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Audio Inpainting
Amir Adler, Valentin Emiya, Maria G. Jafari, Michael Elad, Rémi Gribonval and Mark D. Plumbley

Abstract—
We propose the Audio Inpainting framework that recovers

portions of audio data distorted due to impairments such as
impulsive noise, clipping, and packet loss. In this framework, the
distorted data are treated as missing and their location is assumed
to be known. The signal is decomposed into overlapping time-
domain frames and the restoration problem is then formulated
as an inverse problem per audio frame. Sparse representation
modeling is employed per frame, and each inverse problem is
solved using the Orthogonal Matching Pursuit algorithm together
with a discrete cosine or a Gabor dictionary. The Signal-to-Noise
Ratio performance of this algorithm is shown to be comparable
or better than state-of-the-art methods when blocks of samples of
variable durations are missing. We also demonstrate that the size
of the block of missing samples, rather than the overall number
of missing samples, is a crucial parameter for high quality signal
restoration. We further introduce a constrained Matching Pursuit
approach for the special case of audio declipping that exploits the
sign pattern of clipped audio samples and their maximal absolute
value, as well as allowing the user to specify the maximum
amplitude of the signal. This approach is shown to outperform
state-of-the-art and commercially available methods for audio
declipping in terms of Signal-to-Noise Ratio.

Index Terms—Inpainting, clipping, sparse representation,
matching pursuit.

I. I NTRODUCTION

Speech and music signals are often subject to localized
distortions, where the intervals of distorted samples are sur-
rounded by undistorted samples. Examples include impulsive
noise or clicks (see Fig. 1a), clipping (see Fig. 1b), CD
scratches, packet loss in cordless phones or Voice over IP
(VoIP) and more. In such situations, the distorted samples can
be treated as missing. A restoration algorithm is employed to
reconstruct the missing samples, in a similar way as for image
inpainting (see Fig. 1c). However, in the audio field, such prob-
lems have been treated separately and depending on the con-
text, they have been referred to as audio interpolation [2]–[6],
extrapolation [3], [7], [8], imputation [9], [10], induction [11],
(bandwidth) extension [12]–[15] or concealment [16], [17].

Substantial effort has been focused on the restoration of
audio signals corrupted by clicks due to old recordings or
scratched CDs (see Fig. 1a). In this problem, intervals of
corrupted samples – from20 µs to4 ms [4] – occur at random
locations. Typical approaches employ autoregressive (AR)
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(a) Speech signal corrupted by clicks (circles).
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(b) Clipped version (black) of a speech signal (gray).

(c) The image inpainting problem: recovery of locally-hidden pixels.

Fig. 1. Examples of restoration problems related to inpainting.

modeling [2], [3], or Bayesian estimation to recover the cor-
rupted samples [4]. Other methods utilize neural networks [18]
or sinusoidal modeling [5], [8]. A related problem is automatic
speech recognition in the presence of isolated noisy samples.
This problem is treated in [10] with a compressive sensing
approach in the spectrogram image domain, and by solving
an l1 regularized least squares problem.

Another important – though less often addressed – problem
is audio clipping [6], [7], [19], which refers to the truncation
of the waveform beyond a threshold when the maximum
range in an acquisition system is exceeded (see Fig. 1b). The
clipped samples are arranged in groups and their locations are
determined by the amplitude of the signal (rather than being
randomly spread). The declipping problem is particularly
challenging for this reason and as the information carried by
the highest-amplitude samples is completely absent.

Long intervals of samples may be lost during transmission
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over cordless phones or in VoIP systems, where the problem
is addressed using packet loss concealment algorithms [16],
[17]. Missing intervals lengths are in the range of5 ms to
60 ms, which are close to the typical duration for the pseudo-
stationarity of speech signals. The low latency requirement in
the VoIP case results in relatively simple algorithms; however,
estimating missing packets in peer-to-peer repositories where
several portions of a sound are not available from the network
is a new application where higher quality reconstruction can
be expected (as the latency requirement is less stringent).

Finally, instead of missingsamples, the unreliable or miss-
ing audio data can be localized time-frequency regions [5],
[9], [11], [14], [20], in classification applications like auto-
matic speech recognition [9], [20] or source separation with
time-frequency localized interference – the phrase “audio
inpainting” has been used once in this specific case [11].
Bandwidth extension [12]–[15] is another important time-
frequency-domain application, where high frequency content
is estimated from the low frequency content in order to provide
high quality audio.

In this paper, we present a unified framework for the
restoration of distorted audio data, leveraging the concept
of Image Inpainting [21]–[23]. In the proposed framework,
termedAudio Inpainting, the distorted data is assumed missing
and its location is assumed to be known a-priori. We further
employ Sparse Representations (SR), which have been demon-
strated to faithfully model audio signals [24], [25] and to
address the image inpainting framework [22], [26], [27]. The
proposed approach is directly based upon those prior works.

