
 1

Associative Arrays: Unified Mathematics for
Spreadsheets, Databases, Matrices, and Graphs

Jeremy Kepner1,2,3,4, Julian Chaidez1,4, Vijay Gadepally2,3,4, Hayden Jansen1,4
1MIT Mathematics Department, Cambridge, Massachusetts

2MIT Computer Science & AI Laboratory, Cambridge, Massachusetts
3MIT Lincoln Laboratory, Lexington, Massachusetts

4MIT BeaverWorks Center, Cambridge, Massachusetts

Abstract—Data processing systems impose multiple views on data
as it is processed by the system. These views include
spreadsheets, databases, matrices, and graphs. The common
theme amongst these views is the need to store and operate on
data as whole sets instead of as individual data elements. This
work describes a common mathematical representation of these
data sets (associative arrays) that applies across a wide range of
applications and technologies. Associative arrays unify and
simplify these different approaches for representing and
manipulating data into common two-dimensional view of data.
Specifically, associative arrays (1) reduce the effort required to
pass data between steps in a data processing system, (2) allow
steps to be interchanged with full confidence that the results will
be unchanged, and (3) make it possible to recognize when steps
can be simplified or eliminated. Most database system naturally
support associative arrays via their tabular interfaces. The D4M
implementation of associative arrays uses this feature to provide
a common interface across SQL, NoSQL, and NewSQL
databases.

Keywords-Insider; Big Data; Associative Arrays; Spreadsheets;
Database; Matrices; Graphs; Abstract Algebra

I. INTRODUCTION
As data moves through a processing system the data are

viewed from different perspectives by different parts of the
system (see Figure 1). Data often are first parsed into a tabular
spreadsheet form (e.g., .csv or .tsv files), then ingested into
database tables, analyzed with matrix mathematics, and
presented as graphs of relationships. A large fraction of the
effort of developing and maintaining a data processing system
goes into sustaining these different perspectives. It is desirable
to minimize the differences between these perspectives.
Fortunately, spreadsheets, databases, matrices, and graphs all
use two-dimensional data structures in which each data element
can be specified with a triple denoted by a row, column, and
value. Using this common reference point, many technologies
have been developed to bridge the gaps between these different
perspectives. Array programming languages (e.g., Matlab, R,
and Python) have been the de facto standard for manipulating
matrices (both dense [Moler 1980, Moler 2008] and sparse
[Gilbert, Moler & Schreiber 1992]) since the 1990s. These
languages have had direct support for spreadsheet manipulation
for nearly as long. An even stronger connection exists between

spreadsheets and relational databases. A prime example is the
SAP enterprise resource planning package (www.sap.com),
which is the dominant software used for accounting and payroll
management throughout the world. SAP relies on seamless
integration between SQL databases and spreadsheets. More
recently, spreadsheets have incorporated adjacency matrices to
manipulate and visualize graphs by using their built in scatter
plotting capabilities [Smith et al 2009]. Perhaps the largest
recent development has been the introduction of key-value
store databases [Wall, Cordova & Rinaldi 2013], which are
specifically designed to store massive sparse tables and are
ideal for storing graphs. Array store databases [Balazinska et al
2009] have taken sparse tables a step further by also including
first-class support of matrix operations on that data. The deep
connection between graphs and sparse matrices [Kepner &
Gilbert 2011] has been recognized to such an extent that it has
led to the development of the GraphBLAS standard for
bringing these fields together [Mattson et al 2013, Mattson
2014, Gilbert 2014, Kepner & Gadepally 2014, Buluc et al
2014].

Figure 1. The standard steps in a data processing system often require
different perspectives on the data. Associative arrays enable a
common mathematical perspective to be used across all the steps.

The D4M software system (d4m.mit.edu) [Kepner 2011p,
Kepner et al 2012] is the first practical implementation of
associative arrays that successfully bridges spreadsheets,
databases, matrices, and graphs. Using associative arrays, D4M
users are able to implement high performance complex
algorithms with significantly less effort. In D4M, a user can
read data from a spreadsheet, load the data into a variety of
databases, correlate rows and columns with matrix operations,
and visualize connections using graph operations. These
operations correspond to the steps necessary to build an end-to-
end data processing system. Often, the majority of time spent in
building a data processing system is in the interfaces between
the various steps. These interfaces require a conversion from
one mathematical perspective on the data to another. By using

parse!

set of
bits

spread
sheet database!

matrix

graph

ingest! query! analyze!

