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Audio Inpainting
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Abstract—

We propose the Audio Inpainting framework that recovers % 1
portions of audio data distorted due to impairments such as 2
impulsive noise, clipping, and packet loss. In this framew, the 5 0
distorted data are treated as missing and their location is ssumed <E( -1

to be known. The signal is decomposed into overlapping time- ‘ ‘ ‘
domain frames and the restoration problem is then formulatel

as an inverse problem per audio frame. Sparse representatio 0 0'01. 0.02 0.03
modeling is employed per frame, and each inverse problem is Time (s)

solved using the Orthogonal Matching Pursuit algorithm together (a) Speech signal corrupted by clicks (circles).
with a discrete cosine or a Gabor dictionary. The Signal-tdNoise

Ratio performance of this algorithm is shown to be comparabé 1

or better than state-of-the-art methods when blocks of samlgs of
variable durations are missing. We also demonstrate that ta size
of the block of missing samples, rather than the overall numbr
of missing samples, is a crucial parameter for high quality gynal
restoration. We further introduce a constrained Matching Pursuit
approach for the special case of audio declipping that expits the -1
sign pattern of clipped audio samples and their maximal absote 0 0.01 0.02 0.03
value, as well as allowing the user to specify the maximum Time (s)

amplitude of the signal. This approach is shown to outperfom
state-of-the-art and commercially available methods for adio
declipping in terms of Signal-to-Noise Ratio.

0

Amplitude

(b) Clipped version (black) of a speech signal (gray).

Index Terms—Inpainting, clipping, sparse representation,
matching pursuit.

|. INTRODUCTION

Speech and music signals are often subject to localized : t :
distortions, where the intervals of distorted samples are s ""(hi "i:lé‘ﬁ :
rounded by undistorted samples. Examples include impailsiv ; '
noise or clicks (see Fig._lla), clipping (see Figl] 1b), CD
scratches, packet loss in cordless phones or Voice over IP
(VolP) and more. In such situations, the distorted sampa@s c _ultis : \
be treated as missing. A restoration algorithm is emploged t (¢) The image inpainting problem: recovery of locally-hésfdpixels.
reconstruct the missing samples, in a similar way as for @nagig. 1. Examples of restoration problems related to injragnt
inpainting (see Fid._1c). However, in the audio field, suabpr
lems have been treated separately and depending on the con-
text, they have been referred to as audio interpolafibnép]— modeling [2], [3], or Bayesian estimation to recover the-cor
extrapolation[[3],[[7],[8], imputatiori [9]/[10], induain [11], rupted sample$[4]. Other methods utilize neural netwdtB [
(bandwidth) extensiori [12]=[15] or concealment![16].1[17] or sinusoidal modeling[5][]8]. A related problem is autdima

Substantial effort has been focused on the restoration sgfeech recognition in the presence of isolated noisy sample
audio signals corrupted by clicks due to old recordings dthis problem is treated in_[10] with a compressive sensing
scratched CDs (see Fi@.]1a). In this problem, intervals approach in the spectrogram image domain, and by solving
corrupted samples — frof0 us to4 ms [4] — occur at random an; regularized least squares problem.
locations. Typical approaches employ autoregressive (AR)Another important — though less often addressed — problem
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over cordless phones or in VoIP systems, where the probl@ortion. Optionally, some information about the missingada

is addressed using packet loss concealment algorithms [I8hy be available, like in the clipping case explained below.

[17]. Missing intervals lengths are in the range ffms to The general formulation of audio inpainting is given in

60 ms, which are close to the typical duration for the pseud&ection[1-A while several particular time-domain cases ar

stationarity of speech signals. The low latency requirenmen detailed in Sections 1IIB and TI1C.

the VoIP case results in relatively simple algorithms; hesve

estimating missing packets in peer-to-peer repositoriesrev ) L

several portions of a sound are not available from the nétwdr Formulation of audio inpainting

is a new application where higher quality reconstruction ca We consider a vectas € R” of audio data and an a-priori

be expected (as the latency requirement is less stringent). known partition {I™, I'} of the supportl £ {1,2,---,L}
Finally, instead of missingamples, the unreliable or miss- of s: I™ c I andI" £ I\I™. We assume that the coefficients

ing audio data can be localized time-frequency regions [5](I™) are either missing or masked by a severe distortion.

[9], [L1], [14], [20], in classification applications likeugo- Thus, the observed dagac R” coincides withs on I" only.

matic speech recognition ][9], [20] or source separatiorh wiThe audio inpainting problem is defined as the recovery of the

time-frequency localized interference — the phrase “audamefficientss (I™) based on the knowledge of:

inpainting” has been used once in this specific case [1113) the reliable daty" 2 y (I') = s (I"),

Bandwidth extension[[12]=[15] is another important time- 2) the partition{I™, I'},

frequency-domain application, where high frequency aunte 3y additional information about the observed signal,

is estimated from the low frequency content in order to ptevi  4) and, optionally, information about the missing data (see

high quality audio. e.g. in the case of clipping below).
In this paper, we present a unified framework for the

. . ; .
restoration of distorted audio data, leveraging the concerﬂégeTatrlx form, the refiable datg” result from the linear
of Image Inpainting [21]-[23]. In the proposed framework,

termedAudio Inpainting, the distorted data is assumed missing y'=M's, (1)
and its location is assumed to be known a-priori. We further

employ Sparse Representations (SR), which have been demehereM' € {0, 1}'”“ is the so-called measurement matrix
strated to faithfully model audio signal5_|24]. [25] and tmbtained from theL x L identity matrix I; by selecting
address the image inpainting framewadrkI[22].][26].1[27]eThthe rows I' associated with the reliable coefficients én
proposed approach is directly based upon those prior workshe notation|/"| above denotes the number of elements in

The contributions of this paper are four-fold: I'. In a similar way, the missing data to be recovered are
a) Audio inpainting is defined as an inverse problem, based/™) = M™"s, where M™ ¢ {0,1}‘1 L consists of the
upon the concept of image inpainting. rows I in Iy.

b) A framework for audio inpainting in the time domain is In the general audio inpainting framework, audio data can
proposed, based on sparse representations. It exploits tv@either samples in waveforms or coefficients in transforms
possible dictionaries (discrete cosine and Gabor) knownltke time-frequency representations. The problem formula
provide accurate sparse models for audio signals. tion above can be used for multi-dimensional signals like

c) The Orthogonal Matching Pursuit (OMP) algorithm fomultichannel waveforms or time-frequency coefficients, by
audio inpainting is adapted, in particular to deal with theimply considering the equivalent vectors (as images tret a
properties of the Gabor dictionary. commonly vectorized [23]).

d) A constrained matching pursuit approach is applied toIn the rest of this paper, we only consider the inpainting
significantly enhance the performance for audio declippirgf missing samples in a single-channel waveform. The multi-
problems. dimensional case is discussed in the conclusion (seé¢_SBc. VI

This paper is organized as follows. In Sectioh Il, audio

inpainting is formalized as an inverse problem. The progos P : ; - .

framework is introduced in Sectido]lll including the sparsg' Inpainting samples distorted by impulsive noise

models used for time-domain audio inpainting. The adaptati In the particular case of a signal corrupted by impulsive

of the OMP algorithm for audio inpainting in the time domaifi0ise such as clicks (see Fig.l1d] is a set of integers
and for audio declipping is presented in Secfion IV. Sever@gtweenl andL and must be estimated in a preliminary stage.

experiments are proposed in Sectioh V, while we discuss dape often considers that the distorted samples are codupte
findings and draw conclusions in SectionVIl. by a Gaussian noise with high variance. Hence, the complete

observed signal includes both the reliable samptésand

distorted onesg™:
Il. AUDIO INPAINTING PROBLEM STATEMENT ¥

tered in many applications: one observes a partial set of @)
reliable audio data while the remaining unreliable data is

either totally missing or highly degraded; the unreliabétad where the sampled™s in y™ are masked by so that they
is considered missing and it is estimated from the reliabta d are considered as unknown.

