
WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making
of photocopies or other reproduction of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to
furnish a photocopy or other reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be used for any purpose other than private study,
scholarship, or research. If electronic transmission of reserve material is used for
purposes in excess of what constitutes "fair use", that user may be liable for copyright

An Introduction to
Parallel Algorithms

Joseph JaJa
UNIVERSITY OF MARYLAND

A
••
ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • San Juan • Milan • Paris

1
Introduction

The purpose of this chapter is to introduce several parallel models and to
specify a suitable framework for presenting and analyzing parallel algo­
rithms. A commonly accepted model for designing and analyzing sequential
algorithms consists of a central processing unit with a random-access memory
attached to it. The typical instruction set for this model includes reading from
and writing into the memory, and basic logic and arithmetic operations. The
successful model is due to its simplicity and its ability to capture the perfor­
mance of sequential algorithms on von Neumann-type computers. Unfortu­
nately parallel computation suffers from the lack of such a widely accepted
algorithmic model. There is no such model primarily because the perfor­
mance of parallel algorithms depends on a set of interrelated factors in a
complex fashion that is machine dependent. These factors include computa­
tional concurrency, processor allocation and scheduling, communication,
and synchronization.

In this chapter, we start with a general discussion of parallel processing
and related performance measures. We then introduce the models most
widely used in algorithm development and analysis. These models are based
on directed acyclic graphs, shared memory, and networks. Directed acyclic
graphs can be used to represent certain parallel computations in a natural

1

2 Chapter 1 Introduction

way, and can provide a simple parallel model that does not include an;
architecture-related features. The shared-memory model, where a numbe
of processors communicate through a common global memory, offers ar
attractive framework for the development of algorithmic techniques for par­
allel computations. Unlike the two other models, the network model captures
communication by incorporating the topology of the interconnections into
the model itself. We show several parallel algorithms on these models, fol­
lowed by a brief comparison.

The shared memory model serves as our vehicle for designing and
analyzing parallel algorithms in this book and has been a fertile ground for
theoretical research into both the power and limitations of parallelism. We
shall describe a general framework for presenting and analyzing parallel
algorithms in this model.

1.1 Parallel Processing

The main purpose of parallel processing is to perform computations faster
than can be done with a single processor by using a number of processors
concurrently. The pursuit of this goal has had a tremendous influence on
almost all the activities related to computing. The need for faster solutions
and for solving larger-size problems arises in a wide variety of applications.
These include fluid dynamics, weather prediction, modeling and simulation
of large systems, information processing and extraction, image processing,
artificial intelligence, and automated manufacturing.

Three main factors have contributed to the current strong trend in favor
of parallel processing. First, the hardware cost has been falling steadily;
hence, it is now possible to build systems with many processors at a reason­
able cost. Second, the very large scale integration (VLSI) circuit technology
has advanced to the point where it is possible to design complex systems
requiring millions of transistors on a single chip. Third, the fastest cycle time
of a von Neumann-type processor seems to be approaching fundamental
physical limitations beyond which no improvement is possible; in addition, as
higher performance is squeezed out of a sequential processor, the associated
cost increases dramatically. All these factors have pushed researchers into
exploring parallelism and its potential use in important applications.

A parallel computer is simply a collection of processors, typically of the
same type, interconnected in a certain fashion to allow the coordination of their
activities and the exchange of data. The processors are assumed to be located

1.1 Parallel Processing 3

within a small distance of one another, and are primarily used to solve a given
problem jointly. Contrast such computers with distributed systems, where a
set of possibly many different types of processors are distributed over a large
geographic area, and where the primary goals are to use the available distrib­
uted resources, and to collect information and transmit it over a network
connecting the various processors.

Parallel computers can be classified according to a variety of architec­
tural features and modes of operations. In particular, these criteria include
the type and the number of processors, the interconnections among the
processors and the corresponding communication schemes, the overall con­
trol and synchronization, and the input/output operations. These consider­
ations are outside the scope of this book.

Our main goal is to present algorithms that are suitable for implementation
on parallel computers. We emphasize techniques, paradigms, and methods,
rather than detailed algorithms for specific applications. An immediate ques­
tion comes to mind: How should an algorithm be evaluated for its suitability
for parallel processing? As in the case of sequential algorithms, there are
several important criteria, such as time performance, space utilization, and
programmability. The situation for parallel algorithms is more complicated
due to the presence of additional parameters, such as the number of proces­
sors, the capacities of the local memories, the communication scheme, and
the synchronization protocols. To get started, we introduce two general mea­
sures commonly used for evaluating the performance of a parallel algorithm.

Let P be a given computational problem and let n be its input size.
Denote the sequential complexity off by T*(n). That is, there is a sequential
algorithm that solves/" within this time bound, and, in addition, we can prove
that no sequential algorithm can solve P faster. Let A be a parallel algorithm
that solves/5 in time Tp («)ona parallel computer withp processors. Then, the
speedup achieved by A is defined to be

s (n) = m
Op\ n) T p (ny

Clearly, S p (n) measures the speedup factor obtained by algorithm A
whenp processors are available. Ideally, since Sp(n) < p, we would like to
design algorithms that achieve Sp(n) ~ p. In reality, there are several factors
that introduce inefficiencies. These include insufficient concurrency in the
computation, delays introduced by communication, and overhead incurred in
synchronizing the activities of various processors and in controlling the system.

Note that T\{n) , the running time of the parallel algorithm A when the
numberp of processors is equal to 1, is not necessar i ly the same as T*(n);
hence, the speedup is measured relative to the best possible sequential algorithm.
It is common practice to replace T*(n) by the time bound of the best known
sequential algorithm whenever the complexity of the problem is not known.

4 Chapter 1 Introduction

Another performance measure of the parallel algorithm A is efficiency,
defined by

£ <n\ - ZlM.
^ P V 1 ' P T p (n) '

This measure provides an indication of the effective utilization of thep
processors relative to the given algorithm. A value of Ep(n) approximately
equal to 1, for some p, indicates that algorithm A runs approximately/? times
faster using/? processors than it does with one processor. It follows that each
of the processors is doing "useful work" during each time step relative to the
total amount of work required by algorithm A.

There exists a limiting bound on the running time, denoted by T a 0 in) ,
beyond which the algorithm cannot run any faster, no matter what the num­
ber of processors. Hence, Tp(n) > Tx («), for any value of /?, and thus the
efficiency Ep(n) satisfies Ep{n) < T\(n)!pT »(«). Therefore, the efficiency of
an algori thm degrades quickly as p grows beyond T i (n) /T«, (n) .

Our main goal in this book is to develop parallel algorithms that can
provably achieve the best possible speedup. Therefore, our model of parallel
computation must allow the mathematical derivation of an estimate on the
running time Tp(n) and the establishment of lower bounds on the best pos­
sible speedup for a given problem. Before introducing several candidate
models, we outline the background knowledge that readers should have.

1.2 Background

Readers should have an understanding of elementary data structures and
basic techniques for designing and analyzing sequential algorithms. Such
material is usually covered at the undergraduate level in computer science
and computer engineering curricula. Our terminology and notation are stan­
dard; they are described in several of the references given at the end of this
chapter.

Algorithms are expressed in a high-level language in common use. Each
algorithm begins with a description of its input and its output, followed by a
statement (which consists of a sequence of one or more statements). We next
give a list of the statements most frequently used in our algorithms. We shall
augment this list later with constructs needed for expressing parallelism.

1. Assignment statement:
variable: = expression
The expression on the right is evaluated and assigned to the variable on
the left.

1.2 Background 5

2. Begin/end statement:
begin

statement
statement

statement
end
This block defines a sequence of statements that must be executed in
the order in which they appear.

3. Conditional statement:
if (condition) then statement [else statement]
The condition is evaluated, and the statement following then is exe­
cuted if the value of the condition is true. The else part is optional; it is
executed if the condition is false. In the case of nested conditional
statements, we use braces to indicate the if statement associated with
each else statement.

4. Loops: We use one of the following two formats:
for variable = initial value to final value do statement
while (condition) do statement
The interpretation of the for loop is as follows. If the initial value is less
than or equal to the final value, the statement following do is executed,
and the value of the variable is incremented by one. Otherwise, the
execution of the loop terminates. The same process is repeated with the
new value of the variable, until that value exceeds the final value, in
which case the execution of the loop terminates.
The while loop is similar, except that the condition is tested before each
execution of the statement. If the condition is true, the statement is
executed; otherwise, the execution of the loop terminates.

5. Exit statement:
exit
This statement causes the execution of the whole algorithm to terminate.

The bounds on the resources (for example, time and space) required by
a sequential algorithm are measured as a function of the input size, which
reflects the amount of data to be processed. We are primarily interested in
the worst-case analysis of algorithms; hence, given an input size n, each
resource bound represents the maximum amount of that resource required
by any instance of size n. These bounds are expressed asymptotically using
the following standard notation:

• T(n) = 0(f(n)) if there exist positive constants c and no such that T(n) <
cf(n) , for al l n > nq .

6 Chapter 1 Introduction

• T(n) = f l (f (n)) if there exist positive constants c and n t i such that T(n) >
cf(n) , for al l n > n$.

• T{n) = ©(/(«)) if 7X«) = 0(f(n)) and T(n) = £l(f[n)) .

The running time of a sequential algorithm is estimated by the number
of basic operations required by the algorithm as a function of the input size.
This definition naturally leads to the questions of what constitutes a basic
operation, and whether the cost of an operation should be a function of the
word size of the data involved. These issues depend on the specific problem
at hand and the model of computation used. Briefly, we charge a unit of time
to the operations of reading from and writing into the memoiy, and to basic
arithmetic and logic operations (such as adding, subtracting, comparing, or
multiplying two numbers, and computing the bitwise logic OR or AND of two
words). The cost of an operation does not depend on the word size; hence, we
are using what is called the uniform cost criterion. A formal computational
model suitable for our purposes is the Random Access Machine (RAM),
which assumes the presence of a central processing unit with a random-access
memory attached to it, and some way to handle the input and the output
operations. A knowledge of this model beyond our informal description is not
necessary for understanding the material covered in this book. For more
details concerning the analysis of algorithms, refer to the bibliographic notes
at the end of this chapter.

Finally, all logarithms used in this book are to the base 2 unless other­
wise stated. A logarithm used in an asymptotic expression will always have a
minimum value of 1.

