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Abstract
Until recently, parallel programming has largely focused on the
exploitation of data-parallelism in dense matrix programs. How-
ever, many important application domains, including meshing,
clustering, simulation, and machine learning, have very different
algorithmic foundations: they require building, computing with,
and modifying large sparse graphs. In the parallel programming
literature, these types of applications are usually classified as ir-
regular applications, and relatively little attention has been paid
to them. To study and understand the patterns of parallelism and
locality in sparse graph computations better, we are in the pro-
cess of building the Lonestar benchmark suite. In this paper, we
characterize the first five programs from this suite, which target
domains like data mining, survey propagation, and design au-
tomation. We show that even such irregular applications often
expose large amounts of parallelism in the form of amorphous
data-parallelism. Our speedup numbers demonstrate that this
new type of parallelism can successfully be exploited on modern
multi-core machines.

1 Introduction
With the increasing importance of parallel programming, there
is a need to broaden the scope of parallelization research. While
significant research effort has been expended over the past few
decades investigating parallelism in domains such as dense linear
algebra and stencil codes, less effort has been spent in finding
and exploiting parallelism in irregular algorithms, i.e., those that
manipulate pointer-based data structures such as trees and lists.

Many irregular programs in important application domains,
such as data mining, machine learning, computational geome-
try and SAT solving, implement iterative, worklist-based algo-
rithms that manipulate large, sparse graphs. Recent case studies
by the Galois project have shown that many such programs have
a generalized form of data-parallelism called amorphous data-
parallelism [13]. To understand this pattern of parallelism, it
helps to consider Figure 1, which shows an abstract represen-
tation of an irregular algorithm. Typically, these algorithms are
organized around a graph that has some number of nodes and
edges; in some applications, the edges are undirected while in
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Figure 1: Active elements and neighborhoods

others they are directed. At each point during the execution of an
irregular algorithm, there are certain nodes or edges in the graph
where computation might be performed. Performing a compu-
tation may require reading or writing other nodes and edges in
the graph. The node or edge on which a computation is cen-
tered is called an active element. To simplify the discussion, we
assume henceforth that active elements are nodes. Borrowing
terminology from the cellular automata literature, we refer to the
set of nodes and edges that are read or written in performing the
computation at an active node as the neighborhood of that active
node. Figure 1 shows an undirected graph in which the filled
nodes represent active nodes, and shaded regions represent the
neighborhoods of those active nodes. In general, the neighbor-
hood of an active node is distinct from the set of its neighbors in
the graph. In some algorithms, such as Delaunay mesh refine-
ment [8] and the preflow-push algorithm for maxflow computa-
tion [10], there is no a priori ordering on the active nodes, and
a sequential implementation is free to choose any active node
at each step of the computation. In other algorithms, such as
event-driven simulation [17] and agglomerative clustering [19],
the algorithm imposes an order on active elements that must be
respected by the sequential implementation. Both kinds of al-
gorithms can be written using worklists to keep track of active
nodes.

Let us illustrate these notions on the example of Delaunay
Mesh Refinement [8]. The input to this algorithm is a trian-
gulation of a set of points in a plane (Figure 2(a)), with some
triangles designated as “bad” according to some quality criterion
(colored in black in Figure 2(a)). The bad triangles are placed
on a worklist, and, for each bad triangle, the algorithm collects a
number of triangles around the bad triangle, called a cavity (col-
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Figure 2: Delaunay Mesh Refinement

ored in grey in Figure 2(a)), removes the cavity from the graph,
and retriangulates the region (colored in grey in Figure 2(b)). If
the retriangulation creates new bad triangles, these are placed on
the worklist and processed in turn. To relate this algorithm to
Figure 1, we note that the mesh is usually represented by a graph
in which nodes represent triangles and edges represent triangle
adjacencies. At any stage in the computation, the active nodes
are the nodes representing badly shaped triangles and the neigh-
borhoods are the cavities of these triangles. In this problem, the
active nodes are not ordered.

It should be apparent that this algorithm can be parallelized
by processing bad triangles in parallel as long as their cavities
do not overlap. In general, the parallelism in an algorithm with
amorphous data-parallelism is exploited by processing multiple
elements from the worklist concurrently. Because the depen-
dences between elements on the worklist are very complex (e.g.,
whether or not two cavities overlap is dependent on the size
and shape of the mesh), it appears as though there may be lit-
tle parallelism in these applications. However, we have found
that these applications do, indeed, exhibit significant parallelism
[12], which we expand on in Section 4.1.

Kulkarni et al. [13] propose set iterators as an abstraction
to express the parallelism in amorphous data-parallel programs.
Two types of iterators are used, un-ordered iterators that allow
loop iterations to be executed in any order (as in Delaunay Mesh
Refinement), and ordered iterators that impose a partial order on
the loop iterations. These iterators take the form of foreach
statements, where additional work can be added to the worklist
being iterated over. Delaunay Mesh Refinement can be easily
expressed using these constructs, as seen in Figure 3. The exe-
cution model is straightforward: an application executes sequen-
tially until encountering a set iterator, at which point multiple
threads begin to execute iterations from the worklist in parallel.
A runtime system manages the execution of the threads to ensure
that sequential semantics are preserved.

Given this execution model, we implemented five amorphous
data-parallel algorithms that span data mining, meshing, simu-
lation, and SAT solving in the Lonestar benchmark suite. We
characterize these applications with respect to:

• the amount of available parallelism in the algorithm; we use
two metrics, the parallelism profile and the parallelism in-
tensity, that provide insight into the dynamic availability of

1: Mesh m = /* read input mesh */
2: Worklist wl = new Worklist(m.getBad());
3: foreach Triangle t in wl {
4: Cavity c = new Cavity(t);
5: c.expand();
6: c.retriangulate();
7: m.updateMesh(c);
8: wl.add(c.getBad());
9: }

Figure 3: Pseudocode for Delaunay Mesh Refinement

parallel work in these algorithms for different inputs;
• parallel execution (scaling) on three hardware platforms,

demonstrating that the parallelism can, indeed, be ex-
ploited; and

• program characteristics, such as cache behavior, memory
accesses, and working set sizes to provide an overview of
how the algorithmic implementation maps to architectural
features.