We define audio inpainting as a general problem encoun- y' =M's
y" =M"s+n,
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C. Inpainting intervals of missing samples where w, is the synthesis window such that

In the case where intervals of samples are missing, dueXe Ws (¢ —t:)Wa (t—#;) = 1,¥¢. In the proposed
packet loss during transmission or to masking by audible igPProaches, we utilizedidms-frames with 75% overlap,
terferences/™ is composed of groups of consecutive integeré& rectangular window fow, and a sine window fow..
the samples (I™M) are totally missing and one only observe . . .

y = Mfs s(I") y g y % Sparse Representations modeling of audio frames

In the case of clipped signals, the samples to be estimated? theé Sparse Representations (SR) modeling frame-
are also arranged in intervals of consecutive samples, ¥ark [23], it is assumed that each frame is well approximated
depicted in Fig[Zb. Their locations depend on the amplitud®y @ sparse linear combination of the columns of a (possibly
of the signal, such that overcomplete) dictionary:

s; ~ Dx;, @)
_ o whereD € RV*ED js the dictionary,N < Kp andx; €
where fgjip is the clipping level. One observes both the UNRKpx1 j5 the representation vector of theth frame.x; is

clipped, reliable sampleg” and the clipped, masked samplegissymed to be sparsee. to have few non-zero coefficients
m

I"E {n|1<n<L,s(n)| > Oip}, 3)

y compared taQV. As a consequence, we can also utilize the SR
y' =My =M's model for the observed reliable samples in each frame
(4) N ~
{ym — Mmy = MM sign (S) 0C|ip7 y; = M;SZ ~ 1\/I;DXZ (8)

. . . . . We propose to recover the unknown sampde$/") b
wheresign (-) is the element-wise sign function. As presented_.. brop N ) §17") by

. . . . . estimating asx; the (sparse) representation vector of each
in the next sections, the information provided ¥, even

though very crude — a sign (per sample) and the clipping Ievfgf‘me’ given only the clean observed sampliés (8) and limited

—, still substantially enhances the estimation perforreanc side information (for the clipping case)
8 (I") = MI'DX;. 9)

[1l. TIME-DOMAIN FRAMEWORK AND MODELS This formulation including the notion of sparsity was first

The proposed framework focuses on time-domain aud’f&_troduced for image inpainting [22] with a gIo_baI treatrhen
inpainting. It relies on a frame-based processing, as ltaiWith global transforms. Then, efforts were dedicated tokwor
in Sectior II-A and on the sparse representations modeling©" local patches — similar to audio frames — and to introduce a
audio signals, as presented in Secfionil-B. Two dictitesar learned dictionary to improve the inpainting results! [26y

used in this modeling are introduced in Secfion II-C. have been improved[27] by better handling the reconstrocti
problem by learning the dictionary directly from the cortegh

image, thereby getting a dictionary that is tightly relatedhe

A. Frame-based processing and reconstruction specific image content.
As in many audio processing tasks, the signal is locally
processed: C. Dictionaries
o by segmenting it into frames, We propose two options to choose a dictionddy in
« by independently inpainting each frame, which audio signals are sparse: the Discrete Cosine Transfo
« and by synthesizing the full restored signal using théictionary, and a Gabor dictionary. Both are widely used
overlap-add (OLA) method [28]. for sparse models of audio signals_[24], [[25]. ][29]. Other

We decompose the signal into overlapping frames indexed fi£d dictionaries such as multiscale DOT[30], or a learned

i, starting at timet, and weighted by an analysis windowdictionary [26] specific to particular inpainting tasks nmalgo

: ; ; be interesting options.
w, with length N. By straightforwardly adapting to the local X ) - i ,
frames the problem statement defined for the full signal in 1) Discrete Cosine Transform (DCT) dictionary: The first

Sectior(D, the reliable samples in framian be written as option consists in a windowed Discrete Cosine Transform

(DCT) overcomplete dictionaryD¢ = [dg, cee d‘;(c_l],
y: = Ms; (5) atomj being defined fob < j < K.—1land0 <t < N -1
as

where M is the measurement matrix of theth frame ob-
tained fromM" ands; (t) £ s (t + t;) w, (t) is the windowed - 1 1
frame defined fob < ¢t < N — 1. We also define the supports dS (t) £ wq (t) cos (— (t + —) (j + —)) (10)
h o : g K. 2 2
I7 andI" of the reliable samples and of the missing or masked ) . - .
samples, respectively. Once the estimatirof s; by some whereK. is the size of the DCT dictionaryi-e. the number of
inpainting algorithm is achieved, the reconstruction af thll ~ discrete frequencies —and; is a weighting window set by the
signal is obtained as user. This choice is motivated by the wide use of windowed
DCT atoms for sparse representation of audio sigrals [25].
However, DCT atoms can be generalized as Gabor atoms by
s(t) = Zws (t—1t;)s; (t—1t;) (6) introducing an initial phase in order to increase the paaént
i fit to the signal structure, resulting in a sparser approfiona
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. . . TABLE |
2) Gabor dictionary: The second option aims at sparsely OMP INPAINTING ALGORITHM

modeling arbitrary-phase sinusoidal components by using a

Gabor dictionaryD? = {d?j S G in which the atoms | v}, M}, D= {d;} ., KO, "
? Jr,p)€Dl L
are index by a continuous sEt= [0, K, — 1] x [0, 2] and Initialization:
. o Dictionary D = {dj} = M; x D x W, whereW; =0
are defined as jer C
for j # j' and W ; = [ Mid, |, .
g A " i + 1 1 (11) o lteration counterk = 0
dj, (t) = wa (t) cos K. + 5 ) \J + D) e o Support sef)y = 0
g e Residualrg = y!
where K, is the size of the Gabor dictionary. Sparse support selection and coefficients estimation:
Note that in the current case of a continuously-indexed repeat until = K°MP or g2 < €OMP
dictionary, eq.[{I7),[(8) and{9) are still valid if we define « Increment iteration countet = k -+ 1
p o Select atom: find
i (j%:er YR (4 %) (12) j= arggax\ <rg_1,d; > | (14)
) J
xi(J,¢)#0
( o Update Supporf), = Qr_1 U j
wherex; = {x; (j, ¥)}; ,)er- Indeed, eq[(2) is a finite sum « Update current solution
since only a few coefﬁuent; in .the sparse representatiotorve X, = argmin [ly’ — Do, ull, (15)
x; are non-zero. The algorithmic aspects of this decompasitig u
will be addressed in Sectiofis TV-B ahd 1V-C. o Update Residuat, = y" — Dg, x;
Output: x; = Wxy,