1.3 Parallel Models

The RAM model has been used successfully to predict the performance of
sequential algorithms. Modeling parallel computation is considerably more
challenging given the new dimension introduced by the presence of many
interconnected processors. We should state at the outset that we are prima­
rily interested in algorithmic models that can be used as general frameworks for
describing and analyzing parallel algorithms. Ideally, we would like our model
to satisfy the following (conflicting) requirements:

• Simplicity: The model should be simple enough to allow us to describe
parallel algorithms easily, and to analyze mathematically important
performance measures such as speed, communication, and memory utili­
zation. In addition, the model should not be tied to any particular class of
architectures, and hence should be as hardware-independent as possible.

1.3 Parallel Models 7

• Implementability: The parallel algorithms developed for the model
should be easily implementable on parallel computers. In addition, the
analysis performed should capture in a significant way the actual per­
formance of these algorithms on parallel computers.

Thus far. no single algorithmic parallel model has proved to be accept­
able to most researchers in parallel processing. The literature contains an
abundant number of parallel algorithms for specific architectures and specific
parallel machines; such reports describe a great number of case studies, but
offer few unifying techniques and methods.

In Sections 1.3.1 through 1.3.3, we introduce three parallel models and
briefly discuss their relative merits. Other parallel models, such as parallel
comparison trees, sorting networks, and Boolean circuits, will be introduced
later in the book. We also state our choice of the parallel model used in this
book and provide justification for this choice.

1.3.1 DIRECTED ACYCLIC GRAPHS

Many computations can be represented by directed acyclic graphs (dags) in
a natural way. Each input is represented by a node that has no incoming arcs.
Each operation is represented by a node that has incoming arcs from the
nodes representing the operands/The indegree of each internal node is at
most two. A node whose outdegree is equal to zero represents an output. We
assume the unit cost criterion, where each node represents an operation that
takes one unit of time.

A directed acyclic graph with n input nodes represents a computation
that has no branching instructions and that has an input of size n. Therefore,
an algorithm is represented hy-a-family of dags {G„}, where G„ corresponds
to the algorithm with input size n.

This model is particularly suitable for analyzing numerical computa­
tions, since branching instructions are typically used to execute a sequence of
operations a certain number of times, dependent on the input size n. In this
case, we can unroll a branching instruction by duplicating the sequence of
operations to be repeated the appropriate number of times.

A dag specifies the operations performed by the algorithm, and implies
precedence constraints on the order in which these operations must be
performed. It is completely architecture-independent.

EXAMPLE 1.1:

Consider the problem of computing the sum S of the n = 2k elements of an
array A Two possible algorithms are represented by their dags in Fig. 1.1 for
n = 8. The algorithm in Fig. 1.1(a) computes the partial sums consecutively,
starting with A(\) + A(2), followed by (A(l) + A(2)) + A(3), and soon. The

8 Chapter 1 Introduction

algorithm in Fig. 1.1(b) proceeds in a complete binary tree fashion that begins
by computing the sums^l(l) + A(2), A(3) + A(4), ... ,A(n - 1) + /!(«) at the
lowest level, and repeats the process at the next level with ^ elements, and so
on until the sum is computed at the root. •

The dag model can be used to analyze the performance of a parallel
algorithm under the assumption that any processor can access the data com­
puted by any other processor, without incurring additional cost. We can specify
a particular implementation of the algorithm by scheduling each node for
execution on a particular processor. More precisely, given p processors, we
have to associate with each internal node i of the dag a pair (/), (,), where /) < p
is the index of a processor and f, is a time unit (processor F;, executes the
operation specified by node i at time (,). such that the following two condi­
tions hold:

+

+

+ + 4(5

T~ T~

+ + + +

4(1 4(1) 4(4 4(6

FIGURE 1.1
The dags of two possible algorithms for Example 1.1. (a) A dag for computing
the sum of eight elements, (b) An alternate dag for computing the sum of eight
elements based on a balanced binary tree scheme.

1,3 Parallel Models 9

1. If t i = t /c for some i * k, then /,• * jk- That is, each processor can
perform a single operation during each unit of time.

2. If (i, k) is an arc in the graph, then tk > tj + 1. That is, the operation
represented by node k should be scheduled after the operation repre­
sented by node i has been completed.

The time t-t of an input node i is assumed to be 0, and no processor is
allocated to the node i. We call the sequence {(/, , t,-) | i € N} a schedule for
the parallel execution of the dag by p processors, where N is the set of nodes
in the dag.

For any given schedule, the corresponding time for executing the algo­
rithm is given by max,-^/,-. The parallel complexity of the dag is defined by
Tp(n) = minjmax^A'r,}, where the minimum is taken over all schedules that
use p processors. Clearly, the depth of the dag, which is the length of the
longest path between an input and an output mode, is a lower bound on
Tp(n), for any number p of processors.

EXAMPLE 1.2:

Consider the two sum algorithms presented in Example 1.1 for an arbitrary
number n of elements. It is clear that the best schedule of the algorithm
represented in Fig. 1.1(a) takes 0(n) time, regardless of the number of
processors available, whereas the best schedule of the dag of Fig. 1.1(b) takes
0(log«) time with | processors. In either case, the scheduling algorithm is
straightforward and proceeds bottom up, level by level, where all the nodes at
the same level have the same execution time. •

EXAMPLE 1.3: (Matrix Multiplication)

Let A and B be two n x n matrices. Consider the standard algorithm to
compute the product C = AB. Each C(i,j) is computed using the expression
C{i,j) = 21=\A(i, /)£(/,)). A dag to compute C(iJ) forn = 4 is shown in Fig.
1.2. Given n3 processors, the operations can be scheduled level by level, using
n processors to compute each entry of C; hence, the dag can be scheduled to
compute C in 0(log n) time. •

1.3.2 THE SHARED-MEMORY MODEL

The next model is a natural extension of our basic sequential model; in the
new model, many processors have access to a single shared memory unit.
More precisely, the shared-memory model consists of a number of proces­
sors, each of which has its own local memory and can execute its own local
program, and all of which communicate by exchanging data through a shared

10 Chapter 1 Introduction

C { i , j)

C+J
X X

(A(i, 1)) (B(l,j) [A (i , 2)1 [B (2 J) j { A (i , 3) B(3,i) M(r\4)J [B (4 , j) J

FIGURE 1.2
A dag for computing an entry C(/\ /) of the matrix product C = AS for the case
of 4 x 4 matrices.

memory unit. Each processor is uniquely identified by an index, called a
processor number or processor id, which is available locally (and hence can
be referred to in the processor's program). Figure 1.3 shows a general view of
a shared-memory model withp processors. These processors are indexed 1,
2, ... ,p. Shared memory is also referred to as global memot?.

FIGURE 1.3
The shared-memory model.

1,3 Parallel Models 11

There are two basic modes of operation of a shared-memory model. In
the first mode, called synchronous, all the processors operate synchronously
under the control of a common clock. A standard name for the synchronous
shared-memory model is the parallel random-access machine (PRAM)
model. In the second mode, called asynchronous, each processor operates
under a separate clock. In the asynchronous mode of operation, it is the
programmer's responsibility to set appropriate synchronization points when­
ever necessary. More precisely, if data need to be accessed by a processor, it
is the programmer's responsibility to ensure that the correct values are ob­
tained, since the value of a shared variable is determined dynamically during
the execution of the programs of the different processors.

Since each processor can execute its own local program, our shared-
memory model is a multiple instruction multiple data (MIMD) type. That is,
each processor may execute an instruction or operate on data different from
those executed or operated on by any other processor during any given time
unit. For a given algorithm, the size of data transferred between the shared
memory and the local memories of the different processors represents the
amount of communication required by the algorithm.

Before introducing the next example, we augment our algorithmic lan­
guage with the following two constructs:

global read (A, Y) '
global write((/, V)
The effect of the global read instruction is to move the block of data X

stored in the shared memory into the local variable Y. Similarly, the effect of
the global write is to write the local data U into the shared variable V.

EXAMPLE 1.4: (Matrix Vector Multiplication on the Shared-Memory Model)

Let A be an n x n matrix, and let x be a vector of order n, both stored in the
shared memory. Assume that we havep < n processors such that r = nip is an
integer and that the mode of operation is asynchronous. Let A be partitioned
as follows:

w

-P-
where each blocks, is of size r x n. The problem of computing the product
y = Ax can be solved as follows. Each processor P, reads A, and x from the
shared memory, then performs the computation z = A,x, and finally stores
the r components of z in the appropriate components of the shared variable y.

12 Chapter 1 Introduction

In the algorithm that follows, we use A (/ :u ,s: t) to denote the submatrb
oM consisting of rows/, / + 1, ... , u and columns s, s + 1, ... ,t. The same
notation can be used to indicate a subvector of a given vector. Each processo
executes the same algorithm.

ALGORITHM 1.1
(Matrix Vector Multiplication on the Shared-Memory Model)
Input: An n x n matrix A and a vector x of order n residing in the
shared memory. The initialized local variables are (1) the order n,
(2) the processor number i, and (3) the number p < n of processors
such that r = nip is an integer.
Output: The components (i — l)r + 1, ... , ir of the vector y = Ax
stored in the shared variable y.
begin

1. global read(x, z)
2. global read(A((i - l)r + 1 :ir, 1 :n),B)
3. Compute vv = Bz.
4. global write(w, v((i - l)r 4- 1 : ir))

end

Notice that a concurrent read of the same shared variable x is requ
by all the processors at step 1. However, no two processors attempt to v
into the same location of the shared memory.

We can estimate the amount of computation and communication
by the algorithm as follows. Step 3 is the only computation step that req
0(n2/p) arithmetic operations. Steps 1 and 2 transfer 0(n2/p) numbers
the shared memory into each processor, and step 4 stores nip numbers
each local memory in the shared memory.

An important feature of Algorithm 1.1 is that the processors d
need to synchronize their activities, given the way the matrix vector pr
was partitioned. On the other hand, we can design a parallel algorithm
on part i t ioning A andxintop blocks such that A = {A\ ,A2, . . . ,A p) ai
(xi, xz, , xp), where each A, is of size n x r and each x, is of size
producty = Ax is now given byy = A\X\ + A2X2 + ••• + A rx r .
processor P,- can compute z, = A,x, after reading A, and x, from the
memory, for 1 < i < p. At this point, however, no processor should be
computation of the sum z\ + Z2 + ••• + zr before ensuring that
processors have completed their matrix vector products. Therefore
plicit synchronization primitive must be placed in each processor's p
after the computation of z, = Atxi to force all the processors to sync
before continuing the execution of their programs.

1.3 Parallel Models 13

In the remainder of this section, we concentrate on the PRAM model,
which is the synchronous shared-memory model.

