
ODS, YES!  Odious, NO! – An Introduction to the SAS Output Delivery System 
 

Lara Bryant, University of North Carolina at Chapel Hill, Chapel Hill, NC 
Sally Muller, University of North Carolina at Chapel Hill, Chapel Hill, NC 

Ray Pass, Ray Pass Consulting, Hartsdale, NY
 
 
ABSTRACT  
ODS (originally pronounced ‘odious’, but now pronounced ‘ya gotta love 
it’) is the new SAS System facility, starting with Version 7, that you can 
use to format your PROC and DATA output in ways just recently only 
dreamed about.  ODS offers greatly enhanced flexibility and ease of use for 
both new SAS users and experienced SAS users new to ODS.  This paper 
will discuss the basics of ODS, emphasizing methods of converting 
standard PROC output to the following “destinations”:  
 
- Listing - default (the only way to get PROC output up to now)  
- HTML - HyperText Markup Language (probably the best tool  
                 available for information  exchange today) 
- Output  - SAS data sets  (no more PROC PRINTTO!) 
- Printer     - available experimentally in V7, and for production in 
                          V8.  Produces both Postscript and PCL output on  
                          all hosts, and on PC hosts additionally produces output 
                          for any printer supported by the host operating system.  
                          Note with Version 8.1, PDF (Postscript Display  
                          Format) is also available as production. 
 
- RTF  - for importing into MS Word. (in production now with  
                          V8.1, but not covered in this paper.  
 
For more information on RTF see: 
 
http://www.sas.com/rnd/base/news/odsrtf/index.html 
  
Also not covered in this paper, the following destinations are available as 
experimental in Version 7 and Version 8: 
 
- LaTex  - a driver that produces your output  
                                                         marked up using LaTex. 
- XML  - a driver that produces XML 
- HTML STYLESHEET - lets you use HTML CSS (Cascading 
                                                        Style Sheets) 
   
For more information on these experimental destinations see:  
 
http://www.sas.com/rnd/base/topics/expv8/index.html 
   
Prior to ODS, all SAS output results were lumped together in a single 
"listing" output.  With the advent of ODS, each PROC now produces one 
or more data components which are then combined with different formats 
to produce one or more output objects.  These output objects are then sent 
to one or more destinations as defined above.  In this paper we will 
demonstrate how you select the output objects to send to each destination, 
and the syntax for each destination.  By the end of the paper you will have 
a working knowledge of ODS and feel comfortable enough to easily create 
at least three new kinds of output in SAS! 
 
 
 
 
INTRODUCTION  
Creating output objects that can be sent to destinations (e.g. HTML) is 
often just a matter of running procedures in your existing SAS program 
with just a few extra lines of code (sometimes only one line).  When you 
run a procedure or DATA step, ODS combines the resulting data with a 
template (or table definition) to create an output object, or a series of 
output objects coming from various parts of the procedure’s output.  ODS 
allows you to choose specific output objects created from a procedure or 
DATA step to send to an output destination.  ODS provides default table 
definitions for most (but not all!) procedures and for the DATA step.  You 

can also create or modify your own table definition with PROC 
TEMPLATE.  The output object is formatted according to its content and 
the destination you send it to.  You can also send your output to more than 
one destination.  For example, you can create an output data set from a 
PROC MEANS procedure that is also displayed on an HTML page. 
 
 
 
OPENING AND CLOSING DESTINATIONS 
The Listing, HTML, and Output destinations can be open or closed. By 
default, the Listing destination is open, and the HTML, Output, and Printer 
destinations are closed. The statement for opening the Listing destination 
is: 
 
  ods listing; 
 
The commands for opening the HTML, Output, and Printer destinations 
are more detailed, and therefore are presented in this paper in the overview 
of each destination.  To close a destination, the syntax is  
 
        ods <destination> close;   
  e.g.  ods listing close; 
 
You may want to close the Listing destination to free up resources that 
would otherwise be used to send output objects to this destination. 
 
SELECTION AND EXCLUSION LISTS 
For each destination, the SAS System maintains a list of the objects that are 
to be sent there.  The SAS System also maintains an overall list of objects 
that are to be sent to all open destinations. If you are selecting objects to 
send to a destination, SAS maintains a SELECTION list. If you are 
selecting objects that you do not want sent to a destination, SAS maintains 
an EXCLUSION list for that destination. Generally you need only select or 
exclude objects for a particular destination, rather than trying to maintain 
both a SELECTION and an EXCLUSION list for that destination. The 
same holds true if you are creating an overall selection or exclusion list -- 
you only need one or the other.  
 
There are two ways that these SELECTION and EXCLUSION lists can be 
modified:  

• explicit modification from a command by you  
• automatic modification by ODS at certain points (step 

boundaries) in the SAS program  
 
For more information on step boundaries see "SAS Language Reference 
Concepts Version 8," pg. 271. 
 