IV. AUDIO INPAINTING ALGORITHMS BASED ON

ORTHOGONAL MATCHING PURSUIT

. - . However, the atom selectiof (14) needs explaining in the
For a given dictionanD, we use the Orthogonal MatChmgcase of the Gabor dictionary in order to deal with the continu

Pursuit algorithm to perform the inpainting of an audio fam . . . L "
as presented in Sectidi T#-A. Some dictionary-depende% s indexing. Without any approximation, the decompositio

algorithmic stages are then detailed in SecliorV-B EI@IV- with continuously-indexed atomd? can be expressed using

An extension of the algorithm specific to declipping is figall pairs of _atoms in a discrete (_j|ct|onary_ Wik, frequency
detailled in Sectiof TVD. bins. Pairs of atoms can be either conjugate complex expo-

nentials [24], [34], or pairs of cosine and sine at the same
frequency and with a zero phade [29]. In order to use this
A. Orthogonal Matching Pursuit (OMP) algorithm for in- |atter option, we introduce sine atord§ as
painting ) )

The approach emerges from the following optimization — df (t) £ wy () sin T t+-|(Jj+ =2 (16)

J K 2 2
problem 9
(13) and we define the unit-norm versi&j and aj of the atoms
d$ andds, respectively, as described in Table I.

for a given approximation error thresholgl At each iteratiork, selecting the best correlated Gabor atom

The Iy pseudo-norm|x||, counts the non-zeros compo-d] (eq. [14)) is then equivalent to picking the P{iﬂ;adj)
nents of the vectok, leading to an NP-hard problern [31],such that
[32). Therefore, a direct solution of {113) is infeasible. An

%; = argmin ||x|, s.t. [y} - MIDx||; < ¢;.
X

approximate solution is given by applying the Orthogonal J = argmin Hrk—l —djzj — djz; , 17)
Matching Pursuit (OMP) algorithm[24],[83], which suc- J€lt Ko /2]

cessively approximates the sparsest solution. The inpgintyyhere

OMP algorithm[[23], detailed in Tabl[é I, is a slightly modifie B -

version of the classical OMP algorithm in the sense that all - <d§=rk71>*<‘j§v‘j§>§dfvfkfl>

dictionary columnsl; are internally normalized to unit norm, ! . 1*<‘3§=9§> - (18)
using the diagonal matri¥¥, due to the availability of only 7 = <d3"’r’“”i*@f’fﬁﬁd””’ﬁ

the clean samples. The algorithm stops iterating as soon as
either the residual energy drops below the thresk8M or This particular selection stage has been proposed_ih [34,

the maximum sparsity levek °™" is exceeded. Appendix 1I] for conjugate Gabor chirp atoms and the use
of blocks of coherent atoms in MP and OMP has been
B. Atom selection further studied in[[35]. In the restricted case where atames i

When using the DCT dictionary, the algorithmic stage fO(%andldate pair are uncorrelatéde. <d-7" dj> - O)' 4. F‘Y)

the atom selection[(14) at each iteration is well known: gan be simplified ag = argMax;c gp /2| <a‘j,rk71> +
consists of explicity computing the correlation mentidria  , _ 2 ) ) ] )
eq. [13) of Tabldll, or of using a fast transform. <d§,rk,1> and the resulting algorithm is equivalent to the



A. ADLER, V. EMIYA, M. G. JAFARI, M. ELAD, R. GRIBONVAL, M. D. PLUMBLEY : AUDIO INPAINTING 5

. . . . TABLE Il
EXIStl.ng Modified Matching Pursuit [36] and Block OMP gyumary oF THE PROPOSED ALGORITHMSEACH ROW INDICATES THE
algorithms [37]. ALGORITHM USAGE (GENERAL INPAINTING OR DECLIPPING, DEPENDING
ON POSSIBLE ADDITIONAL CONTRAINTS WHILE DICTIONARIES VARY

. ACCROSS COLUMNS ALGORITHM NOMENCLATURE APPEARS WITHIN
C. Solution update QUOTES IN EACH CELL

When using the DCT dictionary, the solution upddie] (1

—

performed at each iteration usually consists of a leasisgu ﬁgr?mo”a' specifica-| DCT Gabor
projection. . Inpainting ‘OMP-C’ [Table[] ‘OMP-G’ [Table[]
In the case of the Gabor dictionary, once the best atqm - onsuaint OMP-Cminy OMP-G-min

has been added to the set of atoms selected in previdugclipping [Table[ + eq.[ZR)] | [Tabled + eq.[(ZR)]
iterations, the update of the current solutidn](15) can thevinmax-constraint ‘OMP-C-minmax’ ‘OMP-G-minmax’
performed by a least-square projection using the selectegeclipping [Tablel + eq.[2B)] | [Table[ + eq. [ZB)]
Gabor atoms{d? %} , their phases; being fixed in the

. ) jeQy : o ) )
atom-selection stage. ’ 4) OMP declipping algorithm: We propose approximate

However, this update can be improved by using the equigelutions by incorporating the constrairiis](19) dnd (2@) the
alent cosine and sine atorl{sl§,d§}jeﬂk in the least-square final solution update stage of the OMP Inpainting algorithm.
projection: not only amplitudes but also phases are thirs other words, the OMP Inpainting algorithm presented in
updated at each iteration, leading to a better approximatidable[] is applied, in order tselect the sparse support. Once
of the signal. As far as we know, such an implementation tfie supportQ); is selected, the sparse representation coeffi-
OMP with a Gabor dictionary has never been proposed befoc&ents arere-estimated by solving the following constrained

optimization problem:
D. Algorithmic enhancements for inpainting clipped signals {M;“*DWu > Belip

1) The ‘min’ declipping constraint: Inpainting clipped Xk = argmin |y; — Do, ul|, s.t. - X
signals can be performed with the algorithm presented in " M"DWu < —0aip
Section[IV-4, by treating the clipped samples as completely (22)
unknown. However, extra information inherent to this pesbl ] )
can be integrated as additional constraints into equa@@@s " the case of the ‘min’ constraint, or

Constrained optimization approaches were also utilizetthén

case ofl;-minimization for image desaturation [38] and of Xy = argmin |y} — f)szku||2
audio declipping based on a band-limited assumpfion [7]. u .