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1312831. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 2

a common mathematical abstraction across all steps, the
construction time of a data processing system can be reduced.

Relational or SQL (Structured Query Language) databases
[Codd 1970, Stonebraker et al 1976] have been the de facto
interface to databases since the 1980s and are the bedrock of
electronic transactions around the world. More recently, key-
value stores (NoSQL databases) [Chang et al 2008] have been
developed for representing large sparse tables to aid in the
analysis of data for Internet search. As a result, the majority of
the data on the Internet is now analyzed using key-value stores
[DeCandia et al 2007, Lakshman & Malik 2010, George 2011].
In response to the same challenges, the relational database
community has developed a new class of array store
(NewSQL) databases [Stonebraker et al 2005, Kallman et al
2008, Lamb et al 2012, Stonebraker & Weisberg 2013] to
provide the features of relational databases while also scaling
to very large data sets.

The diversity of databases has created a need to interoperate
between them. Associative arrays provide an abstraction that
works with all of these classes of databases (SQL, NoSQL, and
NewSQL) and can be bound to database tables, views, or
queries. D4M has demonstrated this capability [Wu et al
2014]. One example where this is useful is in the field of
medicine, where a SQL database might be used for patient
records, a NoSQL database for analyzing the medical literature,
and a NewSQL database for analyzing patient sensor data.

The success of D4M in building real data processing
systems has been a prime motivation for formalizing the
mathematics of associative arrays. By making associative
arrays mathematically rigorous, it becomes possible to apply
associative arrays in a wide range of programming
environments (not just D4M).

II. ASSOCIATIVE ARRAY INTUITION
Associative arrays derive much of their power from their

ability to represent data intuitively in easily understandable
tables. Consider the list of songs and the various features of
those songs shown in Figure 2. The tabular arrangement of the
data shown in Figure 2 is an associative array (denoted A). This
arrangement is similar to those widely used in spreadsheets and
databases. Figure 2 illustrates two properties of associative
arrays that are different from other two-dimensional
arrangements of data. First, each row label (or row key) and
each column label (or column key) in A is unique, which allows
rows and columns to be queried efficiently. Second,
associative arrays contain no rows or columns that are entirely
empty, which allows insertion, selection, and deletion of data to
be performed by associative array addition, multiplication, and
products. These properties are what makes A an associative
array and allows A to be manipulated as a spreadsheet,
database, matrix, or graph.

Figure 2. Tabular arrangement of a list of songs and the various
features of those songs into an associative array A. The array A is an
associative array because each row label (or row key) and each
column label (or column key) in A is unique.

III. MATHEMATICAL OPERATIONS
Addition, multiplication, and products are the most

commonly used operations for transforming data and also the
most well studied mathematically. The first step in
understanding associative arrays is to define what adding or
multiplying two associative arrays means. Addition and
multiplication of associative arrays have properties that are
different from arithmetic addition (e.g., 1 + 2 = 3) and
multiplication (e.g., 2 × 3 = 6). To prevent confusion with
arithmetic addition and multiplication, ⊕ will be used to denote
associative array addition and ⊗ will be use to denote
associative array multiplication.

Given associative arrays A, B, and C, associative array
addition is denoted

C = A ⊕ B
Associative array addition is equivalent to database table
insertion in the formula

T = T ⊕ B
where T is an associative array that is bound to a database
table, view, or query. Associative array element-wise
multiplication is denoted

C = A ⊗ B
Associative array element-wise multiplication is equivalent to
database table selection in the formula

C = T ⊗ B
where C has the elements in T corresponding to the non-zero
(or non-empty) entries in B. Associative array (matrix) product
combines addition and multiplication and is written

C = A B
The above product can also be denoted ⊕.⊗ to highlight its
special use of both addition and multiplication

C = A ⊕.⊗ B
or

C(i,j) = ⊕k A(i,k) ⊗ B(k,j)
The special case of using associative array products for row
selection is often denoted by using parentheses

T(a,:) = A T
where a are the columns of a permutation array A (see section
V) that correspond to the rows to be selected from T.
Likewise, column selection can be denoted

T(:,b) = T B
where b are the rows of a permutation array B that correspond
to the columns to be selected in T.

