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Information Analysis of Single Photon Emission
Computed Tomography With Count Losses

ALFRED O, HERO anp LING SHAOQO

Abstract—This paper presents an analysis of the information trans-
fer from emitter space (o detector space in Simgle Photon Computed
Tomography (SPECT) systems which, unlike the study in [1], takes
inte account the fact that count loss “*side information’” is generally
not available at the detector. This side information corresponds to the
number of lost or deleted y-rays due to lack of interaction with the
detector. We show that the information transfer depends on the struc-
ture of the likelihood function of the emitter locations assaciated with
ihe detector data. This likelihood function is the average of a sct of
ideal-detection likelihood functions each matched to 2 particular set of
possible deleted y-ray paths, We derive a lower bound on the Infor-
mation gain due to the incorporation of the count loss side information
at the detector which is shown to be significant under either of the
following conditions: I) when the mean emission rate is small; 2} when
the y-ray deletion probahility is strongly dependent on emitter loca-
tion, Numerical evaluations of the mutual information, with and with-
out side information, associated with information optimal apertures
and uniform parallet-hole cellimators are then presented.

I. INTRODUCTION

INGLE Photon Emission Computed Tomography

(SPECT) is a diagnaostic imaging system based on re-
construction from projections of a y-ray emitting source,
SPECT systems are composed of a radioactive y-ray
emitting spatial source, a set of position sensitive detector
surfaces which detect incident y-rays, and a perforated
lead aperture placed between the source and the detector
in order to reduce the residual uncertainty in emitter po-
sition assoctated with the detected +y-rays. The set of pro-
jections are defined as the sequence of incident ~y-ray po-
sitions along the set of detector surfaces. The emission
process is modeled as a marked Poisson process over the
spatial field of view of the detectors, and the detection
process is obtained from the emission process from the
randomly directed line paths of the y-rays. Not all of the
line paths pass through the perforations in the aperture
and are detected, however. The loss of detected counts
can be due to absorption into aperture septa, noninterac-
tion with the detector scintillation crystal, or nonintersec-
tion of the y-ray path with the detector surfaces. Further-
more, for high count rate studies, detected counts may not
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be registered due to detector, or system, dead time [2]. In
this manner, the projections form a thinned marked Pois-
son process which is obtained by random deletions of cer-
tain y-ray paths.

In Emission Computed Tomography (ECT), the overall
performance of image reconstruction and classification al-
gorithms is limited by the quality of the projections pro-
vided by the aperture/detector geometry. These projec-
tions contain the information on emitter locatiens which
is essential for accurate reconstruction of the mean emitter
distribution constituting the object of interest. In the con-
text of SPECT [1], and other inverse problems [3}-[7],
the mutual information has been used as an objective mea-
sure of system performance where other more conven-
tional measures have been difficult to apply. This ap-
proach has been justified based on the role of the mutual
information as a measure of intrinsic invertibility of a sys-
tem transfer function, i.e.. a measure of the degree to
which the observations determine the variables to be re-
covered. In addition, the mutual information is related to
reconstruction error through the rate distoriion lower
bound of information theory: uniformly low mutual in-
formation necessarily implies poor reconstruction perfor-
mance under any convex penalty criterion [8].

In [1] a mutual information analysis was applied to an
ideal-detection SPECT system having the capability of
detecting the occurrence of an emission even if the emit-
ted y-ray is not detected on the detector surface. Pres-
ently. practical SPECT detection systems do not record
the “*side information’’ concerning the occurrence of un-
detected +y-rays. In this paper, we generalize the infor-
mation analysis of [1] to the case where some counts are
lost due to undetected y-rays, which we call random dele-
tions. We present results concerning the effect of the ran-
dom deletions on the mutual information via comparisons
of the results obtained here and the results obtained in [1].

II. BACKGROUND AND MAIN ASSUMPTIONS

With few exceptions, throughout the paper we use the
conventions that capital and beld letters denote random
variables, e.g., X;, n, while lower casc letters denote their
realizations, e.g., x; and .

Let & and Y denote the ‘‘source space’’ and the ‘‘de-
tector space,”” respectively. As in [1] over a fixed time
interval [0, T] a source generates y-ray emissions at s
random locations X = [X, - - -, X,,]T, X; e X, where,
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conditioned on » = n, each emitter location X;, { = 1,
-, #, is independent and identically distributed with

density f,. These emissions occur at times t* = [t7],
Y ! L4

»++, 1517 which are points of a temporally homogeneous
Poisson process N, = {N.(#}:t € [0, T]} with rate A
equal to the average number of points over [0, T}: A =
E[N(T)] = E[n]. Define the joint distributions of (X,
n) at (x, n) as the differential probability 4P (x;, - - - ,
K ”) = P(XI € (.FC;, x + dxl]’ Tt XN € (X,,, Xy +
dx,], N.(T) = n). Then:
n

dP(X. n) = Pyry(n) il:I] LX) dx (1)
where dx = dx,, ++ + , dx,., and Py (1y{(n) is the ‘‘Pois-
son-A"" distribution:

(2)

Pyy(n) = i ) n =

A y-ray emitted at location X; can either be detected at
a location Y; € Y on some detector surface, or it can go
undetected, an event denoted *F°" for deletion or failure.
‘The conditional probability of F given X; = x is denoted
by pr{x), and the unconditional probability of F is the
expectation:

Dr = L pr(x) fi(x) dx. (3)

The conditional density of ¥; given X; = x and “‘not F
{no deletion) is denoted by f( y|x) for y € Y. The con-
ditional density of ¥; given “‘nor F'' is as follows:

|
=7

L [t = pr(¥)]f(¥|*) £ilx) ax.
(4)

Both f( y|x) and f,.( ¥) are normalized densities, i.e.,
they have unit mass when integrated over y € Y. Observe
that pr (x} and £ { y|x) are functions specified by the sys-
tem geometry, while pr and f; are also functions of f,.