Let fip be the clipping level (which can be easily estimated ot Omax > M{"DWu > Ogjp 23)
as the maximum absolute value among the observed samples) - by < M DWau < —éclip

and M™ (resp.M™) be the matrix such thabI™s; (resp. . . _

M™s;) is the vector of positive (resp. negative) clippedor the case of the ‘minmax constraint. The constraints

samples. The matricebI™ and M™ are known from the are linear, thus standard convex optimization solvers aan b
) 7 7

location and the sign of the clipped samples. The missigPloyed.

samples should satisfy the ‘min’ constraints In theory, the solution of the constrained problem may not
- o exist. We observed that this occurs very seldom in practice.
M;i"si > Bcip andMi"s; < —6cip. (19)  Whenever no solution exists, the frame is restored using the

2) The ‘max’ declipping congtraint: The set of ‘min’ con- Unconstrained minimization, = arg min,, [ly; — Do, ul|,.
straints can be further augmented by ‘max’ constraintspint

. o V. EXPERIMENTAL RESULTS
ducing an upper limit on the absolute value of the recovered

sampleSmax, as follows . A summary of .aII v_ersions of the_ algorilthm presented
- o in this paper is given in TablE]lll. This section reports the
M;"s; < Omax and Mi"s; > —Omax. (20)  major trends through different experiments. The perforcean

The upper limitdma is an optional parameter that cannofl€asures are @ntroduced in Secﬁg___n_}J—A. The test materil an
be estimated automatically in a straightforward way but md}arameter settings are presented in Secfions V-B.an V-€. Th
be adjusted manually by the user. global performance of all the proposed inpainting algonish

3) The ‘minmax’ constrained SR problem: Using both sets @nd a more detailed inpainting experiment are presented in
of constraints, the ‘minmax’ declipping version of thenorm Section[V-D. Sectiol V-E finally focuses on the case of

minimization problem[{3) is given by clipping.
ly} — MiDx][3 € A. Performance measures

x; = argmin [[x][; S.t. { Omax > MTMDx > b (21) The performance can be assessed by the signal-to-noise rati
Oax < M™DX < 6 (SNR) computed on the full signals, defined by

2
wherefmax can be set toroo if one does not want to use the SNRyi (s,8) £ 101log mEQ (24)
‘max’ constraint. Is —sll3

A
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In the reported experiments, the estimate is built by capyirC. Parameter settings

the observed signal and by only substituting the unrellableA specific training dataset was used to tune the parame-

sa\Tvﬁ!les.SN . ) f the alobal i fters of the inpainting algorithms manually and without fine
e R“_" gives an overview o the global quality o adjustment. The values of the tuned parameters are shown in
the restored signal, it can be decomposed as
Table[Il.
2
~ ~ sl TABLE Il
SNRuil (s,8) = SNR,, (s,8) + 10log w (25) PARAMETER SETTINGS
2
Parameter Value
where
Frame length 64 ms (& N £ 512 at 8Hz, N £
™2 1024 at 16kHz)
SNR,, (s,8) £ 101log I € A)Hz . (26) Frame Overlap 75%
[s (I™) —=s (M5 Analysis windoww,, rectangular
. . Synthesis wind s i
SNR,, reflects the reconstruction performance per estimated yrmess TIE =
. Dictionary size K. =2N (DCT), K, = N (Gabor)
sample and differs from SNR by an offset that does not — :
. L . . Atom weighting windoww, | rectangular ¥, = wq)
depend on the inpainting algorithm. Indeed, the second il@rm VS 7| vih T r———
. . . € € X .| wheree = IS a Tixe
Eq. (25) isa bias that reflects the degradan_on rate onlys;Thu i parameter andI’| is the number of
SNR,, will be preferred to show some detailed performance, reliable samples in théth frame
without the influence of this bias, while SNR will be used KOMP y
to assess the global restoration quality. Dip Iyl
Note that in the context of a perceptually-motivated eval- Omax 40ciip

uation of the results, SNR measures may be replaced by

scores from listening tests or by objective measures. No

subjective test specific to audio inpainting has been perdéolr

so far. Besides, exis?ing objective measures for audioityualpy Inpainting experiments

assessment are dedicated to applications such as cadihg [39 ) o

[40], source separation [41] or watermarking. Their uséhim t 1) Global effect of the duration of missing intervals:
context of audio inpainting should be validated by listeninThe inpainting performance of the proposed algorithms was

tests. Thus, working on the perceptual evaluation of audRyaluated for variable durations of missing intervals ahsa
inpainting is an important future direction to consider. ples. Each experiment tested the performance with theeentir

collection of signals, for a fixed missing interval duration

that repeated periodically every 100 ms. The missing iaderv
B. The collection of tested signals durations were in the range of a fraction of 1ms (correspundi

to impulsive noise or clicks distortions) and up to 10 ms

The experiments are conducted using three datasets: (corresponding to packet loss scenarios)

« Music@16kHz: a set of music signals sampled@tHz, ~ For comparison, we used the method by Janssen [2] based
this sampling rate being a good trade-off between audim linear prediction and a reconstruction method based on
quality and computational requirements. spline interpolation — the Matlab ‘interp1’ function. Thees

» Speech@16kHz: a set of speech signals sampled n@éthods are representatives of the two main families oéstat
16kHz, i.e. high quality speech for which results can bf-the-art methods for interpolation of audio data and die a
compared to the previous case of music signals. to handle multiple blocks of consecutive missing samples. |

» Speech@8kHz: a set of speech signals sampléitldt, Janssen’s method, the autoregressive model order is set to
representing phone-quality speech; this dataset was @v,ss + 2, where Npiss is the number of missing samples
tained by downsampling the previousskHz speech in the current frame, as recommended by the authors. Note
dataset. that the methods used for comparison are applied frame-wise

Each dataset consists of ten 5-seconds signals from e embedding them in the frame-based processing scheme
2008's Signal Separation Evaluation Campaifinl [42] and @¢scribed in Section TII-A.
freely available onlif® They include a large diversity of The results are presented in Fig. 2. On average, the OMP
audio mixtures and isolated sources: male and female speagprithm with the Gabor dictionary provides an advantage
from different speakers, singing voice, pitched and pesiges of 1-2dB compared to the OMP with DCT dictionary. For
musical instruments. Music@16kHz and Speech@8kHz these algorithms also out-

In order to have comparable degradations among all signBRfform Janssen’s approach for short missing intervals of
in the clipping experiments (Sectibn Y-E), each originghsil durations up to 1 ms. For durations above 1ms Janssen’s ap-
is normalized so that the maximum amplitude is 1. proach provides an advantage of 1-3dB. For Speech@16kHz,

Janssen’s method performs better than the proposed ones,

http://www.irisa.fr/metiss/vemiya/inpainting/ (thiglunay be changed to linear predic-tion being_ particu!arly \{vell-adapted for pr.
a more stable one by the submission of the final version ofpthjser) However, using more information with the proposed method
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‘ —8— OMP-G —%— OMP-C —©— Janssen Spline — — - Original ‘
Speech@8kHz Speech@16kHz Music@16kHz
50 é : : 508
q Click: ----  Packet loss -
_removal. concealment
40V : : 40
o \\:; )
o Z
o 30 : D:E 30
Z ~ : 4
7] : n
20 : 20
10 ‘ 10
10° 10'
Missing Interval Duration (ms) Missing Interval Duration (ms) Missing Interval Duration (ms)
Fig. 2. Performance of inpainting algorithms as a functidrthe duration of missing intervals for each dataset (subfiglu The missing intervals were

generated periodically every 100ms (a total of 50 equal tduranissing intervals per signal).

