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ABSTRACT 

 

Currently many game artificial intelligences attempt to determine their next 

moves by using a simulator to predict the effect of actions in the world.  However, 

writing such a simulator is time-consuming, and the simulator must be changed 

substantially whenever a detail in the game design is modified.  As such, this research 

project set out to determine if a version of the first order inductive learning algorithm 

could be used to learn rules that could then be used in place of a simulator. 

By eliminating the need to write a simulator for each game by hand, the entire 

Darmok 2 project could more easily adapt to additional real-time strategy games.  Over 

time, Darmok 2 would also be able to provide better competition for human players by 

training the artificial intelligences to play against the style of a specific player.  Most 

importantly, Darmok 2 might also be able to create a general solution for creating game 

artificial intelligences, which could save game development companies a substantial 

amount of money, time, and effort.
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CHAPTER 1 

INTRODUCTION 

 

If you have ever played a computer game, changes are good that you have played 

against an artificial intelligence.  Chances are also good that this artificial intelligence 

chose its actions based - at least in part - on the output of a simulator.  In almost all 

games in which the human player is competing against a built-in artificial intelligence, a 

simulator is running in the background helping the artificial intelligence make the most 

appropriate moves based on the difficulty level desired by the player. 

Most game companies design their games and the simulators for these games 

side-by-side.  Unfortunately, companies often make multiple changes to their game 

design between the development of the simulator and the public release. Although these 

changes may be small in terms of game design, they may be substantial in terms of 

simulator design.  In some cases, the company is forced to delay its release date, revert 

back to the previous game design, or release the game with a sub-par simulator. 

However, if companies could find a method to learn the effect of actions on the 

world without using a hand-coded simulator, much time and effort could be saved.  It is 

with this focus that this project began.  Specifically, this research project set out to 

determine if a version of the first order inductive learning algorithm could be used to 

learn rules that could then be used in place of a simulator.  As this project is a large 

undertaking involving many people and parts, the entire project has not been completed 

at this time. However, I have accomplished my low project goal of using the first order 

inductive learning algorithm to learn rules within Darmok 2. 
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The work described in this paper has been completed as part of the Darmok 2 

project in the Georgia Tech Cognitive Computing Lab.  Darmok 2 builds off of many of 

the ideas and lessons from the original Darmok project, also from Georgia Tech’s 

Cognitive Computing Lab.  The Darmok 2 project as a whole has the goal of creating 

real-time case-based reasoning algorithms that enable a game artificial intelligence to 

play strategically and learn from experience in real-time strategy games.  More detail 

concerning the Darmok 2 project as whole will be given in the Darmok 2 Background 

chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

An understanding of both the past work completed on the Darmok 2 project and 

the goals of the Darmok 2 project are needed in order to understand why replacing a 

hard-coded simulator with a learned simulator is desirable.  Understanding the 

background of the Darmok 2 project also helps explain why our approach is novel and 

note-worthy.  As such, it is important to understand the Darmok 2 architecture [9] and the 

case based planning approach currently used in Darmok 2 [12].  It is also important to be 

familiar with previous work, including implementation of a real-time case based planning 

and execution approach designed to deal with real-time strategy games [8,13], design of a 

domain independent off-line adaptation technique for finding and improving plans in 

real-time strategy games [14], and creation of a situation assessment algorithm which 

improves plan retrieval for case-based planning [6]. 

In this research, we used the first order inductive learning algorithm [10, 11] to 

learn a set of rules that we expect can be used in place of a simulator.  Most readers will 

find other research [4] on planning, execution, and learning to be relevant though, as well 

as work on learning in a noisy environment [16].  Both papers display other learning 

algorithms and approaches that are relevant to the rules-based learning presented here. 

Finnsson and Björnsson discuss why it is necessary to simulate the world and 

attempt to predict the effects of actions in the world [3].  They take a unique approach 

towards the computer Go game by using Monte Carlo/UCT simulation techniques for 

action selection.  Other research [1] has also studied simulation and Monte-Carlo Tree 
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Search as a way to solve the computer Go game successfully, but it is doubtful this 

approach could be abstracted enough to be useful to the  Darmok 2 problem.   