Let W= [W, -, W,]" be the sequence of detected
positions and deletions, W; = Y; or W; = F, respectively.
Let N.(T) = m be the number of detected y-rays, and
denote by N, = {N,(1):¢ € [0, T]} the sequence of de-
tection times ¢* = [}, - - -, t},]7. We refer to (N,, ¥)
and (N,, W) as detector processes. (N,, W) corresponds
to an ideal-detector process for which the sequence of
deletions {i: W; = F } are known to the observer. It can
be shown [8], since all processes are stationary, that the
process distributions depend on the sequence of deletions
only through the number of deletions n — m = #{i: W,
= F }. Hence (N,, W) corresponds to a detector process
for which the number n — m is known, or, equivalently,
for which the total number of emissions n is known. In
the sequel we refer to this knowledge as the ““count loss
side infomation.”"

AH(y) =

IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. Y. NO. 2. JUNE 1990

The process (N,, W) is a marked homogeneous Poisson
process [9] with mark space W = Y U F and rate A:

dP(N, W) = %PM(T!(") [‘.1}1 f\(Y.)]

[ =" BT (5)
In (5) the Y;'s have been reindexed overi &€ {1, -+,
m}. The point process (N,, ¥') can be obtained from (N,,
W) by deletion of the events { W;: W; = F }, called ‘‘thin-
ning’* [9], and it can be shown that (N, I’} is a marked
homogeneous Poisson process with mark space Y and rate
A(l — pr):

1 m

dP(N, Y) = ra Py, cry (m) !_I;Il Fy). (6)

In (6) { Pn,ry(m) }i=o is given by (2) with A replaced
by (I — pr) A, Le., mis a Poisson-(1 — pp) A distrib-
uted random variable.

III. THE MuTuAL INFORMATION MEASURE

The general formula for the mutual information be-
tween two random quantities U and V is [10]:

dP(U, V) ]

N aP(U) dP (V) (7)

o, vy ZE [E
The mutual information measure can be applied to any
estimation, detection, or other statistical problem which
can be imbedded in a communication paradigm involving
a set of “‘source symbols,”” { U/}, which are the input to
a “‘communication channel” yielding a set of output
*‘destination symbols,” { ¥}, which can be observed. In
the context of tomography, the mutual information should
be defined relative to a particular task by suitable defini-
tion of the source symbols. In [B, Ch. 6] image classifi-
cation and detection tasks are considered, here we con-
centrate on tomographic reconstruction.

The overall tomographic system relating the ““input’” f,
to the “‘output’ f, can be represented as the cascade of
three channels (see Fig. 1): the first gencrates the emitter
locations ( X, #) from the emitter distribution f;; the sec-
ond generates the detection process (N,, ¥') from its input
( X, n); and the third generates the reconstruction f, from
its input (N,, ¥). The first channel is essentially a ran-
domization mechanism following the statistics of a marked
Poisson process. The second channel is characterized by
the physical mechanisms underlying y-ray production and
detection, which is partially determined by the system ge-
ometry. The third channel is determined by the particular
reconstruction algorithm which is applied to the measured
data. For tomographic reconstruction, a worthwhile ob-
jective would be to maximize the routual information be-
tween the mean emitter distribution, U = f, and the
y-ray detection process V' = (N,, ¥). If a set of possible
mean emitter distributions, { f;} can be specified, along
with prior probabilities on the members of the set, the
mutual information 7( f; (N, ¥)) can in principle be de-
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Fig. l. Channel model for SPECT. C, is capacity of channel which maps
mean emitter distribution f, to realized emitter locations { X, n), Cs is
capacity of channel which maps ( X, ») to detection process (N,, ¥),
and C, is capacity of channel which maps (N,. ¥) to reconstruction, £,
of mean emitter distribution, f,.

tived. As in [1], we focus on the simpler task of charac-
terizing the mutual information, related to C,, between
the emitter locations U = (X, nyand V¥V = (N,, ¥). The
data processing theorem [10] gives the resuit as follows:

€ < min {C,, G, G}

where C is the information capacity of the cascaded chan-
nel constituting the transfer of source information from f,
to f., and C,, C3, C; are information capacities of each of
the three channels indicated in Fig. 1. Hence, while a
large information capacity C, is not sufficient for the over-
all capacity Cto be large, a large C; is necessary for Cto
be large. In this sense a characterization of the mutual
information /({ X, n); (N,, ¥)) is relevant to the transfer
of information across the system.

In [1] the ideal-detection mutuai information 7 ({ X, #);
(W, N.)) was studied. The ideal-detection case corre-
sponds to a system which has access to the side informa-
tivn consisting of the sequence of deletions W; = Fin the
process {N,, W). It was shown in {1] that conventional
measures of SPECT system performance, such as sensi-
tivity and spatial resolution, system invertibility, and MSE
of the reconstruction, are related to this ideal-detection
mutual information. In this paper, we are interested in
quantifying the loss in mutual-information when the de-
tection system does not have access to the deletion side
information. For this case the relevant detection process
is V = (N, ¥) and the muwal information is defined as
follows:

_ ~ dP(X,n, N, Y)
[{(X. n); (Ny, X)) = [ dP(X, n) dP(N,, Y)]
dP(X, n|N, ¥)

= E[ln —‘m] (8)

From the above expression it is clear that to evaluate the
mutual information the posterior likelihood function
dP(X, n|N,, ) is nceded.