can enhance the performance, as will be shown in the de-
clipping experiment in Section VIE. The spline interpaati
approach provides substantially worse results for all £ase

In terms of computational cost, the proposed approach is
much slower than the methods used for comparison. The
computational cost may be reduced by using fast transform
when handling a DCT of a Gabor dictionary, or by using We use the OMP-G algorithm to recover the samples. The
algorithms faster than OMP., set of values for the number of missing sampl¥giss is

2) Fine effect of the ‘topology’ of the missing samples. The {12,36,60,120,180,240}, which allow a large number of
recovery or approximation performance of sparse appraacfi@ctorizations of the formu x b = Nmiss, (a,b) € N. For
is often assessed as a function of the sparsity degree and&fgh test pointNmiss, a, b), one thousand 64 ms frames from
number of observations in the case of a random measurenég8kHz speech dataset are processed.

matrix [43]. However, the latter assumption, recently high Results are presented in the left plot of [fiy. 3. When the hole
lighted in the compressed sensing framework [43]] [44],sdosize is 1 -i.e. samples are randomly and uniformly distributed
not hold in many audio inpainting applications: as introgllic —, the recovery performance is very high with SNRalues

in the previous experiment, one must deal with blocks of coabove35 dB, including the case where the number of missing
secutive missing samples. In this experiment, we invegtigagamples is highe(g. Nmiss = 120). When holes get larger, the
this assumption and assess empirical performance as ddiuncperformance significantly decreases: thus, inpaintinghglsi

of the randomneBsand the consecutiveness of the location af2-length hole happens to be a much more difficult problem
the missing samples. The maximum randomness is achievkan inpainting a frame with 120 isolated missing samples.
when the missing samples are isolated and distributed @éccoret, SNR enhancement is still obtained for the largest holes
ing to e.g. a uniform law. Conversely, when they are groupe@g. SNR,, ~ 5dB at Npmiss = 100).

the missing samples in a given block are not randomly located 1pe sensitivity of OMP-G to the stopping criteria was mea-
even if the blocks themselves may be randomly located. Heng&ed thanks to an oracle algorithm. It consists in applyiireg

the question: for a fixed number of missing samples, to whigh\p_g algorithm with different values ofK°¥P ), and in
extent is the inpainting of few large blocks a more difficulgg|ecting the set of parameters that gives the best perfuena
problem than the inpainting of many small blocks (or isdateéor each frame independently. The tested parameters were
samples)? KOMP ) e {5 N NV {10710,1072, ..., 1071},

The experimental protocol consists in the following stepsipegyits are presented in the center plot of Fig. 3 and the
. Choose a set of franfés

difference between the oracle and blind systems is shown

« Fix the number of missing samplééyiss in the right plot. One can see that fixing parameters is a
« For each(a,b) € N? such thata x b = Njss; convenient, simple approximation that leads to subopttmal

— For each frame in the set, satisfying performance compared to the oracle case. Hayweve
adapting the parameters to the frame to process may be worth
studying: the difference between oracle and blind perforcea
ranges from 4 to 10 dB in most of cases, showing a significant
potential for improvement.

x Randomly generate holes with lengthp;

x Recover the samples inside the holes from the
samples outside the holes;

x Compute SNR,;

— Average the SNR values w.r.t. all frames.

2Here, randomness should be understood in a very common.sense

3The frames are randomly chosen in the datasets, only egsthat the
energy in the selected frames is high enoughe—-down to -10 dB below the
frame with maximum energy — to avoid silences.
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— Niniss =12 = — Npjgs =36 — = Niniss = 60 Nnigs =120 - — — Npjgs = 180 Niniss = 240 |
Fixed parameters Oracle parameters Difference (Oracle-Fixed

SNR_(dB)

Hole size (samples)

Hole size (samples)

Hole size (samples)

Fig. 3. Performance of the OMP-G algorithm, on the Speech®@8#ataset, as a function of the hole size, for different eslof the numbetVyss Of
missing samples in a frame: estimation by the proposed itigpwith fixed parameters (left), ideal estimation with thest stopping parametefs M and
e selected for each observed frame (center) and performdffeesdce (right). The frame length is 512 samples and tHe bize ranges from 1 sampleg(

0.12 ms, 0.2% of the frame) to 240 samples.& 30 ms, 46.8% of the frame).

E. Declipping experiment
Clipping restoration is illustrated in Figl 4 when the clipg

level is0.2. Here, the OMP-C-minmax algorithm is applied to
an example of music signal, where one can observe that the

reconstructed samples are close to the original signal.

Amplitude

0 0.01 0.02 0.03 0.04 0.05
time (s)

Fig. 4. Restoration of a music signal: original (light graglipped (black),
estimate by the OMP-C-minmax algorithm (dark gray).

In a larger experiment, some of the proposed methods®
for restoring clipped signals are tested on the 3 datasets
Speech@8kHz, Speech@16kHz and Music@16kHz. Each

sound is artificially clipped with successive clipping Is/e

from 0.2 up to 0.9 with a 0.1-step. For this experiment,

results in a large improvement of the SNR, on the
average by3 dB for OMP-G. A similar improvement
has been obtained in the case of OMP-C. As in previous
experiments, we see that methods based on SR, if effi-
cient under random-measurement condition$ [23], cannot
straightforwardly recover partially-sampled signals whe
groups of missing samples are involved. But they are
flexible enough to integrate additional constraints that
leads to high performance.

The minmax-constraint OMP-G-minmax algorithm
reaches better results than the min-constraint OMP-
G-min algorithm when the clipping level i9.2.
This corresponds to the range where the approximate
valueémax is close to the actual maximum value as well
as to the most degraded signals. A close analysis of the
individual restored sounds reveals that large spikes are
avoided thanks to the maximum value constraint. In a
practical application, the maximum valua, should

be adjusted by the user until the best audio quality is
achieved.

The comparison between OMP-C-minmax and OMP-G-
minmax shows that the initial-phase modeling by the
Gabor dictionary improves the performance, as already
observed in Section V-D1.

Performance comparison is obtained using two concurrent

we selected the OMP-C-minmax, OMP-G, OMP-G-min anghethods: theClipFix Audacity plug-in based on cubic inter-
OMP-G-minmax algo_rlthms after testing gll the algorithmspolation, the Cute Studio Declip commercial softffagnd
since the results provide the most interesting conclusises Janssen's method][2] based on linear prediction. The OMP-

below).