One research group found that efficient learning can be achieved when either a 

human trainer or a training program is available to provide solution traces on demand 

[15].  However, this approach would be too numerically intensive to function accurately 

or quickly enough in Darmok 2’s real-time strategy game environment.  Another research 

group employs an interesting approach [5] that uses inductive logic programming to 

acquire rules necessary for prediction.  Specifically, this approach adapts its own 

behavior by avoiding actions which are predicted to be failures.  It is hard to determine if 

such an approach could be successful for our research problem, but this approach may be 

considered if we are unable to use the rules learned by the first order inductive learning 

approach to simulate the effect of actions on the game state effectively. 

 



 5 

CHAPTER 3 

DARMOK 2 BACKGROUND 

 

The work of this thesis was completed as part of the Darmok 2 project in the 

Georgia Tech Cognitive Computing Lab.  As such, it is impossible to discuss my thesis 

research without at least explaining the goals of the Darmok 2 project as a whole and 

familiarizing the reader with our system. 

Darmok 2 is a real-time case-based planning system designed to play real-time 

strategy games.  The main focus of Darmok 2 is to explore learning from unannotated 

human demonstrations.   Although Darmok 2 could theoretically play any type of game, 

we are currently focusing on real-time strategy games because the planning nature of the 

Darmok 2 system handles these games better than those that focus more on reactive 

actions [7].  We will come back to this point later in this section when we discuss the four 

games currently being studied by the Darmok 2 team. 

 

Make Me Play Me 

The most impressive contribution of Darmok 2 to the reader who may not be 

familiar with artificial intelligence is that given demonstrations exhibiting a particular 

strategy, Darmok 2 can learn this strategy and create an artificial intelligence that 

employs this strategy.  We have recently created a new social gaming website specifically 

for Darmok 2 called Make Me Play Me.  The site is currently in private alpha testing, but 

we hope to open it up to the public very soon.  The main idea behind the site is that users 

play against an artificial intelligence to create traces, where a trace is merely a log of the 
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user’s actions and the state of the environment at important points in the game.  The user 

can then ‘Make Me’ by choosing traces to use in training a Mind Engine.  A Mind Engine 

is an artificial intelligence that you can train using traces from games you have played.  

The Mind Engine will then play using the strategies that you employed during these 

chosen games.  Users can then ‘Play Me’ by playing their Mind Engine against other 

Mind Engines or humans. 

Games 

                  
 

       

Figure 1: The four games implemented for Darmok 2 – Starting in the upper left  

corner and going clockwise: BattleCity, Towers, Vanquish, and S2. 

We have implemented four games specifically for evaluating Darmok 2: 

BattleCity, Towers, S2, and Vanquish (all shown in Figure 1).  BattleCity is an action 

game in which the player controls a tank with the goal of destroying all of the enemy 

tanks or destroying all of the enemy bases.  Towers is a multiplayer towers defense game, 

where players build towers in order to stop enemy forces from attacking the player’s base 

while the player’s own forces attack the enemy base(s).  S2 is a real-time strategy game 
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modeled after Warcraft II, with some simplifications.  Finally, Vanquish is a turn-based 

game modeled after Risk, with the only simplification being the lack of Risk cards.  For 

each game, a set of subgoals and sensors were defined to allow for hierarchical learning.  

For example, BattleCity has subgoals such as ‘get in line with enemy base goal’ and 

‘destroy enemies goal’, and sensors such as ‘block ahead sensor’ and ‘next shot delay 

sensor’. 

Each game requires different skills - BattleCity requires fast reflexes and reactive 

behavior, while Towers requires geometrical planning skills in order to optimally place 

the towers.  S2 requires long term planning and strategic reasoning in order to optimally 

manage resources and units, and Vanquish requires intermediate planning and strategic 

reasoning to stage attacks optimally [7].  The wide variance in the types of games 

implemented for Darmok 2 was intentional, as we wanted to show the flexibility of our 

system. 
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CHAPTER 4 

USING FIRST ORDER INDUCTIVE LEARNING TO LEARN 

RULES 

 

The main focus of my research was to use the first order inductive learning 

algorithm to learn rules.  These rules could then be used to predict how actions in the 

world might influence the game state.  This work was broken down into three distinct 

research parts.  Two parts needed to be and have been completed for this thesis, and one 

remains to be completed.  The two parts which have been completed are discussed below, 

and the third part is discussed in the Future Work chapter. 

 

First Order Inductive Learner 

Many algorithms could be used to learn rules applicable to the Darmok 2 

environment, but we decided to use the First Order Inductive Learner (FOIL) algorithm 

because of its ability to take in predicates and produce a rule list in which the individual 

rules are ranked by their Laplace accuracy.  Our implementation of the First Order 

Inductive Learner is based on the learner written by Frans Coenen [2] and the algorithm 

originally designed by Ross Quinlan [10, 11]. 