 
Explicit Modification 
To explicitly modify the overall SELECTION and EXCLUSION lists, you 
may use the following syntax: 
  
  ods <options>; 
 
To explicitly modify a specific destination's SELECTION and 
EXCLUSION lists, you may use the following syntax: 
 
  ods listing <options>;  
  ods html    <options>; 
  ods printer <options>; 
 
where the options are  
 
 
 



 

 

select  <specific output objects> 
select  all  
select  none  
exclude <specific output objects> 
exclude all  
exclude none  
 
The default values for the destinations are as follows:  
 
Overall list             - select all  
Listing destination - select all  
HTML destination - select all  
Printer destination - select all  
Output destination - exclude all  
 
Changing the overall list is helpful if you want to exclude an object from 
all destinations. For example, rather than typing,  
 
  ods html exclude all;  
  ods printer exclude all;  
 
You could simply type: 
  
  ods exclude all; 
 
 
Automatic Modification  
When you do NOT explicitly modify a SELECTION or EXCLUSION list, 
ODS automatically sets defaults as noted above at every step boundary.  (A 
step boundary signals the end of the preceding step, for instance a "run;" 
statement or a "quit;" statement or a new DATA or PROC step.)  When 
you do use explicit modification, ODS, by default, maintains the 
modifications for one use only, reverting back to defaults at the boundary.  
This can be overcome by using the PERSIST option.   
 
 
Persist Option with SELECT OR EXCLUDE  
Consider the following code: 
 
 ods listing select BasicMeasures;  
 
 proc univariate data='A:/meddat';  
 run;   
 proc univariate data='A;/meddat';   
 run;    
 
As a result of this code, ODS would select only the “BasicMeasures” 
statistics for the first PROC UNIVARIATE.  The RUN statement ends the 
procedure (this is a step boundary, but even if you did not specify the RUN 
statement, the beginning of the second PROC UNIVARIATE would end 
the first PROC UNIVARIATE). Either way, you would only have 
“BasicMeasures” printed for the first PROC. After the first PROC, the list 
is automatically set to its default value, which is SELECT ALL for the 
default Listing destination.  The second PROC would therefore include all 
statistics generated by the PROC UNIVARIATE.  Obviously, if you only 
wanted “BasicMeasures” throughout, it would be tedious to have to specify 
the desired list after every procedure. ODS provides a way around this. By 
adding the PERSIST option to the SELECT/ EXCLUDE statement, you 
only have to specify the SELECTION/ EXCLUSION list once for it to be 
maintained throughout the program (or at least until the next encountered 
SELECT or EXCLUDE command).   So if we run the following code  
 
 
 ods listing select BasicMeasures (persist); 
 proc univariate data='A:/meddat';  
 run;   
 proc univariate data='A;/meddat';   
 run; 
 
the BasicMeasures statistics will be selected for both PROC 
UNIVARIATEs.  The PERSIST option can also be used for an HTML or 
Printer list, for example: 
 
   
  ods html select BasicMeasures (persist); 

   
The PERSIST syntax for the Output destination is more involved, and is 
explained in the Output destination section of this paper.   
 
Resetting Lists for RUN-Group Processing  
In the previous examples, a RUN statement would end the PROC and reset 
the SELECTION/EXCLUSION list to the default value if the PERSIST 
option was not specified. However, there are several procedures that are not 
terminated by a RUN statement (RUN-Group processing), such as PROC 
DATASETS, PROC GLM, and PROC REG. In these cases, unless a 
QUIT statement is encountered, the PROC will continue to run. This may 
produce some unexpected results on your SELECTION/EXCLUSION list.  
For example, consider the following code, (the FILE= option is discussed 
below in “file types”): 
   
  ods html file='A:/new.htm'; 
  ods html select Anova;   
 
  proc reg data='A:/aggrec';   
     model inpdol=age; 
  run;   
 
  ods html select FitStatistics; 
 
  proc reg data='A:/aggrec';  
     model outpdol=age;   
  run;  
 
  ods html close;  
 
In the program above, ODS would create “Anova” statistics for the first 
PROC REG.  This would remain intact through the RUN statement 
because a RUN statement does not end a running PROC REG.  When 
ODS reaches the second PROC REG, it would end the first PROC and set 
the SELECTION list to its default value of SELECT ALL.  Therefore, 
rather than having the desired “FitStatistics” for the last PROC REG, ODS 
would create ALL the statistics.  The simple solution is to specifically end 
the first PROC REG with a QUIT statement as follows (the SHOW 
statement is discussed below):  
 
  ods html file='A:/new.htm';   
  ods html select Anova;   
 
  proc reg data='A:/aggrec';   
     model inpdol=age;   
  run;  
  ods html show; 
  quit;  
 
  ods html show; 
  ods html select FitStatistics;   
 
  proc reg data='A:/aggrec';   
     model outpdol=age;   
  run;   
 
  ods html show;   
  quit;   
 
  ods html close;    
 
 
This program produces the desired results: “Anova” statistics for the first 
PROC REG and “FitStatistics” for the second PROC REG. 
 