G-minmax algorithm is compared against these methods and

The performance of those algorithms are reported in[fig. fasults are shown in Fil] 6. On the average, OMP-G-minmax

and show that:

o The use of the ‘min’ or ‘minmax’ declipping constraint “http:/iwww.cutestudio.net/data/products/audio/setile
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Clipping level 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Speech@8kHz| 6.2dB | 8.2dB | 10.1dB | 11.9dB | 13.7dB | 16.5dB | 19.2dB | 24.4dB
Speech@16kHz 6.3dB | 8.4dB | 10.3dB | 12.2dB | 14.2dB | 16.8dB | 19.8dB | 24.8dB
Music@16kHz | 6.4dB | 9.1dB | 11.4dB | 13.4dB | 15.0dB | 17.0dB | 19.4dB | 25.1dB

Fig. 5. Average SNR, improvement, from the initial SNR of clipped signals to tHéFRSof restored signals, as a function of the clipping levet:dach dataset
—i.e. each subfigure —, the performance is presented as a fundtibre elipping level, for OMP-G, OMP-G-min, OMP-G-minmaxda®MP-C-minmax.

—+— OMP-G-minmax —%— Janssen —&— ClipFix —&— CuteStudioDeClip — — — No declipping

Speech@8kHz Speech@16kHz Music@16kHz

35 35 35

30

25

m

20
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Average SNR_ (dB)
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0 0.5 1 0 0.5 1 0 0.5 1
Clipping level Clipping level Clipping level

Fig. 6. Average SNR, as a function of the clipping level: for each dataset, thégoerance is presented as a function of the clipping levelBOMP-minmax,
for Janssen’s approach! [2] and for the spline interpola¢i@pline”). The initial SNR of the clipped signal is also ftied (“Clipped”).
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outperform Janssen’s method By dB for the Speech@8kHz the OMP-based methodsitpminimization techniques, known
dataset; by0.5 dB for the Speech@16kHz dataset; and bip be another family of approaches to deal with sparse models
3 dB for the Music@16kHz dataset. Lower performance iEhey are theoretically efficient but so far, we can only répor
obtained from the Cute Studio Declip software, for whiclpreliminary performance that is lower than with greedy algo
the underlying restoration technique is unknown. ThigFix rithms for audio inpaintirﬁ; Another perspective is the use of
plug-in gives poor results, below all the reported ones. new sparse models for audio signals. In particular, stredtu
sparse models and learned dictionary are promising dimrexti
VI. AUDIO INPAINTING TOOLBOX From an application point of view, time-frequency audio

ide th di - b hich is d dinpainting is a new investigation field for sparse approache
_ We provide the Audio Inpainting Toolbox, which is de _Using the formulation of audio inpainting (see Section )I-A
icated to the development and usage of audio inpainti

I ‘ ducibl h Th ‘ ‘ 9 the time-frequency domain, one must then introduce new
as well as 1o reproducible research. Ihe current con e_'aﬁﬁtionaries, targetting applications like source sefyansand

of the toolbox consist of the materials resulting from thi§_ . ith extension Finally, the perceptually-baseduava
paper. However, the modular design of the toolbox has beg ' ’

X . " Sh of audio inpainting should also be investigated in the
thought n order to facilitate new a_pproaches and C‘?”".”“E“ context of each of the audio inpainting applications.
Modules include problem generationd. general inpainting or
clipping), solvers ¢g. OMP, OMP-minmax), audio data..
speech, music), dictionariege.d. DCT, Gabor), and, finally,
experiments, which are parameterized to call each of theroth[1] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and .MD.

modules in order to integrate them into a single application Plumbley, “A Constrained Matching Pursuit Approach to Audi
Declipping,” in IEEE Int. Conf. on Acoustics, Speech and Sgnal

REFERENCES

Or'en_ted Sequer_]ce' ) Processing, Prague, Czech Republic, May 2011.
This toolbox is freely availabitas GPL Matlab code and [2] A. Janssen, R. Veldhuis, and L. Vries, “Adaptive intdgiion of
Creative Commons license data. discrete-time signals that can be modeled as autoregeepsicesses,”

IEEE Trans. Acoustics, Soeech and Sg. Proc., vol. 34, no. 2, pp. 317 —
330, apr 1986.
VIl. CONCLUSIONS [3] W. Etter, “Restoration of a discrete-time signal segtrigninterpolation
based on the left-sided and right-sided autoregressivenpeters,EEE
In this paper, we have presented the Audio Inpainting Transactions on Signal Processing, vol. 44, no. 5, pp. 1124 -1135, may

framework as the general problem of restoring distorted 0#& 199.

. . . - S. J. Godsill and P. J. W. Rayn@ijgital Audio Restoration - A Satistical
missing audio data based on the available reliable data and wode-based Approach. Springer-Verlag, 1998.

on the prior knowledge of their location. We have defineds] M. Lagrange and S. Marchand, “Long interpolation of audignals

; At ; i using linear prediction in sinusoidal modelinglburnal of the Audio
Audio Inpainting as an inverse problem, and similarly to Eng. Soc. vol. 53, pp. 891-005, 2005,

image inpai_nting approaChe& we have proposed t(? Us_e Spaf@eA. Dahimene, M. Noureddine, and A. Azrar, “A simple algbm for the
representation methods to restore in the time domain thaud  restoration of clipped speech signdkiformatica, vol. 32, pp. 183-188,

i icaj 2008.
samples that are distorted or missing. J. S. Abel and J. O. Smith, “Restoring a clipped signai,"lEEE Int.

. . L 7]
Using a frame-based processing of the audio signal, V‘}e Conf. on Acoustics, Speech and Signal Processing, Toronto, Canada,
have adapted the Orthogonal Matching Pursuit algorithm to May 1991.

address the Audio Inpainting problem with either a dis::ret[s] R.C. rI:/Iaher, “A method for extrapolation of missing dajiaudio data,”
. L ! . in 95th AES Convention, 1993.
cosine or Gabor dictionary. The SNR performance of thig m. cooke, P. Green, L. Josifovski, and A. Vizinho, “Robiitomatic

algorithm has been shown to be comparable to or better speech recognition with missing and unreliable acoustte,t&peech
than state-of-the-art methods when blocks of samples Communication, vol. 34, no. 3, pp. 267 — 285, 2001.

06 .
. . . . 10] J. Gemmeke, H. Van Hamme, B. Cranen, and L. Boves, “Cesgive
variable durations were missing, and OMP with the Gabgr sensing for missing data imputation in noise robust speechgnition,”

dictionary has been found to give better results than OMP  Sdlected Topicsin Sgnal Processing, |EEE Journal of, vol. 4, no. 2, pp.
with DCT dictionary. Moreover, it has been shown that the 272 -287, 2010.

