
eCube: Hypercube Event for Efficient Filtering
in Content-Based Routing

Eiko Yoneki and Jean Bacon

University of Cambridge Computer Laboratory
Cambridge CB3 0FD, United Kingdom

firstname.lastname@cl.cam.ac.uk

Abstract. Future network environments will be pervasive and distributed over
a multitude of devices that are dynamically networked. The data collected by
pervasive devices (e.g. traffic data, CO2 values) provide important information
for applications that use such contexts actively. Future applications of this type
will form a grid over the Internet to offer various services and such a grid requires
more selective and precise data dissemination mechanisms based on the content
of data. Thus, a smart data/event structure is important. This paper introduces a
novel event representation structure, called eCube, for efficient indexing, filtering
and matching events. We show experimental results that demonstrate the powerful
multidimensional structure and applicability of eCube over an event broker grid
formed in peer-to-peer networks.

1 Introduction

We envision that future network environments will be pervasive, decentralised and dis-
tributed over a multitude of devices that are dynamically networked, carried by people
and embedded in everyday-life. The stationary and pervasive devices will interact and
exchange information in highly dynamic environments in a peer-to-peer (P2P) fashion.
Furthermore, the recent emergence of wireless sensor networks (WSNs) has brought a
new dimension to data processing, where the sensors are used to gather high volumes
of different data (i.e. events from the real world) and to feed them as contexts to a wide
range of applications. Such applications are increasingly decentralised and distributed.

In many applications that process data collected from wireless sensor networks
(WSNs), the large volume of high-speed data streams makes storage and data process-
ing impossible. This requires a new generation of middleware that can dynamically
exchange data in such environments. A service-based approach can provide networked
software entities and support them to the users. These include grid services, information
services, network services, web services, messaging services and so forth. This is the
vision of a service oriented architecture (SOA). Ultimately, the architecture must be an
open and component-based structure that is configurable and self-adaptive. A Web ser-
vice based grid architecture is static and cannot support these diverse subsystems (e.g.
ad hoc environments, local clusters, the global Internet) and the bridges that enable them
to inter-operate. Service broker grids based on service management are a recent trend
in system architecture that supports such platforms. We have reported initial research
on SOA-based middleware (see [31] [33] and [34]).

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part II, LNCS 4804, pp. 1244–1263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1245

Local Monitor

Global Monitor
(Content Network)

Global Operation
(Autonomous Agents)

Event

Event

Clients(Provider)
Clients(Consumer)

Sensor Component Layer

Event Broker Layer

Service Layer

Fig. 1. Service Overlay Architecture

Data management over heterogeneous networks will be crucial. A reactive system in-
corporating sensing, decision making and acting will be a common application design.
Thus, distributed components interact with each other in an event-driven mode. Fig. 1
depicts a scheme of the overlay architecture. The Sensor Component Layer performs
local and neighbourhood data monitoring, while the Service Layer provides services
using this information. The Event Broker Layer resides between the other two layers to
support communication mechanisms. The service overlay architecture must allow infor-
mation to be integrated at different levels of abstraction, including detailed microscopic
examination of specific views of aggregated target behaviour and answers to queries
from end users.

The publish/subscribe paradigm fits well with the emerging SOA, in which a dis-
tributed application is built using loosely coupled, reusable services. In existing com-
mercial SOA architectures, an Enterprise Service Bus (ESB) is provided (e.g. IBM
Websphere [18]). The creation of an event broker grid can be easily integrated into
SOA. The grid consists of many event brokers, and each broker performs the routing,
receiving and sending of events. Brokers can form a group to provide scalability at the
cluster level; a group of brokers can then be linked together in a flexible, fault-tolerant
and efficient fashion in the publish/subscribe model. Dynamic grid formation is essen-
tial, including context-awareness and an infrastructure such as hierarchy and grouping
for better performance.