I1V. THE PosTERIOR DISTRIBUTION

Define the binary *‘deletion indicator function” 4; as
follows:
1, W, =F
d; = (9)
0, if W, = F.
Wnth this notduon define the column vector d = [d4,,

., d,1%. dis an n bit bmary word whose one and zero
entr:es specify the sequence in which the emissions are

detected, W; = ¥,, and deleted, W, = F, respectively. Also
define the position v (f) of the /th 1 in the vectord: (¢ )
d-i"rmin{."c:‘EJf-;,dj2 i}, i=1, , m., y{i} is the
time inclex at which the ith detection occurred, in partic-
ular: 1 = t54).

Using the Poisson property that, conditioned on # = n,
the pairs { (W, X;)}i-, are independent, the joint distri-
butien of (X, n) and the ideal observations (N,, W) is
as follows [8):

dP((:’_{v n)’ (Nn E))

PM(T)(”) H £ Y| yan) (X} H

s

(1= e [pe(X) (X)) dx dy dt.

(10)

By summing the joint distribution dP(( X, n), (N,
W)) over the possible ways that # — m deletions W, = F
can occur in the sequence W, and dividing by dP (N,, ¥)
(6}, the conditional distribution of ( X, n) given the de-
tector process (N,, Y)is, forn =m, m + 1, -+ [8]:

Puyry(n) I £(X)
dP(X,n| ¥, N,)) = 1,(X, n) - dx

Py,r(m) 1L A(Y))
(11}

where

lm('l:) H) dif Z H f(Y ]x')‘ﬂ))

d:dTl=mi=1

"
7

pr %(x) (1 _'PF(-’:i))d- (12)

i=

By convention, IIj., and I 4n = are equal 1o one when
n =0sothat: [, (x,n) =1whenm,n=0.

The expression (11) is the general posterior likelihood
function when only m out of n of the points of the marked
Poisson process (N,, X ) are detected. The summation in-
dex in (12) iterates over all (J) ways that the detector
locations ¥, - - - , ¥,, can be associated with subsets of
m of the emission locations X,, - - - , X,. The function
Ia(x, n) (12) is the likelihood function of the n y-ray
emission locations x,, - * - , x,, given the m detected points
Y. If pr (x) = O for all x, no deletions occur, 7 = m, and
the likelihood function associated with the m emitter lo-
cations xy, * * * , X, is given by the following ‘‘uncom-
pensated likelihood function®’:

JEEOmB( ¢ ) = ,-EI, (% %) (13)
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Using this notation, from (12) and (13) we have:

[m(ﬁ’ H) = Z C" Iuncomp( 'H!)’ *

didTL = "oy Kypmp m)

(14)

where ¢, is a weight associated with the prior probability
that the particular length m subsequence of emitter posi-
HONS Xy 1y * * * . Xyem) generated the m detected y-rays:

def

oy = r'H {1 -pr x,)] [pp(x,] - (15)

It is important to note that the likelihood functions (12)
and (11) differ from the likelihood function derived in
[11]. This is because the approach in [11] sets up the like-
lihood functions for the mean emitter distribution f,, while
in the present context the likelihood fanctions apply to the
particular realization of the emitter distribution, i.e., the
actual locations of the emitters.

V. EFFECT OF RaNDOM DELETIONS ON THE MUTUAL
{NFORMATION

The main results of this paper are given in the form of
Propositions which are proven in the Appendix. First we
give an equivalent expression for the mutual information
associated with the ideal detection process whose form
differs slightly from the form derived in [1].

Proposition 1: Let { X, n) be the spatial locations and
number of y-ray emissions and let (N,, ¥) be the ideal
detection process defined at the end of Section II where
the distributions dP( X, n) and dP{ X, niN,, W) are
given in (1) and (11). Then the mutual information, I,
between the emission locations and the ideal detector pro-
cess is the function:

1,2 I((X, n); (N WY) = H(n) + AI(X; W,).

(16)

In (16) H(n) = hpgiyson(A) is the entropy of the Poisson-
A number of emissions; J{X;; W;) is the mutual infor-
mation between an emission location X, and the detector/
deletion symbol W

(X, W) = (1 — Bp) I(X;; i) + D(pe(x)||BF)  (17)

where /(X;; Y;) is the motual information for a single
emission-detection pair:

fGxly)
flx) 7’
(18)

and D(pgp(x) | Bey is the information divergence be-
tween the conditional probability of deletion, pg(x), and
the average probability of deletion, pg

D(pe)p) = | £00) | ety 0222 | 19)

1061) = | @i | asixlm
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The entropy H(n) is present in (16) since perfect in-
formation is provided by the ideal detection process (N,,

W) concerning the number of emissions.

The following are the main results of this paper.

Proposition 2: Let (X, ») and (N,, W) be as in Prop-
osition 1. Let (N,, ¥) be the thinned process obtained
from (¥,, W) by deleting the points associated with the
symbols *“W; = F."’ Then the mutual information /,;, be-
tween the emisston locations and the detection process is
the function:

1a 2 I{(X. n); (N, 1))
=H{m) + A(1 - p) {X; 1)

I (X, nt)
- E[‘“ —z,;r;_f.—nr] (20)

where H{m) = hpoisson ((1 — Pr) A) is the entropy of the
Poisson-((1 — pr) A) number of detections; and /,(x,
n)and I7°°"P( x, m) are the likelihood function (12) and
the uncompensated likelihood function (13).