The contributions of this paper are four-fold:

a) Audio inpainting is defined as an inverse problem, based
upon the concept of image inpainting.

b) A framework for audio inpainting in the time domain is
proposed, based on sparse representations. It exploits two
possible dictionaries (discrete cosine and Gabor) known to
provide accurate sparse models for audio signals.

c) The Orthogonal Matching Pursuit (OMP) algorithm for
audio inpainting is adapted, in particular to deal with the
properties of the Gabor dictionary.

d) A constrained matching pursuit approach is applied to
significantly enhance the performance for audio declipping
problems.

This paper is organized as follows. In Section II, audio
inpainting is formalized as an inverse problem. The proposed
framework is introduced in Section III including the sparse
models used for time-domain audio inpainting. The adaptation
of the OMP algorithm for audio inpainting in the time domain
and for audio declipping is presented in Section IV. Several
experiments are proposed in Section V, while we discuss our
findings and draw conclusions in Section VII.

II. A UDIO INPAINTING PROBLEM STATEMENT

We define audio inpainting as a general problem encoun-
tered in many applications: one observes a partial set of
reliable audio data while the remaining unreliable data is
either totally missing or highly degraded; the unreliable data
is considered missing and it is estimated from the reliable data

portion. Optionally, some information about the missing data
may be available, like in the clipping case explained below.

The general formulation of audio inpainting is given in
Section II-A while several particular time-domain cases are
detailed in Sections II-B and II-C.

A. Formulation of audio inpainting

We consider a vectors ∈ R
L of audio data and an a-priori

known partition{Im, I r} of the supportI , {1, 2, · · · , L}
of s: Im ⊂ I andI r , I\Im. We assume that the coefficients
s (Im) are either missing or masked by a severe distortion.
Thus, the observed datay ∈ R

L coincides withs on I r only.
The audio inpainting problem is defined as the recovery of the
coefficientss (Im) based on the knowledge of:

1) the reliable datayr , y (I r) = s (I r),
2) the partition{Im, I r},
3) additional information about the observed signal,
4) and, optionally, information about the missing data (see

e.g. in the case of clipping below).

In matrix form, the reliable datayr result from the linear
model

yr = Mrs, (1)

whereMr ∈ {0, 1}
|I r|×L is the so-called measurement matrix

obtained from theL × L identity matrix IL by selecting
the rows I r associated with the reliable coefficients ins.
The notation|I r| above denotes the number of elements in
I r. In a similar way, the missing data to be recovered are
s (Im) = Mms, whereMm ∈ {0, 1}

|Im|×L consists of the
rows Im in IL.

In the general audio inpainting framework, audio data can
be either samples in waveforms or coefficients in transforms
like time-frequency representations. The problem formula-
tion above can be used for multi-dimensional signals like
multichannel waveforms or time-frequency coefficients, by
simply considering the equivalent vectors (as images that are
commonly vectorized [23]).

In the rest of this paper, we only consider the inpainting
of missing samples in a single-channel waveform. The multi-
dimensional case is discussed in the conclusion (see Sec. VII).

B. Inpainting samples distorted by impulsive noise

In the particular case of a signal corrupted by impulsive
noise such as clicks (see Fig. 1a),Im is a set of integers
between1 andL and must be estimated in a preliminary stage.
One often considers that the distorted samples are corrupted
by a Gaussian noisen with high variance. Hence, the complete
observed signal includes both the reliable samplesyr and
distorted onesym:

{
yr = Mrs

ym = Mms+ n,
(2)

where the samplesMms in ym are masked byn so that they
are considered as unknown.
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C. Inpainting intervals of missing samples

In the case where intervals of samples are missing, due to
packet loss during transmission or to masking by audible in-
terferences,Im is composed of groups of consecutive integers:
the sampless (Im) are totally missing and one only observes
yr = Mrs.

In the case of clipped signals, the samples to be estimated
are also arranged in intervals of consecutive samples, as
depicted in Fig. 1b. Their locations depend on the amplitude
of the signal, such that

Im , {n |1 ≤ n ≤ L, |s (n)| ≥ θclip } , (3)

where θclip is the clipping level. One observes both the un-
clipped, reliable samplesyr and the clipped, masked samples
ym

{
yr = Mry = Mrs

ym = Mmy = Mm sign (s) θclip,
(4)

wheresign (·) is the element-wise sign function. As presented
in the next sections, the information provided byym, even
though very crude – a sign (per sample) and the clipping level
–, still substantially enhances the estimation performance.

III. T IME-DOMAIN FRAMEWORK AND MODELS

The proposed framework focuses on time-domain audio
inpainting. It relies on a frame-based processing, as detailed
in Section III-A and on the sparse representations modelingof
audio signals, as presented in Section III-B. Two dictionaries
used in this modeling are introduced in Section III-C.

A. Frame-based processing and reconstruction

As in many audio processing tasks, the signal is locally
processed:

• by segmenting it into frames,
• by independently inpainting each frame,
• and by synthesizing the full restored signal using the

overlap-add (OLA) method [28].