Algorithms developed for the PRAM model have been of type single
instruction multiple data (SIMD). That is, all processors execute the same
program such that, during each time unit, all the active processors are exe­
cuting the same instruction, but with different data in general. However, as
the model stands, we can load different programs into the local memories of
the processors, as long as the processors can operate synchronously; hence,
different types of instructions can be executed within the unit time allocated
for a step.

EXAMPLE 1.5: (Sum on the PRAM)

Given an arrays of n = 2 k numbers, and a PRAM with n processors {P\ ,Pi , ,
P„}, we wish to compute the sum S = A(l) + A(2) + ... + A(n). Each
processor executes the same algorithm, given here for processor P,.

ALGORITHM 1.2
(Sum on the PRAM Model)
Input: An array A of order n = 2k stored in the shared memory of
a PRAM with n processors. The initialized local variables are n and
the processor number i.
Output: The sum of the entries of A stored in the shared location S.
The array A holds its initial value.
begin

1. global read(A(/), a)
2. global write(a, B(i))
3. for h = 1 to log n do

if (/ < n/2 h) then
begin

global read(B(2i — 1), x)
global read(fl(2/), v)
Setz:- x + y
global write(z , B(i))

end
4. if i = 1 then global write(z, 5)

end

Figure 1.4 illustrates the algorithm for the case when n = 8. During steps 1
and 2, a copy B of A is created and is stored in the shared memory. The
computation scheme (step 3) is based on a balanced binary tree whose leaves
correspond to the elements of A. The processor responsible for performing

14 Chapter 1 Introduction

an operation is indicated below the node representing the operation. Note
that P i, which is responsible for updating the value of B(1) and for writing the
sum into S, is always active during the execution of the algorithm, whereas
P5, Ffi, P7, and Pg are active only during steps 1 and 2.

Using this example, we emphasize the following key assumptions about
the PRAM model.

• Shared-memory: The arrays A and B are stored in the global memory
and can be accessed by any processor.

• Synchronous mode of operation: In each unit of time, each processor is
allowed to execute an instruction or to stay idle. Note that the condition of
the if statement in the loop defined in step 3 is satisfied by only some pro­
cessors. Each of the remaining processors stays idle during that time. •

There are several variations of the PRAM model based on the assump­
tions regarding the handling of the simultaneous access of several processors
to the same location of the global memory. The exclusive read exclusive write

FIGURE 1.4
Computation of the sum of eight elements on a PRAM with eight processors.
Each internal node represents a sum operation. The specific processor
executing the operation is indicated below each node.

p

1.3 Parallel Models 15

(EREW) PRAM does not allow any simultaneous access to a single memory
location. The concurrent read exclusive write (CREW) PRAM allows simul­
taneous access for a read instruction only. Access to a location for a read or
a write instruction is allowed in the concurrent read concurrent write
(CRCW) PRAM. The three principal varieties of CRCW PRAMs are differ­
entiated by how concurrent writes are handled. The common CRCW PRAM
allows concurrent writes only when all processors are attempting to write the
same value. The arbitrary CRCW PRAM allows an arbitrary processor to
succeed. The priority CRCW PRAM assumes that the indices of the proces­
sors are linearly ordered, and allows the one with the minimum index to
succeed. Other variations of the CRCW PRAM model exist. It turns out that
these three models (EREW, CREW, CRCW) do not differ substantially in
their computational powers, although the CREW is more powerful than the
EREW, and the CRCW is most powerful. We discuss their relative powers in
Chapter 10.

Remark 1.1: To simplify the presentation of PRAM algorithms, we omit the
details concerning the memory-access operations. An instruction of the form
Set A: = B + C, where A, B, and C are shared variables, should be inter­
preted as the following sequence of instructions,

global read(B, x)
global read(C, y)
Set z: = x + y
global write(z, A)
In the remainder of this book, no PRAM algorithm will contain explicit

memory-access instructions. •

EXAMPLE 1.6: (Matrix Multiplication on the PRAM)

Consider the problem of computing the product C of the two n x n matrices
A and B, where n = 2k, for some integer k. Suppose that we have n3 proces­
sors available on our PRAM, denoted by P,j./, where 1 < i,j,l < n. Processor
P q j computes the products (/ , l)B(l , j) in a single s tep. Then, for each pair (i , j) ,
then processorsP,j /, where 1 < I < n, compute the sum I)B(IJ) as
described in Example 1.5.

The algorithm for processor Pjjj is stated next (recall Remark 1.1).

ALGORITHM 1.3
(Matrix Multiplication on the PRAM)
Input: Two n x n matrices A and B stored in the shared memory,
where n = 2k. The initialized local variables are n, and the triple of
indices (i, j, I) identifying the processor.

16 Chapter 1 Introduction

Output: The product C — AB stored in the shared memory.
begin

1. Compute C'(i, j, /) = A(i,l)B(l,j)
2. for h = 1 to log n do

if (/ < n/2 h) then set C'(i,j, I): = C'(i,j, 21 - 1) + C'(i , j , 21)
3 . i f (I = 1) then.wt C(i , j) : = 1)

end

Notice that the previous algorithm requires concurrent read capability,
since different processors may have to access the same data while executing
step 1. For example, processors jP/,1,/, Pi,2,1, • •• , Pi,n,i all require A(i, I) from
the shared memory during the execution of step 1. Hence, this algorithm runs
on the CREW PRAM model. As for the running time, the algorithm takes
0(log n) parallel steps. •

Remark 1.2: If we modify step 3 of Algorithm 1.3 by removing the if condition
(that is, replacing the whole statement by Set C(i, j): = C'(i, j, 1)), then the
corresponding algorithm requires a concurrent write of the same value ca­
pability. In fact, processors Pi,j,2> • • • , Pi,j,n all attempt to write the
value 1) into locat ion C(i , j) . •

1.3.3 THE NETWORK MODEL

A network can be viewed as a graph G = (N, E) , where each node i € N
represents a processor, and each edge (i,;') € E represents a two-way com­
munication link between processors i and Each processor is assumed to
have its own local memory, and no shared memory is available. As in the case
of the shared-memory model, the operation of a network may be either
synchronous or asynchronous.

In describing algorithms for the network model, we need additional
constructs for describing communication between the processors. We use the
following two constructs:

send (A, i)
receive(y, j)

A processor P executing the send instruction sends a copy of X to
processor P(, then resumes the execution of the next instruction immediately.
A processor P executing the receive instruction suspends the execution of its
program until the data from processor Pj are received. It then stores the data
in Y and resumes the execution of its program.

1.3 Parallel Models 17

The processors of an asynchronous network coordinate their activities
by exchanging messages, a scheme referred to as the message-passing model.
Note that, in this case, a pair of communicating processors do not necessarily
have to be adjacent; the process of delivering each message from its source to
its destination is called routing. The study of routing algorithms is outside the
scope of this book; see the bibliographic notes at the end of this chapter for
references.

The network model incorporates the topology of the interconnection
between the processors into the model itself. There are several parameters
used to evaluate the topology of a network G. Briefly, these include the
diameter, which is the maximum distance between any pair of nodes, the
maximum degree of any node in G, and the node or edge connectivity of G.

We shall introduce the following representative topologies: the linear
array, the two-dimensional mesh, and the hypercube. Many other networks
have been studied extensively for their suitability for parallel processing; they
are not mentioned here. Several books describing them are given in the list of
references at the end of this chapter.

The Linear Processor Array and the Ring. The linear processor array
consists ofp processors P\, Pi , . . . , P p connected in a linear array; that is,
processor P, is connected toP,_ i and toP, +1, whenever they exist. Figure 1.5
shows a linear array with eight processors. The diameter of the linear array is
p - 1; its maximum degree is 2.

A ring is a linear array of processors with an end-around connection;
that is, processors Pi and Pp are directly connected.

EXAMPLE 1.7: (Matrix Vector Product on a Ring)

Given an n x n matrix A and a vector x of order n, consider the problem of
computing the matrix vector product y = Ax on a ring ofp processors, where
p < n. Assume that p divides n evenly, and let r = nip. Let A and x be
partitioned into/? blocks as follows: A = {A\,Ai, • ••, Ap) and x = (xi,
xi, , xp), where each At is of size n x r and each x, is of size r. We can
determine the producty = Ax by computing z, = A,x,, for 1 < i < p, and then
accumulat ing the sum z\ + z i + • + z p .

P 2 P 1 P 4 P 5 P 6 P 1 p s P 2 P 1 P 4 P 5 P 6 P 1 p s

FIGURE 1.5
A linear array of eight processors.

18 Chapter 1 Introduction

Let processor P, of our network hold initially B = Ai and w = x , in its
local memory, for all 1 < i < p. Then each processor can compute locally the
product Bw, and we can accumulate the sum of these vectors by circulating
the partial sums through the ring clockwise. The output vector will be stored
in Pi. The algorithm to be executed by each processor is given next.

ALGORITHM 1.4
(Asynchronous Matrix Vector Product on a Ring)
Input: (1) The processor number i; (2) the number p of processors;
(3) the ith submatrix B = A (1 : n, (i — \)r + 1 : ir) of size n x r,
where r = nip; (4) the ith subvector w = x((i — l)r + 1 : ir) of size r.
Output: Processor P, computes the vector y = A\X\ + ••• + AjXi
and passes the result to the right. When the algorithm terminates, P\ will
hold the product Ax.
begin

1. Compute the matrix vector product z = Bw.
2. if / = 1 then set y: = 0

else receive(y, le f t)
3. Set y: = y + z
4. send(y, right)
5. if i = 1 then receive(y, le f t)

end

Each processor F, begins by computing A,x,; it stores the resulting
vector in the local variable z. At step 2, processor Pi initializes the vectory to
0, whereas each of the other processors suspends the execution of its program
waiting to receive data from its left neighbor. Processor Pi setsy = A i x i and
sends the result to the right neighbor in steps 3 and 4, respectively. At this
time, P2 receives A j jq and resumes the execution of its program by comput­
ing^ [Xi + A2x2 at step 3; it then sends the new vector to the right at step 4
When the executions of all the programs terminate, Pi holds the producty = Ax.

The computation performed by each processor consists of the twc
operations in steps 1 and 3; hence, the algorithm's computation time i:
0(n2/p)—say Tcomp = a (n2jp), where a is some constant. On the other hand
processor P\ has to wait until the partial sum^41 xi + • • • + Apxp has beei
accumulated before it can execute step 5. Therefore, the total communica
tion time Tcomm is proportional to the productp • comm(n), where comm(n
is the time it takes to transmit n numbers between adjacent processors. Thi
value can be approximated by comm(n) = <r + m, where <r is the startup tim
for transmission, and T is the rate at which the message can be transferred.