One of the most interesting properties of an associative array
is how sub-arrays are handled. Sub-arrays are extracted using
ranges or sets of row and column keys. The row keys and
column keys of non-empty rows and columns are carried along
into the sub-array. Associative arrays also allow the same sub-
array selection to be performed via either element-wise or
matrix products. The duality between array selection and array
products allows this operation to be treated in the same manner
as other algebraic operations.

Row and column keys are always carried with the
associative array and the associative array does not hold empty
rows or empty columns. Thus, inserting or assigning values to
an associative array can also be carried out via addition.

A! Artist Date Duration Genre
053013ktnA1 Bandayde 2013-05-30 5:14 Electronic
053013ktnA2 Kastle 2013-05-30 3:07 Electronic
063012ktnA1 Kitten 2010-06-30 4:38 Rock
082812ktnA1 Kitten 2012-08-28 3:25 Pop

 3

Products of associative arrays are one of the most useful
operations in a data processing system. Associative array
products can be used to correlate one set of data with another
set of data, transform the row or column labels from one
naming scheme to another, and aggregate data into groups.
Figure 3 shows how different musical genres can be correlated
by artist using associative array matrix products.

Figure 3. Correlation of different musical genres using associative
array matrix product ⊕.⊗

Associative array addition, element-wise multiplication, and
matrix product can be defined so that they are algebraically
correct for spreadsheets, databases, matrices, and graphs.
Algebraic rigor is what allows associative arrays to be an
effective tool for manipulating data in a wide range of
applications. The keys to defining these operations are basic
concepts from abstract algebra that extend the ideas of addition,
multiplication, and products to numbers and words.

IV. FORMAL DEFINITIONS
Associative arrays are effective because it is possible to

formally prove that for associative arrays of all shapes and
sizes that addition, element-wise multiplication, and matrix
products maintain their desirable algebraic properties [Kepner
2012, Kepner & Chaidez 2013, Kepner & Chaidez 2014,
Kepner & Jansen 2015]. Perhaps the most important of these
properties is coincidentally called associativity, which allows
operations to be grouped

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

(A B) C = A (B C)
Associativity enables operations to be executed in any order
and is extremely useful for data processing systems. The ability
to swap steps or to change the order of steps in a data
processing system can significantly simplify its construction.
For example, if arrays of data are entering a system one row at
a time and the first step in processing the data is to perform an
operation across all columns and the second requires
processing across all rows, this can make the system difficult to
build. However, if the processing steps are associative, then the
first and second steps can be swapped, making it much easier to
build the system.

V. SPECIAL ARRAYS AND GRAPHS
The internal structure of the associative array is important

for a range of applications. In particular, the distribution of
nonzero entries in an array is often used to represent
relationships that can also be depicted as points (vertices)
connected by lines (edges). These diagrams are called graphs.
For example, one such set of relationships are those genres of
music that are performed by particular musical artists. Figure 3
extracts these relationships from the data in Figure 2 and
displays it as both an array and a graph.

Figure 4. Relationships between genres of music and musical artists
taken from the data in Figure 2. The array on the left shows how
many songs are performed for each genre and each artist. The graph
on the right shows the same information in visual form.

Certain special patterns of relationships appear frequently
and are of sufficient interest to be given names. Modifying
Figure 3 by removing some of the relationships (see Figure 4)
produces a special array whereby each row corresponds to
exactly one column. Likewise, the graph of these relationships
shows the same pattern, and each genre vertex is connected to
exactly one artist vertex. This pattern is referred to as a
permutation.

Figure 5. Special array and graph whereby each row corresponds to
exactly one column. This pattern is referred to as a permutation.

Modifying Figure 4 by adding relationships (see Figure 5)
produces a special array whereby each row has a relationship
with every column. Likewise, the graph of these relationships
shows the same pattern, and each genre vertex is connected to
all artist vertices. This pattern is referred to as a clique.

Figure 6. Special array and graph whereby each row has a
relationship with every column. This pattern is referred to as a clique.

In addition, to the permutation and the clique pattern, there
are a variety of other patterns that are important because of
their special properties. Understanding how these patterns
manifest themselves in associative arrays makes it possible to
recognize these special patterns in spreadsheets, databases,
matrices, and graphs. In a data processing system, recognizing
that the data is one of these special patterns can often be used
to eliminate or simplify a data processing step. For example,
data with the permuation pattern shown in Figure 4 makes it
very simple to look up an artist given a specific genre or a
genre given a specific artist.