This paper makes the following contributions.

• It introduces the Lonestar benchmark suite, whose focus is
on pointer-based (irregular) data structures and amorphous
data-parallelism. The suite covers important emerging and
well-known applications, all of which process large datasets
and are long running, making it important to parallelize
them.

• It reveals that these algorithms have a lot of parallelism, and
that this parallelism grows with the input size.

• It demonstrate that this algorithmic parallelism can, indeed,
be exploited in parallelized implementations thereof.

• It presents important workload characteristics of these pro-
grams. One key finding is that the transactions can be quite
large, making them less suitable for hardware-based ap-
proaches.

The C++ and Java source code of the benchmark programs,
sample inputs, and some documentation are available on-line at
http://iss.ices.utexas.edu/lonestar/.

The rest of this paper is organized as follows. Section 2 ex-
plains the key algorithms, the data structures, and the parallelism
strategy in each of the five benchmarks. Section 3 presents our
evaluation methodology. Section 4 shows the workloads’ theo-
retical and delivered parallelism as well as other characteristics.
Section 5 discusses related work and Section 6 summarizes the
paper.

2 Applications
The following is a detailed description of our benchmarks, their
data structures, algorithms and parallel decomposition.

2.1 Agglomerative Clustering
This benchmark is an implementation of a well-known data-
mining algorithm, Agglomerative Clustering [19], as used in



1: worklist = new Set(input_points);
2: kdtree = new KDTree(input_points);
3: for each Element p in worklist do {
4: if (/* p already clustered */) continue;
5: q = kdtree.findNearest(p);
6: if (q == null) break; //stop if p is last element
7: r = kdtree.findNearest(q);
8: if (p == r) {

//create new cluster e that contains a and b
9: Element e = cluster(p,q);

10: kdtree.remove(p);
11: kdtree.remove(q);
11: kdtree.add(e);
13: worklist.add(e);
14: } else { //can’t cluster yet, try again later
15: worklist.add(p); //add back to worklist
16: }
17: }

Figure 4: Psuedocode for Agglomerative Clustering
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Figure 5: Example of Agglomerative Clustering

the graphics application Lightcuts [21]. The input to the clus-
tering algorithm is (1) a data-set consisting of points in an N-
dimensional space and (2) a measure of the similarity between
items in the data-set. We refer to this measure of similarity as a
distance metric; the more dissimilar items are, the farther apart
they are according to the distance metric. The output of the algo-
rithm is a binary tree (called a dendrogram) representing a hier-
archical, pair-wise clustering of the items in the data set. Figure
5(a) shows a data-set containing points in the plane, with a dis-
tance metric corresponding to Euclidean distance. The clustering
for the data-set is in Figure 5(b), and the resulting dendrogram is
in Figure 5(c).

We implement an Agglomerative Clustering algorithm first
described by Walter et al. [20], which is based on the follow-
ing observation: if at any time two points agree that they are one
another’s nearest neighbor, they will be clustered together in the
final dendrogram1. Pseudocode for the algorithm is in Figure
4. Initially, all data points are placed onto a worklist (line 1).
We then build a kd-tree, an acceleration structure that allows the
quick determination of a point’s nearest neighbor (line 2). The
algorithm proceeds as follows. For each point p in the worklist,
find its nearest neighbor q (line 5) and determine if q’s nearest
neighbor is p (lines 6-8). If so, cluster p and q and insert a new
point into the worklist representing the cluster (lines 9-13). Oth-
erwise, place p back onto the worklist (line 15). The algorithm
terminates when there is only one point left in the worklist.

There are two key data structures in Agglomerative Cluster-
ing:

1Subject to certain conditions on the distance metric

• Unordered Set: The points left to be clustered can be pro-
cessed in any order, so the worklist holding those points is
represented as an unordered set.

• KD-Tree: The kd-tree represents a hierarchical decompo-
sition of the point space in a manner similar to an octree.
It is built prior to performing clustering as a means of ac-
celerating nearest-neighbor queries. Rather than requiring
O(n) time to find a point’s nearest neighbor, the kd-tree
allows the search to occur in O(logn) time. It is kept up-
to-date throughout execution by removing clustered points
and adding newly created clusters. The kd-tree interface is
essentially that of a set (supporting addition and removal)
augmented with a nearest-neighbor method.

Parallelism The active nodes in agglomerative clustering are
the points to be clustered; they can be processed in any order.
Intuitively, two points can be processed simultaneously if their
clustering decisions are independent. This means that the follow-
ing conditions must hold: (i) the formed clusters must involve
different points (otherwise, both iterations would attempt to re-
move the same point from the kd-tree) and (ii) the newly added
points must not interfere with the nearest neighbor computations
performed by other iterations.

2.2 Barnes-Hut
This benchmark simulates the gravitational forces acting on a
galactic cluster using the Barnes-Hut n-body algorithm [3]. The
positions and velocities of the n galaxies are initialized according
to the empirical Plummer model. The program calculates the
motion of each galaxy through space for a number of time steps.

The Barnes-Hut force-calculation algorithm employs a hier-
archical data Structure, called an octree, to approximately com-
pute the force that the n bodies in the system induce upon each
other. With n bodies, O(n2) interactions need to be considered,
i.e., the precise calculation is quadratic in the number of bodies.
The Barnes-Hut algorithm hierarchically partitions the volume
around the n bodies into successively smaller cells. Each cell
forms an internal node of the octree and summarizes information
about the bodies it contains, in particular their combined mass
and center of gravity. The leaves of the octree are the individual
bodies. This hierarchy reduces the time to calculate the force on
the n bodies to O(nlogn) because, for cells that are sufficiently
far away, it suffices to perform only one force calculation with
the cell instead of performing one calculation with every body
inside the cell.