The total execution time is given by T = Tcomp + Tcomm = a (n2/p) H
p(ij + m). Clearly, a tradeoff exists between the computation time and th

1.3 Parallel Models 19

communication time. In particular, the sum is minimized when a (n 2 /p) =
p(a + m), and hencep = n\ 'aj(a + m). •

The Mesh. The two-dimensional mesh is a two-dimensional version of the
linear array. It consists ofp = m2 processors arranged into an m x m grid
such that processor P/j is connected to processors P,±i,y and Pi,j± 1, when­
ever they exist. Figure 1.6 shows a 4 x 4 mesh.

The diameter of a (p = m2)-processor mesh is Vp, and the maximum
degree of any node is 4. This topology has several attractive features, such as
simplicity, regularity, and extensibility. In addition, it matches the computation
structures arising in many applications. However, since the mesh has diameter
2Vp - 2, almost any nontrivial computation requires Cl(Vp) parallel steps.

EXAMPLE 1.8: (Systolic Matrix Multiplication on the Mesh)

The problem of computing the product C = AB on an n x n mesh, where^4,
B, and C are n x n matrices, can be solved in O(n) time. Figure 1.7 shows one
possible scheme, following the systolic paradigm, where the rows of A are fed
synchronously into the left side of the mesh in a skewed fashion, and the
columns of B are fed synchronously into the top boundary of the mesh in a
skewed fashion. When P-q receives the two inputs A(i, I) and B(l, j), it
performs the operation C(i,j): = C(i,j) + A(i,l)B(l,j); it then sendsA(i,l) to
its right neighbor and B(l, j) to the neighbor just below it.

^1.« p x z P U 2 P X 4 ^1.« p x z P U 2 P X 4

P 2 A P 2 , 2 p 2 , i P 2 , 4 P 2 A P 2 , 2 p 2 , i P 2 , 4

P X l P 2 , 2 P X 2 P X 4 P X l P 2 , 2 P X 2 P X 4

P 4 , 2 P 4 , 4 P 4 , 2 P 4 , 4

FIGURE 1.6
A 4 x 4 mesh.

20 Chapter 1 Introduction

A(1, 4) 4(1,3) 4(1, 2) 4(1, 1)

4(2,4)4(2,3)4(2,2)4(2,1) •

4(3,4)4(3,3)4(3,2)4(3,1)

4(4,4)4(4,3)4(4,2)4(4,1) •

B(4, 3)

fi(4, 3) B(3, 4)
B (4,2) B(3, 3) B (2,4)

13(4, 1) B (3,2) B (2,3) B(l,4)

13(3,1) B(2,2) fl(l, 3)
£1(2, 1) B(l, 2)
13(1, 1) *

i_ Ju
1,1 1,2 1, 3 1,4

2, 1 2 , 2 2,3 2,4

3, 1 3,2 3, 3 3,4

4, 1 4,2 4,3 4,4

FIGURE 1.7
Matrix multiplication on the mesh using a systolic algorithm. Rows of A move
synchronously into the left side, while columns of B move synchronously at the
same rate into the top side. When A(i, I) and B(l, /') are available at processor
Pij, the operation C(i, j) = C(/, /') + A(i, l)B(l, j) takes place, A(i, I) is sent to
P,-j+1 (if it exists), and B(l, j) is sent to P/+ij (if it exists).

After O(n) steps, each processor Py will have the correct value of C(iJ) .
Hence, the algorithm achieves an optimal speedup for n2 processors relative to
the standard matrix-multiplication algorithm, which requires 0(n3) operations.

Systolic algorithms operate in a fully synchronous fashion, where, at each
time unit, a processor receives data from some neighbors, then performs some
local computation, and finally sends data to some of its neighbors. •

You should not conclude from Example 1.8 that mesh algorithms are
typically synchronous. Many of the algorithms developed for the mesh have
been asynchronous.

The Hypercube. A hypercube consists oip = 2 d processors interconnected
into a d-dimensional Boolean cube that can be defined as follows. Let the
binary representation of i be id-iid-2 • io, where 0 < i < p - 1. Then
processorP, is connected to processorsP,oi, where i'W = id_l ••• • ilh

1.3 Parallel Models 21

and i j = 1 - i j , for 0 < j < d - 1. In other words, two processors are
connected if and only if their indices differ in only one bit position. Notice
that our processors are indexed from 0 top - 1.

The hypercube has a recursive structure. We can extend a d-
dimensional cube to a (d + l)-dimensional cube by connecting correspond­
ing processors of two d-dimensional cubes. One cube has the most significant
address bit equal to 0; the other cube has the most significant address bit
equal to 1. Figure 1.8 shows a four-dimensional hypercube.

The diameter of a d-dimensional hypercube is d = log p, since the
distance between any two processors P, and P; is equal to the number of bit
positions in which i and j differ; hence, it is less than or equal to d, and the
distance between say Pq and PY -1 is d. Each node is of degree d = log/?.

The hypercube is popular because of its regularity, its small diameter,
its many interesting graph-theoretic properties, and its ability to handle many
computations quickly and simply.

We next develop synchronous hypercube algorithms for several simple
problems, including matrix multiplication.

EXAMPLE 1.9: (Sum on the Hypercube)

Each entry A(i) of an array A of size n is stored initially in the local memory
of processor P, of an (n = 2rf)-processor synchronous hypercube. The goal is

0100 1100 1 1 0 1 0 1 0 1

l l l l

1 0 1 1

0000 0001 1000 1001

FIGURE 1.8
A four-dimensional hypercube, where the index of each processor is given in
binary. Two processors are connected if and only if their indices differ in
exactly one bit position.

22 Chapter 1 Introduction

to compute the sum S = 2,"Jo A (i) , and to store it in processor Po. Notice that
the indices of the array elements begin with 0.

The algorithm to compute S is straightforward. It consists of d itera­
tions. The first iteration computes sums of pairs of elements between proces­
sors whose indices differ in the most significant bit position. These sums are
stored in the (d - l)-dimensional subcube whose most significant address bit
is equal to 0. The remaining iterations continue in a similar fashion.

In the algorithm that follows, the hypercube operates synchronously,
and /(/l denotes the index i whose / bit has been complemented. The instruc­
tion/Iff): = A(i) + A(i^>) involves two substeps. In the first substep,P, copies
A(fh) from processor P,to along the link connecting Pud and P(; in the second
substep, Pi performs the additional) + A(i^), storing the result in-4(/).

ALGORITHM 1.5
(Sum on the Hypercube)
Input: An array A of n = 2d elements such thatA{i) is stored in the
local memory of processor Pi of an n-processor synchronous hyper­
cube, where 0 < i < n — 1.
Output: The sum S = ^J'J,,/!(/) stored in Pq .
Algorithm for Processor P,

I begin
] for / = d - 1 to 0 do
) if (0 < i < 2[— 1) then

SetA(i): = A(i) + A(f f
end

Consider, for example, the case when n = 8. Then, during the first
iteration of the for loop, the sums^4(0) = A(0) + A(4),A(1) =^4(1) +^4(5),
A(2) =-4(2) +-4(6),and-4(3) =-4(3) -I--4(7) are computed and stored in the
processors Pq, P\, PI, and P3, respectively. At the completion of the second
iteration, we obtain-4(0) = (-4(0) + -4(4)) + (-4(2) + -4(6)) and -4(1) =
(-4(1) -I- -4(5)) -I- (-4(3) -I- -4(7)). The third iteration clearly sets -4(0) to the
sumS. Algorithm 1.5 terminates afterd = logo parallel steps. Compare this
algorithm with the PRAM algorithm (Algorithm 1.2) that computes the sum
in C(log n) steps as well. •

EXAMPLE 1.10: (Broadcasting from One Processor on the Hypercube)

Consider the problem of broadcasting an item X held in the register £>(0) of
P q to al l the processors P, of a p-processor hypercube, where p = 2 d .

A simple strategy can be used to solve this problem. We proceed from
the lowest-order dimension to the highest dimension consecutively, in d

1.3 Parallel Models 23

iterations, as follows. During the first iteration, Pq sends a copy of X to P\
using the link between P0 andPj; during the second iteration,Po and.Pi send
copies of X to P2 and P3, respectively, using the links between Pq and P2 and
between Pi and P3, and so on. The algorithm is stated next.

ALGORITHM 1.6
(Broadcasting from One Processor on the Hypercube)
Input: Processor Po of a (p = 2d)-processor synchronous hypercube
holds the data item X in its register D(0).
Output: X is broadcast to all the processors such that D(i) = X,
where 1 < i < p — 1.
Algorithm for Processor P,
begin

for / = 0 to d - 1 do
if 0 < i < 2l - 1 then

Set D(i®): = D(i)
end

Again, as in Algorithm 1.5, the instruction Set D(i^): = D(i) involves
two substeps. In the first substep, a copy of D(i) is sent from processor P, to
processor P,(/> through the existing link between the two processors. In the
second substep, P,o receives the copy, and stores the copy in its D register.

Clearly, the broadcasting algorithm takes O(logp) parallel steps. •

The two hypercube algorithms presented belong to the class of normal
algorithms. The hypercube algorithms in this class use one dimension at each
time unit such that consecutive dimensions are used at consecutive time
units. Actually, the sum and broadcasting algorithms (Algorithms 1.5 and 1.6)
belong to the more specialized class of fully normal algorithms, which are
normal algorithms with the additional constraint that all the d dimensions of
the hypercube are used in sequence (either increasing, as in the broadcasting
algorithm, or decreasing, as in th? sum algorithm).

EXAMPLE 1.11: (Matrix Multiplication on the Hypercube)

We consider the problem of computing the product of two matrices C = AB
on a synchronous hypercube withp = n3 processors, where all matrices are
of order n x n.

Let n = 21 andhencep = 23?. We index the processors by the triples
(l , i , j) such that P/fl-j represents processorPr, where r = In2 + in + j. In other
words, expanding the index r in binary, we obtain that the q most significant
bits correspond to the index /, the next q most significant bits correspond to

24 Chapter 1 Introduction

the index i, and finally the q least significant bits correspond to the index j. In
particular, if we fix any pair of indices I, i, and j, and vary the remaining index
over all its possible values, we obtain a subcube of dimension q.

The input array A is stored in the subcube determined by the processors
P/,,,0, where 0 < I, i < n - 1, such that A(i, I) is stored in processor P/,;,o-
Similarly, the input array B is stored in the subcube formed by the processors
Pi t 0 j where processor P^oj holds the entry B(l , j) .

The goal is to compute C(i , j) = forO < i , j < n - 1.
The overall algorithm consists of three stages.