 
ODS SHOW STATEMENT 
At any point in your program, you can use the ODS SHOW to see what 
ODS has on the SELECTION/EXCLUSION list for a specific destination.  
The following syntax,  
  
  ods <destination> show; 
   
requests that the SELECTION/EXCLUSION list for a particular 
destination appear in the log.  If no destination is specified, the OVERALL 
list is displayed.  In the example immediately above, the log would contain  



 

 

 
  Current HTML select list is: 
  1. Anova 
 
after the first SHOW statement, and  
 
  Current HTML select list is: 
  1. FitStatistics 
 
after the last one. 
 
 
ODS TRACE STATEMENT 
Part of the power of ODS is that you can indicate which output objects to 
create, and even tell ODS to send the output objects created by the same 
procedure to different destinations. For example, rather than all of the 
statistics, you may want only the mean, standard deviation, and median 
generated by the PROC UNIVARIATE.  However, in order to specify 
which output objects to select, you must know the name of the object 
produced by your SAS program.  ODS provides a method of viewing the 
name of each output object created. The syntax, 
  
  ods trace on < / listing | label > ;  
 
 
displays a "trace record" of the name and other information about each 
output object produced by the program in the SAS log. The LISTING 
option instructs ODS to put the trace record directly above the output to 
which it refers.  This is extremely useful for determining the name and path 
of the output objects of interest.  The LABEL option instructs ODS to 
include the label path in the trace record.  The code below illustrates both 
the TRACE statement and the LABEL option:   
 
 ods trace on / label; 
 proc univariate; 
     var meddol; 
 run: 
 ods trace off; 
 
The SAS Log that results from this program is shown below.  Note that 
you not only get the name of the output object, but since you specified the 
label option, you also get the label path of the output object: 
 
 
 Output Added:  
 -------------  
 Name: Moments  
 Label: Moments  
 Template: base.univariate.Moments  
 Path: Univariate.meddol.Moments  
 Label Path: "The Univariate Procedure"."meddol". 
 "Moments"  
 -------------  
 
 Output Added:  
 -------------  
 Name: BasicMeasures  
 Label: Basic Measures of Location and  
 Variability  
 Template: base.univariate.Measures  
 Path: Univariate.meddol.BasicMeasures  
 Label Path: "The Univariate Procedure"."meddol". 
 "Basic Measures of Location and 
 Variability"  
 -------------  
 
 Output Added:  
 -------------  
 Name: TestsForLocation  
 Label: Tests For Location  
 Template: base.univariate.Location  
 Path: Univariate.meddol.TestsForLocation  
 Label Path: "The Univariate Procedure"."meddol". 
 "Tests For Location"  
 -------------  
 

 
  
 Output Added:  
 -------------  
 Name: Quantiles  
 Label: Quantiles  
 Template: base.univariate.Quantiles  
 Path: Univariate.meddol.Quantiles  
 Label Path: "The Univariate Procedure"."meddol". 
 "Quantiles"  
 -------------  
 
 Output Added:  
 -------------  
 Name: ExtremeObs  
 Label: Extreme Observations  
 Template: base.univariate.ExtObs  
 Path: Univariate.meddol.ExtremeObs  
 Label Path: "The Univariate Procedure"."meddol". 
 "Extreme Observations"  
 -------------  
 
Fortunately, although you can then specify the output object by using the 
full path name, you can also specify the output object by using any part of 
the path that begins immediately after a period and continuing to the end. 
For example, if you want to send the Quantiles and Moments for all 
variables to a web page, you could enter,  
 
  ods html select quantiles moments;  
 
or if you just want the Quantiles and Moments for the MEDDOL variable 
only:  
 
  ods html select meddol.quantiles  
                  meddol.moments; 
 
The label path can be used in the same way. You can also specify an 
output object with a mixture of labels and paths, such as  
 
  ods html select meddol."quantiles";  
 
 
Often it is easier to select the variables in the PROC step, and the desired 
statistics in the ODS step.  For example, rather than typing,  
 
 
  ods html select meddol.quantiles 
                inpdol.quantiles  
                hosp.quantiles  
                ambul.quantiles;  
  proc univariate;  
  run;  
 
an easier method that gives the same results would be  
 
  ods html select quantiles;  
  proc univariate;  
     var meddol inpdol hosp ambul;  
  run;  
 
Note, once you "turn on" the ODS TRACE ON statement in your SAS 
session, ODS will continue to write trace records until you issue the 
statement ODS TRACE OFF. This means that if you start a new procedure 
or even a new program in the same SAS session, TRACE ON will be in 
effect, until you turn it off.  Also note that you must have a  run statement 
between the TRACE ON and TRACE OFF statements in order for the 
trace record to be created. 
 
ODS HTML DESTINATION   
File types 
The HTML destination can produce four kinds of files (web pages):   
 
1) BODY file:  This is a required file that contains the output object(s) 
generated from the PROCs or DATA steps. Basically, this is where you 
store the results that will ultimately be displayed on your HTML report or 



 

 

web site. If your SAS job creates an output object that is routed to an 
HTML destination, ODS places the results within HTML <TABLE>  tags, 
where they are stored as one or more HTML tables. If your SAS job 
creates a graphic object, the BODY file has an <IMG> (image) tag that 
references graphic output objects.  Note that the BODY file can be 
specified with either the BODY= or the FILE= parameter. 
   
