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INERTIALITY IMPLIES THE LORENTZ GROUP

NORMAN J. GOLDSTEIN

ABSTRACT. In his seminal paper of 1905, Einstein derives the Lorentupg as being
the coordinate transformations of Special Relativity, emthe main assumption that all
inertial frames are equivalent. In that paper, Einstein alssumes the coordinate transfor-
mations are linear. Since then, other investigators haakereed and varied the linearity
assumption. In the present paper, we retain only the itigrt@ssumption, and do not even
assume that the coordinate transformations are continluingsarity is deduced.

Our result is described in the affine spak&; 1, with coordinates®, x!, ..., x". Using
the notatiort = x? andy = (x},...,x), the slope of a line iR+ is defined to béAy/At|,
computed from any two points on the line. The slope is noratieg and possibly infinite.
A line in R™1 is said to betime-likeif the slope of the line is strictly less than 1. Since
inertial frames agree on who is inertial, coordinate tramsfitions must carry time-like
lines to time-like lines. A bijection fronR"* to R™1 is said to beime-likeif it maps any
time-like line onto another time-like line. The bijectios mot assumed to be continuous.
This paper proves that a time-like bijectiacontinuous (in fact, affine linear). The bijec-
tion is said to bestrictly time-likeif both it and its inverse are time-like. It is elementary
to deduce that the strictly time-like bijections form th@gp generated by the extended
Poincaré group and the dilations.
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1. INTRODUCTION

In his seminal paper{J2], Einstein derives the Lorentz gragpeing the coordinate
transformations of special relativity, under the main agstion that all inertial frames are
equivalent. In that paper, Einstein also assumes (i$iid page 898) that the transforma-
tions are linear. Since then, other investigators have amatk and varied the linearity
assumption. Some of these results are discussed at the #énid séction. In the present
paper, we retain only the inertiality assumption, and deeweh assume that the coordinate
transformations are continuous. Linearity is deduced.

The results of this paper are valid for space-time of any dsien, with the proofs
being identical to the 4-dimensional case. Accordinglycaesider an n-dimensional Eu-
clidean] spacen > 1. Then+ 1 dimensional affine spacey’ , is obtained by considering
time to be an additional dimension. We use the notatien(x...x") where component
X% is time. A pointin .7 is anevent

In an observer’s frame of space-timey’ , the path of another inertial observer is a
straight line, which, parametrized by time, t, has the fagm (t,tv) , wherexg is the event
on the line at = 0, andv is the velocity of the other observer.

Definition 1.1. For a given pointx .7, lett = x° and y= (x*...x"). Theslopeof a line
L C .77 is defined agAy/At|, computed from any two points on the line.

The slope of a line is non-negative and possibly infinite. Wi line is the world line
of an object, the slope of the line is the speed of the objac carresponds to a speed less
than c; cf [13]. Also, as is customary, this upper bound, csfigeds, is taken to be of unit
value.

Definition 1.2. A line in . is said to betime-like if the slope of the line is strictly less
than 1.

The paths of inertial observers are time-like lines. Forheagint pe .7, the set of
time-like lines througtp is called the time-like cone at.

All observers are measuring the same real world events, tseeba any two reference
frames there is a mapping of events, a coordinate transfamavhich is necessarily a
bijection of .7 with itself.

All inertial frames see each other as inertial, so the coatdi transformation between
inertial frames must convert time-like lines into timediknes. This motivates the defini-
tion
Definition 1.3. A bijection, f, of.”, is said to beaime-likeif for any time-like line LC .7,
it is also the case that(f.) C .7 is a time-like line.

It is convenient, at times, to use the notation!, to denote the range df, but this is
purely for didactic reasons.

The definition requires that a time-like bijection takesradilike line onto an entire
time-like line, and is not just a subset of the second line.

The main technical result of this paper is

Theorem 1.1. A time-like bijection of.7 is necessarily an affine map.

The proof is the subject 6.

1By Euclidean we mean a vector space over the real numbers with the uswalpmoductx-y = zxi)/i, and
the associated nornx| = /X-X.
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Example 1.1. The affine map (t,y) = (t,y/2), of 2-dimensional space-time, is time-like
since

2y’ >0=1’>—y?/4>0.
However, it is clear that T is not time-like.

The above example motivates the

Definition 1.4. A time-like bijection of.¥ is said to bestrictly time-likeif also the inverse
mapping is time-like.

The extended inhomogeneous Lorentz gr@idescribed in|]5]. We refer to the inho-
mogeneous Lorentz group as tAeincare groupcf [, 84.