Step by step, the algorithm works as follows (pseudocode is in
Figure 6). First, the list of bodies is initialized with the starting
location and velocity of each body (line 1). Then the code iterates
over the time steps (line 2). In each iteration, a new octree (i.e.,
spatial hierarchy) is generated by inserting all bodies (lines 3 -
6). Then the cumulative mass and center of mass of each cell
is recursively computed (line 7). Next, the force acting on each
body is computed (lines 8 - 10) by traversing the octree. The
traversal along any path is terminated as soon as a leaf node (i.e.,



1: List bodylist = ...
2: foreach timestep do {
3: Octree octree;
4: foreach Body b in bodylist {
5: octree.Insert(b);
6: }
7: octree.SummarizeSubtrees();
8: foreach Body b in bodylist {
9: b.ComputeForce(octree);

10: }
11: foreach Body b in bodylist {
12: b.Advance();
13: }
14: }

Figure 6: Pseudocode for Barnes-Hut

a body) or an internal node (i.e., a cell) that is far enough away
is encountered. Finally, each body’s position and velocity are
updated based on the computed force (lines 11 - 13).

There are two key data structures in Barnes-Hut:

• Unordered list: The bodies are stored in an unordered list,
as they can be processed in any order.

• Octree: The spatial hierarchy is represented by an octree
(the 3-dimensional equivalent of a binary tree), where each
node has up to eight children. The leaves of the octree corre-
spond to individual bodies whereas the internal nodes repre-
sent cells that contain multiple spatially nearby bodies. This
data structure supports the insertion of bodies and recursive
traversal.

Parallelism While many phases of Barnes-Hut can be par-
allelized (including building the octree and calculating the
summary information), we focus on parallelizing the force-
computation step, which consumes the vast majority of the run-
time. The active nodes in this step are the bodies. Calculating the
force on each body requires reading some portion of the octree,
so the accessed nodes and edges form the body’s neighborhood.
However, because these accesses are read-only, the bodies can be
processed in any order, and in parallel, provided that a body does
not update its position and velocity until all force computations
are complete.

2.3 Delaunay Mesh Refinement
This benchmark is an implementation of the algorithm described
by Kulkarni et al. [13]. It is the algorithm discussed in Sec-
tion 1. The application produces a guaranteed quality Delaunay
mesh, which is a Delaunay triangulation with the additional qual-
ity constraint that no angle in the mesh be less than 30 degrees.
The benchmark takes as input an unrefined Delaunay triangula-
tion and produces a new mesh that satisfies the quality constraint.

The algorithm is initialized with a worklist of all the triangles
in the input mesh that do not meet the quality constraints, called
“bad” triangles. In each step, the refinement procedure (i) picks a
bad triangle from the worklist, (ii) collects the affected triangles
in the neighborhood of that bad triangle (called the cavity, shown

in grey in Figure 2(a)), and (iii) re-triangulates the cavity (creat-
ing the new grey triangles in Figure 2(b)). If this re-triangulation
creates new badly-shaped triangles in the cavity, these are pro-
cessed as well until all bad triangles have been eliminated from
the mesh. The order in which the bad triangles are processed is
irrelevant—all orders lead to a valid refined mesh.

In more detail, the algorithm proceeds as follows (pseudocode
is provided in Figure 3). After reading in the input mesh (line 1),
a worklist is initialized with the bad triangles in the mesh (line 2).
For each bad triangle, a cavity is created (line 4) and expanded
to encompass the neighboring triangles (line 5). The algorithm
then determines the new triangles that should be created (line
6) and updates the original mesh by removing the old triangles
and adding the new triangles (line 7). Recall that the order of
processing is irrelevant in this algorithm, so the foreach in line 3
iterates over an unordered set.

There are two key data structures used in Delaunay Mesh Re-
finement:

• Unordered Set: The worklist used to hold the bad triangles
is represented as an unordered set as the triangles can be
processed in any order.

• Graph: The mesh is represented as a graph. Triangles in
the mesh are represented as nodes in the graph, and triangle
adjacency is represented by edges between nodes. The data
structure supports the addition and removal of nodes and
edges, membership tests for nodes and edges, and a method
that returns the neighbors of a given node (this is used dur-
ing cavity expansion).

Parallelism As discussed in Section 1, the active nodes in De-
launay Mesh Refinement are the bad triangles; the algorithm can
be parallelized by processing multiple bad triangles simultane-
ously. Because the neighborhood of a bad triangle is its cavity,
this may result in significant parallelism if the triangles are far
enough apart so that their cavities do not overlap (as in Figure 2,
where all of the bad triangles can be processed in parallel).

2.4 Delaunay Triangulation
This benchmark produces a Delaunay Triangulation given a set
of points. It implements the algorithm proposed by Guibas et
al. [11]. The algorithm produces a 2D Delaunay mesh given a
set of points in a plane. It can be used to generate inputs for
Delaunay mesh refinement.

The algorithm proceeds as follows. A worklist is initialized
with the points to be inserted, and the mesh is initialized with a
single, large triangle encompassing all the points. In each step,
the triangulation procedure (i) picks a new point from the work-
list; (ii) determines which triangle contains the point; (iii) splits
this triangle into three new triangles that share the point; and (iv)
re-triangulates the neighborhood. The order in which the points
are processed is irrelevant—all orders lead to the same valid De-
launay mesh.