2) CONTENTS file:  The CONTENTS file contains a link to each of the 
output objects that are stored in the BODY file, and is specified by the 
CONTENTS= parameter.  
 
3) PAGE file: This is useful if you have a lot of output, and you do not 
want it to all be stored on one long page.  The PAGE file contains a link to 
each separate page (of the BODY file) of HTML output that ODS creates 
from a PROC or DATA step. The PAGE file is similar to the CONTENTS 
file, except that the CONTENTS file has a link to each output object, 
whereas the PAGE file has a link to each page of output that is created.  
The CONTENTS and PAGE files will be identical if you specify in the 
NEWFILE parameter that you would like each output object placed on a 
separate BODY file. An example that illustrates the NEWFILE parameter 
is presented later in this paper. You specify the PAGE file with the PAGE= 
parameter. 
 
4) FRAME file:  Provides a simultaneous view of all files included in the 
ODS HTML statement.  You specify the FRAME file with the FRAME= 
parameter. 
 
The syntax for creating these files is  
 
  ods html file-type = 'file-specification' 
                        <(parameters)>;   
 
Here is an example of ODS HTML statements which generate a BODY 
file and a CONTENTS file:   
 
  ods html body     = 'c:\temp\body.htm'  
           contents = 'c:\temp\contents.htm';  
 
In the above code, the BODY file could also have been specified with a  
FILE= parameter.  Note that the BODY file, and only the BODY file, is 
required as an HTML output destination. 
 
 
Additional HTML Parmeters 
1PATH= :  As mentioned, you use the BODY= parameter to tell ODS 
where to store an HTML file.  In addition, you can use PATH=  to tell 
ODS in what directory  to store all the HTML files that you create. The 
PATH= option may refer to an external (quoted) file specification, a SAS 
fileref or a SAS libname.catalog.   For example,   

 
 
 ods html path = 'C:\MyDocuments'   
          body = 'body.htm'   
          contents = 'contents.htm';   
 
Note that if you use the PATH= statement, you must do so before 
specifying the HTML pages. 
 
2) URL= sub-parameter:  You can improve on PATH=  by including a 
Uniform-Resource-Locator (URL) sub-parameter that will use the given 
URL instead of the file name for all the links and references that it creates 
to the file. This is helpful if you want to create a FRAME file, and/or will 
be moving the files around. For example:   
 
 
  ods html path = 'C:\MyDocuments' 
           (url = 'http://www.unc.edu/~jismith')  
           body = 'body.htm'   
           contents = 'contents.htm';   
 
Note  that the URL= sub-parameter of the PATH=  option is enclosed in 
parentheses.  
 
You can also specify the URL= sub-parameter in the parameter for the 
BODY file, as in the following:   

  
  ods html path ='C:\MyDocuments '   
           body ='body.htm' 
           (url ='http://www.unc.edu/~jismith');  
   
The results will be identical. 
   
3) ANCHOR= :  Each output object in the BODY file is identified by an 
HTML <ANCHOR> tag. These anchor tags allow the CONTENTS, 
PAGE and FRAME files to link to, or reference the output objects in the 
BODY file. You can change the base name for the HTML anchor tags with 
the ANCHOR= parameter. The syntax for this option is:   
 
 
  anchor = 'anchor-name';  
 
 
Since each anchor name in a file must be unique, ODS will automatically 
“increment” the name that you specify.  For example, if you specify   
 
 
  anchor = 'tabulate';   
 
 
ODS names the first anchor TABULATE. The second anchor is named 
TABULATE1; the third is named TABULATE2, and so on. The anchor 
names are only of interest to you if you need to write to the HTML page; 
otherwise you need not concern yourself with them.  However, you do need 
to remember to always specify a new anchor name each time you open the 
BODY file so that the same anchor tags are not written to the file again. 
 
4) NO_TOP_MATTER and NO_BOTTOM_MATTER parameters:    
These parameters circumvent the default action of writing some HTML to 
the top and bottom of the file that is open for HTML output. The benefit of 
these parameters is that the HTML BODY page is “cleaner” when viewed 
by the browser.  
 
5) Descriptive text parameter:  This parameter allows you to include 
comments in between the output of your PROCs.    You specify the 
descriptive text inside parentheses next to the BODY=, CONTENTS=, 
PAGE=, or  FRAME= options. Adding comments to your HTML page is 
helpful for many reasons. For example, you might like to point out some of 
the interesting results you obtained. 
 