In this paper we focus on data-effective event processing in a publish/subscribe com-
munication paradigm. We identify the necessity of a common event model that can be
used for content-based addressing in applications and network components. Applica-
tion data are influential over data dissemination in pervasive computing. For exam-
ple, it is important to decide whether to forward data based on spatial information
of subscriber nodes when the data is meaningful at a certain location. The state in-
formation of the local node may therefore be the event forwarding trigger. Thus, the
publish/subscribe model must become more symmetric, so that an event can be dissem-
inated based on the rules and conditions defined by the event itself. The event can then
select the destinations instead of relying on the potential receivers’ decisions. The sym-
metric publish/subscribe paradigm brings another level to the data centric paradigm.
In the traditional publish/subscribe model, the subscriptions are the complete subset
of publications, meaning the subscribers define their subscriptions within the scope

1246 E. Yoneki and J. Bacon

of the potential publications. On the other hand, in the symmetric publish/subscribe
model, the publications are disseminated based on rules and conditions defined by
the publication itself. The publisher rather than the subscriber can choose the desti-
nations. The publishing conditions can be geographical information, physical time, or
any local information about potential receivers. For example, epidemic dissemination
determines forwarding decisions based on the given parameter of probability and the
symmetric dissemination mechanism can define this parameter for each publication
individually.

Defining an event without unambiguous semantics requires a fundamental design of
event representation. Besides the existing event attributes, event order and continuous
context information such as time or geographic location must be incorporated within
an event description. We present a multidimensional event representation, the eCube
structure in RTree (based on [15]) for efficient indexing, filtering, matching, and se-
lective dissemination in publish/subscribe systems. We apply the eCube to a content-
based publish/subscribe system and experiment with the effect of multidimensional
filtering.

This paper’s contribution is twofold: First, the eCube, a novel event representation
structure for efficient indexing, filtering and matching events. Second, we experiment
with the eCube in a publish/subscribe system in a P2P network. This paper continues
as follows: Section 2 and 3 briefly describe the publish/subscribe and event models.
Section 4 introduces the eCube. Section 5 describes experiments on publish/subscribe
systems with the eCube in P2P networks. In Section 6, we discuss related works, and
Section 7 contains conclusions and future work.

2 Publish/Subscribe Communication

Multi-point asynchronous communication such as publish/subscribe realises the vision
of data centric networking that is particularly important for supporting service ori-
ented overlay networks. The data centric approach relies on content addressing instead
of host addressing for participating nodes, thus providing network independence for
applications. The publish/subscribe paradigm supports decoupling of publishers and
subscribers in space and time and integrating scattered WSNs at the edge of wired
networks. P2P networks and grids offer promising paradigms for developing efficient
distributed systems.

The Event Broker Layer depicted in Fig. 1 is important for integrating publish/
subscribe systems of various devices under a unified interface. Event brokers can be
placed on mobile devices in mobile ad hoc networks to support data sharing among
roaming peers and exploit peer resources if possible. Events are at the heart of publish/
subscribe systems. Context-awareness allows applications to exploit information on the
underlying network context to achieve better performance and group organisation. In-
formation such as availability of resources, battery power, services in reach and relative
distances can be used to improve the routing structure of the grid, thus reducing the
routing overhead. Use of context-awareness and location awareness are strategies to
overcome these limitations.

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1247

Subscription: (store, (Tesco AND M&S)) resides in Cambridge

Publication: (store, Tesco), (location, Cambridgeshire)

where Cambridgeshire > Cambridge

Fig. 2. Example Subscription and Publication in Symmetric Publish/Subscribe

2.1 Content-Based Subscription and Routing

Subscription models can be classified into the following three categories: Topic-based,
Content-based, and Type-based. In Topic-based publish/subscribe, events are divided
into topics, and subscribers subscribe to topics. Common topic-based systems arrange
topics in disjoint hierarchies so that a topic cannot have more than one super topic.
In Content-based publish/subscribe, a subscription is defined in a constrained man-
ner and evaluated against event content. Type-based publish/subscribe ties events to
a programming language type model, database schema, or semi-structured data model
(e.g. XML). Content-based routing (CBR) is emerging as a powerful means to provide
content-based data dissemination. Applications exploiting CBR can obtain the ability
to retain complete control on the filtering patterns. CBR can be at the core of many
systems, including publish/subscribe and event notification, distributed databases, and
data processing in WSNs.