1. The input data are distributed such that processor P^j will hold the two
entries A(i, /) and £(/,;'), for 0 < l,i,j < n - 1.

2. Processor P/j(y computes the product C'(l , i , j) = A(i , l)B(l , j) , for all 0 < i ,
j , l < n - 1.

3. For each 0 < i, j < n - 1, processors P i j j, where 0 < / < n - 1,
compute the sum C(i , j) = 2/To 1C'(l , i , j) .

The implementation of the first stage consists of two substages. In the
first substage, we broadcast, for each i and /, A(i, /) from processor P/^o to
for 0 < j < n — 1. Since the set of processors {Pijj | 0 <;'<«- ljforms a
^-dimensional cube for each pair i and /, we can use the previous broadcasting
algorithm (Algorithm 1.6) to broadcast A(i, /) from P; , o to all the processors
PT,ij. In the second substage, each element B(l,j) held in processor P/Uj is
broadcast to processors P/,;,/, for all 0 < i < n - 1. At the end of the second
substage, processor P/j(J will hold the two entriesA(i, /) andP(/J). Using our
broadcasting algorithm (Algorithm 1.6), we can complete the first stage in 2q =
0(log n) parallel steps.

The second stage consists of performing one multiplication in each
processor P/^ j. Hence, this stage requires one parallel step. At the end of this
s tage, processor P/^j holds C'(l , i , j) .

The third stage consists of computing^2 sums C(i , j) ; the terms C'{1, i , j)
of each sum reside in a ^-dimensional hypercube {Pt,i,j I 0 < / < n - 1}. As
we have seen before (Algorithm 1.5), each such sum can be computed in q =
O(logn) parallel steps. Processor Pq,,,/ will hold the entry C(i,j) of the product.

Therefore, the product of two n x n matrices can be computed in 0(log n)
time on an n3-processor hypercube. •

1.3.4 COMPARISON

Although, for a given situation, each of the parallel models introduced could
be clearly advantageous, we believe that the shared memory model is most

1.3 Parallel Models 25

suited for the general presentation of parallel algorithms. Our choice for the
remainder of this book is the PRAM model, a choice justified by the discus­
sion that follows.

In spite of its simplicity, the dag model applies to a specialized class of
problems and suffers from several deficiencies. Unless the algorithm is fairly
regular, the dag could be quite complicated and very difficult to analyze. The
dag model presents only partial information about a parallel algorithm, since
a scheduling problem and a processor allocation problem will still have to be
resolved. In addition, it has no natural mechanisms to handle communication
among the processors or to handle memory allocations and memory accesses.

Although the network model seems to be considerably better suited to
resolving both computation and communication issues than is the dag model,
its comparison with the shared-memory model is more subtle. For our pur­
poses, the network model has two main drawbacks. First, it is significantly
more difficult to describe and analyze algorithms for the network model.
Second, the network model depends heavily on the particular topology under
consideration. Different topologies may require completely different algo­
rithms to solve the same problem, as we have already seen with the parallel
implementation of the standard matrix-multiplication algorithm. These ar­
guments clearly tip the balance in favor of the shared-memory model as a
more suitable algorithmic model.

The PRAM model, which is the synchronous version of the shared-
memory model, draws its power from the following facts:

• There exists a well-developed body of techniques and methods to handle
many different classes of computational problems on the PRAM model.

• The PRAM model removes algorithmic details concerning synchroni­
zation and communication, and thereby allows the algorithm designer
to focus on the structural properties of the problem.

• The PRAM model captures several important parameters of parallel
computations. A PRAM algorithm includes an explicit understanding
of the operations to be performed at each time unit, and explicit allo­
cation of processors to jobs at each time unit.

• The PRAM design paradigms have turned out to be robust. Many of the
network algorithms can be directly derived from PRAM algorithms. In
addition, recent research advances have shown that PRAM algorithms
can be mapped efficiently on several bounded-degree networks (see the
bibliographic notes at the end of this chapter).

• It is possible to incorporate issues such as synchronization and commu­
nication into the shared-memory model; hence, PRAM algorithms can
be analyzed within this more general framework.

For the remainder of this book, we use the PRAM model as our formal
model to design and analyze parallel algorithms. Sections 1.4 through 1.6

26 Chapter 1 Introduction

introduce a convenient framework for presenting and analyzing parallel al­
gorithms. This framework is closely related to what is commonly referred to
as data-parallel algorithms.

1.4 Performance of Parallel Algorithms

Given a parallel algorithm, we typically measure its performance in terms of
worst-case analysis. Let Q be a problem for which we have a PRAM algorithm
that runs in time T(n) using P(n) processors, for an instance of size n. The
time-processor product C(n) = T(n) • P(n) represents the cost of the parallel
algorithm. The parallel algorithm can be converted into a sequential algo­
rithm that runs in 0(C(n)) time. Simply, we have a single processor simulate
the P(n) processors in 0(P(n))dime, for each of the T(n) parallel steps.

The previous argument can be generalized to any numberp < P(n) of
processors as fol lows. For each of the T{n) paral le l s teps , we have the p
processors simulate the P(n) original processors in 0(P(n)/p) substeps: in the
first substep, original processors numbered 1,2, ... ,p are simulated; in the
second substep, processors numberedp + l,p + 2, ... ,2p are simulated;
and so on. This simulation takes a total of 0(T(n)P(n)/p) time.

When the number p of processors is larger than P(n) , we can clearly
achieve the running time of T(n) by using P{n) processors only.

We have just explained why the following four ways of measuring the
performance of parallel algorithms are asymptotically equivalent:

• P(n) processors and T(n) time
• C(n) = P(n)T(n) cost and T(n) time
• 0(T{n)P{n)ip) time for any number/? < P(n) processors
• 0\-jp- + T(«)) time for any number/? of processors

In the context of the PRAM algorithm to compute the sum of n ele­
ments (Example 1.5), these four measures mean (1) n processors and O(logn)
time, (2) 0(n log??) cost and 0{\ogn) time, (3) o{" '°g") time for any number
p < n of processors, and (4) O("'°e" + log??) time for any numberp of
processors. For the PRAM algorithm to perform matrix multiplication (Ex­
ample 1.6), the corresponding measures are (1) n3 processors and 0(log n)
time, (2) 0(n3 log n) cost and 0(log n) time, (3) o(" '°e") time for any
number p < ??3 of processors, and (4) O ("" p8" + log??) time for any
number p of processors.

Before we introduce our notion of optimality, we describe the work-
time framework for presenting and analyzing parallel algorithms.

1.5 The Work-Time Presentation Framework of Parallel Algorithms 27

1.5 The Work-Time Presentation Framework
of Parallel Algorithms

Often, parallel algorithms contain numerous details. Describing parallel al­
gorithms for the PRAM model helps us to simplify the details, because of the
relative strength of this model. The description paradigm we shall outline will
help us further.

The work-time (WT) paradigm provides informal guidelines for a two-
level top-down description of parallel algorithms. The upper level suppresses
specific details of the algorithm. The lower level follows a general scheduling
principle, and results in a full PRAM description.

Upper Level (Work-Time (WT) Presentation of Algorithms): Set the fol­
lowing intermediate goal for the design of a parallel algorithm. Describe the
algorithm in terms of a sequence of time units, where each time unit may include
any number of concurrent operations.

We define the work performed by a parallel algorithm to be the total
number of operations used. Before presenting our next example, we intro­
duce the following pardo statement:

for I < i < u pardo statement
The statement (which can be a sequence of statements) following the

pardo depends on the index i. The statements corresponding to all the values
of i between / and u are executed concurrently.

EXAMPLE 1.12:

Consider again the problem of computing the sum S of n = 2k numbers
stored in an array A. Algorithm 1.2, presented in Example 1.5, specifies the
program to be executed by each processor Ph where 1 < i < n. The WT
presentation of the same algorithm is given next.

ALGORITHM 1.7
(Sum)
Input: n = 2k numbers stored in an array A.
Output: The sum S =]A(i)
begin

1. for 1 < i < n pardo
SetB(i): =A(i)

2. for h = 1 to log n do
for 1 < i < nH h pardo

Set B(i): = B(2i - 1) + B(2i)

28 Chapter 1 Introduction

3. Set S: = 5(1)
end

This version of the parallel algorithm contains no mention of how many
processors there are, or how the operations will be allocated to processors. It
is stated only in terms of time units, where each time unit may include any
number of concurrent operations. In particular, we have log n + 2 time units,
where n operations are performed within the first time unit (step 1); the ;th
t ime uni t (i terat ion h = j — 1 of s tep 2) includes ni2j~ l operat ions, for 2 <j <
log n + 1; and only one operation takes place at the last time unit (step 3).
Therefore, the work performed by this algorithm is W(n) = n + ^°}"{n!2i) +
1 = O(n) . The running t ime is c lear ly T(n) = 0(log n) . •

The main advantage with respect to a PRAM specification is that we do
not have to deal with processors. The presence of p processors would have
bounded the number of operations to at mostp in each unit of time. Further­
more, it would have forced us to allocate each of the processors to execute a
specific sequence of operations.

Lower Level: Suppose that the WT presentation of algorithms results in a
parallel algorithm that runs in T(n) time units while performing W(n) work
(that is, the algorithm requires a total of W(n) operations). Using the general
WT scheduling principle given next, we can almost always adapt this algo­
rithm to run on a p-processor PRAM in < + T(n) parallel steps.

The WT Scheduling Principle: Let Wi(n) be the number of operations
performed in time unit i, where 1 < i < T(n). Simulate each set of R)(n)
operat ions in < r -^^l paral le l s teps by thep processors , for each 1 < i < T(n)
(see Fig. 1.9). If the simulation is successful, the corresponding p-processor
PRAM algorithm takes < 2; ^ + l) ^ + T(n)
parallel steps, as desired.

A remark concerning the adaptation of the WT scheduling principle is
in order. The success of this principle depends on two implementation issues:
the first is the calculation of fk)(n) for each i (usually trivial); the second is the
allocation of each processor to the appropriate tasks to be performed by that
processor. More precisely, for each parallel step, each processor Pk must
know whether or not it is active; if it is active, Pk must know the instruction it
has to execute and the corresponding operands.

1.5 The Work-Time Presentation Framework of Parallel Algorithms 29

T (n) • . . . • • W T (n)

0 H H W A (n)

3 • • . . . • • . . • W , (n)

• . . . • W 7 (n)

Time
Unil

• . . . • W.(«)

P Number of
Operations

FIGURE 1.9
The WT scheduling principle. During each time unit /, the W;(n) operations are
scheduled as evenly as possible among the available p processors. For
example, during time units 1 and 2, each processor is scheduled to execute
the same number of operations; during time unit 3, the pth processor executes
one less operation than are executed by the remaining processors; and during
time unit 4, there are only k possible concurrent operations, which are distrib­
uted to the k smallest-indexed processors.