14 is the mutual information between the emitter loca-
tions and the detection processes when the count loss side
information is not available at the detector. An approxi-
mation to I, is obtained by neglecting the third term on
the right hand side of the equality (20):

Ly =1 S H(m) + A1 ~ Bs) I(X: ¥). (21)

The right hand side of (21} corresponds to the information
between any m emitter locations Xy, * - , X,y and
the m observables ¥, The next proposition shows that the
approximation (21) is actuaily an upper bound on /. Fur-
thermore this upper bound can be significantly less than
the ideal detection information £, in Proposition 1. These
two facts will be used in the sequel to bound the infor-
mation loss incurred by omitting count loss side infor-
mation.

Proposition 3: The mutval information, [, = I(( X,
n), {N,, Y)) satisfies the following chain of upper
bounds:

g = 1, — H(m| X) (22)
= I (23)
=1, — [H(n) — H(m) + AD(ps(x}]|BF)] (24)
<1, (25)

where I, is the mutual information quantity defined in
(21): 1, is the mutual information (16) between the emilter
locations and the ideal detection process, and
D(pr(x)|| Pr) is the information divergence (19) be-
tween the conditional probability of deletion, pr (x), and
the average probability of deletion, pg.

The proof of the above proposition uses an application
of the log-sum lemma [12]. The loosest inequality, [,y <
I,, of Proposition 3 expresses the obvious fact that omis-
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sion of the count loss side information can only decrease
the mutual-information. The amount of decrease per-
emission can be measured by the foss:

del Ia — ]rd'

loss = (26)

The inequalities (22), (24), and (25), of Proposition 2 give
the chain of lower bounds on the loss:

loss = éhiﬁ 7
N %;H(E’_) + D(pr(x)| Pr)
= 0. 28)

The lower bound (28) is composed of the sum of two
terms: 1) the scaled difference [H(n) — H(m)]/A be-
tween the entropies of the number of emissions and num-
ber of detections; and 2) the information divergence
D(pr(x) | Pr), given in (19). While each of these terms
are nonnegative, it will be seen below that for large A,
the information divergence term dominates the loss lower
bound (28). The information divergence term can be in-
terpreted as an (asymmetric) measure of the distance be-
tween the conditional deletion probability pr (x) and the
average deletion probability pr in the sense that (19) is
zero if the two probabilities are equal while (19) increases
as § pr(x) | pr(x) — Pr| dx increases [12]. Furthermore,
D(pg(x) || Br) has the interpretation of information, I(X;;
F), between the deletion event ““F** and the emitter lo-
cation X;. Therefore, if *‘F* conveys no information about
emitier position, in the sense that D( pr (x) || p¢) = 0, the
resultant information loss bound reduces to the difference
[H(n) — H(m)]/A.

Consider the behavior of the loss lower bound (28) as
Pr goes to cither zero or one. In either case, the diver-
gence D(pr (x)1| pr) (19) goes to zero since 5 = 0 ( By
= 1) implies pr (x) = 0 ( pr(x) = 1). The Poisson en-
tropy function is monotonically nondecreasing from zero
to infinity as the Poisson rate increases [8, Appendix E].
Therefore, H{m) = hpyn(All — Pr]) approaches
H(Rr) = hpyigon(A) monotonically from below as Dr ap-
proaches zero. On the other hand Apyiseon ([1 — Fr] A)
approaches zero as Pr approaches one. Hence, the bound
on information loss (28) approaches zero as Pr decreases
to zero, while the bound approaches H(n)/A, the nor-
malized entropy of the number of emissions, as Py in-
creases to one. Since an information value of H(n) cor-
responds to maximum uncertainty in the number of
emitted counts, this behavior is consistent with intuition,
and suggests that, at least for large or small pr, the bounds
(24) and (28) are fairly tight.

It is interesting to consider the relative magnitude of the
loss as compared to the ideal-detection mutual informa-
tion as a function of emission rate A. It can be shown [8,

121

Ch. 5] that the following asymptotic forms of (28) hold:
IOSS = D(p,.-():)"ﬁ;), (A = I)

H(n) = H(m) _

loss = A r ln e

(A << 1).

(29)

Based on the asymptotic forms (29) of the per-emission
information loss, the following implications can be de-
duced. For low mean emission rates, A, the per-emission
information loss is a logarithmic function of 1/A, which
can be significant if the average probability of deletion,
Pr» is high. In particular, for very low mean emission rates
the loss becomes unbounded. On the other hand, for high
mean emission rates the per-emission information loss is
a constant independent of A: the information divergence.
If the divergence is large the absolute loss [, — I, can be
significant. In terms of per-emission information loss it
can be concluded that there is a diminishing return on in-
corporating count loss side information into the observa-
tions as A increases: for large A the return cannot be
greater than D pr (x) | Br).