Theorem 1.2. The set of strictly time-like bijections is generated (as@ug) by the dila-
tions and the extended Poiné&group.

The proof is the subject 6§

We emphasize that, in the above results, continuity of #esfiormation is not hypoth-
esized, but is a consequence of Theoferh 1.1. Moreover, wedassume that there is
anything (such as light) which travels at the bounding ymétesd.

In §2.17 of [§] it is noted that linearity may be derived from theme hypotheses.
However, some form of continuity is assumed; for example{E]nthe transformation is
assumed to be twice differentiable.

A result, similar to the present paper’s, was proved by Ze‘e[v@]:

A bijection, f, of space-time is said to bausalif, for all points Xy in
space-time, y x is time-like and forward-pointing if and only if(§) —
f(x) is also time-like and forward-pointing. Zeeman shows thattausal
transformations are generated by the orthochronous Largrdup, trans-
lations and dilations.

Zeeman'’s hypotheses and conclusion are similar to theprpaper’s Theorerm.z; the
differences are worth noting:

e Zeeman's proof is by induction on the dimension of spacetiffor the present
paper, the proof for 2-dimensional space-time is the maip B8t the exposition.
Interestingly, Zeeman notes that his result is not validafepace-time of 2 dimen-
sions, but requires the dimension to be at least 3.

e A priori, Zeeman’'s hypotheses map the forward and reveodetipg time-like
cones ak respectively to the forward and reverse-pointing time-lilones af (x)
for each evenx, whereas the present paper’s Theo@h 1.2 requires thatikene
lines be mapped to time-like lines. It is interesting to b Zeeman'’s assump-
tion of the preservation of forward-pointing and reverséafing time-like cones
readily shows that a causal bijection is Euclidean-comtirs)since these two sets
of cones together form a sub-basis of the Euclidean topdlogpace-time. For
the present paper, however, continuity can only be dedude &nd of the main
exposition.

Sectiorﬂz contains background material for the presemtatithe paper.

2. BACKGROUND

The time-like cone about the origin of” is given by the well-known inequality

—_;(xi) >0. 1)
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We use the diagonal matrix

to express Equatioﬁ 1 a8Qx > 0. Here|l is then x nidentity matrix.

We use short hand notation to den@gx) = X' Qx.

A null line represents a speed of exactly 1. The set of nudidithrough a poinp € .7
is called the null cone gi. The null cone is the boundary of the time-like cone. The null
cone about the origin has the equatfx) = 0.

2.1. Quadrics. A quadricis a zero set of the formtRx= 0 whereR is a symmetric
matrix. An example is the null cone about the origin, whickdéscribed using the matrix
Q.
We prove, next, a special case of a general result. The pp@oimputational. To arrive
at a more elegant proof requires an overhead which cannoskiigd by the scope of this

paper.

Lemma 2.1. If the quadric XRx= 0 contains the null cone about the origin, then the
matrix R is a scalar multiple of the matrix Q.

Proof. Let a = Ry o. We will show thatR= aQ. Letey, ey, ... e, be the standard basis for
7 i.e g has 0 for every component except iHg which is 1.
Use the elements

e+gandeg—g,i >0,

both in the null cone, and hence both also in the qualrio show thaR; o = Ry; = 0 and
R i = —a. If n=1, there is nothing more to do.
Forn > 1, in a similar way, use the elements

V2ey+e+e,0<i<]j

to show that all off-diagonal terms & are 0, which proves the lemma. d

2.2. Affine Transformations. An affine subspace of a vector space is defined as being a
translation of a vector subspace.

Pointsxg... % in an affine space are said to affinely independerit the pointsx; —
Xo, - .- Xk — Xp are linearly independent (in the containing vector spalredhis way, many
results for affine spaces are reduced to the more familiaitssfor vector spaces.

A mapping of an affine space into a vector spéiceA — W is defined to be aaffine
map if for eachx,y € Aand scalar, it is true that

firx+(A—r)y)=rf(x)+(1—r)f(y). 2

The proof of the following lemma is essentially a restatehwdrthe definition of an
affine map.

Proposition 2.2. Let f : A— W beanyfunction from an affine space to a vector space.
Suppose that for every lined A itis true that f|_: L — W is an affine map. Then f itself
is an affine map.
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FIGURE 1. The plan&®

3. TIME-LIKE BIJECTIONS

In this section, we prove our main technical result, desciim §{f:
Theoren] 1JIA time-like bijection of.# is necessarily an affine map.

We adopt the notation thdt: ¥ — .’ is a time-like bijection and begin by stating a
lemma, whose proof is the subject of the next subsectiongtwisi basically the case of
n=1(dim.?)=2).