EXAMPLE 1,  Putting it all together. The following code places 
output from several procedures on the same HTML page and uses many of 
the HTML parameters discussed above - including incorporating 
descriptive text between the output objects.  The SAS statements are 
numbered for comments following the code: 
  
 1)  libname  health 'C:Data’; 
 2)  filename web    'C:\Data\body.htm'; 
 3)  ods listing close;  
 4)  ods html path = 'C:\Data’ 
          (url = 'http://www.unc.edu/~jismith/')  
          body = web (no_bottom_matter); 
 5)  proc univariate data=health.meddat;  
        var inpdol outpdol;  
 6)  run; 
 7)  ods html close; 
 8)  filename web 'C:\Data\body.htm' mod;  
 9)  data _null_; 
 10)    file web; 
 11)    put '<h3> We want to put comments in   

         after the first procedure. </h3>';   
 12) run;  
 13) ods html body   = web (no_top_matter 
                            no_bottom_matter) 
              anchor = 'univ';  
 14) proc freq data=health.meddat;  
        table site;   
 15) run; 
 16) ods html close;   
 17) data _null_;   
        file Web;   



 

 

 
        put '<h3> We also want comments after 
             the second procedure is run.</h3>’; 
 18) run;  
 19) ods html body   = web (no_top_matter) 
              anchor = 'freq'; 
 20) ods html close; 
 
 
And now the comments: 
 
(1) Identifies the location of the SAS catalog (C\:Data) containing the SAS 
data set used for the PROCS. 
 
(2) The FILENAME statement creates a fileref (WEB) for the BODY file, 
where all the output will be stored.  Recall the default list for HTML is 
SELECT ALL.  Since no selection commands are specified, everything 
included in the program will be sent to the HTML file at 
‘C:\Data\body.htm’     
 
(3) The Listing destination is closed to free up resources. 
 
(4) The NO_BOTTOM_MATTER option suppresses any default HTML 
at the bottom of ' C:/Data/body.htm'  
   
(5) All statistics created by PROC UNIVARIATE will be generated for the 
variables INPDOL and OUTPDOL. 

 
(6) Remember that a RUN statement goes after the PROC, and before 
closing the HTML destination. 
 

(7) The HTML destination must be closed to append to it later.   
 
(8) This references the BODY file used above, and MOD indicates that we 
want to append to  the file.    
 
(9) This DATA _NULL_ step writes some descriptive HTML code to the 
BODY file via the PUT and FILE statements.  
 
(13) This opens the HTML destination ‘C:\Data\body.htm’ as identified by 
the fileref WEB, and suppresses any default HTML code on the top and 
bottom of the file.  The ANCHOR= option creates a base name for the 
HTML anchor tags.  You should always specify a new anchor name each 
time you open the BODY location so that the same anchor tags are not 
written to the file again. 
 
(19) Open the HTML destination again in order for the new output to be 
written to the HTML file.  The ANCHOR statement provides a new base 
name.  
 
The resulting HTML page is shown below.  The name of the HTML file 
that is created is ‘body.htm’ and it is stored in ‘C:\Data’.  Since we did not 
specify a template, the default template is used.   

 
 
 
 
 

The UNIVARIATE Procedure 
Variable: INPDOL 

 

Moments 

N 1000 Sum Weights 1000 

Mean 247.50903 Sum Observations 247509.03 

Std Deviation 1354.43565 Variance 1834495.93 

Skewness 9.68499218 Kurtosis 119.342445 

Uncorrected SS 1893922159 Corrected SS 1832661439 

Coeff Variation 547.226762 Std Error Mean 42.831016 

    

Basic Statistical Measures 

Location Variability 

Mean 247.5090 Std Deviation 1354 

Median 0.0000 Variance 1834496 

Mode 0.0000 Range 23018 

    Interquartile Range 0 

    

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t T 5.778734 Pr > |t| <.0001 

Sign M 43.5 Pr >= |M| <.0001 

Signed Rank S 1914 Pr >= |S| <.0001 

     

Quantiles (Definition 5) 
Quantile Estimate 

100% Max 23018.39 

99% 5618.30 



 

 

95% 1538.71 

90% 0.00 

75% Q3 0.00 

50% Median 0.00 

25% Q1 0.00 

10% 0.00 

5% 0.00 

1% 0.00 

0% Min 0.00 

  

Extreme Observations 

Lowest Highest 
Value Obs Value Obs 

0 1000 11367.8 722 
0 999 12175.4 983 
0 998 13119.0 162 

 
 
 
 
 
 
 

The UNIVARIATE Procedure 
Variable: OUTPDOL 

 

Moments 

N 1000 Sum Weights 1000 

Mean 111.39919 Sum Observations 111399.19 

Std Deviation 248.217815 Variance 61612.0838 

Skewness 9.53237587 Kurtosis 139.188553 

Uncorrected SS 73960251.2 Corrected SS 61550471.7 

Coeff Variation 222.81833 Std Error Mean 7.84933652 

    

Basic Statistical Measures 

Location Variability 

Mean 111.3992 Std Deviation 248.21782 

Median 44.0000 Variance 61612 

Mode 0.0000 Range 4523 

    Interquartile Range 107.15000 

    

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 14.19218 Pr > |t| <.0001 

Sign M 390.5 Pr >= |M| <.0001 

Signed Rank S 152685.5 Pr >= |S| <.0001 

     

Quantiles (Definition 5) 
Quantile Estimate 

100% Max 4522.680 

99% 970.105 



 

 

95% 412.975 

90% 267.525 

75% Q3 117.150 

50% Median 44.000 

25% Q1 10.000 

10% 0.000 

5% 0.000 

1% 0.000 

0% Min 0.000 

  

Extreme Observations 

Lowest Highest 
Value Obs Value Obs 

0 998 1338.90 221 
0 997 1415.49 58 
0 989 1627.62 147 
0 978 3535.44 414 
0 975 4522.68 415 

We want to put comments in after the first procedure. 
 