In more detail, the algorithm proceeds as follows (pseudocode
is provided in Figure 7). After initializing the mesh with one sur-



1: Mesh m = /* initialize with one
surrounding triangle */

2: Set<Point> points = /* read
points to insert */

3: Worklist wl;
4: wl.add(points);
5: foreach Point p in wl {
6: Triangle t = m.surrounding(p);
7: Triangle newSplit[3] =

m.splitTriangle(t, p);
8: Worklist wl2;
9: wl2.add(edges(newSplit));

10: for each Edge e in wl2 {
11: if (!isDelaunay(e)) {
12: Triangle newFlipped[2] =

m.flipEdge(e);
13: wl2.add(edges(newFlipped))
14: }
15: }
16: }

Figure 7: Pseudocode for Delaunay Triangulation

rounding triangle (line 1), a worklist is initialized with the set of
input points (lines 2-4). For each point p in the worklist (line 5),
the triangle t that contains p is retrieved (line 6). Then t is split
into three new triangles such that they share the point p (line 7).
Because these new triangles may not satisfy the Delaunay prop-
erty, a procedure called edge flipping is applied to restore the
Delaunay property (lines 9-15); If any edge of the newly created
triangles is non-Delaunay, the edge is flipped, removing the two
non-Delaunay triangles and replacing them with two new trian-
gles (line 12). The edges of these newly created triangles are
examined in turn (line 13). Thus, at the end of each iteration of
the outer loop, the resulting mesh is once again a Delaunay mesh.
Recall that the order of processing is irrelevant in this algorithm,
so the foreach in line 5 iterates over an unordered set.

There are three key data structures used in Delaunay Triangu-
lation:

• Unordered Set: The worklist used to hold the 2D points
is represented as an unordered set, as the points can be in-
serted in any order.

• Graph: The mesh is represented as a graph, as in Delaunay
refinement.

• History DAG: To efficiently locate the triangle containing
a given point, a data structure called history DAG is used,
which behaves like a ternary search tree. After each step of
the algorithm, the leaves represent the triangles in the cur-
rent mesh. Splitting a triangle (line 9) adds three children
to the data structure corresponding to the three newly cre-
ated triangles. When an edge is flipped (line 12), the two
new triangles are children of both old triangles, so the data
structure is a DAG in general, rather than a tree. With this
structure finding the triangle containing a point is equiva-
lent to traversing the history DAG from the root to the cor-
responding leaf. The data structure supports the addition
and removal of nodes and membership tests for nodes.

Parallelism The active nodes in Delaunay Triangulation are
the points to be inserted into the mesh, which can be processed
in any order. Processing a point requires splitting a triangle and

1: FactorGraph f = /* read initial formula */
2: wl.put(f.clausesAndVariables());
3: foreach Node n in wl {
4: if (/*time out or number of variables is small*/) {
5: break;
6: }
7: if (n.isVariable()) {
8: n.updateVariable();
9: if (/* n is frozen */) {
10: /* remove n from graph */
11: continue;
12: } else {
13: n.updateClause();
14: }
15: wl.add(n);
16: }

Figure 8: Pseudocode for Survey Propagation

then flipping some set of edges; the affected triangles are in the
point’s neighborhood. Because these neighborhoods are typi-
cally small, connected regions of the mesh, significant paral-
lelism can be achieved by inserting multiple points in parallel,
provided the points affect triangles that are far apart in the mesh.

2.5 Survey Propagation
Survey Propagation is a heuristic SAT-solver based on Bayesian
inference [6]. The algorithm represents the Boolean formula as
a factor graph, a bipartite graph with variables on one side and
clauses on the other. An edge connects a variable to a clause if
the variable participates in the clause. The edge is given a value
of -1 if the literal in the clause is negated, and +1 otherwise. The
general strategy of SP is to iteratively update each variable with
the likelihood that it should be assigned a truth value of true or
false.

Pseudocode is given in Figure 8. The worklist for Survey
Propagation consists of all nodes (both variables and clauses)
in the graph. At each step, Survey Propagation chooses a node
at random and processes it. To process a node, the algorithm
updates the value of the node based on the values of its neigh-
bors. After a number of updates, the value for a variable may
become “frozen” (i.e., set to true or false). At that point, the
variable is removed from the graph. If a node is not frozen, it
is returned to the worklist to be processed again. As the algo-
rithm progresses and variables become frozen, the graph begins
to shrink. Note that although the algorithm chooses variables
to update at random, the algorithm is nonetheless highly order
dependent: different orders of processing will lead to variables
becoming frozen at different times.

The termination condition for Survey Propagation is fairly
complex: when the number of variables is small enough, the
Survey Propagation iterations are terminated, and the remaining
problem is solved using a local heuristic such as WalkSAT. Alter-
natively, if there is no progress after some number of iterations,
the algorithm may just give up.

There are two key data structures in Survey Propagation:

• Unordered Set: Because the algorithm is based on itera-
tively updating the values of variables chosen at random, the
worklist can be represented as an unordered set. There are
no ordering constraints on the processing the elements of



the worklist (although, as discussed above, different orders
of processing may lead to different algorithmic behavior).

• Factor Graph: The bipartite graph representing the
boolean formula.

Parallelism The active nodes in Survey Propagation are the
clauses and variables of the factor graph; in other words, every
node in the graph is an active node, and they can be processed in
any order. Because processing a node requires reading its neigh-
bors, two nodes can be processed in parallel as long as they are
not neighbors. If a variable node needs to be removed from the
graph because it is frozen, this restriction becomes a little tighter.
Because removing a variable from the factor graph requires up-
dating the edge information at the neighboring clause nodes, an
iteration that removes a variable cannot occur concurrently with
an iteration that reads or writes one of the neighboring clauses.

3 Evaluation Methodology
First, we studied each algorithm to determine how much poten-
tial for parallelism it has. To do this, we used a profiling tool
called ParaMeter [12], which estimates the amount of available
parallelism in an algorithm with amorphous data-parallelism.
Details on ParaMeter and the results from profiling our appli-
cations are presented in Section 4.1.

To determine whether amorphous data-parallelism can be ex-
ploited to speed up program execution, we used the Galois sys-
tem [13] to produce a parallel version of each application. We
measured the performance with various numbers of threads on
the following three systems.

• The UltraSPARC IV system is a Sun E25K server running
SunOS 5.9. It contains sixteen CPU boards with four dual-
core 1.05 GHz UltraSPARC IV processors. The 128 CPUs
share 512 GB of main memory. Each core has a 64 kB
four-way set-associative L1 data cache and a unified 8 MB
L2 cache.