EXAMPLE 1.13:

We now address the implementation details of the WT scheduling principle
as related to the PRAM algorithm for computing the sum of n numbers
(Algorithm 1.7).

Assume that our PRAM hasp = 2q < n = 2 k processors P i,/^, ••• > Pp,
and let / = j = 2k~q. The input arrays! is divided intop subarrays such that
processor Ps is responsible for processing the ith subarray,4(/(.s - 1) + 1),
A(l(s - 1) + 2), ... ,A(ls). At each height h of the binary tree, the generation
of the B(i)s is divided in a similar way among thep processors. The number of
possible concurrent operat ions a t level h is n/2 h = 2 k~ h . I f 2 k~ h > p = 2 q

(equivalently, k - h - q > 0, as in Algorithm 1.8, which follows), then these
operations are divided equally among thep processors (step 2.1 in Algorithm

28 Chapter 1 Introduction

3. Set S: = 5(1)
end

This version of the parallel algorithm contains no mention of how many
processors there are, or how the operations will be allocated to processors. It
is stated only in terms of time units, where each time unit may include any
number of concurrent operations. In particular, we have log n + 2 time units,
where n operations are performed within the first time unit (step 1); the jth
time unit (iteration ft =j— 1 of step 2) includes n[2) ~1 operations, for 2 <j <
log n + 1; and only one operation takes place at the last time unit (step 3).
Therefore , the work performed by this a lgori thm is W(n) = n + ^^"(n/2/) +
1 = 0(n). The running time is clearly T(n) = O(logn). •

The main advantage with respect to a PRAM specification is that we do
not have to deal with processors. The presence of p processors would have
bounded the number of operations to at mostp in each unit of time. Further­
more, it would have forced us to allocate each of the processors to execute a
specific sequence of operations.

Lower Level: Suppose that the WT presentation of algorithms results in a
parallel algorithm that runs in T(n) time units while performing W(n) work
(that is, the algorithm requires a total of W(n) operations). Using the general
WT scheduling principle given next, we can almost always adapt this algo­
rithm to run on a p-processor PRAM in < l-^^j + T(n) parallel steps.

The WT Scheduling Principle: Let fF|(n) be the number of operations
performed in time unit i, where 1 < i < T(n). Simulate each set of Wi(n)
operat ions in < r-^™i paral le l s teps by thep processors , for each 1 < i < T(n)
(see Fig. 1.9). If the simulation is successful, the corresponding p-processor
PRAM algori thm takes < 2« < 2; (+ l) < + T(n)
parallel steps, as desired.

A remark concerning the adaptation of the WT scheduling principle is
in order. The success of this principle depends on two implementation issues:
the first is the calculation of Wi(n) for each i (usually trivial); the second is the
allocation of each processor to the appropriate tasks to be performed by that
processor. More precisely, for each parallel step, each processor Pk must
know whether or not it is active; if it is active, Pk must know the instruction it
has to execute and the corresponding operands.

1.5 The Work-Time Presentation Framework of Parallel Algorithms 29

7"(n) • . . . • • • • • • W T (n)

• W.CO

3 • • • • • m . . . m

P 2

2 • • • • • • . . . •

P l P 2

1 • . . . 9

Time p x P 2

• . . • W,(n)

W 4 n)

Unit

. • • W,(n)
P

p Number of
Operations

FIGURE 1.9
The WT scheduling principle. During each time unit /, the Wj(n) operations are
scheduled as evenly as possible among the available p processors. For
example, during time units 1 and 2, each processor is scheduled to execute
the same number of operations; during time unit 3, the pth processor executes
one less operation than are executed by the remaining processors; and during
time unit 4, there are only k possible concurrent operations, which are distrib­
uted to the k smallest-indexed processors.

EXAMPLE 1.13:

We now address the implementation details of the WT scheduling principle
as related to the PRAM algorithm for computing the sum of n numbers
(Algorithm 1.7).

Assume that our PRAM hasp = 2? < n = 2 k processors PuPi, • • • ,Pp,
and let / = ^ = 2k~c>. The input array A is divided intop subarrays such that
processor Ps is responsible for processing the 5th subarray/l(/(s - 1) + 1),
A(l(s - 1) + 2), ... ,A{ls). At each height h of the binary tree, the generation
oftheB(/)s is divided in a similar way among thep processors. The number of
possible concurrent operations at level h is n/2h = 2k~h. If 2k~h > p = 2^
(equivalently, k - h - q > 0, as in Algorithm 1.8, which follows), then these
operations are divided equally among thep processors (step 2.1 in Algorithm

30 Chapter 1 Introduction

1.8). Otherwise (A: - h - q < 0),the2/c-'1 lowest-indexed processors execute
these operations (step 2.2 in Algorithm 1.8).

The algorithm executed by the sth processor is given next. Figure 1.10
illustrates the corresponding allocation in the case of n = 8 and p = 4.

ALGORITHM 1.8
(Sum Algorithm for Processor P s)
Input: An array A of size n = 2k stored in the shared memory. The
initialized local variables are (1) the order n; (2) the number p of
processors, where p = If < n, and (3) the processor number s.
Output: The sum of the elements of A stored in the shared variable
S. The array A retains its original value.
begin

1. for; = 1 to / (= p) do
Set B(l(s - 1) + ;): = A(l(s - 1) + ;)

2. for h = 1 to log n do

(S=S(i)

p\

B (1)

B (3) B (4)

Time
Unit

B(4)
= A (i)J

B { 5)
y = A (4) J \ = A (5) J

FIGURE 1.10
Processor allocation for computing the sum of eight elements on the PRAM.
The operation represented by a node is executed by the processor indicated
below the node.

1.5 The Work-Time Presentation Framework of Parallel Algorithms 31

2.1. if (k - h - q > 0) then
for) = 2 k~ h - i{s - 1) + 1 to 2*-^jdo

SetB(j): = 5(2/ - 1) + 5(2;)
2.2. else {if (s < 2 k~ h) then

SetB(s): = 5(2s - 1) + 5(2r)}
3. if(s = 1) then set S: = 5(1)

end

The running time of Algorithm 1.8 can be estimated as follows. Step 1
takes o(|) time, since each processor executes j operations. The hth itera­
tion of step 2 takes o(^) time, since a processor has to perform at most
r¥p 1 °Perat'ons- Step 3 takes 0(1) time. Hence, the running time T p (n) is
given by T p (n) = o(| +) = 0{j + log n) , as predicted by the
WT scheduling principle. •

The prefix-sums algorithm (Algorithm 2.2), presented in the next chap­
ter, will also demonstrate an application of the WT scheduling principle in a
slightly more complicated situation. However, as we advance in this book, we
describe parallel algorithms for the WT presentation level only. Our justifi­
cation for omitting the lower-level details is that they usually do not require
any new ideas beyond the ones already presented. Typically, they are tedious,
cumbersome, programming-type details that would considerably complicate
the presentation of the algorithms.

Work Versus Cost: The notion of cost introduced in Section 1.4 and the
notion of work introduced in this section are closely related. Given a parallel
algorithm running in time T{n) and using a total of W(n) operations (WT
presentation level), this algorithm can be simulated on ap-processor PRAM
in Tp(n) = 0\~~ + T(n)) time by the WT scheduling principle. The cor­
responding cost is thus C p{n) = T p{n) • p = 0(W(n) + T{n)p) .

It follows that the two notions coincide (asymptotically) for p =
'Tin))' s'nce we always have Cp(n) > W(n), for any p. Otherwise, the two

notions differ: W(n) measures the total number of operations used by the algo­
rithm and has nothing to do with the number of processors available, whereas
Cp(n) measures the cost of the algorithm relative to the numberp of proces­
sors available.

Consider, for example, our PRAM algorithm for computing the sum of
n numbers (Algorithm 1.7). In this case, we have W{n) = 0(n),T(n) = O(logn),
and C p (n) = 0(n + p log n) . When n processors are avai lable , a t most j
processors can be active during the time unit corresponding to the first level
of the binary tree, at most | processors can be active during the next time unit,

32 Chapter 1 Introduction

and so on. Therefore, even though our parallel algorithm requires only a total
of 0(n) operations, the algorithm cannot efficiently utilize the n processors to
do useful work.

1.6 The Optimality Notion

Given a computational problem Q, let the sequential time complexity of Q be
T*(n). As mentioned in Section 1.1, this assumption means that there is an
algorithm to solve Q whose running time is 0(T*(n)); it can be shown that this
time bound cannot be improved. A sequential algorithm whose running time
is 0(T*(n)) is called time optimal.

For parallel algorithms, we define two types of optimality; the first is
weaker than the second.

A parallel algorithm to solve Q, given in the WT presentation level, will
be cal led optimal i f the work W(n) required by the algori thm sat isf ies W(n) =
&(T*(n)). In other words, the total of number of operations used by the optimal
parallel algorithm is asymptotically the same as the sequential complexity of
the problem, regardless of the running time T(n) of the parallel algorithm.

We now relate our optimality notion to the speedup notion introduced
in Section 1.1. An optimal parallel algorithm whose running time is T(n) can
be simulated on ap-processor PRAM in time T p (n) = o(+ '/'(«)), using
the WT scheduling principle. Therefore, the speedup achieved by such an
algorithm is given by

C („) = J T*(") = of PT'i"))
• V W " T * (n) , U \ T ' (n) + p T (n) l -

+ I(n) l
It follows that the algorithm achieves an optimal speedup (that is, S p (n) =

© (p)) whenever p = o[TT^j). Therefore, the faster the parallel algorithm,
the larger the range ofp for which the algorithm achieves an optimal speedup.

We have not yet factored the running time T(n) of the parallel algo­
rithm into our notion of optimality. An optimal parallel algorithm is work-
t ime (WT) optimal or optimal in the strong sense i f i t can be shown that T(n)
cannot be improved by any other optimal parallel algorithm. Therefore, the
running time of a WT optimal algorithm represents the ultimate speed that
can be achieved without sacrificing in the total number of operations.

EXAMPLE 1.14:

Consider the PRAM algorithm to compute the sum given in the WT frame­
work (Algorithm 1.7). We have already noticed that T(n) = 0(log n) and

1.7 'Communication Complexity 33

W(n) = 0(n) . Since T*(n) = n, this algorithm is optimal. It achieves an
optimal speedup whenever the number/? of processors satisfies;? =
On the other hand, we shall see in Chapter 10 that any CREW PRAM will
require fl(log n) time to compute the sum, regardless of the number of proces­
sors available. Therefore, this algorithm is WT optimal for the CREW PRAM. •

1.7 "Communication Complexity

The communication complexity of a PRAM algorithm, defined as the worst-
case bound on the traffic between the shared memory and any local memory of
a processor, is an important factor to consider in estimating the actual per­
formance of these algorithms. We shed light on this issue as it relates to our
parallel-algorithms framework.