 
 
 

The FREQ Procedure 
 

SITE Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 1000 100.00 1000 100.00 

We also want comments after the second procedure is run. 
 
 
(Continued Additional HTML Parmeters) 
6) NEWFILE= parameter: In the HTML output shown above, you might 
have wanted a separate page (file) for each table, rather than having all 
tables on the same page.  For this purpose, you can use NEWFILE=  to 
specify the starting point for each new BODY file. The syntax for this 
option is,   
 
  newfile = <starting point>;   
 
where a starting point can be: 
   
NONE - write all output to the BODY file that is currently open   
OUTPUT - start a new BODY file for each output object   
PAGE - start a new BODY file for each page of output   
PROC - start a new BODY file for each new procedure  
BYGROUP – start a new BODY file for each new bygroup.   
 
Just as ODS “increments” the name of the anchor, ODS will also 
automatically  increment the names of the new files.  For example, if the 
original BODY file is named RESULTS, each new BODY file that is 
created based on the NEWFILE parameter will be called RESULTS1, 
RESULTS2, etc.  
 
7) PAGE= parameter:  If the NEWFILE= parameter is specified, you may 
also want to include the PAGE= parameter in your HTML statements:  
 
  
   page=<file-specification> ; 
 

The file specified will contain a description of each page of the BODY file 
as well as links to the BODY files. 
 
 
EXAMPLE 2,  Putting it all together (again).  The following 
program illustrates the NEWFILE= parameter and the PAGE= parameter, 
as well as some HTML options already discussed. 
 
 
     libname health 'C:/Data';  
  1) ods listing close; 
  2) ods html  
         path    ='C:/Data' 
         (url    ='http://www.unc.edu/~jismith')   
         file    ='file.htm'   
         contents='contents.htm'  
         frame   ='frame.htm' 
         page    ='page.htm' (no_top_matter) 
         newfile =page; 
  3) ods html select Moments;  
     proc univariate data=health.meddat;  
        var dentdol drugdol ;  
     run;   
     proc print data=health.meddat;  
        var site person contyr; 
     run;  
  4) ods html close;  
 
 
 



 

 

(1) The first ODS statement closes LISTING as a destination for output. 
This is done to conserve resources   
 
(2) The following things happen in this ODS statement: 
      -       the PATH=  specifies where to store your HTML files; 

- the URL= sub-parameter tells ODS to use this URL for links and 
references; 

      -        the FILE=  tells ODS the location of the body file;   
- the CONTENTS=  tells ODS to use this file for links to the body 

file for every HTML table that is created in a PROC or DATA  
step. 

- the FRAME= parameter puts all files included in the ODS 
HTML  statement on one screen. 

- the PAGE= parameter tells ODS to use this file to store links to 
the BODY file for  every page of HTML that ODS creates from 
a PROC or DATA step. 

- the NEWFILE= option tells ODS to create a new BODY file 
for each  new page of output.  In this case this would mean a new 
file of output for each variable in the UNIVARIATE procedure 
and a new file for the PROC PRINT output.  The name of each 
new file is based on the name specified by FILE= option.  The 
BODY files that are created in this example are FILE.HTM, 
FILE1.HTM, and FILE2.HTM. 

 
(3) This ODS statement instructs ODS to send only the ‘Moments’ 
statistics from the PROC UNIVARIATE to the HTML output    
destination.  
 
(4) The final ODS statement closes the HTML destination in order for 
output to be  sent there.    
 
 
Results of EXAMPLE 2 
All files created from the above example are shown on the next page. The 
Table of Contents file comes from the CONTENTS= 'CONTENTS.HTM' 
parameter.  Each of the references under the procedure titles is a hypertext 
link to the location of the respective table in the BODY file. 
 
Below the Table of Contents file is the Table of Pages file created from the 
PAGE= 'PAGE.HTM' (NO_TOP_MATTER) option.  Each page reference 
(PAGE 1, PAGE 2, PAGE 3) is a hypertext link to that page in the BODY 
file. 
 
Next to the Table of Contents file and the Table of Pages file are each of 
the BODY files that are created.  The first BODY file that is created is 
called FILE.HTM, and it contains the Moments data for the variable 
DENTDOL.  This page is created first because DENTDOL is the first 
variable listed in the PROC UNIVARIATE, and PROC UNIVARIATE is 
the first PROC in the program.  The second BODY file created is called 
FILE2.HTM and it contains the Moments data for DRUGDOL.  The last 
page, FILE3.HTM is from the PROC PRINT   (note: not all observations 
are included in order to conserve space).   
 