• The Xeon X7350 system is a SuperMicro SuperServer-
8045C-3R running Linux 2.6.22. It contains four CPU
modules with four-core 2.93 GHz Intel Xeon X7350 x86 64
processors. The 16 CPUs share 48 GB of main memory.
Each core has a 32 kB L1 data cache and shares a unified 4
MB L2 cache with one other core.

• The UltraSPARC T1 system is a Sun-Fire-T200 server
running SunOS 5.10. It contains an eight-core 1.2 GHz Ul-
traSPARC T1 “Niagara” processor. The cores are four-way
multithreaded. The 32 virtual CPUs share 16 GB of main
memory. Each core has an 8 kB four-way set-associative L1
data cache and all cores share a unified 3 MB L2 cache.

We compiled the parallel code with Sun’s Java compiler ver-
sion 1.6.0 and ran it on the HotSpot 64-bit server virtual machine
on each platform. Because HotSpot dynamically compiles fre-
quently executed bytecode into native machine code, we repeat
each experiment nine times in the same VM and report results
for the fastest run. We use a 400 GB heap on the UltraSPARC

IV, a 40 GB heap on the Xeon X7350, and a 15 GB heap on the
UltraSPARC T1. To minimize the interference by the garbage
collector, we force a full-heap garbage collection before execut-
ing the measured code section.

All measurements, other than memory footprints, are obtained
through source-code instrumentation; that is, we read the timer
(and the CPU performance counters where applicable) before
and after the measured code section, compute the difference, and
write the result to the standard output. We use the Java Native
Interface and C code we wrote to access the performance coun-
ters on the UltraSPARC IV system. Note that the performance
counters only capture events in user mode.

To approximate the memory footprints of our applications, we
determined the minimum heap size for which the program would
complete when run using the HotSpot 64-bit virtual machine.
Because each program uses its maximum amount of memory
during the parallelized section, this approach suffices to find the
memory footprint of the parallel code.

We ran each benchmark with three random inputs. Note that
we only measure the core of each application and omit, for ex-
ample, initialization (reading in or generating the input) and fi-
nalization code. In all cases, the omitted code represents no more
than a few percent of the total sequential runtime.

• Agglomerative Clustering The small input contains
500,000, the middle input 1,000,000, and the large input
2,000,000 numbers. We measure the clustering code but
exclude building the kd-tree.

• Barnes-Hut The small input contains 65,000, the middle
input 110,000, and the large input 220,000 bodies. The
bodies’ positions and velocities are initialized according to
the empirical Plummer model. We only measure the force
calculation code. Building the octree is excluded from our
measurements.

• Delaunay Mesh Refinement The small input contains
100,770 triangles of which 47,768 are initially bad, the mid-
dle input has 219,998 triangles of which 104,229 are ini-
tially bad, and the large input consists of 549,998 triangles
of which 261,100 are initially bad. We only measure the
refinement algorithm. Building the initial graph and parti-
tioning it are excluded from our measurements.

• Delaunay Triangulation The small input contains 20,000,
the middle input 40,000, and the large input 80,000 points.

• Survey Propagation The small input is a Boolean formula
in conjunctive normal form with three literals per clause and
a total of 250 variables and 1050 clauses, the medium input
contains 350 variables and 1470 clauses, and the large input
contains 500 variables and 2100 clauses.

4 Workload Characterization
4.1 Available Parallelism
A commonality among several of the worklist algorithms we
have described is that, while the potential for parallelism exists,
the pattern of dependences between individual iterations of the



algorithm are quite complex. For example, in Delaunay Trian-
gulation, it is apparent that it should be possible to insert mul-
tiple points into the mesh simultaneously, provided they affect
different regions of the mesh. However, determining whether
two points are, indeed, independent is non-trivial and dependent
on the current state of the computation as well as the two points
in question.

Due to the nature of these complex dependencies, it is not al-
ways clear that there is, in fact, any parallelism to be exploited
in irregular applications such as the ones we have presented. To
determine how much parallelism actually exists in our applica-
tions, we applied a profiling tool called ParaMeter [12] to our
benchmark applications.

The goal of ParaMeter is to estimate an upper bound on the
amount of exploitable parallelism in algorithms exhibiting amor-
phous data-parallelism. It does so by simulating execution of the
application on a system with an infinite number of processors.
The tool divides the execution of the algorithm into a series of
discrete computation steps. In each step, the worklist is exam-
ined and a maximally independent set of iterations is executed.
That is, in each step, a set of iterations that can safely be executed
in parallel is chosen and executed. Iterations are deemed inde-
pendent if they do not conflict algorithmically, regardless of any
dependences due to specific data structure implementations or
conflicts due to parallelization run-time systems such as the Ga-
lois system [13] or Transactional Memory [14]. In other words,
the parallelism found by ParaMeter is an intrinsic property of the
algorithm.

ParaMeter generates parallelism profiles and parallelism in-
tensity plots. A parallelism profile shows the amount of par-
allel work available in each computation step of an algorithm;
it makes clear how the amount of available parallelism changes
throughout the execution of an application. Parallelism profiles
show the absolute amount of parallelism available at any point in
time. However, while low available parallelism may be a result
of too many conflicts between iterations, it may also be a prod-
uct of too little work to do. Parallelism intensity addresses this
by expressing the amount of parallel work as a percentage of the
total amount of work available to be executed. Thus, a low par-
allel intensity means that most of the work in the worklist cannot
safely be executed in parallel, while a high intensity means that
most of the work in the worklist is independent.

We applied ParaMeter to our suite of applications, examining
both the available parallelism and the parallelism intensity across
the three input sizes for each application. The results of these
profiling runs can be seen in Figures 9(a) through 9(d).