We decompose the signal into overlapping frames indexed by
i, starting at timeti and weighted by an analysis window
wa with lengthN . By straightforwardly adapting to the local
frames the problem statement defined for the full signal in
Section II, the reliable samples in framei can be written as

yr
i = Mr

isi (5)

whereMr
i is the measurement matrix of thei-th frame ob-

tained fromMr andsi (t) , s (t+ ti)wa (t) is the windowed
frame defined for0 ≤ t ≤ N − 1. We also define the supports
I r
i andIm

i of the reliable samples and of the missing or masked
samples, respectively. Once the estimationŝi of si by some
inpainting algorithm is achieved, the reconstruction of the full
signal is obtained as

ŝ(t) ,
∑

i

ws (t− ti) ŝi (t− ti) (6)

where ws is the synthesis window such that∑
i ws (t− ti)wa (t− ti) = 1, ∀t. In the proposed

approaches, we utilized64ms-frames with 75% overlap,
a rectangular window forwa and a sine window forws.

B. Sparse Representations modeling of audio frames

In the Sparse Representations (SR) modeling frame-
work [23], it is assumed that each frame is well approximated
by a sparse linear combination of the columns of a (possibly
overcomplete) dictionary:

si ≈ Dxi, (7)

whereD ∈ R
N×KD is the dictionary,N ≤ KD and xi ∈

R
KD×1 is the representation vector of thei-th frame.xi is

assumed to be sparse,i.e. to have few non-zero coefficients
compared toN . As a consequence, we can also utilize the SR
model for the observed reliable samples in each frame

yr
i , Mr

isi ≈ Mr
iDxi. (8)

We propose to recover the unknown samplessi (I
m
i ) by

estimating asx̂i the (sparse) representation vector of each
frame, given only the clean observed samples (8) and limited
side information (for the clipping case)

ŝi (I
m
i ) = Mm

i Dx̂i. (9)

This formulation including the notion of sparsity was first
introduced for image inpainting [22] with a global treatment
with global transforms. Then, efforts were dedicated to work
on local patches – similar to audio frames – and to introduce a
learned dictionary to improve the inpainting results [26];they
have been improved [27] by better handling the reconstruction
problem by learning the dictionary directly from the corrupted
image, thereby getting a dictionary that is tightly relatedto the
specific image content.

C. Dictionaries

We propose two options to choose a dictionaryD in
which audio signals are sparse: the Discrete Cosine Transform
dictionary, and a Gabor dictionary. Both are widely used
for sparse models of audio signals [24], [25], [29]. Other
fixed dictionaries such as multiscale DCT [30], or a learned
dictionary [26] specific to particular inpainting tasks mayalso
be interesting options.

1) Discrete Cosine Transform (DCT) dictionary: The first
option consists in a windowed Discrete Cosine Transform
(DCT) overcomplete dictionaryDc =

[
dc
0, . . . ,d

c
Kc−1

]
,

atomj being defined for0 ≤ j ≤ Kc − 1 and0 ≤ t ≤ N − 1
as

dc
j (t) , wd (t) cos

(
π

Kc

(
t+

1

2

)(
j +

1

2

))
(10)

whereKc is the size of the DCT dictionary –i.e. the number of
discrete frequencies – andwd is a weighting window set by the
user. This choice is motivated by the wide use of windowed
DCT atoms for sparse representation of audio signals [25].
However, DCT atoms can be generalized as Gabor atoms by
introducing an initial phase in order to increase the potential
fit to the signal structure, resulting in a sparser approximation.
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2) Gabor dictionary: The second option aims at sparsely
modeling arbitrary-phase sinusoidal components by using a
Gabor dictionaryDg =

{
d
g
(j,ϕ)

}
(j,ϕ)∈Γ

in which the atoms

are index by a continuous setΓ , J0,Kg − 1K × [0, 2π[ and
are defined as

d
g
j,ϕ (t) , wd (t) cos

(
π

Kg

(
t+

1

2

)(
j +

1

2

)
+ ϕ

)
, (11)

whereKg is the size of the Gabor dictionary.
Note that in the current case of a continuously-indexed

dictionary, eq. (7), (8) and (9) are still valid if we define

Dgxi =
∑

(j,ϕ)∈Γ
xi(j,ϕ) 6=0

d
g
j,ϕxi (j, ϕ) (12)

wherexi = {xi (j, ϕ)}(j,ϕ)∈Γ. Indeed, eq. (12) is a finite sum
since only a few coefficients in the sparse representation vector
xi are non-zero. The algorithmic aspects of this decomposition
will be addressed in Sections IV-B and IV-C.

IV. A UDIO INPAINTING ALGORITHMS BASED ON

ORTHOGONAL MATCHING PURSUIT

For a given dictionaryD, we use the Orthogonal Matching
Pursuit algorithm to perform the inpainting of an audio frame,
as presented in Section IV-A. Some dictionary-dependent
algorithmic stages are then detailed in Section IV-B and IV-C.
An extension of the algorithm specific to declipping is finally
detailled in Section IV-D.