By clicking on a reference on either the Table of Contents display or the 
Page file display, we can link to each of the BODY files. The Frame page, 
FRAME.HTM, combines the PAGE file, CONTENTS file, and whichever 
BODY file you create, onto one page. 
 
We have reviewed a few of the parameters used with the HTML 
destination.  Others can be found in the “The Complete Guide to the SAS® 
Output Delivery System, Version 8.” 
 
 
ODS OUTPUT DESTINATION 
The ODS OUTPUT statement is used to specify an action, or to create one 
or more data sets.  When you first start SAS Version 7 or Version 8, the 
Output destination is closed and the exclusion list is set to EXCLUDE 
ALL.  You can change these default actions with the ODS OUTPUT 
statement.  
 
 
 
 

Specifying an action 
When used to specify an action, the syntax of the ODS OUTPUT statement 
is   
 
  ods output <action>;   
 
where the action choices are  
  
CLEAR - set the list for the OUTPUT destination to EXCLUDE ALL.   
SHOW - display the selection or exclusion list that apply at this point  
   in  the program in the SAS log 
CLOSE - close the OUTPUT destination. Once the destination is  
   closed, you cannot send output to this destination.   
 
 
Creating output data sets 
You open the Output destination by specifying the data set(s) that you 
would like created. To create a single output data set, the syntax is,   
 
  ods output <output-object> = <sas data set>;  
 
where the output-object can be identified with the use of the ODS TRACE 
statement.  This example illustrates creating an Output file:  
 
  ods listing; 
 
  ods trace on / listing; 
  ods output BasicMeasures = measures;   
 
  proc univariate data = meddat;   
        var meddol suppdol;   
  run;   
  ods trace off; 
 
Here we have both the Listing destination and the Output destination open..  
Although all the PROC UNIVARIATE statistics will be sent to the Listing 
destination (whose default value is SELECT ALL), only the 
BasicMeasures statistics will be sent to the Output destination.  You can 
look in the log or in the SAS Explorer window (in this case in the WORK 
library), to see that ODS has created the MEASURES data set. This newly 
created SAS data set will have the BasicMeasures statistics for both the 
MEDDOL and SUPPDOL variables.  By looking in the Results window 
and clicking on BasicMeasures, you will see in the Output window the 
BasicMeasures statistics.  Unlike the HTML destination, you do not have 
to close the Output destination to have objects sent there. 
 
To create a separate output data set for each variable used in a procedure 
or data step, use the following syntax:   
 
  ods output <output-object> (match_all)  
             = <sas data set>;   
 
For example, the following code will select the OneWayFreqs statistics 
from the PROC FREQ.  The OUTPUT statement creates a different data 
set for each variable in the PROC FREQ procedure because of the 
MATCH_ALL option, and bases the name of these data sets on the name 
STATS:   
 
  ods output onewayfreqs (match_all) = stats;   
  proc freq data='A:/test';   
  run;  
  ods output close;   
  run;  
 
 
When this program is run, the data sets created are STATS, STATS1, 
STATS2 ... STATSN for however many variables there are in the data set 
TEST. You may find, however, that you would like to combine the data 
sets for each variable into one data set. This is easily done. 



 

 

contents.htm: 
 
 
 
Table of Contents  
 

• The Univariate Procedure 

· DENTDOL  

· Moments  

· DRUGDOL  

· Moments  

• The Print Procedure 

· Data Set IN.AGGREC  

 
 
 
 
page.htm: 
 
 
Table of Pages  
 
 

• The Univariate Procedure 

· Page 1  

· Page 2  

• The Print Procedure 

· Page 3  

 
 
 
 

  file.htm: 
 

The UNIVARIATE Procedure 
Variable: DENTDOL 

Moments 

N 100 Sum Weights 100 

Mean 52.38 Sum Observations 5238 

Std Deviation 226.742535 Variance 51412.1774 

Skewness 8.17753631 Kurtosis 73.6960078 

Uncorrected SS 5364172 Corrected SS 5089805.56 

Coeff Variation 432.879984 Std Error Mean 22.6742535 

 
 
 
  file2.htm: 

The UNIVARIATE Procedure 
Variable: DRUGDOL 

Moments 

N 100 Sum Weights 100 

Mean 14.8721 Sum Observations 1487.21 

Std Deviation 34.3546782 Variance 1180.24391 

Skewness 3.32771071 Kurtosis 13.1047585 

Uncorrected SS 138962.083 Corrected SS 116844.147 

Coeff Variation 231.000855 Std Error Mean 3.43546782 

 
 
 
  file3.htm: 
 

Obs SITE PERSON CONTYR 

1 1 MA250247 01 

2 1 MA250247 02 

3 1 MA250247 03 

4 1 MA250247 04 

5 1 MA250247 05 

6 1 MA250255 01 

7 1 MA250255 02 

8 1 MA250255 03 

9 1 MA250255 04 

10 1 MA250255 05 

11 1 MA250263 01 

. . . . 