2.2 Symmetric Publish/Subscribe

In [26], the symmetric nature of publications and subscriptions is discussed. In con-
ventional publish/subscribe systems, if a publication matches a subscription, it is also
implied that the subscription matches the publication. A symmetric publish/subscribe
system will only send notifications to those subscribers whose subscriptions satisfy the
publication. This symmetry allows subscribers to filter out unwanted information and
lets publishers target information to a subset of subscribers. As an example, a publisher
might want to publish information only to subscribers who are university students. A
subscription can contain an active-attribute, which describes the actual information of
the subscriber. This is an important concept for publish/subscribe systems to support
ubiquitous computing, where subscribers are mobile or the location or distance from a
specific object is relevant. In Fig. 2, the subscriber only receives the publication from
Tesco Supermarket in Cambridge. The event model therefore requires an expression of
appropriate attributes for symmetric publish/subscribe.

3 Event Model

In this section, we introduce an event model in an unambiguous way to deal with types
of events that require integration of multiple continuous attributes (e.g. time, space,
etc.). This attempt is fundamental in establishing a common semantics of events, which
will become tokens in a ubiquitous computing scenario. We consider events and event-
based services to be of prime importance for ubiquitous computing, and therefore de-
fine semantics of events and instances. An event is a message that is generated by an

1248 E. Yoneki and J. Bacon

event source and sent to one or more subscribers. Actual event representation may be
a structure encoded in binary, a typed object appropriate to a particular object-oriented
language, a set of attribute-value pairs, or XML. The basic event definition is described
below. Due to space limitations, details of event model is out with the scope of this
paper (see [32] for details.).

3.1 Event

The event concept applies to all levels of events from business actions within a workflow
to sensing the air temperature. Primitive and composite events are defined as follows:

Definition 1 (Primitive Event). A primitive event is the occurrence of a state transition
at a certain point in time. Each occurrence of an event is called an event instance. The
primitive event set contains all primitive events within the system.

Definition 2 (Composite Event). A composite event is defined by composing primitive
or composite events with a set of operators. The universal event set E comprises the set
of primitive events Ep and the set of composite events Ec.

3.2 Typed Event

Definition 3 (Event Type). The event type describes the structure of an event.

Event types can be defined by XML with a certain schema; attribute-value pairs with
given attributes and value domains; or strongly typed objects. For example, an event
notification from a publisher could be associated with a message m containing a list of
tuples <type, attribute name(a), value (v)> in XML format, where type refers to a data
type (e.g. float, string). Each subscription s is expressed as a selection of predicates
in conjunctive form, i.e. s =

∧n
i=1 Pi. Each element Pi of u is expressed as <type;

attribute name(a); value range(R) >, where R : (xi; yi). Pi is evaluated to be true
only for a message that contains < ai; vi >. A message m matches a subscription s if
all the predicates are evaluated to be true based on the content of m.

4 eCube Hypercube Event

This section presents a multidimensional event representation, the eCube, for efficient
indexing, filtering, and matching. These operators are fundamental for events and in-
fluences a higher-level event dissemination model. There are various data structures
and access methods for multidimensional data, and an overview and comparative anal-
ysis are presented in [8] [11] [1]. Choosing the indexing structure is complex and has
to satisfy the incremental way of maintaining the structure and range query capability.
We carefully investigated the UB-tree and RTree structures. The UB-tree is designed
to perform multidimensional range queries [3]. It is a dynamic index structure based
on a BTree and supports updates with logarithmic performance and space complexity
O(n). The RTree is widely used for spatio-temporal data indexing, and it supports dy-
namic tree splitting and merging operations. Thus, we have chosen RTree to represent
multidimensional events and event filtering, where events require dynamic operations.