A. Orthogonal Matching Pursuit (OMP) algorithm for in-
painting

The approach emerges from the following optimization
problem

x̂i = argmin
x

‖x‖0 s.t. ‖yr
i −Mr

iDx‖22 ≤ ǫi. (13)

for a given approximation error thresholdǫi.
The l0 pseudo-norm‖x‖0 counts the non-zeros compo-

nents of the vectorx, leading to an NP-hard problem [31],
[32]. Therefore, a direct solution of (13) is infeasible. An
approximate solution is given by applying the Orthogonal
Matching Pursuit (OMP) algorithm [24], [33], which suc-
cessively approximates the sparsest solution. The inpainting
OMP algorithm [23], detailed in Table I, is a slightly modified
version of the classical OMP algorithm in the sense that all
dictionary columns̃dj are internally normalized to unit norm,
using the diagonal matrixW, due to the availability of only
the clean samples. The algorithm stops iterating as soon as
either the residual energy drops below the thresholdǫOMP

i or
the maximum sparsity levelKOMP is exceeded.

B. Atom selection

When using the DCT dictionary, the algorithmic stage for
the atom selection (14) at each iteration is well known: it
consists of explicitly computing the correlation mentioned in
eq. (14) of Table I, or of using a fast transform.

TABLE I
OMP INPAINTING ALGORITHM

yr
i, Mr

i, D = {dj}j∈Γ
, KOMP, ǫOMP

i

Initialization:
• Dictionary D̃ =

{
d̃j

}
j∈Γ

= Mr
i ×D×W, whereWjj′ = 0

for j 6= j′ andWjj =
∥∥Mr

idj

∥∥−1

2
.

• Iteration counterk = 0
• Support setΩ0 = ∅
• Residualr0 = yr

i

Sparse support selection and coefficients estimation:

Repeat untilk = KOMP or ‖rk‖22 < ǫOMP
i

• Increment iteration counterk = k + 1
• Select atom: find

j = argmax
j∈Γ

| < rk−1, d̃j > | (14)

• Update SupportΩk = Ωk−1 ∪ j
• Update current solution

xk = argmin
u

‖yr
i − D̃Ωk

u‖
2

(15)

• Update Residualrk = yr
i − D̃Ωk

xk

Output: x̂i = Wxk

However, the atom selection (14) needs explaining in the
case of the Gabor dictionary in order to deal with the continu-
ous indexing. Without any approximation, the decomposition
with continuously-indexed atomsdg can be expressed using
pairs of atoms in a discrete dictionary withKg frequency
bins. Pairs of atoms can be either conjugate complex expo-
nentials [24], [34], or pairs of cosine and sine at the same
frequency and with a zero phase [29]. In order to use this
latter option, we introduce sine atomsds

j as

ds
j (t) , wd (t) sin

(
π

Kg

(
t+

1

2

)(
j +

1

2

))
(16)

and we define the unit-norm versioñdc
j and d̃s

j of the atoms
dc
j andds

j , respectively, as described in Table I.
At each iterationk, selecting the best correlated Gabor atom

d
g
j (eq. (14)) is then equivalent to picking the pair

(
d̃c
j , d̃

s
j

)

such that

j = argmin
j∈J1,KD/2K

∥∥∥rk−1 − d̃c
j x̂

c
j − d̃s

j x̂
s
j

∥∥∥
2

2
(17)

where




x̂c
j =

〈d̃c
j ,rk−1〉−〈d̃c

j ,d̃
s
j〉〈d̃

s
j ,rk−1〉

1−〈d̃c
j
,d̃s

j〉
2

x̂s
j =

〈d̃s
j ,rk−1〉−〈d̃c

j ,d̃
s
j〉〈d̃

c
j ,rk−1〉

1−〈d̃c
j
,d̃s

j〉
2

. (18)

This particular selection stage has been proposed in [34,
Appendix II] for conjugate Gabor chirp atoms and the use
of blocks of coherent atoms in MP and OMP has been
further studied in [35]. In the restricted case where atoms in a
candidate pair are uncorrelated

(
i.e.

〈
d̃c
j , d̃

s
j

〉
= 0

)
, eq. (17)

can be simplified asj = argmaxj∈J1,KD/2K

〈
d̃c
j , rk−1

〉2

+
〈
d̃s
j , rk−1

〉2

and the resulting algorithm is equivalent to the
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existing Modified Matching Pursuit [36] and Block OMP
algorithms [37].

C. Solution update

When using the DCT dictionary, the solution update (15)
performed at each iteration usually consists of a least-square
projection.