FOIL works by constructing a set of clauses that classify all positive examples of 

a specified goal, while ruling out all negative examples.  We start with a single empty 

clause on the left-hand side and the goal predicate on the right-hand side.  The single 

empty clause classifies every example as positive, so we must add a single literal to the 

left-hand side to make the clause more specific.  We try all possible literals, attempting to 
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pick the one that when added makes the right-hand side clause agrees with some subset 

of the positive examples and as few of the negative examples as possible.  If the left-hand 

side clause still agrees with some of the negative examples, then repeat the process of 

adding another literal until the left-hand side clause agrees with none of the negative 

examples.    If the left-hand side clause now agrees with none of the negative examples, 

we add this clause to the solution set of clauses and remove the subset of the positive 

examples that the clause agrees with from the training set.  We start again with a single 

empty clause on the left-hand side, and continue this process until no positive examples 

remain in the training set.  At this point, the clauses in the solution set of clauses are 

considered the rule list. 

 

Applying the General Learner to the Darmok 2 Environment 

In this step we apply the general first order inductive learner algorithm to the 

Darmok 2 environment with the goal of producing rules that can help explain particular 

actions in the environment.  Note that the explanation below is largely supplemented by 

the examples given in the Experimental Design and Experimental Results chapters. 

Before we can apply the general learner to the Darmok 2 environment, we must 

map each possible goal, sensor, and difference state to a unique integer, and gather at 

least a couple traces.  Traces are relatively simple to create; one must merely play the 

desired game and the program will automatically record your actions into a trace file.  

Once the traces are uploaded to the Darmok 2 code base, our program looks through each 

trace, and for each entry in each trace, determines which goals, sensors, or difference 

states are positive in that entry.  The program records positive goals, sensors, or 
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difference states according to their numerical mappings, and then appends whether the 

entry is a positive or negative instance of the attribute we are considering.  Then the 

program inputs this data into the first order inductive learner algorithm, and the first order 

inductive learner outputs the rule list that classifies the particular attribute we are 

considering.  The program repeats this process for each defined attribute, such that we 

end up with a separate rule list for each defined attribute. 
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CHAPTER 5 

EXPERIMENTAL DESIGN 

 

 All of the data displayed in this chapter concerns the BattleCity game, but similar 

data could be obtained for Towers, S2, and Vanquish. 

Mapping Used for BattleCity 

The first step in the process is to assign a unique integer to each possible goal, 

sensor, and difference state.  It is important for our implementation of the first order 

inductive learner that the integers start with 0, that no integers are skipped, and that the 

classifications (positive and negative in this case) are listed last. The following list 

depicts the mappings used for BattleCity: 

newEntity: 0 

bc.d2.sensors.EnemyInLineSensor: 1 

bc.d2.sensors.NextShotDelaySensor: 2 

bc.d2.conditions.GetInLineWithEnemyBaseGoal: 3 

bc.d2.conditions.GetInLineWithEnemyGoal: 4 

bc.d2.conditions.DestroyEnemiesGoal: 5 

bc.d2.sensors.NextMoveDelaySensor: 6 

bc.d2.sensors.BlockAheadSensor: 7 

bc.d2.conditions.WinGameGoal: 8 

disappearedEntity: 9 

bc.d2.sensors.WallAheadSensor: 10 

bc.d2.sensors.PlayerBaseInLineSensor: 11 

bc.d2.sensors.EnemyBaseInLineSensor: 12 

bc.d2.conditions.DestroyEnemyBaseGoal: 13 

changedEntity: 14 

positive: 15 

negative: 16 
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Positive Goals, Sensors, and Difference States from a Trace Before Mapping 

Following is a sample of what part of one trace looks like when we display only 

the goals, sensors, and difference states that were positive in that entry.  Note that 

although the following representation only shows the first four entries from one trace, a 

common BattleCity trace can easily contain over one hundred entries. 