Lemma 3.1. Let PC . be any plane which contains a time-like line o . Then
f |p: P— ' is an affine map.

Assuming the validity of this lemma, the proof of Theor@ is.¢ery short:

LetL C . be any line. Letp € L be any point, and’ the line throughp parallel to
the time axis. Sinc&’ represents a stationary obserugrjs time-like. LetP be a plane
containingL andL’ (P is unique ifL # L'). By Lemm,f |p is an affine map, so that,
also f | is affine. We deduce from Propositipn 2.2 tHatitself, is affine, which proves

Theoren{ 1]1.

3.1. Proof of Lemma Ei Let L be a time-like line inP, and letp be any point ori.
RotateL in P aroundp by a small enough amount so that the resulting lihés also
time-like; cf Figure[]L.

Choose pointg| € L andd € L, distinct fromp. In ./, the 3 pointsf(p), f(q) and
f(d) span a plan® c ..

We now show thaf (P) c P’. First of all, f(L) is a line containing (p) and f(q), so
f(L) C P'. Similarly, f(L') € P". Now, letx be a point ofP\ (LUL'). Choose a time-like
line L” throughx which meets the linek andL’ at distinct pointg andr’ (For example,
choosd.” to be almost parallel td). It follows that bothf(r) and f(r’) are inP’, so that
f(L”) c P"andf(x) € P’. This shows thaf (P) C P'.

For the rest of the proof of Lemn{a B.1, we restrict our attentd the plané®. The
3 pointsp,q,q are affinely independent (@), SO we may construct an affine map
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g: P — P’ by defining

9(p) = f(p), 9(a) = f(a), g(d) = f(d).

Moreover, also the 3 point§(p), f(q), f(q') are affinely independent, so thgis an
isomorphism of affine spaces. The compositioa g=2o f |p is a 1-1 map fronP to P
which fixes p, g and g’, and which maps time-like lines ontedn

We next show thal fixes everypoint of P. It will then follow that f |p= g is an affine
map. We first prove a lemma which is used repeatedly throughetst of this section.

Lemma 3.2. Let A be a time-like line contained in the plane P. Suppose
that A is invariant under h i.e. () C A. Let B be a time-like line in P
parallel to A. Then kB) is also parallel to A.

Proof. First note that, in facth(A) = A, sincef is time-like, andg is an
affine bijection of planes. IB = A, the result is evidently true, so assume
thatB # A, so that, in factB andA are disjoint. Sincéis a 1-1 maph(B)
must be disjoint fronh(A) i.e. h(B) is parallel toh(A) = A. O

Sinceh(p) = p andh(q) = q, it follows thath(L) = L (this is not to say (yet) thét
fixes each point of, but rather thah maps the lind onto itself). It follows that there is a
functionA : R — R which satisfies

h(p+s(d—p))=p+A(s)(a—p).
We say thas € R is the coordinate of the poiqt+ s(q— p) € L. Furthermore, sinck
fixesp andg, it is also true thad (0) = 0 andA (1) = 1.
Similarly, h(L') = L', and there is a functiop : R — R which satisfies

h(p+t(d'—p)) = p+ut)(d —p),u0)=0,u(1)=1.
As was done foL, this defines coordinates dri. (In this section, “t” is not time, but,
rather, an arbitrary parameter).

Choose coordinates dhby using grid lines parallel to the lindsandL’. A pointx € P
has coordinatess,t) € R? when the line through parallel toL’ meetsL at the points,
and the line througk parallel toL meets’ at the point. In this section, “slope” refers to
the s-t coordinate system, wherés horizontal with 0 slope and' is vertical with infinite
slope. We may as well have chosgro be the image af after rotating., so that the lines
of non-negative slope (including horizontal & verticaldi) are time-like lines (these lines
are “in between'L andL’).

Let x € P have coordinateés,t). By Lemma[3], the line througk parallel toL is
mapped byh to another line parallel th, in fact, the one which meets at p(t).

Similarly, the line throughx parallel toL’ is mapped byh to the line parallel to.’
meetingL atA (s). It follows that

h(s,t) = (A(s), u(t))

To complete the proof of the lemma, we will show that batland u are the identity
functions onR.

Forse R, letLs denote the (time-like) line throug(s, 0) with slope 1.

Sincely passes througtD,0) and(1,1), and both these points are fixed hythen
h(Lo) = Lo. It follows, that sincén(s,s) = (A(s), U(s)), thatA (s) = u(s) Vse R.