Agglomerative Clustering Agglomerative Clustering is, at its
heart, a bottom-up tree-building algorithm. We note that the tree
can be built level-by-level in parallel: all the leaves can be clus-
tered simultaneously, then the second-to-last level, and so forth.
The amount of parallelism is thus proportional to the number of
nodes at each level of the tree. Intuitively, building a bushy tree
will allow more parallelism than building a skinny tree.

Because the points in our Agglomerative Clustering inputs are

randomly generated, we expect relatively bushy trees, and hence
a pattern of parallelism that begins high and rapidly decreases as
computation progresses. This is precisely the behavior we see in
the parallelism profiles of Figure 9(a). Further, as the computa-
tion progresses, we see that the parallelism intensity (shown in
Figure 9(b)) decreases as well, until the end of the computation,
when there is little work in the worklist. If we were building a
complete, balanced binary tree, we would expect the intensity
to remain constant: at each step, all of the points in the work-
list could be clustered. This would result in an intensity of 50%,
as for each pair of points, only one could complete successfully.
Our results are lower than that as the inputs do not lead to such
a tree. Finally, we note that, as we increase the input size, the
amount of parallelism scales roughly linearly.

Barnes-Hut The parallelized portion of Barnes-Hut, the force
calculation code, is embarrassingly parallel; there are no con-
flicts between any of the iterations in the worklist. As a result,
the parallelism profile and parallelism intensity plot for the appli-
cation are uninteresting. All the iterations can be safely executed
in parallel in a single computation step, and the parallelism in-
tensity is 100% for that step. This is true for all input sizes.

Delaunay Mesh Refinement In the abstract, Delaunay Mesh
Refinement is a graph refinement code. The current mesh is rep-
resented as a graph, with nodes of the graph representing trian-
gles in the mesh and edges between nodes representing triangle
adjacency. When processing a bad triangle, the cavity formed is a
small, connected set of triangles, which is a subgraph of the over-
all graph. The retriangulated cavity is another subgraph, contain-
ing more nodes than the subgraph it is replacing, and hence the
graph becomes larger. As the graph becomes bigger, the likeli-
hood of two cavities overlapping decreases, so we would expect
the available parallelism and parallelism intensity to increase.

We see that the parallelism profiles for Delaunay Mesh Re-
finement (the top graphs in Figure 9(b)) behave largely as ex-
pected: we start out with a significant amount of parallelism; as
the graph becomes larger, the amount of parallelism increases,
until it begins to drop as the algorithm runs out of work to do.
The parallelism intensity plots (the bottom graphs in Figure 9(b))
show the expected increase in intensity. However, even though
the graph continues to get bigger throughout execution, by the
middle portion of the computation, the intensity stops increas-
ing. This runs contrary to our expectation of increasing paral-
lelism as the graph grows. This is because parallelism intensity
increases as the graph grows larger only if the work is uniformly
distributed through the graph. Initially, bad triangles are uni-
formly distributed through the mesh, so the intensity increases
as the mesh becomes larger and more computations become in-
dependent. Eventually, however, the majority of the work in
the worklist is from bad triangles created by retriangulation—in
other words, newly created work. This work, rather than being
uniformly distributed, is created at the site of retriangulations.
Suppose retriangulating a cavity produces, on average, two new
bad triangles. No matter how large the graph is, those two bad



0 20 40 60 80

Computation Step

0

20000

40000

60000

80000

100000

120000

140000

160000

A
v
a

ila
b

le
 P

a
ra

lle
lis

m

0 20 40 60 80

Computation Step

0

20

40

60

80

100

P
a

ra
lle

lis
m

 I
n

te
n

s
it
y

0 20 40 60 80 100

Computation Step

0

50000

100000

150000

200000

250000

300000

A
v
a

ila
b

le
 P

a
ra

lle
lis

m

0 20 40 60 80 100

Computation Step

0

20

40

60

80

100

P
a

ra
lle

lis
m

 I
n

te
n

s
it
y

0 20 40 60 80 100

Computation Step

0

100000

200000

300000

400000

500000

600000

A
v
a

ila
b

le
 P

a
ra

lle
lis

m

0 20 40 60 80 100

Computation Step

0

20

40

60

80

100

P
a

ra
lle

lis
m

 I
n

te
n

s
it
y

Small Medium Large

(a) Agglomerative Clustering
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(b) Delaunay Mesh Refinement
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(c) Delaunay Triangulation
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(d) Survey Propagation

Figure 9: Parallelism profiles and parallelism intensity for three input sizes



triangles are necessarily near each other, and are therefore likely
to conflict with one another. Thus, in the steady state, where
all work is newly created work, we would expect a parallelism
intensity of roughly 50%, which happens to be close to what
we observe. Finally, we see that as the input size increases, the
pattern of parallelism is identical, but the amount of parallelism
scales with the input.

Delaunay Triangulation Delaunay Triangulation is also a
graph refinement code. Point insertion removes a subgraph from
the graph (representing the triangle that will be split, as well as
any triangles affected by edge-flipping actions) and replaces it
with a larger subgraph (the three triangles formed as the result of
the splitting, as well as the triangles created after edge-flipping).
We thus expect a behavior similar to that of Delaunay Mesh Re-
finement. This is borne out by the parallelism profile seen in the
top set of graphs in Figure 9(c), which exhibits the same bell
shape as the profiles of Delaunay Mesh Refinement. Unlike in
mesh refinement, at the beginning of the computation, there is ef-
fectively no parallelism. This is because the initial mesh is very
small, consisting of a single triangle. The parallelism intensity
plots also look similar to those of mesh refinement. However,
because the work for triangulation is uniformly distributed, we
see that the parallelism intensity increases throughout execution.
As in the case of mesh refinement, the amount of parallelism
increases as the input size increases.

Survey Propagation Each iteration of Survey Propagation
touches a single node in the factor graph, and a small neigh-
borhood around that node; iterations conflict with one another
if those neighborhoods overlap. The structure of the graph is
largely constant, except for occasionally removing a node. Thus,
we would expect the available parallelism to reflect the connec-
tivity of the graph, and remain roughly constant, dropping as
nodes are removed from the graph. This is what we observe in
the parallelism profiles shown in Figure 9(d). Note that unlike
the other applications we have examined, Survey Propagation
terminates before the worklist is empty.