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1249

7

4

52

Bounding Box
Each key stored in a leaf
entry is intuitively a box, or
collection of intervals, with
one interval per dimension

2-Dimensions

(Xlow, XHigh, Ylow, Yhigh)

= (2,5,4,7)

Fig. 3. Minimum Boundary Rectangle

A F

D

H

G

E

B

C

G R5 R6

R1 R3 R4 R2

A F DGH B E C G

Point Query q

R1
R2

R3 R4

R5 R6

Fig. 4. RTree Structure

4.1 RTree

An RTree [15], extended from a B+Tree, is a data structure that can index multidi-
mensional information such as spatial data. Fig. 3 shows an example of 2-dimensional
data. An RTree is used to store minimum boundary rectangles (MBRs), which represent
the spatial index of an n-dimensional object with two n-dimensional points. Similar to
BTrees, RTrees are kept balanced on insert and delete, and they ensure efficient storage
utilisation.

Structure. An RTree builds a MBR approximation of every object in the data set and
inserts each MBR in the leaf level nodes. Fig. 4 illustrates a 3-dimensional RTree; rect-
angles A-F represent the MBRs of the 3-dimensional objects. The parent nodes, R5 and
R6, represent the group of object MBRs. When a new object is inserted, a cost-based al-
gorithm is performed to decide in which node a new object has to be inserted. The goals

MINMAX DIST

MBR1

MIN DIST

O11

O12

MBR2
O21

O22
Query Point

Fig. 5. Nearest Neighbour Search

1250 E. Yoneki and J. Bacon

of the algorithm are to limit the overlap between nodes and to reduce the dead-space
in the tree. For example, grouping objects A, C, and F into R5 requires a smaller MBR
than if A, E, and F were grouped together instead. Enforcing a minimum/maximum
number of object entries per node ensures balanced tree formation. When a query ob-
ject searches the tree for the intersection operation, the tree is traversed, starting at the
root, by passing each node where the query window intersects a MBR. Only object
MBRs that intersect the query MBR at the leaf-level have to be retrieved from disk.
A BTree may require a single path through the tree to be traversed, while an RTree
may need to follow several paths, since the query window may intersect more than one
MBR in each node. MBRs are hierarchically nested and can overlap. The tree is height-
balanced; every leaf node has the same distance from the root. Let M be the number
of entries that can fit in a node and m the minimum number of entries per node. Leaf
and internal nodes contain between m and M entries. As items are added and removed,
a node might overflow or underflow and require splitting or merging of the tree. If the
number of entries in a node falls under the m bound after a deletion, the node is deleted,
and the rest of its entries are distributed among the sibling nodes.

Each RTree node corresponds to a disk page and an n-dimensional rectangle. Each
non-leaf node contains entries of the form (ref, rect), where ref is the address of a
child node and rect is the MBR of all entries in that child node. Leaves contain entries
of the same format, where ref points to an object, and rect is the MBR of that object.

Search. Search in an RTree is performed in a similar way to that in a BTree. Search
algorithms (e.g. intersection, containment, nearest) use MBRs for the decision to search
inside a child node. This implies that most of the nodes in the tree are never touched
during a search. The average cost of search is O(log n) and the worst case is O(n).
Different algorithms can be used to split nodes when they become full. In Fig. 4, a
point query q requires traversing R5, R6 and child nodes of R6 (e.g. R2 and R4) before
reaching the target MBR E. When the coverage or overlap of MBRs is minimised, RTree
gives maximum search efficiency.

For nearest neighbour (NN), the search for point data is based on the distance cal-
culation shown in Fig. 5. Let MINDIST (P, M) be the minimum distance between a
query point and a boundary rectangle, and let MINMAXDIST (P, M) be the upper
bound of minimum distance to data in the boundary rectangle (i.e. among the points be-
longing to the lines consisting of MBR, select the one closest to the query point). How-
ever, there is no guarantee that the MBR contains the nearest object even if MINDIST
is small. In Fig. 5, the smaller MINDIST from the query point is MBR1, while the
nearest object of O21 is in MBR2. The search algorithm for nearest neighbour is:

1. If the node is a leaf , then find NN. If non leaf , sort entries by MINDIST to create
Active Branch List (ABL).

2. if MINDIST (P, M) > MINMAXDIST (P, M) then remove MBR. If the
distance from the query point to the object is larger than MINMAXDIST (P, M)
then the object is removed (i.e. M contains an object that is closer to P than
the object). If the distance from the query point to the object is larger than
MINDIST (P, M), then M is removed (i.e. M does not contain objects that are
closer to P than the object).