. . . . 

. . . . 

93 1 MA25162A 05 

94 1 MA251638 01 

95 1 MA251638 02 

96 1 MA251638 03 

97 1 MA251638 04 

98 1 MA251638 05 

99 1 MA251646 01 

100 1 MA251646 02 

 



 

 

  
First you create a macro variable, which  stores a list of the data sets that 
are created in the ODS OUTPUT statement.  In a separate DATA step, you 
combine the data sets by concatenation. This is illustrated in the example 
below. 
  
  ods output OneWayFreqs (match_all=name)=stats;  
  
 To concatenate the data sets, you specify 
 
  data all;   
     set &name;   
  run; 
  
 
A little advice about using the MATCH_ALL option. In the following 
program, separate data sets are created for the Moments data, but not for 
the Basic Measures data.  All the variables are included in one data set for 
the Basic Measures statistics. 
 
  ods output BasicMeasures Moments 
             (match_all)=moments;  
 
To create output separate output data sets for both sets of statistics, we 
would need to specify:   
 
  ods output BasicMeasures (match_all)= measures     
             Moments (match_all) = moments;   
 
To create a permanent data set with the OUTPUT statement, use the 
following syntax: 
  
  libname in 'A:/';   
  ods output BasicMeasures = in.measures;   
 
 
 
OUTPUT Parameters 
PERSIST parameter: This parameter is useful if you are creating output 
data set and want the data set definition to endure even when the procedure 
or DATA step ends, until you explicitly modify the list.   The syntax is: 
  
  ods output  
  output-object<(MATCH_ALL<=macro-var-name> 
  PERSIST=PROC|RUN)>=<SAS-data-set> ;  
  
 
The PERSIST parameter specifies when to close any data sets that are 
being created, and when to remove output objects from the SELECTION 
list for the OUTPUT destination.   The PERSIST parameter can only be 
used in conjunction with the MATCH_ALL parameter. 
 
PROC argument:  The PROC argument to the PERSIST parameter 
preserves the list of definitions that are specified in the ODS OUTPUT 
statement across step boundaries. This means that the list of output objects 
specified in the ODS OUTPUT statement is preserved even after the 
procedures or DATA steps have completed.  You must explicitly modify 
the list to change the definitions;  e.g. with  
 
  ods output exclude all;   
 
 
RUN argument:  The RUN argument to the PERSIST parameter serves 
exactly the same function as the PROC statement, as it also keeps the data 
sets open.  The following is an example of a program that implicitly uses 
the RUN argument but does not specify the PERSIST option (although it 
was intended to). 
   
 
   
  ods output OneWayFreqs(MATCH_ALL=name)=stats;   
  proc freq data=health.test;   
  run;   
  proc freq data=health.test2;   
  run; 

In this case, the data sets are not created for the second PROC FREQ.  
Without the PERSIST option, the second procedure is treated as a step 
boundary, and a data set for the variables in HEALTH.TEST2 is not 
created. This is easily corrected by explicitly specifying: 
   
  ods output OneWayFreqs(match_all=name 
             persist=proc) = stats; 
 
 
 
CONCLUSION  
The purpose of this paper was to help you get started using the Output 
Delivery System.  Our examples illustrate that you can create web pages 
with the addition of as little as one line of code to your existing SAS 
program.  With the addition of a single OUTPUT statement you can also 
create one or more SAS data sets.   With a few additional words you can 
select your object objects and send them to more than one destination at a 
time.  The best way to convince yourself, though, is to visit our website and 
submit the examples presented in this paper for yourself.  The website can 
be found at: 
 

http:// www.unc.edu/~lkbryant/odsworkshop 

REFERENCES  
SAS®  Version 8 Software. 
SAS® Institute, The Complete Guide to the SAS® Output Delivery 
System, Version 8 

ACKNOWLEDGEMENTS 
We wish to thank Paul Kent, Base SAS R&D Director, and Chris Olinger, 
Base SAS Software Manager, for teaching classes on these subjects at  our 
UNC site and at local SAS users group meetings.  We also wish to thank 
the SAS Technical Support Division for answering our questions so 
promptly regarding items in this paper.     
 
CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  Contact the 
authors at: 
 

Lara K. Bryant Sally S. Muller 
Jordan Institute for Families Jordan Institute for Families 
CB 3550 CB 3550 
301 Pittsboro St.  301 Pittsboro St. 
Chapel Hill, NC  27599  Chapel Hill, NC  27599 
Email: lbryant@email.unc.edu  Email: sally@email.unc.edu 
 Work: 919-843-7798 
 Fax:    919-967-7015 
 
 
Ray Pass 
Ray Pass Consulting  
5 Sinclair Place 
Hartsdale, NY 10530 

Email: raypass@att.net 
Work: 914-693-5553 
eFax:  914-206-3780  

 