VI. NUMERICAL EXAMPLES

To illustrate the sensitivity of the mutval information
criterion to the effect of random deletions we numerically
computed the mutual information for ideal detection, 7,
(16), investigated in {11, the upper bound on the mutual
information in the absence of count loss side information,
{1, (21), and the lower bound, loss, (28), on the per-emis-
sion information loss. To evaluate the loss, the entropy
Rpgisson (A) oF & Poisson random variable must be com-
puted. The Poisson entropy function is not of analytic
form [13], {14], and in general the loss must be computed
numerically. For small A this can be accomplished via
truncation of the series —X;L, p(&) In p(k), while for
lasge A the standard Gaussian approximation [15, Theo-
rem 20] to the Poisson distribution can be used, for which
the difference H(n) — H{m) = hPuisson(A) - hPDissun([ I
— Prl1 A) is approximated by —(1/2) In (1 — pg). In
these studies we considered two simple cases of one-di-
mensional line sources, referred to as objects in the se-
quel: 1) a single uniform (constant spatial intensity) source
occupying 25 percent of the field of view, 2) two spatiaily
separated uniform sources, called bimodal sources in the
figures, each occupying 10 percent of the field of view.

We found optimal apertures by numerically maximiz-
ing the ideal-detection mutual information, I,, and the
nonideal detection mutual information bound {,. For the
cases studied, it was determined that the optimal apertures
resulting from maximization of each of the criteria, 7, and
1|, were virtually identical despite the different functional
forms of these two criteria. This is significant since effi-
cient methods for maximization of I,, which have been
studied in [1], can be used to maximize [;. Furthermore,
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the optimal strategy displayed by [ -maximizing aper-
tures, discussed in [1], carries over to [;-maximizing ap-
ertures.

In Figs. 2-12 the following quantities were held con-
stant: detector and aperture lengths are 200 mm, source~
detector distance is 60 mm, and minimal aperture opening
width is 1 mm. These values were chosen to represent
typical parameters for small linear one-dimensional
SPECT geometries.

In Fig. 2 optimal apertures for a uniform source over a
40 mm center region are displayed for various object-to-
aperture distances D,,. The apertures have thickness A =
2 mm. In this and other figures the openings of the aper-
ture are represented by white spaces while the septa are
represented by dark spaces. Also shown are the associated
mutual information per-emission, f, /A and, the probabil-
ity of detection, 1 — Pr, which can be interpreted as the
detector fluence-per-emission, for A = 1000. Note that a
decrease in mutual information is accompanied by a de-
crease in fluence as the object-to-apesture distance is in-
creased, however the rates of decrease are different. The
apertures reveal the following optimal strategy, outlined
in [1], for maximizing the information transfer from
source to detector. Over regions of the aperture where the
fluence is high enough so that fluence can be sacrificed
for better resolution, e.g., near the center region, the ap-
erture performs collimation. Over lower fluence regions
the aperture opens up to allow a higher fluence to attain
the detector. The regions of the aperture near the bound-
aries, denoted by solid dark lines in Fig. 2, are regions
where opening or closing of the aperture has little or no
effect on the projections since the possible y-ray paths
which intersect these regions do not interscet the detector.
Over these regions we have arbitrarily set the aperture to
a closed state.

In Fig. 3 optimal apertures for a bimodal source are
displayed as a function of object-to-aperture distance D,,.
The bimodal source has intersource separation d = 80 mm
and each source occupies 20 mm. The aperture thickness
is A = 2 mm, Note that over regions of the aperture which
would otherwise cause severe multiplexing between the
two sources on the detector, e.g., the center region, the
aperture is closed.

In Fig. 4 the middle aperture of Fig. 3 is displayed along
with the unnormalized detector fluence distribution (1 —
Pr) f,. For this aperture f; /A is 0.163 bits/emission and
the total fluence-per-emission is 0.151. Observe that from
the point of view of detector resolution, e.g., as measured
by the concentration bandwidth of (1 — pr) £, the opti-
mal aperture is quite poor. In Fig. 5 a uniform parallel-
hole collimator, placed at an identical distance 36 mm
from the line source, is shown along with its unnormal-
ized detector fiuence distribution. The detector fluence
distributions are plotted on the same scale for Figs. 4 and
5. The thickness of the collimator is 2 mm, the width of
each opening is 1 mm, and the duty cycle is 50 percent.
Note that, despite the fact that the detector resolution ap-
pears superior for the collimator as compared to the op-
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One-D detector systen
Source — D, Milly] Flence
(mm) (bivevent) (%)
IEETEY) [IRLRRT] 30 0131 0138
— e a1 00 R ETERT ] 36 0a3l 0138
e e R L R L e P T S e — 46 0127 Q.17
Aperure
Detector

Fig. 2. MI-optimal apertures as a function of object-to-aperiure distance
D.,,, for a uniform source of width 40 mm. Aperture and detector lenglhs
are 200 mm, aperture thickness is A = 2 mm, object-to-detector distance
is 60 mm. For MI and fluence calculations A = 1000.

One-dimensional detector system
—_—
Soures f 1 f 1 Dgy Mi(ly)  Pumce
{mm) Blvevent) (%)
W—— b F VRN — R R | — E 0168 0as6
A ot i crcersvmmmnnirete v s s 36 0163 015
g:— N eI EEIME NS MO F A 4 46 0136  0.14%
Dewsor

Fig. 3. Ml-optimal aperiures as a funclion of object-to-aperture distance
D, for a pair of line sources (bimodal source) each of width 20 mm, and
intersource spacing d = 80 mm. Aperture and detector length are 200
mm, aperture thickness is 2 mm, object-to-detector distance is 60 mm.
For MI and fluence calculations A = 1000.