[bc.d2.sensors.BlockAheadSensor, 

bc.d2.sensors.EnemyBaseInLineSensor, 

bc.d2.sensors.EnemyInLineSensor, 

bc.d2.sensors.NextMoveDelaySensor, 

bc.d2.sensors.NextShotDelaySensor, 

bc.d2.sensors.PlayerBaseInLineSensor, 

bc.d2.sensors.WallAheadSensor, changedEntity, newEntity, 

positive] 

 

[bc.d2.sensors.BlockAheadSensor, 

bc.d2.sensors.EnemyBaseInLineSensor, 

bc.d2.sensors.EnemyInLineSensor, 

bc.d2.sensors.NextMoveDelaySensor, 

bc.d2.sensors.NextShotDelaySensor, 

bc.d2.sensors.PlayerBaseInLineSensor, 

bc.d2.sensors.WallAheadSensor, changedEntity, negative] 

 

[bc.d2.sensors.BlockAheadSensor, 

bc.d2.sensors.EnemyBaseInLineSensor, 

bc.d2.sensors.EnemyInLineSensor, 

bc.d2.sensors.NextMoveDelaySensor, 

bc.d2.sensors.NextShotDelaySensor, 

bc.d2.sensors.PlayerBaseInLineSensor, 

bc.d2.sensors.WallAheadSensor, changedEntity, negative] 

 

[bc.d2.sensors.BlockAheadSensor, 

bc.d2.sensors.EnemyBaseInLineSensor, 

bc.d2.sensors.EnemyInLineSensor, 

bc.d2.sensors.PlayerBaseInLineSensor, 

bc.d2.sensors.WallAheadSensor, changedEntity, negative] 

 

Positive Goals, Sensors, and Difference States from a Trace After Mapping 

Following is a sample of what part of one trace looks like when we display only 

the mappings for the goals, sensors, and difference states that were positive in that entry.  
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Note that the following representation shows the same four entries from the above trace 

after the mapping has been completed. 

7 12 1 6 2 11 10 14 0 15  

7 12 1 6 2 11 10 14 16  

7 12 1 6 2 11 10 14 16  

7 12 1 11 10 14 16 

The above sample represents the format in which the traces are input into the first 

order inductive learning algorithm. 

 

Output from First Order Inductive Learner 

Following is a sample of the output from the first order inductive learner.  There 

are many results displayed in the following results chapter, but I have included a sample 

here for completeness.  Below you can see some sample rules - and their associated 

Laplace accuracies - for newEntry and NextShotDelaySensor.  What these rules mean 

will be discussed in detail in the results section.  It is important to note that rules for both 

positive and negative classifications are given – this is because we run the algorithm once 

looking for positive classifications (as the algorithm was described earlier), and then once 

more looking for negative classifications. 

Creating rules for newEntity... 

(1)  {7}  ->  {16}  0.72% 

(2)  {8 12}  ->  {16}  0.71% 

(3)  {3}  ->  {16}  0.69% 

(4)  {8 13}  ->  {15}  0.5% 

(5)  {13}  ->  {16}  0.5% 

(6)  {8}  ->  {15}  0.36% 

(7)  {3}  ->  {15}  0.31% 

(8)  {7}  ->  {15}  0.28% 

 

Creating rules for bc.d2.sensors.NextShotDelaySensor... 

(1)  {7}  ->  {16}  0.82% 

(2)  {8}  ->  {15}  0.8% 

(3)  {3}  ->  {15}  0.35% 
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CHAPTER 6 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

All of the results displayed here concern the BattleCity game, but we hope to run 

similar trials on Towers in the near future.  We obtained the following output from the 

first order inductive learning algorithm after training it on four traces in which a player 

played BattleCity merely attempting to win.  In other words, the player had no preference 

whether he won by shooting the enemy or shooting the enemy base – he merely did 

whichever was easier. 

Creating rules for newEntity... 

(1)  {3}  ->  {16}  0.8% 

(2)  {8}  ->  {16}  0.8% 

(3)  {7}  ->  {15}  0.29% 

 

Creating rules for bc.d2.sensors.NextShotDelaySensor... 

(1)  {7}  ->  {16}  0.82% 

(2)  {8}  ->  {15}  0.8% 

(3)  {3}  ->  {15}  0.35% 

 

Creating rules for bc.d2.conditions.GetInLineWithEnemyBaseGoal... 

(1)  {3}  ->  {15}  0.95% 

 

Creating rules for bc.d2.conditions.DestroyEnemiesGoal... 

(1)  {7}  ->  {16}  1.0% 

(2)  {8}  ->  {15}  0.8% 

 

Creating rules for bc.d2.sensors.NextMoveDelaySensor... 