In the case of the Gabor dictionary, once the best atom
has been added to the set of atoms selected in previous
iterations, the update of the current solution (15) can be
performed by a least-square projection using the selected
Gabor atoms

{
d
g
j,ϕj

}
j∈Ωk

, their phasesϕj being fixed in the

atom-selection stage.
However, this update can be improved by using the equiv-

alent cosine and sine atoms
{
dc
j ,d

s
j

}
j∈Ωk

in the least-square
projection: not only amplitudes but also phases are thus
updated at each iteration, leading to a better approximation
of the signal. As far as we know, such an implementation of
OMP with a Gabor dictionary has never been proposed before.

D. Algorithmic enhancements for inpainting clipped signals

1) The ‘min’ declipping constraint: Inpainting clipped
signals can be performed with the algorithm presented in
Section IV-A, by treating the clipped samples as completely
unknown. However, extra information inherent to this problem
can be integrated as additional constraints into equations(13).
Constrained optimization approaches were also utilized inthe
case ofl1-minimization for image desaturation [38] and of
audio declipping based on a band-limited assumption [7].

Let θclip be the clipping level (which can be easily estimated
as the maximum absolute value among the observed samples)
andMm+

i (resp.Mm-
i ) be the matrix such thatMm+

i si (resp.
Mm-

i si) is the vector of positive (resp. negative) clipped
samples. The matricesMm+

i and Mm-
i are known from the

location and the sign of the clipped samples. The missing
samples should satisfy the ‘min’ constraints

Mm+
i si ≥ θclip andMm-

i si ≤ −θclip. (19)

2) The ‘max’ declipping constraint: The set of ‘min’ con-
straints can be further augmented by ‘max’ constraints, intro-
ducing an upper limit on the absolute value of the recovered
samplesθmax, as follows

Mm+
i si ≤ θmax andMm-

i si ≥ −θmax. (20)

The upper limitθmax is an optional parameter that cannot
be estimated automatically in a straightforward way but may
be adjusted manually by the user.

3) The ‘minmax’ constrained SR problem: Using both sets
of constraints, the ‘minmax’ declipping version of thel0-norm
minimization problem (13) is given by

x̂i = argmin
x

‖x‖0 s.t.





‖yr
i −Mr

iDx‖
2
2 ≤ ǫi

θmax ≥ Mm+
i Dx ≥ θclip

−θmax ≤ Mm-
i Dx ≤ −θclip

(21)

whereθmax can be set to+∞ if one does not want to use the
‘max’ constraint.

TABLE II
SUMMARY OF THE PROPOSED ALGORITHMS: EACH ROW INDICATES THE

ALGORITHM USAGE (GENERAL INPAINTING OR DECLIPPING), DEPENDING
ON POSSIBLE ADDITIONAL CONTRAINTS, WHILE DICTIONARIES VARY

ACCROSS COLUMNS. ALGORITHM NOMENCLATURE APPEARS WITHIN

QUOTES IN EACH CELL.

Additional specifica-
tion

DCT Gabor

Inpainting ‘OMP-C’ [Table I] ‘OMP-G’ [Table I]

Min-constraint
declipping

‘OMP-C-min’
[Table I + eq. (22)]

‘OMP-G-min’
[Table I + eq. (22)]

Minmax-constraint
declipping

‘OMP-C-minmax’
[Table I + eq. (23)]

‘OMP-G-minmax’
[Table I + eq. (23)]

4) OMP declipping algorithm: We propose approximate
solutions by incorporating the constraints (19) and (20) into the
final solution update stage of the OMP Inpainting algorithm.
In other words, the OMP Inpainting algorithm presented in
Table I is applied, in order toselect the sparse support. Once
the supportΩk is selected, the sparse representation coeffi-
cients arere-estimated by solving the following constrained
optimization problem:

xk = argmin
u

‖yr
i − D̃Ωk

u‖2 s.t.

{
Mm+

i DWu ≥ θ̂clip

Mm-
i DWu ≤ −θ̂clip

(22)

in the case of the ‘min’ constraint, or

xk = argmin
u

‖yr
i − D̃Ωk

u‖2

s.t.

{
θ̂max ≥ Mm+

i DWu ≥ θ̂clip

−θ̂max ≤ Mm-
i DWu ≤ −θ̂clip

(23)

for the case of the ‘minmax’ constraint. The constraints
are linear, thus standard convex optimization solvers can be
employed.

In theory, the solution of the constrained problem may not
exist. We observed that this occurs very seldom in practice.
Whenever no solution exists, the frame is restored using the
unconstrained minimizationxk = argminu ‖yr

i − D̃Ωk
u‖2.

V. EXPERIMENTAL RESULTS

A summary of all versions of the algorithm presented
in this paper is given in Table II. This section reports the
major trends through different experiments. The performance
measures are introduced in Section V-A. The test material and
parameter settings are presented in Sections V-B and V-C. The
global performance of all the proposed inpainting algorithms
and a more detailed inpainting experiment are presented in
Section V-D. Section V-E finally focuses on the case of
clipping.

A. Performance measures

The performance can be assessed by the signal-to-noise ratio
(SNR) computed on the full signals, defined by

SNRfull (s, ŝ) , 10 log
‖s‖

2
2

‖s− ŝ‖22
. (24)
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In the reported experiments, the estimate is built by copying
the observed signal and by only substituting the unreliable
samples.