—

Sourez i | —
Dg,=36mm
ADCITUTE MM v G E O ROTTEERO RO PNIN N L e 1 — :EAsl.hh:kWme
W\.\,\_/} Dyy>22mm
Detector L

Fig. 4. MIl-optimal aperture of Fig. 3 for D,, = 36 mm. Also plotted is
unnormalized detecter fluence distribution (scaled for visual presenta-
tion), (1 — pr) f,{ ¥). Total peremission fluence is 0,151 and peremis-
sion MI(J,/A}is 0.63. Ml is higher for this aperture than for collimator
in Fig. 5 despite comparatively poorer detector resolution.

timal aperture of Fig. 4, the fluence is inferior, as is the
mutual information. In particular there is more than twice
as much emitter related information, /|, at the detector for
the optimal aperture than for the collimator aperture. An
important unsolved problem is the specification of a de-
coding algorithm which can extract this additional infor-
mation, .

In Fig. 6 the results of maximization of the mutual in-
formation via specification of optimal apertures are dis-
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Source I 1 —
Apcrture
Detector ‘M _M_

Fig. 3. Parallel-hole cellimator aperture for identical system configura-
tions as in Fig. 4. Width of each opening is } mm, duty cycle is 50
percent. and collimator thickness is A = 2 mm. Unnormalized detector
fiuence distribution (1 — pg) fi{ ¥) is plotted on same scalc as in Fig.
4. Total peremission fluence is 0.0789 and peremission MI (4,/A) is
0.0382.
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Fig. 6. Plots of MI peremission, J,/A and [, /A, for optimizing apertures,
represented in Fig. 4 for d = 80 mm, as a function of source separation
d for mean emission rates A = 100, A = 1000, and A = 10,000. For
each d. MI-cptimal apertures were found and associated MI calculated.
Plots show maximum achievable M! peremission under each of criteria
1, and J|. Comparisen between each pair of curves indicates decreasing
importance of count loss as A increases.

played for the bimodal source in Fig. 3 and for A = 100,
A = 1000, and A = 10,000, respectively, The horizontal
axis in the figure is the intersource separation d and the
vertical axis is the information per emission under criteria
I, and /. The figures show I, and I, based on their strong-
est possible showings: the maximum /, is compared to the
maximum [, for each value of 4. Note that the curves,
Fig. 6, are not achievable with any fixed aperiure since
for each d the apertures giving each of the points on these
curves are different. For each value of A studied, the ideal
mutual information, I,/ A, is greater than the mutual in-
formation, f; /A, as was predicted by Proposition 3. The
distance between [; /A and I, / A curves represents the in-
formation loss (peremission), due to deletions of the fail-
ure events ““F”’ from the observations, as a function of
A. It is significant that the difference between I,/A and
I, /A increases as A decreases. This is consistent with the
theoretical prediction, (29), that the count loss side infor-
mation is more significant at low mean count rates than at
high mean count rates. In particular for A = 100, and
optimal apertures, the ack of count loss side information
incurs a loss of approximately 5 percent of the mutual
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Fig. 7. Plot of components of MI loss per-emission, [J, — I,}/A = {H(m)
— H(m))/A + D{pr{x}]| Pr). corresponding to difference between
ugper and lower curves in Fig, 6. as a function of intersource s¢paration
d, for A = 100. For this case M1 loss is almost entirely due to entropy
difference [H(n) — Htm)1/A.

information, f,/A, available for ideal detection. Con-
versely, for higher A and optimal apertures, the count loss
side information can be expected to have minimal impact
on the total information transfer from the emitter locations
to the detector.

In Figs. 7 and 8, the relative contributions of the en-
tropy difference term [H(n) — H(m)]} A and the infor-
mation divergence temn D (pr (x) || ) to the loss {1, —
L1/A (28), are studied for A = 100 and A = 10,000,
respectively, and the same parameters as in Fig. 6. The
top curves in Figs, 7 and § correspond to the difference
between the top and bottom curves in Fig. 6. Comparison
between Figs. 7 and 8 quantitatively illustrates (29): for
low mean emission rate the information loss is dominated
by the entropy difference [H{(n) — H(m)] A, while for
high mean emission rate the information loss is dominated
by the information divergence D( pr (x) || Be).

In Fig. 9 the mutual informaticn per emission is plotied
for A = 100 and A = 1000, respectively, and for the case
where the aperture is optimized for an intersource dis-
tance d = 80 mm, yielding the aperture of Fig. 4, while
the true intersource distance varies over the range 20 mm
to 160 mm. The increased magnitude curvature of these
curves relative to the lower two pairs of curves in Fig. 6
reflects the degree to which the fixed aperture is subopti-
mal, due to mismatch, when 4 is different from the value
for which it was optimized.

In Fig. 10 the mutual information per emission is plot-
ted as a function of intersource distance 4 for A = 100
and A = 1000, respectively, and for the parallel-hole col-
limator aperturc of Fig. 5. Comparison between these
curves and the curves in Fig. 9 indicates that the colli-
mator is more robust to changes in 4, in the sense that the
mutual information curves in Fig. 10 are virwally con-
stant over a large range of d around 4 = 80 mm. It is to
be recalled, however, that the collimator has only half as
much mutual information as the optimal aperature when
d = 80 mm.
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Fig. 9. Plots of Ml per-emission, /,/A and [, /A, as a function of soutce