(1)  {7}  ->  {16}  0.82% 

(2)  {8}  ->  {15}  0.8% 

(3)  {3}  ->  {15}  0.35% 

 

Creating rules for bc.d2.conditions.WinGameGoal... 

(1)  {7}  ->  {16}  1.0% 

(2)  {8}  ->  {15}  0.8% 

 

Creating rules for disappearedEntity... 

(1)  {8}  ->  {15}  0.8% 

(2)  {3 7}  ->  {16}  0.8% 

(3)  {7}  ->  {16}  0.73% 

 

Creating rules for bc.d2.sensors.WallAheadSensor... 

(1)  {3}  ->  {15}  0.95% 
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Creating rules for bc.d2.conditions.DestroyEnemyBaseGoal... 

(1)  {12}  ->  {16}  1.0% 

(2)  {13}  ->  {15}  0.67% 
 

 

First of all, it is important to note that the first order inductive learning algorithm 

was unable to find any rules to classify EnemyInLineSensor, GetInLineWithEnemyGoal, 

BlockAheadSensor, PlayerBaseInLineSensor, EnemyBaseInLineSensor, and 

changedEntity.  This can occur for at least two simple reasons: (1) the player did not 

encounter this situation during the traces that we trained upon, or (2) the algorithm was 

unable to find a conclusive classification. 

Second, we should consider why we obtained some of the rules that we did.  For 

example, WallAheadSensor is true when GetInLineWithEnemyBaseGoal is true.  This 

makes logical sense because in the simple map we used 

(shown to the right), the enemy’s base (illustrated by the 

eagle symbol on the right side of the map) is surrounded by a 

wall, so the player was forced to face the wall if he wanted to 

win by shooting the enemy’s base.  Since there is no other 

reason why the player would want to face a wall, it makes sense that if the player is 

facing the wall, he is also likely in line with the enemy’s base. 

Another rule that makes logical sense is the DestroyEnemiesGoal.  

DestroyEnemiesGoal is negative when BlockAheadSensor is true, which is logical 

because there is no possible way for a player to destroy an enemy and also have block 

ahead of his tank.  Additionally DestroyEnemiesGoal is true when WinGameGoal is true, 

which makes sense because if the player destroys the enemy then he wins the game.  The 

reader can examine additional rules by referencing the mappings for BattleCity on page 

eleven. 
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Now, consider the results obtained from the first order inductive learner after 

training it on ten traces in which a player played BattleCity merely attempting to win. 

Creating rules for newEntity... 

(1)  {7}  ->  {16}  0.72% 

(2)  {8 12}  ->  {16}  0.71% 

(3)  {3}  ->  {16}  0.69% 

(4)  {8 13}  ->  {15}  0.5% 

(5)  {13}  ->  {16}  0.5% 

(6)  {8}  ->  {15}  0.36% 

(7)  {3}  ->  {15}  0.31% 

(8)  {7}  ->  {15}  0.28% 

 

Creating rules for bc.d2.sensors.NextShotDelaySensor... 

(1)  {7}  ->  {16}  0.82% 

(2)  {8}  ->  {15}  0.8% 

(3)  {3}  ->  {15}  0.35% 

 

Creating rules for bc.d2.conditions.GetInLineWithEnemyBaseGoal... 

(1)  {3}  ->  {15}  0.95% 

 

Creating rules for bc.d2.conditions.DestroyEnemiesGoal... 

(1)  {7}  ->  {16}  1.0% 

(2)  {8}  ->  {15}  0.8% 

 

Creating rules for bc.d2.sensors.NextMoveDelaySensor... 

(1)  {7}  ->  {16}  0.82% 

(2)  {8}  ->  {15}  0.8% 

(3)  {3}  ->  {15}  0.35% 

 

Creating rules for bc.d2.conditions.WinGameGoal... 

(1)  {7}  ->  {16}  1.0% 

(2)  {8}  ->  {15}  0.8% 

 

Creating rules for disappearedEntity... 

(1)  {8}  ->  {15}  0.8% 

(2)  {3 7}  ->  {16}  0.8% 

(3)  {7}  ->  {16}  0.73% 

 

Creating rules for bc.d2.sensors.WallAheadSensor... 

(1)  {3}  ->  {15}  0.95% 

 

Creating rules for bc.d2.conditions.DestroyEnemyBaseGoal... 