While SNRfull gives an overview of the global quality of
the restored signal, it can be decomposed as

SNRfull (s, ŝ) = SNRm (s, ŝ) + 10 log
‖s‖

2
2

‖s (Im)‖22
(25)

where

SNRm (s, ŝ) , 10 log
‖s (Im)‖

2
2

‖s (Im)− ŝ (Im)‖22
. (26)

SNRm reflects the reconstruction performance per estimated
sample and differs from SNRfull by an offset that does not
depend on the inpainting algorithm. Indeed, the second termin
Eq. (25) is a bias that reflects the degradation rate only. Thus,
SNRm will be preferred to show some detailed performance,
without the influence of this bias, while SNRfull will be used
to assess the global restoration quality.

Note that in the context of a perceptually-motivated eval-
uation of the results, SNR measures may be replaced by
scores from listening tests or by objective measures. No
subjective test specific to audio inpainting has been performed
so far. Besides, existing objective measures for audio quality
assessment are dedicated to applications such as coding [39],
[40], source separation [41] or watermarking. Their use in the
context of audio inpainting should be validated by listening
tests. Thus, working on the perceptual evaluation of audio
inpainting is an important future direction to consider.

B. The collection of tested signals

The experiments are conducted using three datasets:

• Music@16kHz: a set of music signals sampled at16kHz,
this sampling rate being a good trade-off between audio
quality and computational requirements.

• Speech@16kHz: a set of speech signals sampled at
16kHz, i.e. high quality speech for which results can be
compared to the previous case of music signals.

• Speech@8kHz: a set of speech signals sampled at8kHz,
representing phone-quality speech; this dataset was ob-
tained by downsampling the previous16kHz speech
dataset.

Each dataset consists of ten 5-seconds signals from the
2008’s Signal Separation Evaluation Campaign [42] and is
freely available online1. They include a large diversity of
audio mixtures and isolated sources: male and female speech
from different speakers, singing voice, pitched and percussive
musical instruments.

In order to have comparable degradations among all signals
in the clipping experiments (Section V-E), each original signal
is normalized so that the maximum amplitude is 1.

1http://www.irisa.fr/metiss/vemiya/inpainting/ (this url may be changed to
a more stable one by the submission of the final version of thispaper)

C. Parameter settings

A specific training dataset was used to tune the parame-
ters of the inpainting algorithms manually and without fine
adjustment. The values of the tuned parameters are shown in
Table III.

TABLE III
PARAMETER SETTINGS

Parameter Value

Frame length 64 ms (i.e. N , 512 at 8kHz, N ,

1024 at 16kHz)

Frame Overlap 75%

Analysis windowwa rectangular

Synthesis windowws sine

Dictionary size Kc = 2N (DCT), Kg = N (Gabor)

Atom weighting windowwd rectangular (wd = wa)

ǫOMP
i ǫ × |I r

i| where ǫ , 10−6 is a fixed
parameter and|I r

i| is the number of
reliable samples in theith frame

KOMP N
4

θ̂clip ‖y‖
∞

θ̂max 4θ̂clip

D. Inpainting experiments

1) Global effect of the duration of missing intervals:
The inpainting performance of the proposed algorithms was
evaluated for variable durations of missing intervals of sam-
ples. Each experiment tested the performance with the entire
collection of signals, for a fixed missing interval duration
that repeated periodically every 100 ms. The missing intervals
durations were in the range of a fraction of 1ms (corresponding
to impulsive noise or clicks distortions) and up to 10 ms
(corresponding to packet loss scenarios).

For comparison, we used the method by Janssen [2] based
on linear prediction and a reconstruction method based on
spline interpolation – the Matlab ‘interp1’ function. These
methods are representatives of the two main families of state-
of-the-art methods for interpolation of audio data and are able
to handle multiple blocks of consecutive missing samples. In
Janssen’s method, the autoregressive model order is set to
3Nmiss + 2, whereNmiss is the number of missing samples
in the current frame, as recommended by the authors. Note
that the methods used for comparison are applied frame-wise,
by embedding them in the frame-based processing scheme
described in Section III-A.

The results are presented in Fig. 2. On average, the OMP
algorithm with the Gabor dictionary provides an advantage
of 1-2dB compared to the OMP with DCT dictionary. For
Music@16kHz and Speech@8kHz these algorithms also out-
perform Janssen’s approach for short missing intervals of
durations up to 1 ms. For durations above 1ms Janssen’s ap-
proach provides an advantage of 1-3dB. For Speech@16kHz,
Janssen’s method performs better than the proposed ones,
linear prediction being particularly well-adapted for speech.
However, using more information with the proposed method
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Fig. 2. Performance of inpainting algorithms as a function of the duration of missing intervals for each dataset (subfigures). The missing intervals were
generated periodically every 100ms (a total of 50 equal duration missing intervals per signal).

can enhance the performance, as will be shown in the de-
clipping experiment in Section V-E. The spline interpolation
approach provides substantially worse results for all cases.