separation d for optimal aperture of Fig. 4 which is optimized only for
d = 80 mm, A = 100 and A = 1000, respectively.
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Fig. 10. Plots of /,/A and /, /A as a function of source separation d for
collimator aperture of Fig, 5 for A = 100 and A = 1000, respectively.
Comparison of the A = 100 curves to the analogous curves in Fig. 9
indicates a 100 percent gain in Ml is possible by using an Ml-optimal
aperture, This gain is only achievable if tue separation o = 80 mm is
known.
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The robustness issue is further studied in Figs. 11 and
12, In Fig. 11 the mutual information (/) of the fixed
optimal aperture for 4 = 80 mm, shown in Fig, 4, is com-
pared to the mutual information of uniform parallel-hole
collimators with 1 mm: aperture opening width, 50 percent
duty cycle, and varying thicknesses A, For all collimator
thicknesses studied, the collimators had significantly
lower mutual information than the mismatched optimal
aperture, labeled “‘optimal’ in the figure, the deficiency
increasing as the thickness increases. For the collimators
shown, it is better, in an information sense, to use a mis-
matched optimal aperture. In Fig, 12, a similar compari-
son of mutual information (/) is shown for a set of col-
limators with fixed thickness A = 2 mm, 50 percent duty
cycle, and various widths of the aperture openings. As the
width was increased, the mutual information increased to
a2 maximum at A = 4 mm and then began to decrease for
larger vaiues of A. Comparing the collimator mutual in-
formation curve associated with this optimal value A = 4
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mm, and the mismatched aperture mutual information
curve, labeled “‘optimal’’ in the figure, it is evident that
the robusiness of this collimator begins to pay off as the
true value of & increases beyond 140 mm. This implies
that if the uncertainty in the actual intersource separation
is significant, e.g., greater than 50 percent of the nominal
value of 80 mm, the collimator with A = 4 mm may have
better information transfer properties than the mismatched
aperture. On the other hand, if the uncertainty in d is less
than 20 percent the mismatched aperiure can still guar-
antee at least a 10 percent gain in mutual information over
the collimators studied.

VII. CoNcCLUSION

We have investigated the performance of SPECT from
the point of view of information transfer from the object
to the projections on the detector which takes account of
count loss side information. This side information corre-
sponds to the number of lost y-rays due to lack of inter-
action with the detector, e.g., through SPECT aperture
absorption, out-of-field y-ray paths, or incomplete energy
deposition into the scintillator. The mutual information
between the i y-ray emissions and the m < n y-ray de-
tections involves the likelihood function of the n emitter
locations. This likelihood function can be represented as
the weighted average of (},)} uncompensated likelihood
functions, each of which is the likelihood of a possible
subset of m of the » emission locations, An upper bound
on the mutual information was then given, and a lower
bound on the information loss due 1o the deletions of
y-ray paths was given. This lower bound indicated that
the impact of count loss side information on the infor-
mation transfer can be significant if either the mean emis-
sion Tate, A, is small or if the deletion probability is
strongly dependent on spatial emitter location. The smail
A regime may be relevant for dynamical studies where
successive imaging times are limited to intervals over
which the emitter distribution is nearly time independent.
The deletion probability can be strongly dependent on
emitter location for SPECT systems with spatially variant
mean response, such as those incorporating coded aper-
ures.

Results of a numerical study of two one-dimensional
line sources were presenied which indicated that the
SPECT aperture which maximizes the mutual information
is virtually identical to the ideal-detection information-
optimal SPECT aperture, studied in [1]. For a mean entis-
sion rate of 100 events, and a source made up of two spa-
tially separated line sources, called a bimodal source, the
count loss accounts for a 5 percent drop in mutual infor-
mation per-emission. As the mean emission rate increases
to 10,000 the mutual information per-emission is not sig-
nificantly affected by the count loss. Furthermore, for the
bimodal source studied, the information-optimal aperture
provides more than a 10 percent gain in information rel-
ative to an information-optimized uniform parallel-hole
collimator when the source separation is known to within
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20 percent of its true value. This implies that the infor-
mation-optimal aperture is relatively robust to deviations
of the source away from the assumed aperiure design
point. This suggests that the mutual information criterion
might be relevant to aperture design when one has a good
initial guess of the true mean distribution.

While the information based approach taken in this pa-
per can indicate potential information gains, it does not
tell us how to use the measurements to achieve the infor-
mation gain. This situation is inherent to the Shannon the-
ory of communication: the theory only establishes the ex-
istence of optima! source coding which can achieve
maximum information transfer. For practical realization
of the benefits of the information gains reported here more
work needs to be done. As a first step, we are currently
considering the implementation of the maximum likeli-
hood estimater for the emitter locations discussed in Sec-
tion IV of this paper.

APPENDIX

Here we prove the three propositions given in this pa-
per.
Proof of Proposition 1: 1dentification of ( X, n) and
(N, W) with U and Vin (7) gives:

dP(X, n|N,, W)

aP(X. 1) ] (30)

H(X.n); (N W)} = E[in

The posterior distribution dP( X, n[N,, #) can be ob-
tained from dividing dP(( X, n), (N, W)) (10) by
dP (N, W) (5):

dP(X, n|N. W)

1 m "
= = r,-—ml_-[ X‘r(i) Yl H
(A G e T el
1= e ()] Lpr (X)) £(X)]) T dx dy dr,
(31)

Using (1) and {31) the mutual information formula (30)
becomes:

(X, n); (N, 1))

oo [T

Pr
— E[ln PM(T)(")]

_ e ST . pr(X;)
—E[Eld,—ln F00) + (1 ~d;)n > J
+ H(n). (32)

Now since, given n, { (W}, X;)}_,are i.i.d., Ef.  d4; =
m, E[n] = A, and E{m] = (1 — pg) A, the above re-
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duces to: : H(Y;|X;). Combining this with (34) and (35) establishes

. identity (20) of Proposition 1.