Parallelism intensity, interestingly, increases slightly as nodes
are removed from the graph, as seen in Figure 9(d). This is be-
cause removing nodes from the factor graph serves to reduce the
connectivity of the graph, making it less likely that two itera-
tions will conflict. Unsurprisingly, the amount of parallelism is
correlated with the input size, increasing roughly linearly.

4.2 Exploiting Amorphous Data-Parallelism
To ascertain that the amorphous data-parallelism identified in the
previous subsection can, in fact, be exploited, we wrote Galois
versions of our applications and measured their performance on
three platforms. Figure 10 shows the results. The five rows of
panels correspond to the five applications and the three columns
correspond to the three platforms. Each panel contains three
graphs representing the three inputs. The x-axis in each panel
lists the number of threads and the y-axis shows the speedup

of the Galoised code over our sequential implementation of the
same algorithm. The sequential codes do not include any lock-
ing, threading, conflict detection, or undo-information-recording
overhead. The absolute runtimes of the sequential programs are
presented in the next subsection.

We observe that all five applications achieve at least a 15x
speedup on one of their inputs. Survey Propagation scales the
least but also has the smallest amount of available parallelism. It
is the only application that does not achieve a speedup over se-
quential with two threads. The remaining four applications scale
well and achieve over 50% parallel efficiency up to 16 threads on
the UltraSPARC IV system.

Almost all program and input combinations result in worse
performance with 128 threads than with 64 threads. We per-
formed a detailed investigation of the causes for this behavior
on Delaunay Refinement [7] and identified two main culprits.
The first is inter-board communication, which is high for large
numbers of threads. Recall that this machine comprises sixteen
boards with eight processors each. Hence, threads that execute
on different boards have to communicate via much slower chan-
nels than threads that are collocated on the same CPU board.
The second culprit is load imbalance. Above eight threads, the
imbalance starts to become significant, and for 128 threads on
average over half of the time the threads are idling with all three
inputs. The load imbalance grows with the number of threads
because more threads result in less work per thread, increasing
the likelihood of imbalance problems. Clearly, the Galois system
should be augmented with a load balancer and should attempt to
allocate worker threads that communicate to nearby CPUs.

In most instances, especially Barnes-Hut and Delaunay Trian-
gulation but also Agglomerative Clustering and Survey Propaga-
tion, larger inputs result in higher speedups. This observation is
in line with the results from the previous subsection and prob-
ably means that even larger inputs would result in even higher
parallel speedups. Only Delaunay Refinement does not follow
this trend. We surmise that this is because better load balancing
and increased parallelism are the “low-hanging fruit” that allow
larger problem sizes to exhibit improved scalability. The for-
mer factor aids Barnes-Hut, while the latter factor aids Delaunay
Triangulation. In contrast, Delaunay Refinement already has sig-
nificant parallelism with the small input, and load balancing may
not improve as the input size increases.

Comparing the speedup with 16 threads on the different sys-
tems, we find that Agglomerative Clustering scales much bet-
ter on the UltraSPARC IV than on the other platforms. Barnes
Hut scales similarly well on each platform. It is trivially paral-
lelizable and reaches a speedup of about 14x with 16 threads.
Delaunay Refinement does much better on the two UltraSPARC
machines than on the Xeon system. Similarly, Delaunay Tri-
angulation scales best on the UltraSPARC T1 and worst on the
Xeon. We believe the reason for this behavior is the large num-
ber of stores and data-cache write misses of the two Delaunay
codes (see next section), which cause a lot of coherence traffic
that affects the Xeon system more than the other two systems.
Nevertheless, in absolute terms, the Xeon system is typically the
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Figure 10: Speedup over sequential code (y-axis) of the 5 benchmarks on the 3 architectures for different numbers of threads (x-axis)
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Table 1: Information about the five benchmarks for the three inputs



fastest.
The performance anomaly in Delaunay Refinement with 64

threads is due to a very high CPI, which we believe is caused by
unfortunate partitioning that results in an unusually large amount
of communication.

4.3 Program Characteristics
Table 1 provides information about the sequential versions of our
benchmarks as it pertains to the UltraSPARC IV system (unless
otherwise noted). For each program, it lists results for the small,
middle, and large inputs from top to bottom. From left to right,
the table presents information on the number of iterations in the
loop that is the parallelization target, the runtimes on the three
evaluation platforms, the smallest heap size necessary to run the
applications, the average cycles per executed instruction (CPI),
the average number of executed instructions, memory accesses
(mem. acc.), loads, and stores per iteration, the L1 data-cache
(L1d) miss rate, the load and store miss rates, and the fraction of
executed instructions that access, read from, and write to mem-
ory.

The main observations are that, in all five applications, the av-
erage iteration executes several tens of thousands of instructions,
including thousands of memory accesses. A substantial fraction
of the memory accesses misses in the 64 kB four-way associative
cache. These results indicate that L1-cache-based concurrency
mechanisms such as TM may not be ideal for these programs.

The instruction mix contains between 20% and 35% memory
accesses. Each application executes, on average, close to 20%
loads. However, only the two Delaunay codes execute many
stores (over 12% compared to under 4.5% for the other appli-
cations). For all programs except Barnes-Hut, most of the stores
miss in the L1 cache. Part of the reason for the poor L1 d-cache
performance on stores is the UltraSPARC IV’s no-write-allocate
policy. The load miss rates are much lower but still high for
Barnes-Hut, Delaunay Triangulation, and, to a lesser degree, De-
launay Refinement. These three programs also suffer from high
overall L1 miss rates, especially the two Delaunay codes. This
is expected as they jump back and forth between processing dif-
ferent parts of the mesh. Because of the high cache miss rates,
these three programs also have the highest CPIs. Nevertheless,
the CPIs are not low for the remaining programs, either. In other
words, the superscalar CPU is only able to execute one instruc-
tion per two to three cycles on average.