It remains to show thak is the identity function oriR. The demonstration of this
proceeds in several steps, which we now list; the proofsviothe list.
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(1) h(Ls) =Ly (s)-

(2) A(=t) =—=A(V).

(3) A(s+t)=A(s)+A(t).
(4) A(st) = A(S)A(1).

Lo is afixed line oh, so thath(Ls) is again parallel t&o. Also, h(Ls) contains the point
(A(s),0), which proveg]1.

Ls_+ contains the points,t), which is mapped by to (A(s),A(t)), so thath(Ls_t) =
La(s-a@)- Hence, by stef| 1, it follows that

A(s—t)=A(s)—A(t). (3)
Puts= 0 to prove stef]2, and then repladey —t in Equation[B to prove stdp 3.

The line,E, through the origin andl,t) is mapped to the lindy(E), through the origin
and(1,A(t)). Since the points,st) € E, it follows that(A (s),A(st)) € h(E). Comparing
slopes, we have that

A(st) =A(9)A(t)
which proves stef] 4.
We now see thad is a field homomorphism dR, and is, therefor, the identity c[|[9],

Corollary 2.2.
This completes the proof of Lemrha.1. O

4. STRICTLY TIME-LIKE BIJECTIONS

In this section, we prove the following theorem, which isatésed ingfl.
Theoren{ 1P.The set of strictly time-like bijections is generated (asraug) by the
dilations and the extended Poiné&group.

According to Theorerh 1.1, the time-like bijectioh, is an affine map. We will con-
sider only linear maps, as the translation component of addoate transformation is not
relevant to our analysis. Specifically, the origins of batinies coincide at time= 0, i.e.
f(0)=0.

We use matrix notation, and writg(x) = Ax, whereA is an invertiblen+ 1 square
matrix.

Let —v be the velocity at which observe¥ see<O moving. Then

t t/
2(0)= ()
so that’ = yt , wherey = Ag o, and we may write
(v W
A_( -w B ) @
wherew is an n-vector, and is an n-square matrix whose well-known decompositions

will not be used in this paper.
Preservation byf of the time-like cone is expressed as

X XQx>0 = (AX'QAx>0
= XA'QAx>0.

By continuity, and the fact thaitlis also a time-like bijection, we deduce thiapre-
serves the null-cone, too.

Vx XQx=0= xXAlQAX=0.
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Lemma[2.]1 now implies that there is somes R such that

AlQA=10aQ. (5)
Using Equatiorﬂ4, and inspecting the upper left coefficiérﬁqnation[‘\é, we see that
Y1-v3) = a

It follows thata > 0, so that Equatioﬂ 5 may be rewritten as

(A/vVa)'QA/Va =Q,
and we see thak//a belongs to the extended Lorentz group. This completes thef pr

of Theoren| 1.p. 0

Acknowledgements | would like to thank Philip Wort for helpful conversationsich suggestions
during the writing of this paper, Anadijiban Das and Jamegdllaor encouragement in pursuing
its publication, Esfandiar Bandari for his logistical sopp Ed Levinson for helpful pointers to the
literature, and the R&D group at MacDonald Dettwiler and @d@ates for constructive feedback. |
am specially indebted to the referees for their astutenasénaightful recommendations.

REFERENCES

[1] A. Das,The Special Theory of Relativity: A Mathematical Exposijt®pringer Verlag, Inc, New York, 1993.

[2] A. Einstein,Zur Elektrodynamik bewegter Korpeknnalen der Physik 17(1905), 891-921.

[3] V. Fock, The theory of space time and gravitatjdfergamon Press, 1959.

[4] A. P. French Special RelativityW. W. Norton & Company Inc., New York, 1966.

[5] Théo Kahan et. alTheory of Groups in Classical and Quantum Physics. Vol 1:Hdatatical Structures and
the Foundations of Quantum ThepAmerican Elsevier Publishing Company, Inc., New York, 896

[6] Gregory L. Naber,The geometry of Minkowksi spackpplied Math. Sciences #92, Springer Verlag, New
York, 1992.

[7] Henri Poincarésur La Dynamique de I'ElectrgnRendiconti del Circolo Matematico di Palermo, t. 21, p
129-176(1906)

[8] Wolfgang RindlerEssential Relativity2" edition. Texts and Monographs in Physics, Springer Ved&agy.

[9] Khodr Mahmoud Shamseddin&lew Elements of Analysis on the Levi-Civita FieRRh. D. Dissertation,
Michigan State University (1999).

[10] E. C. ZeemanCausality implies the Lorentz group. of Math. Physics 5(1964), 490-493.