(1)  {12}  ->  {16}  1.0% 

(2)  {13}  ->  {15}  0.67% 

 

These results are exactly the same as those obtained when we only trained on four 

traces, except for the newEntity rules (see comparison chart in the Appendix).  In 

BattleCity, a ‘new entity’ usually refers to a bullet being fired, which happens very 

haphazardly.  Hence, we should not be concerned that the newEntity rules drastically 
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change as the number of traces trained upon varies.  It is interesting that the results are 

otherwise the same between the run using four traces and the run using ten traces.  This is 

most likely due to using traces that were created by a player exhibiting a consistent 

playing style.  Despite the fact that the player exhibited different strategies in different 

traces – in some games he attacked the enemy’s tank and in other he attacked the 

enemy’s base – the player did not force himself to use either strategy and instead used the 

strategy that came most naturally during each game. 

Alternatively, let us consider the results obtained from the first order inductive 

learner after training it on four traces in which a player played BattleCity and attempted 

to only win by attacking the enemy’s tank. 

Creating rules for newEntity... 

(1)  {8}  ->  {15}  0.5% 

(2)  {7}  ->  {15}  0.28% 

 

Creating rules for bc.d2.sensors.NextShotDelaySensor... 

(1)  {7}  ->  {16}  0.77% 

(2)  {8}  ->  {15}  0.75% 

 

Creating rules for bc.d2.conditions.DestroyEnemiesGoal... 

(1)  {7}  ->  {16}  0.99% 

(2)  {8}  ->  {15}  0.75% 

 

Creating rules for bc.d2.sensors.NextMoveDelaySensor... 

(1)  {7}  ->  {16}  0.77% 

(2)  {8}  ->  {15}  0.75% 

 

Creating rules for bc.d2.sensors.BlockAheadSensor... 

(1)  {7}  ->  {15}  0.99% 

(2)  {8}  ->  {15}  0.75% 

 

Creating rules for bc.d2.conditions.WinGameGoal... 

(1)  {7}  ->  {16}  0.99% 

(2)  {8}  ->  {15}  0.75% 

 

Creating rules for disappearedEntity... 

(1)  {8}  ->  {15}  0.75% 

(2)  {7}  ->  {15}  0.2% 

 

 

Notice that the results are substantially different for this run than for the two 

earlier runs (see comparison chart in the Appendix).  Additionally, note that the first 
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order inductive learner was unable to find any rules to classify EnemyInLineSensor, 

GetInLineWithEnemyBaseGoal, GetInLineWithEnemyGoal, PlayerBaseInLineSensor, 

WallAheadSensor, EnemyBaseInLineSensor, and DestroyEnemyBaseGoal in this run – 

two more than in each of the two runs discussed above.  This is most likely because the 

above runs contained a mixture of two strategies (shoot at enemy tank and shoot at 

enemy base), but this run only contained one strategy (shoot at enemy tank).  By only 

training on this one strategy, the learner is not exposed to situations such as destroying 

the enemy’s base.  As such, the learner cannot define rules to classify such unseen 

situations. 
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CHAPTER 7 

CONCLUSION 

 

Although this research project is not yet complete, it has shown that the first order 

inductive learning algorithm can successfully learn rules in BattleCity.  Additionally, 

preliminary results have shown that the first order inductive learning algorithm will likely 

be able to also learn rules successfully in Towers. 

The rules learned by the algorithm for BattleCity make logical sense when 

analyzed, and are generally similar to what we expected and hoped to obtain when we 

began this project.  The original question of whether a version of the first order inductive 

learning algorithm can be used to learn rules that can then be used in place of a simulator 

has yet to be definitively answered.  However, we have made a substantial step in 

positively answering the question of whether the first order inductive learning algorithm 

can learn rules in games such as BattleCity. 

As will be discussed more in the Future Work chapter, we hope to more generally 

answer the question of whether the first order inductive learning algorithm can learn rules 

successfully with respect to all four games implemented for Darmok 2.  We also hope to 

make more progress on the question of whether a version of the first order inductive 

learning algorithm can be used to learn rules that can then be used in place of a simulator. 
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CHAPTER 8 

FUTURE WORK 

 

I plan to continue working on this project during Summer 2009.  During the 

summer I hope to determine whether the first order inductive learning algorithm can learn 

rules successfully with respect to all four games implemented for Darmok 2.  If so, I hope 

to determine whether these rules can successfully be used in place of a manually-written 

simulator. 