In terms of computational cost, the proposed approach is
much slower than the methods used for comparison. The
computational cost may be reduced by using fast transform
when handling a DCT of a Gabor dictionary, or by using
algorithms faster than OMP.

2) Fine effect of the ‘topology’ of the missing samples: The
recovery or approximation performance of sparse approaches
is often assessed as a function of the sparsity degree and the
number of observations in the case of a random measurement
matrix [43]. However, the latter assumption, recently high-
lighted in the compressed sensing framework [43], [44], does
not hold in many audio inpainting applications: as introduced
in the previous experiment, one must deal with blocks of con-
secutive missing samples. In this experiment, we investigate
this assumption and assess empirical performance as a function
of the randomness2 and the consecutiveness of the location of
the missing samples. The maximum randomness is achieved
when the missing samples are isolated and distributed accord-
ing to e.g. a uniform law. Conversely, when they are grouped,
the missing samples in a given block are not randomly located,
even if the blocks themselves may be randomly located. Hence
the question: for a fixed number of missing samples, to which
extent is the inpainting of few large blocks a more difficult
problem than the inpainting of many small blocks (or isolated
samples)?

The experimental protocol consists in the following steps:

• Choose a set of frames3

• Fix the number of missing samplesNmiss;
• For each(a, b) ∈ N

2 such thata× b = Nmiss;

– For each frame in the set,

2Here, randomness should be understood in a very common sense.
3The frames are randomly chosen in the datasets, only ensuring that the

energy in the selected frames is high enough –i.e. down to -10 dB below the
frame with maximum energy – to avoid silences.

∗ Randomly generatea holes with lengthb;
∗ Recover the samples inside the holes from the

samples outside the holes;
∗ Compute SNRm;

– Average the SNRm values w.r.t. all frames.

We use the OMP-G algorithm to recover the samples. The
set of values for the number of missing samplesNmiss is
{12, 36, 60, 120, 180, 240}, which allow a large number of
factorizations of the forma × b = Nmiss, (a, b) ∈ N

2. For
each test point(Nmiss, a, b), one thousand 64 ms frames from
the 8kHz speech dataset are processed.

Results are presented in the left plot of Fig. 3. When the hole
size is 1 –i.e. samples are randomly and uniformly distributed
–, the recovery performance is very high with SNRm values
above35 dB, including the case where the number of missing
samples is high (e.g. Nmiss = 120). When holes get larger, the
performance significantly decreases: thus, inpainting a single
12-length hole happens to be a much more difficult problem
than inpainting a frame with 120 isolated missing samples.
Yet, SNR enhancement is still obtained for the largest holes
(e.g. SNRm ≈ 5dB at Nmiss = 100).

The sensitivity of OMP-G to the stopping criteria was mea-
sured thanks to an oracle algorithm. It consists in applyingthe
OMP-G algorithm with different values of

(
KOMP, ǫ

)
, and in

selecting the set of parameters that gives the best performance
for each frame independently. The tested parameters were(
KOMP, ǫ

)
∈
{

N
21.5 ,

N
22 , . . . ,

N
24.5

}
×
{
10−10, 10−9, . . . , 10−1

}
.

Results are presented in the center plot of Fig. 3 and the
difference between the oracle and blind systems is shown
in the right plot. One can see that fixing parameters is a
convenient, simple approximation that leads to suboptimalbut
satisfying performance compared to the oracle case. However,
adapting the parameters to the frame to process may be worth
studying: the difference between oracle and blind performance
ranges from 4 to 10 dB in most of cases, showing a significant
potential for improvement.
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Fig. 3. Performance of the OMP-G algorithm, on the Speech@8kHz dataset, as a function of the hole size, for different values of the numberNmiss of
missing samples in a frame: estimation by the proposed algorithm with fixed parameters (left), ideal estimation with thebest stopping parametersKOMP and
ǫ selected for each observed frame (center) and performance difference (right). The frame length is 512 samples and the hole size ranges from 1 sample (i.e.
0.12 ms,0.2% of the frame) to 240 samples (i.e. 30 ms,46.8% of the frame).

E. Declipping experiment

Clipping restoration is illustrated in Fig. 4 when the clipping
level is0.2. Here, the OMP-C-minmax algorithm is applied to
an example of music signal, where one can observe that the
reconstructed samples are close to the original signal.
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−0.5

0

0.5

time (s)

A
m

pl
itu

de

Fig. 4. Restoration of a music signal: original (light gray), clipped (black),
estimate by the OMP-C-minmax algorithm (dark gray).

In a larger experiment, some of the proposed methods
for restoring clipped signals are tested on the 3 datasets
Speech@8kHz, Speech@16kHz and Music@16kHz. Each
sound is artificially clipped with successive clipping levels,
from 0.2 up to 0.9 with a 0.1-step. For this experiment,
we selected the OMP-C-minmax, OMP-G, OMP-G-min and
OMP-G-minmax algorithms after testing all the algorithms,
since the results provide the most interesting conclusions(see
below).