The total data size of these programs varies between 8 MB and
2.5 GB. Except for Survey Propagation, the heap sizes exceed
common last-level cache sizes. Of the three systems, the Xeon is
the fastest (probably because of its much higher clock frequency)
and the UltraSPARC T1 the slowest (presumably because of its
small caches).

5 Related Work
A number of recent papers have explored the characterization of
parallel program behavior for emerging workloads. PARSEC [5]

is a suite of multithreaded applications targeted to shared mem-
ory multiprocessors. The suite focuses on a set of diverse emerg-
ing workloads that spans a number of domains (financial, data
mining, data processing, computer vision, etc.) and parallelism
models (data-parallel, pipeline parallel, and unstructured). The
suite contains one unstructured parallel benchmark, canneal, that
performs a simulated annealing search used in circuit placement.
All presented results are simulated using a PIN [15] plugin that
provides a cache model. A subset of these benchmarks is ported
to the Thread Building Blocks library [9] and characterized on
real hardware up to four cores and simulated up to 32. This
characterization addresses mainly TBB overheads for dynamic
management of parallelism.

The STAMP benchmark suite [16] is a set of codes intended
to characterize transactional memory behavior. The codes in the
suite are also intended to capture the parallel behavior of new
emerging algorithms in domains such as data mining, search and
classification. They use a variety of dynamic data structures such
as lists, trees and graphs. The published characterization of these
benchmarks is mainly focused on simulated transactional mem-
ory behavior and does not address the parallelization potential.
In contrast, our study is a theoretical and practical characteri-
zation of irregular applications, quantifying the available paral-
lelism, the memory behavior, and the scalability on different ar-
chitectures.

Several other studies have characterized older parallel bench-
mark suites, including Perfect Club [4], SPLASH-2 [22], NAS
Parallel Benchmarks [2], and SPEComp [1]. The codes in these
benchmarks are almost exclusively characteristic of the scien-
tific, high-performance computing domain of regular dense lin-
ear algebra. Many of these codes are no longer considered rep-
resentative of the behavior of workloads on current machines.
The Olden benchmarks [18] are small, hand-parallelized kernels
that operate over irregular data structures. They are intended for
program analysis research for finding structural invariants rather
than for studying parallelism.

6 Conclusions
We have identified a type of parallelism, called amorphous data-
parallelism, that arises naturally in iterative algorithms that op-
erate over sparse-graph data structures. To study this style of
parallelism better, we have begun to collect the Lonestar suite of
real-world applications that exhibit amorphous data-parallelism,
the first five of which are Agglomerative Clustering, Barnes-
Hut, Delaunay Triangulation, Delaunay Refinement, and Survey
Propagation. These applications span a range of domains, from
simulation to data-mining to graphics.

We have studied these algorithms and determined that, despite
the complex nature of their execution, there is significant paral-
lelism available to be exploited, and this parallelism scales with
the problem size. We have further shown that this potential par-
allelism can, indeed, be realized by a software parallelization
system, achieving high speedups over sequential execution on a
range of architectures. Finally, we examined the low-level char-



acteristics of these applications and found that the granularity of
the parallelism is quite high, presenting interesting challenges to
the development of run-time systems to exploit this parallelism.

Because these applications represent an important class of al-
gorithms that appear in numerous domains and have significant
potential for parallelism, we feel they are worthwhile targets for
parallelization research.
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[6] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation:
An algorithm for satisfiability. Random Structures and Algorithms,
27:201–226, 2005.

[7] M. Burtscher, M. Kulkarni, D. Prountzos, and K. Pingali. On the
scalability of an automatically parallelized irregular application. In
Languages and Compilers for Parallel Computing (LCPC), 2008.

[8] L. P. Chew. Guaranteed-quality mesh generation for curved sur-
faces. In SCG ’93: Proceedings of the ninth annual symposium on
Computational geometry, 1993.

[9] G. Contreras and M. Martonosi. Characterizing and improving the
performance of the Intel Threading Building Blocks. In IISWC
2008: IEEE International Symposium on Workload Characteriza-
tion, Seattle, WA, Sept. 2008.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, editors. Intro-
duction to Algorithms. MIT Press, 2001.

[11] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental
construction of Delaunay and Voronoi diagrams. Algorithmica,
7(1):381–413, December 1992.

[12] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Cascaval.
How much parallelism is there in irregular applications? In Princi-
ples and Practices of Parallel Programming (PPoPP), pages 3–14,
2009.

[13] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L. P. Chew. Optimistic parallelism requires abstractions. SIG-
PLAN Not. (Proceedings of PLDI 2007), 42(6):211–222, 2007.

[14] J. Larus and R. Rajwar. Transactional Memory (Synthesis Lectures
on Computer Architecture). Morgan & Claypool Publishers, 2007.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. PIN: Building cus-
tomized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, June 2005.

[16] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC
2008: IEEE International Symposium on Workload Characteriza-
tion, Seattle, WA, Sept. 2008.

[17] J. Misra. Distributed discrete-event simulation. ACM Comput.
Surv., 18(1):39–65, 1986.

[18] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Sup-
porting dynamic data structures on distributed-memory machines.
ACM Trans. Program. Lang. Syst., 17(2):233–263, 1995.

[19] P.-N. Tan, M. Steinbach, and V. Kumar, editors. Introduction to
Data Mining. Pearson Addison Wesley, 2005.

[20] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomer-
ative clustering for rendering. In IEEE Symposium on Interactive
Ray Tracing (RT), 2008.

[21] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and
D. Greenberg. Lightcuts: a scalable approach to illumination.
ACM Transactions on Graphics (SIGGRAPH), 24(3):1098–1107,
July 2005.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological con-
siderations. In ISCA ’95: Proceedings of the 22nd annual inter-
national symposium on Computer architecture, pages 24–36, New
York, NY, USA, 1995. ACM.