. f the block of missi | . ial f 11] J. Le Roux, H. Kameoka, N. Ono, A. de Cheveigné, and §agama,
size of the block of missing samples Is more crucia r “Computational auditory induction as a missing-data mditihg

good signal restoration than the overall number of missing problem with Bregman divergence@eech Communication, vol. In
samples to estimate. For the special case of audio deo@jppi@%] Press, 2010.

trained tchi it h h b i M. Dietz, L. Lilieryd, K. Kjorling, and O. Kunz, “Specal Band
a constrained matcning pursuit approac as been appl Replication, a novel approach in audio coding,”Rnoc. of the 112th

that takes into account a priori and user-specified knovdedg AESConvention. Munich, Germany: Audio Engineering Society; 1999,
about the amplitude of the restored signal. This approach May 2002.

h b h ¢ iqnifi fl h th f 1] E. Larsen and R. AartsAudio bandwidth extension: application of
as peen snown to signincantly ennance the performance o psychoacoustics, signal processing and loudspeaker design.  Wiley,

the algorithm, which also outperforms state-of-the-artl an  2004.
commercially available methods for audio declipping imter [14] P. Smaragdis, B. Raj, and M. Shashanka, "Missing dafautation for
f S I-to-Noi Rati spectral audio signals,” iRroc. of MLSP, Grenoble, France, Sep. 2009.
Or signal-to-Noise ~atio. [15] M. Moussallam, P. Leveau, and S. M. Aziz Sbai, “Soundasement
using sparse approximation with speclets,” lIBEE Int. Conf. on

Based on the audio inpainting framework and on the Acoustics, Speech and Sgnal Processing, Mar. 2010, pp. 221 ~224.

baseline results presented in this paper, a number of futurg , o
While many people believé; -minimization performs better than greedy

directions may be mvestlgated. TeChnlca”y’ one may Camp%lgorithms, no theoretical result shows such a superioiitya general

context [45], and the current works is a particular illustia where greedy
Shttp://small-project.eu/software-daita/ algorithms perform better.


http://small-project.eu/software-data/

A. ADLER, V. EMIYA, M. G. JAFARI, M. ELAD, R. GRIBONVAL, M. D. PLUMBLEY : AUDIO INPAINTING 11

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

C. Perkins, O. Hodson, and V. Hardman, “A survey of packss [41] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “fadtive and
recovery techniques for streaming audidgtwork, |EEE, vol. 12, no. 5, objective quality assessment of audio source separati&fE Trans.
pp. 40 —48, sep. 1998. on Audio, Speech, and Language Processing, vol. in press, 2011.

H. Ofir, D. Malah, and I. Cohen, “Audio Packet Loss Coroemt in [42] E. Vincent, S. Araki, and P. Bofill, “The 2008 signal segi#on evalua-
a Combined MDCT-MDST Domain,Sgnal Processing Letters, |EEE, tion campaign: A community-based approach to large-scaikiation.”
vol. 14, no. 12, pp. 1032 -1035, dec. 2007. Paraty, Brazil: Springer, Mar. 2009.

G. Cocchi and A. Uncini, “Subband neural networks peéidn for on-  [43] D. Donoho, “Compressed sensingyiformation Theory, |EEE Transac-
line audio signal recovery,IEEE Transactions on Neural Networks,, tions on, vol. 52, no. 4, pp. 1289-1306, April 2006.

vol. 13, pp. 867 — 876, 2002. [44] E. Candes, J. Romberg, and T. Tao, “Robust uncertairitgiples: exact
S. J. Godsill, P. J. Wolfe, and W. N. W. Fong, “Statisticeodel-based signal reconstruction from highly incomplete frequencyoimation,”
approaches to audio restoration and analysletirnal of New Music Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489-509,
Research, vol. 30, no. 4, 2001. Feb. 200?- ] S o
J. Barker, Computational auditory scene analysis: principles, algo- [45] J. Tropp, Gre_ed is good: algqnthmlc results for spaapproximation,
rithms, and applications.  IEEE Press/Wiley-Interscience, 2006, ch. |EEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231~
Robust Automatic Speech Recognition, pp. 297-350. 2242, Oct. 2004.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballestémage inpaint-
ing,” in Proc. of 27th Conf. on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co., 2000, pp.
417-424.

M. Elad, J. L. Starck, P. Querre, and D. L. Donoho, “Sitankous
cartoon and texture image inpainting using morphologi@ahgonent
analysis (mca),Applied and Computational Harmonic Analysis, vol. 19,
pp. 340-358, 2005.

M. Elad, Sparse and Redundant Representations - From Theory to
Applications in Sgnal and Image Processing.  Springer New-York,
2010.

S. Mallat and Z. Zhang, “Matching pursuits with timefjuency dictio-
naries,”|[EEE Trans. On Sgnal Processing, vol. 41, no. 12, pp. 3397—
3415, Dec. 1993. he was Chief Technology Officer of the Wi-Fi Di-
M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonaatd M. Davies, vision at NextWave Wireless. His research interests
“Sparse representations in audio and music: from codingotarce include sparse and redundant representations with
separation,”Proc. of the IEEE, vol. 98, no. 6, 2010. applications for audio, video and image processing.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algdfim for Amir Adler is the recipient of the 2011 Google Europe Doctdtallowship
Designing Overcomplete Dictionaries for Sparse Reprasient” IEEE  in Multimedia.

Trans. On Signal Processing, vol. 54, no. 11, pp. 4311-4322, Nov. 2006.
J. Mairal, M. Elad, and G. Sapiro, “Sparse representatdr color image
restoration,”|EEE Trans. on Image Processing, vol. 17, no. 1, pp. 53
—69, 2008.

D. Griffin and J. Lim, “Signal estimation from modified aft-time
fourier transform,” IEEE Trans. Acoustics, Speech and Sg. Proc,,
vol. 32, no. 2, pp. 236-243, Apr. 1984.

M. Davies and L. Daudet, “Sparse audio representatiossg the
MCLT,” Sgnal Processing, vol. 86, no. 3, pp. 457 — 470, 2006.

E. Ravelli, G. Richard, and L. Daudet, “Union of mdct bador audio
coding,” IEEE Trans. on Audio, Speech, and Language Processing,
vol. 16, no. 8, pp. 1361 —1372, nov. 2008.

B. Natarajan, “Sparse approximate solutions to linggstems,”"SIAM i
J. Computing, vol. 25, no. 2, pp. 227—234, 1995. Rennes - Bretagne Atlantique, ARennes, Fre}nce. He
G. Davis, S. Mallat, and M. Avellaneda, “Adaptive grgeapproxima- is now assistant professor (Maitre de Conférences)
tions,” Constr. Approx., vol. 13, no. 1, pp. 57-98, 1997. _ ) in computer science at University Provence/Aix-
Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthagomatching Mar_sellle L Margellle, France. L .

pursuit: recursive function approximation with applicass to wavelet His research interests focus on audio signal processingrahede sound

decomposition,” inProc. Asilomar Conf. Sgnals, Systems, and Comput- modeling and indexing, sparse representations, sourcara&m, quality
ers. Nov. 1993 pp 40 —44 vol 1. ' ' assessment and applications to music and speech.

Amir Adler received the B.Sc. (Cum Laude) de-
gree in 1994 and the M.Eng. (Cum Laude) degree
in 2001, both in Electrical Engineering, from the
Technion, Israel. He is currently studying towards a
PhD degree at the Computer Science Department,
Technion, Israel.