The performance of those algorithms are reported in Fig. 5,
and show that:

• The use of the ‘min’ or ‘minmax’ declipping constraint

results in a large improvement of the SNR, on the
average by3 dB for OMP-G. A similar improvement
has been obtained in the case of OMP-C. As in previous
experiments, we see that methods based on SR, if effi-
cient under random-measurement conditions [23], cannot
straightforwardly recover partially-sampled signals when
groups of missing samples are involved. But they are
flexible enough to integrate additional constraints that
leads to high performance.

• The minmax-constraint OMP-G-minmax algorithm
reaches better results than the min-constraint OMP-
G-min algorithm when the clipping level is0.2.
This corresponds to the range where the approximate
value θ̂max is close to the actual maximum value as well
as to the most degraded signals. A close analysis of the
individual restored sounds reveals that large spikes are
avoided thanks to the maximum value constraint. In a
practical application, the maximum valuêθmax should
be adjusted by the user until the best audio quality is
achieved.

• The comparison between OMP-C-minmax and OMP-G-
minmax shows that the initial-phase modeling by the
Gabor dictionary improves the performance, as already
observed in Section V-D1.

Performance comparison is obtained using two concurrent
methods: theClipFix Audacity plug-in based on cubic inter-
polation, the Cute Studio Declip commercial software4 and
Janssen’s method [2] based on linear prediction. The OMP-
G-minmax algorithm is compared against these methods and
results are shown in Fig. 6. On the average, OMP-G-minmax

4http://www.cutestudio.net/data/products/audio/seedeclip/
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outperform Janssen’s method by2.8 dB for the Speech@8kHz
dataset; by0.5 dB for the Speech@16kHz dataset; and by
3 dB for the Music@16kHz dataset. Lower performance is
obtained from the Cute Studio Declip software, for which
the underlying restoration technique is unknown. TheClipFix
plug-in gives poor results, below all the reported ones.

VI. A UDIO INPAINTING TOOLBOX

We provide the Audio Inpainting Toolbox, which is ded-
icated to the development and usage of audio inpainting
as well as to reproducible research. The current contents
of the toolbox consist of the materials resulting from this
paper. However, the modular design of the toolbox has been
thought in order to facilitate new approaches and contributions.
Modules include problem generation (e.g. general inpainting or
clipping), solvers (e.g. OMP, OMP-minmax), audio data (e.g.
speech, music), dictionaries (e.g. DCT, Gabor), and, finally,
experiments, which are parameterized to call each of the other
modules in order to integrate them into a single application-
oriented sequence.

This toolbox is freely available5 as GPL Matlab code and
Creative Commons license data.

VII. C ONCLUSIONS

In this paper, we have presented the Audio Inpainting
framework as the general problem of restoring distorted or
missing audio data based on the available reliable data and
on the prior knowledge of their location. We have defined
Audio Inpainting as an inverse problem, and similarly to
image inpainting approaches, we have proposed to use sparse
representation methods to restore in the time domain the audio
samples that are distorted or missing.

Using a frame-based processing of the audio signal, we
have adapted the Orthogonal Matching Pursuit algorithm to
address the Audio Inpainting problem, with either a discrete
cosine or Gabor dictionary. The SNR performance of this
algorithm has been shown to be comparable to or better
than state-of-the-art methods when blocks of samples of
variable durations were missing, and OMP with the Gabor
dictionary has been found to give better results than OMP
with DCT dictionary. Moreover, it has been shown that the
size of the block of missing samples is more crucial for
good signal restoration than the overall number of missing
samples to estimate. For the special case of audio declipping,
a constrained matching pursuit approach has been applied,
that takes into account a priori and user-specified knowledge
about the amplitude of the restored signal. This approach
has been shown to significantly enhance the performance of
the algorithm, which also outperforms state-of-the-art and
commercially available methods for audio declipping in terms
of Signal-to-Noise Ratio.

Based on the audio inpainting framework and on the
baseline results presented in this paper, a number of future
directions may be investigated. Technically, one may compare

5http://small-project.eu/software-data/

the OMP-based methods tol1-minimization techniques, known
to be another family of approaches to deal with sparse models.
They are theoretically efficient but so far, we can only report
preliminary performance that is lower than with greedy algo-
rithms for audio inpainting6. Another perspective is the use of
new sparse models for audio signals. In particular, structured
sparse models and learned dictionary are promising directions.
From an application point of view, time-frequency audio
inpainting is a new investigation field for sparse approaches.
Using the formulation of audio inpainting (see Section II-A)
in the time-frequency domain, one must then introduce new
dictionaries, targetting applications like source separation and
bandwidth extension. Finally, the perceptually-based evalua-
tion of audio inpainting should also be investigated in the
context of each of the audio inpainting applications.
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