VI. NULL SPACE, UNIQUENESS, AND STRETCHING
In many respects associative arrays are a generalization of

matrices and inherit many of the useful behaviors that are
found in matrices.

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1
Pop 1
Rock 1

El
ec
tro
ni
c

Po
p

R
oc
k

Bandayde 1
Kastle 1
Kitten 1 1

⊕.⊗ =

El
ec
tro
ni
c

Po
p

R
oc
k

Electronic 2
Pop 1 1
Rock 1 1

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1
Pop 1
Rock 1

Electronic!

Pop!

Rock!

Bandayde!

Kastle!

Kitten!

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1
Pop 1
Rock 1

Electronic!

Pop!

Rock!

Bandayde!

Kastle!

Kitten!

Ba
nd
ay
de

Ka
st
le

Ki
tte
n

Electronic 1 1 1
Pop 1 1 1
Rock 1 1 1

Electronic!

Pop!

Rock!

Bandayde!

Kastle!

Kitten!

 4

One important property of associative arrays is the
circumstances under which associative array products will
produce a result that contains only zeros. Recognizing these
conditions can be used to eliminate steps in a data processing
system. Formally this is referred to as the null space of the
matrix.

Another important property is the conditions under which
associative array products will produce a result that is not
unique. If multiplying by certain classes of associative arrays
always produces the same result, this property can also be used
to eliminate steps in a data processing system.

Knowing when associative array products produces a zero
or unchanging result is very useful for simplifying a data
processing system, but these situations don’t always occur. If
they did, associative array products would be of little use. A
situation that occurs more often is when associative array
products produces a result that stretches one of the associative
arrays by a fixed amount. It is often the case that a more
complex processing step can be broken up into a series of
simple stretching operations on the data, which can be used to
simplify a data processing system. The directions along which
a matrix will stretch are referred to as the eigenvectors of the
matrix.

VII. SUMMARY
Different steps of a data processing system impose different

views on the data: spreadsheets, databases, matrices, and
graphs. The mathematical structure of data has many common
features. Associative arrays provide a mathematically rigorous
means for representing data and operations across these steps.
Associative arrays can be used to swap, reorder, simplify, and
eliminate steps in a data processing system.

REFERENCES
[Balazinska et al 2009] M. Balazinska, J. Becla, D. Heath, D. Maier, M.

Stonebraker & S. Zdonik, A demonstration of SciDB: A science-oriented
DBMS, Cell, 1, a2. (2009)

[Buluc et al 2014] A. Buluc, G. Ballard, J. Demmel, J. Gilbert, L. Grigori, B.
Lipshitz, A. Lu- gowski, O. Schwartz, E. Solomonik & S. Toledo,
Communication-Avoiding Linear-Algebraic Primitives for Graph
Analytics, IPDPS Graph Algorithms Building Blocks (GABB), May
2014

[Chang et al 2008] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T.Chandra, A. Fikes & R. Gruber, Bigtable: A Distributed
Storage System for Structured Data, ACM Transactions on Computer
Systems, Volume 26 Issue 2, June 2008

[Codd 1970] E. Codd, A Relational Model of Data for Large Shared Data
Banks, Communications of the ACM (Association for Computing
Machinery) 13 (6): 37787, June, 1970

[DeCandia et al 2007] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, Alex Pilchin, S. Sivasubramanian, P. Vosshall & W
Vogels, Dynamo: amazons highly available key-value store, Symposium
on Operation Systems Principals (SOSP), 2007

[George 2011] L. George, HBase: The Definitive Guide, O’Reilly, Sebastapol,
California, US,2 011

[Gilbert, Moler & Schreiber 1992] J. Gilbert, C. Moler & R. Schreiber, Sparse
matrices in MATLAB: design and implementation, SIAM Journal on
Matrix Analysis and Applications 13.1 (1992): 333-356

[Gilbert 2014] J. Gilbert, Examples and Applications of Graph Algorithms in
the Language of Linear Algebra, IPDPS Graph Algorithms Building
Blocks (GABB), May 2014

 [Kallman et al 2008] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg &
D. Abadi, H-store: a high-performance, distributed main memory
transaction processing system, Proceedings of the VLDB Endowment
VLDB Endowment, Volume 1 Issue 2, August 2008 Pages 1496-1499