Given a high-level description of a parallel algorithm A, a successful
adaptation of the WT scheduling principle for p processors will always yield
a parallel algorithm with the best possible computation time relative to the
running time of A. However, the communication complexity of the corre­
sponding adaptation is not necessarily the best possible. We illustrate this
point by revisiting the matrix-multiplication problem (Example 1.6), which is
stated next in the WT presentation framework.

ALGORITHM 1.9
(Matrix Multiplication Revisited)
Input: Two n x n matrices A and B stored in the shared memory,
where n = 2k for some integer k.
Output: The product C = AB stored in the shared memory.
begin

1. for 1 < i , j , k < n pardo
Set C'(i,j, I): = A(i, l)B(l,j)

2. for h = 1 to log n do
for 1 < i , j < n, 1 < / < n/2 h pardo

SetC'(i , j , l) : = C'(i , j , 21 - 1) + C'{i , j ,2 l)
3 . for 1 < i , j < n pardo

Set C(i,j): = C'{i,j, 1)
end

Algorithm 1.9 runs in O(logn) time using a total of 0(n 3) operations. By
the WT scheduling principle, the algorithm can be simulated byp processors
to run in 0(n3/p + log n) time.

34 Chapter 1 Introduction

Consider the adaptation of this algorithm to the case where there are n
processors available. In particular, the corresponding running time must be
0(n2). We examine the communication complexity of Algorithm 1.9 relative
to a particular processor allocation scheme.

A straightforward scheme proceeds by allocating the operations in­
cluded in each time unit to the available processors (as in the statement of the
WT scheduling principle). In particular, the n3 concurrent operations of step
1 can be allocated equally among the n processors as follows. For each 1 < i <
n, processor P(computes C'(i,j, I) = A(i, l)B(l,j), where 1 <j,l< n; hence, P,
has to read the ith row of A and all of matrix B from the shared memory. A
traffic of 0(n2) numbers is created between the shared memory and each of
the local memories of the processors.

The hth iteration of the loop at step 2 requires n3/2h concurrent oper­
ations, which can be allocated as follows. Processor P,'s task is to update the
values I), for all 1 < j, / < n; hence, P, can read all the necessary values
C'(i,j, I) for all indices 1 </,/<«, and can then perform the operations
required on this set of values. Again, 0(n2) entries get swapped between the
shared memory and the local memory of each processor.

Finally, step 3 can be implemented easily with 0{n) communication,
since processor P; has to store the /th row of the product matrix in the shared
memory, for 1 < i < n.

Therefore, we have a processor allocation scheme that adapts the WT sched­
uling pr inciple successful ly and that has a communicat ion requirement of 0(n 2) .

We now develop another parallel implementation of the standard
matrix-multiplication algorithm that will result in many fewer data elements
being transferred between the shared memory and each of the local memo­
ries of the n processors. In addition, the computation time remains the same.

Assume, without loss of generality, that a = Vn is an integer. Partition
matrixA into \fn x \fn blocks of submatrices, each of size n2'3 x n2'3, as follows:

A =

A 1,1 A [2
A 2,1 ^4 2,2

Aa,i A a,2

A l,a

A 2,a

A a,a

We partition B and C in the same way. Notice that there are exactly n
pairs (Aij, Bq) for all /,/, and /.

The new processor allocation follows a strategy different from the one
outlined in the WT scheduling principle. Each processor P reads a unique
pair (Aij, Bij) of blocks from A and B, respectively, and computes the
product Dijj = AijBij, which is then stored in the shared memory. The
amount of communication needed is 0(«4/3), which accounts for the cost o
transferring a pair of blocks from the shared memory into each local memor

p

1.8 Summary 35

and the cost of storing a new block from each local memory into the shared
memory. On the other hand, the amount of computation required for per­
forming Dijj = AijBij is 0(n2), since each block is of size n2/3 x « 2/3.

Next, each block Cy of the product matrix C is given by Cy = 2/f iA,y,;>
and there are n2/3 such blocks. We can now allocate Vn processors to com­
pute each block Cy such that the computation proceeds in the fashion of a
balanced binary tree whose Vn leaves contain the blocks Dyy, where 1 < / <
V'n. Each level of the tree requires the concurrent access of a set of blocks each
of size n2/3 x n2/3. Hence, the execution of the operations represented by each
level of a tree requires 0(n4'3) communication. Therefore the total amount of
communication required for computing all the C,y's is 0(n4/3 log n), which is
substantially smaller than the 0(n2) required by the previous processor alloca­
tion scheme.

Remark 1.3: We can reduce to 0(n4/3) the communication cost of the second
processor allocation scheme to implement the standard matrix-multiplication
algorithm by using the pipelining technique introduced in Chapter 2. •

In summary, a parallel algorithm given in the WT presentation level
requires a solution to a processor allocation problem that will uniquely de­
termine the computation and the communication requirements of the algo­
rithm. In almost all cases, the strategy outlined in the statement of the WT
scheduling principle results in an optimal allocation of the computation
among the available processors. However, the communication complexity of
the resulting implementation may not be optimal. An alternative parallel
algorithm may be required to achieve optimal communication complexity.

1.8 Summary

The design and analysis of parallel algorithms involve a complex set of inter­
related issues that is difficult to model appropriately. These issues include
computational concurrency, processor allocation and scheduling, communi­
cation, synchronization, and granularity (granularity is a measure of the
amount of computation that can be performed by the processors between
synchronization points). An attempt to capture most of the related parameters
makes the process of designing parallel algorithms a challenging task. We have
opted for simplicity and elegance, while attempting to shed light on some of
the important performance issues arising in the design of parallel algorithms.

36 Chapter 1 Introduction

In this chapter, we introduced two major parallel-computation models:
the shared memory and the network. These models offer two orthogonal
approaches to parallel computation—shared-memory computation versus
distributed-memory computation. We argued in favor of the shared-memory
model due to its simplicity, uniformity, and elegance.

We described a high-level framework for presenting and analyzing
PRAM algorithms. We identified the two important parameters, time and
work. Time refers to the number of time units required by the algorithm,
where during each time unit a number of concurrent operations can take
place. Work refers to the total number of operations needed to execute the
algorithm. A scheduling principle translates such an algorithm into a parallel
algorithm running on a PRAM with any number of processors.

Our notion of optimality concentrates on minimizing the total work
primarily and the running time secondarily. A more detailed analysis could also
incorporate the communication requirement.

The WT presentation framework is used almost exclusively in the re­
mainder of this book. It allows clear and succinct presentation of fairly
complicated parallel algorithms. It is also closely related to data-parallel
programming, which has been used for shared and distributed-memory com­
putations, as well as to SIMD and MIMD parallel computers.

Exercises

1.1. We have seen how to schedule the dag corresponding to the standard
algorithm for multiplying two n x n matrices in d(log n) time using
n3 processors. What is the optimal schedule for an arbitary number p
of processors, where 1 < p < n3? What is the corresponding parallel
conjplexity?

12. Consider the problem of computing X", where n = 2k for some
integer k. The repeated-squaring algorithm consists of computing
X1 = X x X,X4 = X2 x X2, Xs = X4 x X4, and so on. Draw the
dag corresponding to this algorithm. What is the optimal schedule
forp processors, where 1 < p < nl

b. Draw the dag and give the optimal schedule for the case when Ais an
m x m matrix?

13. LetAbean/i x n lower triangular matrix such that * 0, fori < i <
n, and let 6 be an n-dimensional vector. The back-substitution method to
solve the linear system of equations Ax = b begins by determining x\
using the first equation (a\\x\ = b\), then determiningxi using the
second equation (a21X1 + 022x2 = b2), and so on.

Exercises 37

Let G be the dag corresponding to the back-substitution algorithm.
a. Determine an optimal schedule of G for any number p < n of

processors. What is the corresponding speedup?
b. Determine an optimal schedule where p > n. What is the best

possible speedup achievable in this case?
1.4. Letp(x) = a ox" + a ix" ~ 1 + • • • + a n _ i* + a„ be a given polynomial.

Horner's algorithm to computep(x) at a pointxo is based on rewriting the
expression forp(xo) as follows:

p(x o) = (•••((ao*o + ai)*o + fl2>o + • • + a„-i)*o + an.
a. J3raw the dag corresponding to Horner's algorithm. What is the

/ x optimal schedule forp processors, 1 < p < n?
b. Is it possible to develop a parallel algorithm whose complexity is

o{^ + log n) forp processors?

1.5. a. The global memory of an EREW PRAM contains n bits jc, stored in
n consecutive locations. Given p processors, where p < n, develop
the algorithm that has to be executed by each processor to compute
the Boolean AND of the x,'s. Your algorithm must run in
o(f + log n) time,

b. Show how to perform the same computation in 0\^) time on the
common CRCW PRAM.

1.6. Rewrite the PRAM algorithm to multiply two n x n matrices (Algo­
rithm 1.3) for the case when the processors are indexed from 1 to n3

(instead of the indexing (/,/', /), for 1 < / < n).

1.7. Our PRAM algorithm to multiply two n x n matrices (Algorithm 1.3)
assumed the presence of n3 processors. Assume that you have only p
processors, where 1 <p<n3. Develop the corresponding algorithm to
be executed by an arbitrary processor Pr, where 1 < r < p. What is the
running time of your algorithm? What is the corresponding speedup
relative to the standard matrix-multiplication algorithm? Assume that n =
2*, and p = 24.

1.8. An item X is stored in a specified location of the global memory of an
EREW PRAM. Show how to broadcast X to all the local memories of
the/? processors of the EREW PRAM in 0{\ogp) time. Determine how
much time it takes to perform the same operation on the CREW PRAM.

1.9. Design a systolic algorithm to compute the matrix-vector product Ab,
where A is an n x n matrix and b is an ri-dimensional vector, on a linear
array of n processors. Your algorithm must run in 0(n) time.

1.10. Suppose two n x n matrices A and B are initially stored on a mesh of n2

processors such that Ptj holds A(i,j) and B(j, i). Develop an asynchronous
algorithm to compute the product of the two matrices in 0(n) time.