From 2003 to 2006 he was Director of Signal
Processing at GO Networks and from 2006 to 2008

Valentin Emiya graduated from Telecom Bretagne,
Brest, France, in 2003 and received the M.Sc. degree
in Acoustics, Signal Processing and Computer Sci-
ence Applied to Music (ATIAM) at Ircam, France,
in 2004. He received his Ph.D. degree in Signal Pro-
cessing in 2008 at Telecom ParisTech, Paris, France.
From 2008 to 2011, he is a post-doctoral researcher
with the METISS group at INRIA, Centre Inria

R. Gribonval, “Fast matching pursuit with a multiscaléctionary of
gaussian chirps,JEEE Trans. on Sgnal Processing, vol. 49, no. 5, pp.
994 -1001, May 2001.

L. Peotta and P. Vandergheynst, “Matching pursuit veithck incoherent
dictionaries,” Sgnal Processing, |EEE Transactions on, vol. 55, no. 9,
pp. 4549 —4557, 2007.

R. Gribonval and E. Bacry, “Harmonic decomposition ofieo signals
with matching pursuit,ITEEE Trans. Sgnal Processing, vol. 51, no. 1,
pp. 101 — 111, 2003.

Y. Eldar and H. Bolcskei, “Block-sparsity: Coherencedeefficient re-
covery,” in [EEE Int. Conf. on Acoustics, Speech and Sgnal Processing,
Taipei, Taiwan, 2009, pp. 2885 —2888.

H. Mansour, R. Saab, P. Nasiopoulos, and R. Ward, “Colaage de-
saturation using sparse reconstruction,|BEE Int. Conf. on Acoustics,
Soeech and Sgnal Processing, Dallas, TX, USA, Mar. 2010.

Method for objective measurements of perceived audio quality, ITU-R
Std. BS.1387, Dec. 1998.

R. Huber and B. Kollmeier, “Pemo-q - a new method for ghje audio
quality assessment using a model of auditory percepti®EE Trans.
on Audio, Speech, and Language Processing, vol. 14, no. 6, pp. 1902
—1911, 2006.

Maria G. Jafari (S01MO02) received the M.Eng.
(Hons.) degree in electrical and electronic engineer-
ing from Imperial College London, U.K., in 1999
and the Ph.D. degree in signal processing from
Kings College London, U.K. in 2003. From 2002
to 2004 she worked as a Research Associate at
Kings College London, where her research focused
on the application of signal processing to biomedical
problems. In June 2004, she joined the Centre for
Digital Music, Queen Mary University of London,
U.K., where she is currently a Research Assistant.

Her research interest are in the areas of blind signal separssparse
representations and dictionary learning. She especialtgrasted in the
application of these and other techniques to speech andcnpuscessing
and the analysis of other audio sounds, such as heart and bourds.




12

Michael Elad received his B.Sc. (1986), M.Sc.
(1988) and D.Sc. (1997) from the department of
Electrical engineering at the Technion, Israel.

From 1988 to 1993 he served in the Israeli Air
Force. From 1997 to 2000 he worked at Hewlett-
Packard laboratories Israel as an R&D engineer.
During 2000 to 2001 he headed the research division
at Jigami corporation, Israel. During the years 2001
to 2003 Michael held a research-associate position
at Stanford university. Since late 2003 Michael is a
faculty member at the Computer-Science department
at the Technion. On May 2007 Michael was tenured to an adsecia
professorship, and on July 2010 he was promoted to fullgsswrship.

Michael Elad works in the field of signal and image processapgcializing
in particular on inverse problems, sparse representaiodssuper-resolution.
Michael received the Technion’s best lecturer award sixe$imhe is the
recipient of the Solomon Simon Mani award for excellence @aching in
2007, and he is also the receipient of the Henri Taub Prizeatademic
excellence (2008) and the Hershel-Rich prize (2010) foowation. Michael
is a senior IEEE member, and he is currently serving as arciasseditor for
SIAM journal on imaging sciences (SIIMS), and for the IEEEafAsactions
on Information Theory.

Rémi Gribonval graduated fromEcole Normale
Supérieure, Paris, France in 1997. He received the
Ph. D. degree in applied mathematics from the Uni-
versity of Paris-IX Dauphine, Paris, France, in 1999,
and his Habilitation a Diriger des Recherches in
applied mathematics from the University of Rennes
I, Rennes, France, in 2007. He is a Senior Member
of the IEEE.

From 1999 until 2001 he was a visiting scholar
at the Industrial Mathematics Institute (IMI) in the
Department of Mathematics, University of South
Carolina, SC. He is now a Research Director (Directeur den&ebe) with
INRIA in Rennes, France, in the METISS group. His researtérésts include
mathematical signal processing, machine learning, ajppation theory and
statistics. His research focuses on sparse approximatidnapplications to
multichannel audio signal processing, with a particularpbasis in blind
audio source separation and compressed sensing. Sincen2d@s been the
coordinator of several national, bilateral and europearach projects, and in
2008 he was elected a member of the steering committee fontér@ational
conference ICA on independent component analysis and e@eparation.
He is the founder of the series of international workshop&Rs®on Signal
Processing with Adaptive/Sparse Representations. In,20dwas awarded
the Blaise Pascal Award in Applied Mathematics and Scienkifngineering
from the French National Academy of Sciences. He has beemdadiaa
starting investigator grant from the European Researcm@bin 2011.

Mark D. Plumbley (S'88-M'90) received the B.A.
(Hons.) degree in electrical sciences in 1984 from
the University of Cambridge, Cambridge, U.K., and
the Ph.D. degree in neural networks in 1991, also
from the University of Cambridge. From 1991 to
2001 he was a Lecturer at King's College London.
He moved to Queen Mary University of London in
2002, and where he is now an EPSRC Leadership
Fellow and Director of the Centre for Digital Music.

His research focuses on the automatic analysis of
music and other audio sounds, including automatic
music transcription, beat tracking, and audio source séipar and with
interest in the use of techniques such as independent canpamalysis
(ICA) and sparse representations.

Prof. Plumbley chairs the ICA Steering Committee, and is anbver of the
IEEE SPS TC on Audio and Acoustic Signal Processing.

IEEE TRANSACTIONS ON, VOL. X, NO. X, JANUARY 20XX



	Introduction
	Audio Inpainting Problem Statement
	Formulation of audio inpainting
	Inpainting samples distorted by impulsive noise
	Inpainting intervals of missing samples

	Time-domain framework and models
	Frame-based processing and reconstruction
	Sparse Representations modeling of audio frames
	Dictionaries
	Discrete Cosine Transform (DCT) dictionary
	Gabor dictionary


	Audio inpainting algorithms based on Orthogonal Matching Pursuit
	Orthogonal Matching Pursuit (OMP) algorithm for inpainting
	Atom selection
	Solution update
	Algorithmic enhancements for inpainting clipped signals
	The `min' declipping constraint
	The `max' declipping constraint
	The `minmax' constrained SR problem
	OMP declipping algorithm


	Experimental Results
	Performance measures
	The collection of tested signals
	Parameter settings
	Inpainting experiments
	Global effect of the duration of missing intervals
	Fine effect of the `topology' of the missing samples

	Declipping experiment

	Audio Inpainting Toolbox
	Conclusions
	References
	Biographies
	Amir Adler
	Valentin Emiya
	Maria G. Jafari
	Michael Elad
	Rémi Gribonval
	Mark D. Plumbley