[Kepner 2011p] J. Kepner, Multidimensional Associative Array Database U.S.
Patent 8,631,031 B1, filed Jan 19, 2001, awarded Jan 14, 2014

[Kepner 2012] J. Kepner, Spreadsheets, Big Tables, and the Algebra of
Associatve Arrays, MAA & AMS Joint Mathematics Meeting, Jan 4-7,
2012, Boston, MA

[Kepner et al 2012] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C.
Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P.
Michaleas, A. Prout, A. Reuther, A. Rosa & C. Yee, Dynamic
Distributed Dimensional Data Model (D4M) Database And
Computation System, ICASSP Special Session on Signal & Information
Processing for “Big Data”; March 25-30, 2012

[Kepner & Chaidez 2013] J. Kepner & J. Chaidez, The Abstract Algebra of
Big Data, Union College Mathematics Conference, Oct 2013,
Schenectady, NY

[Kepner & Chaidez 2014] J. Kepner & J. Chaidez, The Abstract Algebra of
Big Data and Associative Arrays, SIAM Meeting on Discrete Math, Jun
2014, Minneapolis, MN

[Kepner & Gadepally 2014] J. Kepner & V. Gadepally, Adjacency Matrices,
Incidence Matrices, Database Schemas, and Associative Arrays, IPDPS
Graph Algorithms Building Blocks (GABB), May 2014

[Kepner & Gilbert 2011] J. Kepner & J. Gilbert (editors), Graph Algorithms in
the Language of Linear Algebra, SIAM Press, Philadelphia, 2011

[Kepner & Jansen 2015] J. Kepner & H. Jansen, Mathematics of Big Data:
Spreadsheets, Databases, Matrices, and Graphs, SIAM Press, 2015,
submitted

[Lakshman & Malik 2010] A. Lakshman & P. Malik, Cassandra: a
decentralized structured storage system, ACM SIGOPS Operating
Systems Review, Volume 44 Issue 2, April 2010

[Mattson et al 2013] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C.
Faloutsos, J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C.
Leiserson, A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M.
Stonebraker, S. Wallach, & A. Yoo, Standards for Graph Algorithm
Primitives, IEEE High Performance Extreme Computing (HPEC), Sep
2013

[Mattson 2014] T. Mattson, Motivation and Mathematical Foundations of the
GraphBLAS, IPDPS Graph Algorithms Building Blocks (GABB), May
2014

[Moler 1980] C. Moler, Matlab users guide, Alberquerque, USA (1980)
[Moler 2008] C.Moler, Numerical computing with MATLAB, SIAM,

Philadelphia, 2008
[Smith et al 2009] M. Smith, B. Shneiderman, N. Milic-Frayling, E. Rorigues,

V. Barash, C. Dunne, T. Capone, A. Perer & E. Gleave, Analyzing
(social media) networks with NodeXL, Proceedings of the Fourth
International Conference on Communities and Technologies (ACM):
255264 (2009)

[Stonebraker et al 1976] M. Stonebraker, G. Held, E. Wong & P. Kreps, The
design and implementation of INGRES, ACM Transactions on Database
Systems (TODS), Volume 1 Issue 3, Sep 1976, Pages 189-222

[Stonebraker et al 2005] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M.
Cherniack, M. Fer- reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P.
O’Neil, A. Rasin, N.Tran & S. Zdonik, C-store: a column-oriented
DBMS, VLDB ’05 Proceedings of the 31st international conference on
Very large data bases, Pages 553 - 564

[Stonebraker & Weisberg 2013] M. Stonebraker & A. Weisberg, The Volt DB
Main Memory DBMS, IEEE Data Eng. Bull. 36.2 (2013): 21-27

[Wall, Cordova & Rinaldi 2013] M. Wall, A. Cordova & B. Rinaldi,
Accumulo Application Development, Table Design, and Best Practices,
O’Reilly, Sebastapol, California, US, 2013

[Wu et al 2014] S. Wu, V. Gadepally, A. Whitaker, J. Kepner, B. Howe, M.
Balazinska & S. Madden, MIMICViz: Enabling Visualization of Medical
Big Data, Intel Science & Technology Cen-ter retreat, Portland, OR,
August, 2014