X 1 ¥ P
I((X, »); (N, ) Proof of Proposition 3: In view of (20) we first show:
f(X|Y; )‘ ] Jumcomp

= E[m E[ d =1 In (X, m)
L) LX) E[ln (X, n) = H(m|X), (36)
_ PF(XE)‘ _ to establish (22). Since the entropy of a discrete random
+ Ejn - m] E[ln Pr 4 =0| + H(n) variable is nonnegative {10], H{m| X) = 0 and the in-

equality (24) will immediately follow.
f(x]y) In the proof of Proposition 2 it was shown that E{ln
50 B (X, m)] = —A(1 - pp) H(Y; | X; ). Hence:

E[ln L= ( X, m)]

= A(l - pp) S‘Hd)uﬁ-(x) S def (x|y) In

+ APr L dxﬁ(x)‘%ﬂlnz‘% + H(n)

(X, n}
= A[(1 — Be) I(X; %) + D(pe(x)| 5r)] + H(n). = —A(l - fr) H(Y;|X;) — E[n L,(X, m)].  (37)
(33) Now explicitly express the expectation:
This establishes Proposition 1. _
Proof of Proposition 2: Using (1) and (11), the in- Efn (X, n)] = SdP(z, m, x,n)Inl,(x,n).
formation (8) becomes: (38)
I((X, n}; (N X)) To obtain the differential probability dP{ y, m, x, n) in-

tegrate the product of dP(N,, Y) (6) and dP( X, n|N,,

¥) (11) over ¥ € XT2 [0, T]. The substitution of this
Py.r(n) ,.13] f(X) resuit into (38) yields:

lm(X’ n) m
- dP 3 3 3
Prary(m) TL £(%) (y, m x,n)
=E|In — " ,,, "
PN\(T)(”) EE[I f;:(X—f) = PNJ(T}(") i];I] f\’(xl') dodTi= ( Vi l.x.r(”) ,‘1=—-[|
z pr M) (1 = pr(x ) (39)
- E[In fm (X, n)] - E[ln PN-"(T’(m) i=1 f-"(Y")] Substitution of (39) and (12) into (38) gives:
(34) E{In [,(X, n)]
From the identity [10] (X, ¥;) = H(Y;) = H(Y;|X)), ® "
the second quantity on the right hand side of the equality = 4 Z=] g S dy Py,ry(n) H filx)
above is: N
E[ln PN-"(T)(m) ;]';'[1 f;(}")] d d% mi=| f( Yi !xﬂ”) H

m - pF () (1 - PF(xf))
= E[In Pyry(m)] + E[;] mf‘.(y,.)}
= X ln Z H f(y,‘x “)) H

didTi=m [=1
= —H(m) + E g Infy)d -
(m) + E[m] | f(y) In £ ¥} dy Py (1 = pe()”
= —H(m) — A{l — pr) H(Y;) i é 5 S
dy P
= —H(m) - AL - 5) I(% %)) 2oy 2 Puan ()
— A(1 — Pr) H(Y, | X)) (35) ;131 filx) (4:4§=m gz In d:fif:m ‘Id> (40)
where H(m) is the entropy of a Poisson random variable . h i
with rate A(1 — Br), H(Y;) = E[ —In f.(¥; )]s the (dif- where g, is defined as the quannty'
ferential) entropy of ¥, and H(Y;|X;) = E[-In ot
F(¥; | X;)1 s the conditional entropy of ¥; given X;. Using H fln |x.,(,,) H %) (1 = pr (x,)) ;
the definition of [ (13) we also have EJln
L™t (X, m)] = E[In L, f (Y [ X)) = —A(1 — Pe) {41)
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We next invoke the log-sum inequality [12, Lemma 3.1];

2 g

2 g In<=— zklpx Z % In 2 ; (42)

where { ¢, } and { p, } are arbitrary, nonnegative, indexed
scts of numbers, Letting the index & = k(d ) in (42) range
over the () indexes of Ed :dT1 = int the integrand (40) and
setting:

par = T pk™00) (1 = pe()),  (43)

one obtains the following bound on the right hand side of
the equality (40):

E[ln (X, r)]

=2z, ,,,E—: S de Prry(n) H fi=) :M%ﬂf
q,;[lng" L mlnpg]

j‘dP(z, m, x,n) [lng‘z + lnpd]

9a
EN
o2+, ..
Using the expressions (41) and
and m replaced by n and m:

E[]n g—ﬂ = Elln .-131 f(Y.-Ide).J

= A(l — pr) H(% | X)), (45)

and, observing that the sum in the argument of the “'In*’
on the tight side of equality (45) is the conditional prob-
ability of m given X [8]:

2 pd:t E[ln ‘dZm

&idTl=m did’l=

I

(44)

(43) for g4 and p; with n

"
E[ln 1 pr(x)

(1= pe)|
Elin 2(m] X)]

~H(m|X). (46)

Substitution of (45) and (46) into (44), yields the upper
bound:

E[In (X, n)] = A(} = Br) H(Y,|X;) ~— H(m| X),

which, when substituted into (37) establishes (36).
The identity (24) follows immediately from the identi-
ties (16), (17), and (21):

I, — I, = H(n) — H(m) + A[I(X; W)
— (1 = pr) (X 13)}
= H(n) — H(m) + AD(pr(x)| Pr)-

Since the entropy of a Poisson variable is monotone non-
decreasing in the rate parameter [8, Appendix E]: H(n)
- H(m) hPonsson(A) hPoisson([l - ﬁF] A) is non-
negative. Furthermore the divergence D( pr (x) || Br) is
nonnegative [12]. Hence the difference /, — 7, cannot be
less than zero and inequality (28) is established.
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