If the rules learned by the first order inductive learning algorithm can be used in 

place of a simulator, we must determine a fair metric for deciding whether the learned 

simulator is actually ‘better’ than the original manually-written simulator.  Of course the 

learned simulator would be ‘better’ in certain ways - in that it does not require the time 

and effort of a manually-coded simulator and that it is able to be relearned almost 

instantly.  However, the question still remains of whether the level of game play afforded 

by the learned simulator will be as strong as that of a manually-coded simulator. 

It would also be productive to determine if other learning algorithms might be 

better suited for learning rules that can be used in place of a simulator, especially if the 

rules learned by the first order inductive learning algorithm are not suitable for replacing 

a manually-coded simulator. 

Finally, there is the high arching goal of creating a general solution for building 

game artificial intelligences.  Although this research still has a long way to go before 

reaching this, we certainly seem to be on the right track. 
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APPENDIX 

 

The following is a comparison chart of the rules produced by the first order 

inductive learner after training on (1) four traces in which a player played BattleCity 

merely attempting to win (general strategy), (2) ten traces in which a player played 

BattleCity merely attempting to win (general strategy), and (3) four traces in which a 

player played BattleCity and attempted to only win by attacking the enemy’s tank 

(attack-enemy strategy). 

newEntity 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 
{3}  ->  {16}  0.8% {7}    ->  {16}  0.72% {8}  ->  {15}  0.5% 

{8}  ->  {16}  0.8% {8 12} ->  {16}  0.71% {7}  ->  {15}  0.28% 

{7}  ->  {15}  0.29% {3}    ->  {16}  0.69%  

 {8 13} ->  {15}  0.5%  

 {13}   ->  {16}  0.5%  

 {8}    ->  {15}  0.36%  

 {3}    ->  {15}  0.31%  

 {7}    ->  {15}  0.28%  

 

 

bc.d2.sensors.NextShotDelaySensor 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 
{7}  ->  {16}  0.82% {7}  ->  {16}  0.82% {7}  ->  {16}  0.77% 

{8}  ->  {15}  0.8% {8}  ->  {15}  0.8% {8}  ->  {15}  0.75% 

{3}  ->  {15}  0.35% {3}  ->  {15}  0.35%  

 

 
bc.d2.conditions.GetInLineWithEnemyBaseGoal 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 

{3}  ->  {15}  0.95% {3}  ->  {15}  0.95% n/a 

 

 
bc.d2.conditions.DestroyEnemiesGoal 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 
{7}  ->  {16}  1.0% {7}  ->  {16}  1.0% {7}  ->  {16}  0.99% 
{8}  ->  {15}  0.8% {8}  ->  {15}  0.8% {8}  ->  {15}  0.75% 

 

 
bc.d2.sensors.NextMoveDelaySensor 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 



 24 

{7}  ->  {16}  0.82% {7}  ->  {16}  0.82% {7}  ->  {16}  0.77% 
{8}  ->  {15}  0.8% {8}  ->  {15}  0.8% {8}  ->  {15}  0.75% 

{3}  ->  {15}  0.35% {3}  ->  {15}  0.35%  

 

 
bc.d2.sensors.BlockAheadSensor 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 
n/a n/a {7}  ->  {15}  0.99% 

  {8}  ->  {15}  0.75% 

 

 
bc.d2.conditions.WinGameGoal 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 
{7}  ->  {16}  1.0% {7}  ->  {16}  1.0% {7}  ->  {16}  0.99% 
{8}  ->  {15}  0.8% {8}  ->  {15}  0.8% {8}  ->  {15}  0.75% 

 

 
disappearedEntity 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 
{8}   ->  {15}  0.8% {8}   ->  {15}  0.8% {8}  ->  {15}  0.75% 
{3 7} ->  {16}  0.8% {3 7} ->  {16}  0.8% {7}  ->  {15}  0.2% 

{7}   ->  {16}  0.73% {7}   ->  {16}  0.73%  

 

 
bc.d2.sensors.WallAheadSensor 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 

{3}  ->  {15}  0.95% {3}  ->  {15}  0.95% n/a 

 

 
bc.d2.conditions.DestroyEnemyBaseGoal 

4-trace General strategy 10-trace General strategy 4-trace Attack-Enemy strategy 

{12}  ->  {16}  1.0% {12}  ->  {16}  1.0% n/a 

{13}  ->  {15}  0.67% {13}  ->  {15}  0.67%  

 

 


