ON THE NON-STANDARD PODLES SPHERES

ULRICH KRAHMER

ABSTRACT. It was shown in [1] that the C*-completion of Podles’ generic
quantum spheres Ag, [4] is independent of the parameter p. In the present
note we provide a proof that this is not true for the Ay, themselves which
remained a conjecture in [1]. As a byproduct we obtain that Aut(Aq,) = C*

1. INTRODUCTION

The quantum spheres of Podles [4] constitute a family of algebras A4,,, ¢ € C* =
C\{0} not a root of unity, p € CU {oo} that can be considered as deformations
of the complex coordinate ring of the real affine variety S? C R3. They can be
embedded as left coideal subalgebras into the standard quantized coordinate ring
C4[SL(2)] and become in this way the paradigmatic examples of homogeneous
spaces of quantum groups. If ¢ € R and p € RU{oo}, then A,, are x-subalgebras of
the "compact real form’ of C,[SL(2)]. See e.g. [3] for details and more information.

It was shown in [1] that the C*-completion of these *-algebras does not depend
on p, but it remained a conjecture that this is not the case for A,, themselves. The
present contribution gives a proof of this fact, see Theorem 1 below.

It is a pleasure to thank the authors of [1] for pointing out to me this problem
and for all the other discussions we had.

2. THE ALGEBRAS A, AND SOME OF THEIR PROPERTIES

Let ¢ € C* be not a root of unity and p € C. Define A4,, as the unital associative
algebra with generators x_1, xg, 1 and relations

(1) Tor11 = ¢ w130, 141 = ¢oxg + (1+ ) pwo — 1.
Analogously one defines A, by the relations
(2) ToT11 = ¢ TL1T0,  Tg1ter = ¢+ (14 ¢7)xo.
The defining relations imply (see [3], p. 125 for the details) that the elements
eijl_{xoxl» j=0 , i €Ny, j €Z

zhr ) Jj<0.

form a vector space basis of Ag,. It is immediate that A, is Z-graded,
Ay = @Aj, AY = span{e;; |i € No} = {f € A, | w0 f = ¢¥ fao}.
JEZ
We denote by I the ideal generated by x¢ and by m : Ay, — Ag,/I the canonical
projection. Using the basis {e;;} one sees that I = zqA,, = Agpo.

Proposition 1. Ay, is an integral domain and any invertible element is a scalar.
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Proof. A,, can be embedded into the quantized coordinate ring C,[SL(2)] ([3],
Proposition 4.31) which has these properties ([2], 9.1.9 and 9.1.14). O

Besides this we will need the well-known and easily verified fact that the following
is a complete list of the characters of Ag,:

p#oo,ti:  xa(wo) =0,xa(z1) = X!, AeC¥,
p=ti:  xalwo) =0, xa(wx )ﬂﬂ AecCx,
X' (z41) =0 X'(’Io)
p=00: X3 (r41) = (:c)f()x/\(:chl)f)\ reC.
We denote by J C Ay, the intersection of the kernels of all characters. For p #
00, 7 an element z = Zij &ijeij € Agp, & € C, is mapped by xa to f(A), where
f is the Laurent polynomial f(z) = >, €0j27. Thus xx(z) = 0 for all A € C*

iff f =0. Hence J = I. The same is true for p = oo as one checks similarly. For
p = £i one obtains the smaller ideal I Nker x'.

3. THE ALGEBRA A , DEPENDS ON p

The aim of this note is to prove the following fact that was conjectured in [1]:
Theorem 1. The algebras Ag,, Agp are isomorphic iff p' = £p (—oo = o).

Proof. We first note that A, can not be isomorphic to Ay, with p # oo:
Otherwise Ago/J would be isomorphic to Ag,/J. The first algebra is isomorphic
to C[z] ® Clz] with 7(z+1) as generators. This follows from adding z¢p = 0 to
(2). For p # oo, +i the algebra A,,/J is instead isomorphic to C[z, 27!] with z*!
corresponding to +m(z+1). For p = +i we have J = I Nkery’ C I, and Ag4;/1
is as above isomorphic to C[z,27!]. That is, this is a quotient algebra of A,+;/J,
hence the latter can also not be isomorphic to A4e/J = C[z] & C[z].

Suppose now that ¢ : Ay, — Ag, is an isomorphism with p, p’ # co. We denote
by X; € Ay, the images of the generators of A,, under %.

Since X; generate A,,, m(X;) generate m(Ag,) = C[z 271]. This algebra is
a commutative integral domain, so 7(Xo)7(X+1) = ¢ 2m(X11)7(Xo) implies that
either (Xo) or both (X41) vanish. But C[z, 271] can not be generated by a single
element, so 7(Xo) = 0. Hence X = Aoxo for some \g € Ag,. Repeating the whole
argumentation with the roles of z; and X; interchanged one gets xg = poXo, that
is, Xo = poAoXo for some pg € Aq,. Proposition 1 now implies A\g = ugl e C*.

Therefore 20 X411 = ¢*2X1129. Hence X4y € AT so Xy = Py(wg)ry for
some polynomials Py € C[z]. Inserting this into (1) one sees that both Py must be
of degree zero. So X; = \;x; for three non-zero constants \;. Inserting this again
into the relations (1) we get

qN T+ (14 q™2)p Aowo — 1= MA_1(¢7%25 + (1+ ¢72)pao — 1),
which is equivalent to
)\0 = il, pl = ip, )\1)\,1 =1.

If conversely p’ = —p, then it is immediate that the assignment z_1, %o, 21 —
T_1,—%0, %1 extends to an isomorphism Ay, — Agp. O

Note that we have proven en passent (for p # oo, p = co is treated analogously):

Corollary 1. The map X — oy, ox(x;) = N'a; is an isomorphism C* — Aut(4,,).
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