38 Chapter 1 Introduction

1.11. Develop an algorithm to multiply two n x n matrices on a mesh with p2

processors, where 1 <p < n. You can assume that the two matrices are
initially stored in the mesh in any order you wish, as long as each
processor has the same number of entries. What is the corresponding
speedup? Assume thatp divides n.

1.12. Assume that processor P!; of an n x n mesh has an element X to be
broadcast to all the processors. Develop an asynchronous algorithm to
perform the broadcasting. What is the running time of your algorithm?

1.13. Given a sequence of numbers x\ , X2, • • • , x„, the prefix sums are the
partial sums si = x\, sz = x\ +xz, , sn = Show how to
compute the prefix sums on a mesh with n processors in 0(Vn) time.
What is the corresponding speedup? Assume that Vn is an integer.

1.14. Assume that an n x n matrixA is stored on an n x n mesh of processors
such that processor Py holds the entry A(i,j). Develop an 0{n) time
algorithm to transpose the matrix such that processor Py will hold the
entry A(j, i). Compare your algorithm with that for computing the
transpose of a matrix on the PRAM model.

1.15. Show that any algorithm to compute the transpose of an n x n matrix
(see Exercise 1.14) on ap x p mesh requires fl(y + p) time, where
2 < p < n. The memory mapping of an n x n matrixyf into ap x /mesh
c a n b e d e f i n e d a s f o l l o w s . L e t p d i v i d e n e v e n l y . P a r t i t i o n A i n t o p x /
blocks {Ay}, each containing n2lp2 elements. Processor P,j of the mesh
holds the blockyly.

1.16. Let Pi and Pj be two processors of a d-dimensional hypercube. Show
that there exist d node-disjoint paths between P; and Pj such that the
length of each path is at most H(i,j) + 2, where H(i,j) is the number of
bit positions on which i and j differ.

1.17. An embedding of a graph G = (V , E) into a ^-dimensional hypercube
is a one-to-one mapping/from Vinto the nodes of the hypercube such that
(/,/) € E implies that processors P/q) and P/y) are adjacent in the cube.
a. Develop an embedding of a linear processor array with p = 2d

processors into a d-dimensional hypercube.
b. Develop an embedding of a mesh into a hypercube.

1.18. Develop an 0(n) time algorithm to compute the product of two n x n
matrices on the hypercube with n2 processors.

1.19. Consider the problem of multiplying two n x n matrices on a synchro­
nous hypercube with/? = n3 processors, where n = 2Q. Assume that the
input arrays A and B are initially stored in processors Po, Pi, ,
P„2 where P^ holds the entries A (/J) mdB(i,j) such that/c = in + j, for

Exercises 39

0 < i , j < n - 1. Develop a parallel algorithm to compute the product
AB in O(logn) time.

1.20. Our hypercube algorithm to compute the sum of n numbers assumes the
availability of n processors. Design an algorithm where we have an
arbitrary number/? of processors, 1 < p < n. What is the corresponding
speedup? Is it always optimal?

121. Given a sequence of n = 2d elements (XQ, X\, ... , x„-i) stored on a
d-dimensional hypercube such that x, is stored in P,, where 0 < i <
n — 1, develop an O(logn) time algorithm to determine the number of
Jtj's that are smaller than a specified element initially stored in Pq.

1.22. a. Develop an algorithm to compute the prefix sums of n elements, as
introduced in Exercise 1.13, on a hypercube with n = 2d processors.
Your algorithm should run in 0(log2 n) time (or faster),

b. Develop an algorithm where the number p of processors is smaller
than the number n of elements and each processor holds initially
j elements. What is the corresponding running time?

1.23. The p processors of a d-dimensional hypercube hold n items such that
each processor has at most M items. Develop an algorithm to redistrib­
ute the n items such that each processor has exactly j items (assuming
that p divides n evenly). State the running time of your algorithm as a
function of p, M, and n.

1.24. The WT scheduling principle was discussed in the context of PRAM
algorithms. Prove that this principle will always work in the dag model.

1.25. Compare a parallel algorithm given in the WT presentation framework
to a dag with a given schedule. In particular, determine whether such an
algorithm can always be represented by a dag whose optimal schedule
meets the time steps of the algorithm.

1.26. a. Determine the communication complexity of the PRAM sum algo­
rithm (Algorithm 1.8) as a function oin andp. Is it possible to do better?

b. In general, suppose we are given a linear work, T(n)-time PRAM
algorithm to solve a problem P of size n. Show that a successful
adaptation of the scheduling principle results in an optimal commu­
nicat ion complexi ty as long asp = 0(nfT(n)) .

1.27. Consider the problem of multiplying two n x n matrices on a PRAM
model where each processor has a local memory of size M < n. Compare
the communication complexities of the two parallel implementations of
the standard matrix-multiplication algorithm discussed in Section 1.7.

1.28. Generalize the processor allocation scheme described for the n x n
matrix multiplication problem on the PRAM whose communication
cost is 0(n4/3 log n) to the case when there arep processors available, 1 <
p < n2. What is the resulting communication complexity?

40 Chapter 1 Introduction

Bibliographic Notes

The three parallel models introduced in this chapter have received considerable
attention in the literature. Dags have been widely used to model algorithms especially
for numerical computations (an early reference is [6]). More advanced parallel algo­
rithms for this model and a discussion of related issues can be found in [5]. Some of the
early algorithms for shared-memory models have appeared in [4,9,10,16,17,19,24,
26]. Rigorous descriptions of shared-memory models were introduced later in [11,12].
The WT scheduling principle is derived from a theorem in [7], In the literature, this
principle is commonly referred to as Brent's theorem or Brent's scheduling principle.
The relevance of this theorem to the design of PRAM algorithms was initially pointed
out in [28]. The mesh is perhaps one of the earliest parallel models studied in some
detail. Since then, many networks have been proposed for parallel processing. The
recent books [2, 21, 23] give more advanced parallel algorithms on various networks
and additional references. Recent work on the mapping of PRAM algorithms on
bounded-degree networks is described in [3,13,14, 20, 25], Our presentation on the
communication complexity of the matrix-multiplication problem in the shared-
memory model is taken from [1], Data-parallel algorithms are described in [15].
Parallel architectures have been described in several books (see, for example, [18,
29]). The necessary background material for this book can be found in many text­
books, including [8, 22, 27].

References

1. Aggarwal, A., A. K. Chandra, and M. Snir. Communication complexity of
PRAMs. Theoretical Computer Science, 71 (1):3—28, 1990.

2. Akl, S. G. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

3. Alt., H., T. Hagerup, K. Mehlhorn, and F. P. Preparata. Simulation of idealized
parallel computers on more realistic ones. SLAM J. Computing, 16(5):808-835,
1987.

4. Arjomandi, E. A Study of Parallelism in Graph Theory. PhD thesis, Computer
Science Department, University of Toronto, Toronto, Canada, 1975.

5. Bertsekas, D. P., and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu­
merical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

6. Borodin, A., and I. Munro. The Computational Complexity of Algebraic and
Numeric Problems. American Elsevier, New York, 1975.

7. Brent, R. P. The parallel evaluation of general arithmetic expressions. JACM,
21(2):201-208,1974.

8. Cormen, T. H., C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, and McGraw-Hill, New York, 1990.

9. Csanky, L. Fast parallel matrix inversion algorithms. SLAM J. Computing,
5(4):618-623,1976.

10. Eckstein, D. M. Parallel Processing Using Depth-First Search and Breadth-First
Search. PhD thesis, Computer Science Department, University of Iowa, Iowa
City, IA, 1977.

References 41

11. Fortune, S., and J. Wyllie. Parallelism in random access machines. In Proceedings
Tenth Annual ACM Symposium on Theory of Computing, San Diego, CA, 1978,
pages 114-118. ACM Press, New York.

12. Goldschlager, L. M. A unified approach to models of synchronous parallel ma­
chines. In Proceedings Tenth Annual ACM Symposium on Theory of Computing,
San Diego, CA, 1978, pages 89-94. ACM Press, New York.

13. Herley, K. T. Efficient simulations of small shared memories on bounded degree
networks. In Proceedings Thirtieth Annual Symposium on Foundations of Com­
puter Science, Research Triangle Park, NC, 1989, pages 390-395. IEEE Computer
Society Press, Los Alamitos, CA.

14. Herley, K. T., and G. Bilardi. Deterministic simulations of PRAMs on bounded-
degree networks. In Proceedings Twenty-Sixth Annual Allerton Conference on Com­
munication, Control and Computation, Monticello, IL, 1988, pages 1084-1093.

15. Hillis, W. D., and G. L. Steele. Data parallel algorithms. Communication of the
ACM, 29(12): 1170-1183, 1986.

16. Hirschberg, D. S. Parallel algorithms for the transitive closure and the connected
components problems. In Proceedings Eighth Annual ACM Symposium on Theory
of Computing, Hershey, PA, 1976, pages 55-57. ACM Press, New York.

17. Hirschberg, D. S. Fast parallel sorting algorithms. Communication of the ACM,
21 (8):657—661, 1978.

18. Hwang, K., and F. Briggs. Computer Architecture and Parallel Processing. McGraw-
Hill, New York, 1984.

19. JaJa, J. Graph connectivity problems on parallel computers. Technical Report
CS-78-05, Pennsylvania State University, University Park, PA, 1978.

20. Karlin, A., and E. Upfal. Parallel hashing—an efficient implementation of shared
memory. SIAMJ. Computing, 35(4):876-892, 1988.

21. Leighton, T. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
and Hypercubes. Morgan Kaufmann, San Mateo, CA, 1991.

22. Manber, U. Introduction to Algorithms: A Creative Approach. Addison-Wesley,
Reading, MA, 1989.

23. Miller, R., and Q. F. Stout. Parallel Algorithms for Regular Architectures. MIT
Press, Cambridge, MA, 1992.

24. Preparata, F. P. New parallel sorting schemes. IEEE Transactions Computer,
C-27(7):669-673, 1978.

25. Ranade, A. G. How to emulate shared memory. In Proceedings Twenty-Eighth
Annual Symposium on the Foundations of Computer Science, Los Angeles, CA,
1987, pages 185-192. IEEE Press, Piscataway, NJ.

26. Savage, C. Parallel Algorithms for Graph Theoretic Problems. PhD thesis, Com­
puter Science Department, University of Illinois, Urbana, IL, 1978.

27. Sedgewick, R. Algorithms. Addison-Wesley, Reading, MA, 1983.
28. Shiloach, Y. and U. Vishkin. An O(n 2 logn) parallel max-flow algorithm. Journal

of Algorithms, 3(2): 128-146, 1982.
29. Stone, H. S. High-Performance Computer Architecture. Addison-Wesley, Reading,

MA, 1987.

