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Abstract. It was shown in [1] that the C∗-completion of Podleś’ generic

quantum spheres Aqρ [4] is independent of the parameter ρ. In the present

note we provide a proof that this is not true for the Aqρ themselves which
remained a conjecture in [1]. As a byproduct we obtain that Aut(Aqρ) = C×

1. Introduction

The quantum spheres of Podleś [4] constitute a family of algebras Aqρ, q ∈ C× =
C\{0} not a root of unity, ρ ∈ C ∪ {∞} that can be considered as deformations
of the complex coordinate ring of the real affine variety S2 ⊂ R3. They can be
embedded as left coideal subalgebras into the standard quantized coordinate ring
Cq[SL(2)] and become in this way the paradigmatic examples of homogeneous
spaces of quantum groups. If q ∈ R and ρ ∈ R∪{∞}, then Aqρ are ∗-subalgebras of
the ’compact real form’ of Cq[SL(2)]. See e.g. [3] for details and more information.

It was shown in [1] that the C∗-completion of these ∗-algebras does not depend
on ρ, but it remained a conjecture that this is not the case for Aqρ themselves. The
present contribution gives a proof of this fact, see Theorem 1 below.

It is a pleasure to thank the authors of [1] for pointing out to me this problem
and for all the other discussions we had.

2. The algebras Aqρ and some of their properties

Let q ∈ C× be not a root of unity and ρ ∈ C. Define Aqρ as the unital associative
algebra with generators x−1, x0, x1 and relations

x0x±1 = q±2x±1x0, x∓1x±1 = q±2x2
0 + (1 + q±2)ρx0 − 1.(1)

Analogously one defines Aq∞ by the relations

x0x±1 = q±2x±1x0, x∓1x±1 = q±2x2
0 + (1 + q±2)x0.(2)

The defining relations imply (see [3], p. 125 for the details) that the elements

eij :=
{
xi

0x
j
1 j ≥ 0

xi
0x
−j
−1 j < 0.

, i ∈ N0, j ∈ Z

form a vector space basis of Aqρ. It is immediate that Aqρ is Z-graded,

Aqρ =
⊕
j∈Z

Aj , Aj := span{eij | i ∈ N0} = {f ∈ Aqρ |x0f = q2jfx0}.

We denote by I the ideal generated by x0 and by π : Aqρ → Aqρ/I the canonical
projection. Using the basis {eij} one sees that I = x0Aqρ = Aqρx0.

Proposition 1. Aqρ is an integral domain and any invertible element is a scalar.

Supported by an EU Marie Curie postdoctoral fellowship.

1



2 ULRICH KRÄHMER

Proof. Aqρ can be embedded into the quantized coordinate ring Cq[SL(2)] ([3],
Proposition 4.31) which has these properties ([2], 9.1.9 and 9.1.14). 2

Besides this we will need the well-known and easily verified fact that the following
is a complete list of the characters of Aqρ:

ρ 6= ∞,±i : χλ(x0) = 0, χλ(x±1) = λ±1, λ ∈ C×,
ρ = ±i : χλ(x0) = 0, χλ(x±1) = λ±1, λ ∈ C×,

χ′(x±1) = 0, χ′(x0) = ∓i,
ρ = ∞ : χ±λ (x±1) = χ±λ (x0) = 0, χ±λ (x∓1) = λ, λ ∈ C.

We denote by J ⊂ Aqρ the intersection of the kernels of all characters. For ρ 6=
∞,±i an element x =

∑
ij ξijeij ∈ Aqρ, ξij ∈ C, is mapped by χλ to f(λ), where

f is the Laurent polynomial f(z) =
∑

j∈Z ξ0jz
j . Thus χλ(x) = 0 for all λ ∈ C×

iff f = 0. Hence J = I. The same is true for ρ = ∞ as one checks similarly. For
ρ = ±i one obtains the smaller ideal I ∩ kerχ′.

3. The algebra Aqρ depends on ρ

The aim of this note is to prove the following fact that was conjectured in [1]:

Theorem 1. The algebras Aqρ, Aqρ′ are isomorphic iff ρ′ = ±ρ (−∞ = ∞).

Proof. We first note that Aq∞ can not be isomorphic to Aqρ with ρ 6= ∞:
Otherwise Aq∞/J would be isomorphic to Aqρ/J . The first algebra is isomorphic
to C[z] ⊕ C[z] with π(x±1) as generators. This follows from adding x0 = 0 to
(2). For ρ 6= ∞,±i the algebra Aqρ/J is instead isomorphic to C[z, z−1] with z±1

corresponding to ±π(x±1). For ρ = ±i we have J = I ∩ kerχ′ ⊂ I, and Aq±i/I
is as above isomorphic to C[z, z−1]. That is, this is a quotient algebra of Aq±i/J ,
hence the latter can also not be isomorphic to Aq∞/J = C[z]⊕ C[z].

Suppose now that ψ : Aqρ′ → Aqρ is an isomorphism with ρ, ρ′ 6= ∞. We denote
by Xi ∈ Aqρ the images of the generators of Aqρ′ under ψ.

Since Xi generate Aqρ, π(Xi) generate π(Aqρ) = C[z, z−1]. This algebra is
a commutative integral domain, so π(X0)π(X±1) = q±2π(X±1)π(X0) implies that
either π(X0) or both π(X±1) vanish. But C[z, z−1] can not be generated by a single
element, so π(X0) = 0. Hence X0 = λ0x0 for some λ0 ∈ Aqρ. Repeating the whole
argumentation with the roles of xi and Xi interchanged one gets x0 = µ0X0, that
is, X0 = µ0λ0X0 for some µ0 ∈ Aqρ. Proposition 1 now implies λ0 = µ−1

0 ∈ C×.
Therefore x0X±1 = q±2X±1x0. Hence X±1 ∈ A±1, so X±1 = P±(x0)x±1 for

some polynomials P± ∈ C[z]. Inserting this into (1) one sees that both P± must be
of degree zero. So Xi = λixi for three non-zero constants λi. Inserting this again
into the relations (1) we get

q±2λ2
0x

2
0 + (1 + q±2)ρ′λ0x0 − 1 = λ1λ−1(q±2x2

0 + (1 + q±2)ρx0 − 1),

which is equivalent to

λ0 = ±1, ρ′ = ±ρ, λ1λ−1 = 1.

If conversely ρ′ = −ρ, then it is immediate that the assignment x−1, x0, x1 7→
x−1,−x0, x1 extends to an isomorphism Aqρ′ → Aqρ. 2

Note that we have proven en passent (for ρ 6= ∞, ρ = ∞ is treated analogously):

Corollary 1. The map λ 7→ σλ, σλ(xi) = λixi is an isomorphism C× → Aut(Aqρ).
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