, R =X +Y"7s.
Then R? = —(X? 4 Y?) implies
A*=M?*+2iMR - R*> =2MA - M*+ X* +Y?
hence we have the characteristic equation
A? —2MA+ M?* - (X>+Y?) =0.
The eigenvalues are obtained from the characteristic equation as
A =M+V/X24+Y2

Since Tr A = 4M, we see that AL are both doubly degenerate. The BPS state has M =
VX2 +Y? and A has a kernel the dimension of which is half of the dimension of A,
i.e. half of the maximal supersymmetry. Another way to say this is that there exists 2
linear combinations of the supersymmetry generators which annihilate the BPS states.

Let us now focus on BPS states in A/ = 2 supergravity. The BPS states are invariant
under 4N /2 = 2N supersymmetries. After diagonalisation,

A=diagM + VX2 +Y2 M+ VX2+Y2 M+ VX2-Y2 M++V/X?2-Y2).
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We implement it as follows. The bosonic part of the supergravity lagrangian is the Einstein-

Maxwell theory. Define
R 1

— — _F,F™
4M2 27 F

LB: ;

then
Tow = (Fn B = 19 P F)
satisfies the dominant energy condition. We have
iR

Dee =V e+ 2\@(Fp07p7”)7#6.

We can now identify boundary terms. N, contains F),,, and

Q P

Vi anG’ - V4G

where Q and P are the electric and magnetic charges. Since the electromagnetic potential

is asymptotically
Q Pcosf

d
4d7r + A7 2

the first term can be thought of as the Coulomb potential and the second the Dirac mono-

Aydat —

pole. Because we are ungauged since the charges are central, neither ) or P is quantised.
The BPS bound on the mass is

and for BPS states, the equality holds.
We can compare this with the Reissner-Nordstrém black hole:

2M 24 p? dr?
ds? = — 1———|—Q; dt2—|—L+r2d(22
r 47r? (...)

Q2+P2
< _ .
M < V  4nG

T , (@*+P?)
G_Mi\/M AnG

The extremal case is that for 7y = r_. If we draw Penrose diagrams for the black hole case

in which case we have

Then

and the supergravity case, we see that they complement each other.
The Hawking temperature for this black hole can be calculated

1 \/MQ*ﬁ(P2+Q2)

- 2 <M+\/M2—ﬁ(P2+Q2)>2

Ty

the temperature T'\, 0 as M \ 4/ ﬁ(l32 + Q?). For non-extremal cases, k = % becomes
spacelike for r_ < r < 74, so it cannot be a BPS state. Also note that the Hawking temper-
ature is finite, so the theory can never be supersymmetric, since the Fermi-Dirac statistics
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is different from the Bose-Einstein statistics at all finite temperatures. The supersymmetric
generators cannot even act in such a case.
The extremal black hole case is compatible with the BPS condition, for which

N
Grf_ '

Ty =

Let us calculate the Killing spinors. lA)Me = 0 implies the Dirac equation v*V e = 0, hence
V' Yapu = 0.
Let us solve the Dirac equation. If
ds® = QQng:E“d:U” = gudztdx”.
Then P = Q_(”‘H)/Qﬁz/; where ¢ = Q_(”_l)/%f). Introduce isotropic coordinates A =
A(x) and B = B(x), we have

B2
ds? = —A%dt? + B2dx? = A? (—dt2 + Ade2) ,

an ultra static metric. Then
(7980 +~' V)¢ = 0.
Assume 8;¢) = 0 on the 3-dimensional surface, we have
YV =0.
Then ~
Y 0inh =0,

for the flat Dirac operator on E3. Hence

Let us try the solution 1Z = €9 a constant. Then
Py o énteo.
Now choose ypeg = i€, then
Py o k= 6ty
however, the factor involved here is not a constant.

In general, the solution is not regular near horizon at which A = 0. The exceptional
case occurs when AB = 1. There if

GM,
ds’ = —H2dt* + H?dx*, H=1+) |7“

we have the Majumdar-Papeptrou solution. For k = 1, we have the extremal Reissner-
Nordstrém solution again, and

N T
B & Y
VY Y = At
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