3. Repeat 1 and 2 until ABL is empty.

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1251

4.2 Adaptation to Publish/Subscribe

Event filtering in a content-based publish/subscribe system can be considered as query-
ing in a high dimensional space, but applying multidimensional index structures to
publish/subscribe systems is still unexplored. Thus, we have both publication and sub-
scription are modelled as eCubes in our implementation, where matching is regarded
as an intersection query on eCubes in an n-dimensional space. Point queries on the
eCube are transformed into range queries to make use of efficient point access methods
for event matching. This corresponds to the realisation of symmetric publish/subscribe,
and it automatically provides effective range queries, nearby queries, and point queries.

Traditional databases support multidimensional data indexing and query, when us-
ing a query language as an extension of SQL. For example, a moving object database
can index and query position/time of tracking objects. Applications in ubiquitous com-
puting require such functions over distributed network environments, where data are
produced by publishers via event brokers, and the network itself can be considered as a
database. The query is usually persistent (i.e. continuous queries). Stream data process-
ing and publish/subscribe systems address similar problems. Nevertheless, supporting
spatial, temporal, and other event attributes with a multidimensional index structure can
dramatically enhance filtering and matching performance in publish/subscribe systems.
For example, the event of tracking a car, which is associated with changes of position
through time, needs spatio-temporal indexing support. GPS, wireless computing and
mobile phones are able to detect positions of data, and ubiquitous applications desper-
ately need this data type for tracking, rerouting traffic, and location aware-services.

Both point and range queries can be performed over the eCube in a symmetric
manner between publishers and subscribers. The majority of publish/subscribe sys-
tems consider that subscriptions cover event notifications. We focus on symmetric pub-
lish/subscribe, and the case of when event notifications cover subscriptions is therefore
also part of the event filtering operation. Thus, typical operations with the eCube can be
classified into the following two categories:

– Event Notifications ⊆ Subscriptions: events are point queries and subscriptions
are aggregated in the eCube. For example, subscribers are interested in the stock
price of various companies, when the price dramatically goes up. All subscribers
have interests in different companies, and an event of a specific company’s price
change will be notified only to the subscribers with the matching subscriptions.

– Event Notifications ⊇ Subscriptions: events are range queries and subscriptions
are point data. For example, a series of news related to Bill Gates is published to the
subscribers who are located in New York and Boston. Thus, an attribute indicates
the location in the event notification to New York and Boston. Subscribers with the
attribute London will not receive the event.

4.3 Cube Subscription

Events and subscriptions can essentially be described in a symmetric manner with the
eCube. Consider an online market of music, where old collections may be on sale.
Events represent a cube containing 3 dimensions (i.e. Media, Category, and Year). Sub-
scriptions can be:

1252 E. Yoneki and J. Bacon

<Media, CD>
<Category, Jazz>
<Year, 2005>

<Category, Jazz> <Media, CD-DVD>
<Category, Jazz-Pop>
<Year, 2000-2005>

Fig. 6. 3-Dimensional Subscription

Point Query: CDs of Jazz released in 2005
Partial Match Query: Any media of Jazz
Range Query: CDs and DVDs of Jazz and Popular music released between 2000 and 2005

Fig. 6 depicts the 3-dimensional eCube and the above subscriptions are shown.

4.4 Expressiveness

We consider event filtering as search in high dimensional data space and introduce a
hypercube based filtering model. It is popular to index spatio-temporal objects by con-
sidering time as another dimension on top of a spatial index so that a 3-dimensional
spatial access method is used. We consider extension to n dimensions, which allows to
include any information such as weather, temperature, or interests of the subscribers.
Thus, this approach takes advantage of the range query efficiency by using multidi-
mensional indexing. The indexing mechanism with the eCube can be used for filtering
expression for content-based filtering, aggregation of subscription, and part of the event
correlation mechanism. Ultimately, the event itself can be represented as a eCube for
symmetric publish/subscribe.

Thus, the eCube filter uses the geometrical intersection of publications/subscriptions
represented in hypercubes in a multidimensional event space. This will provide selec-
tive data dissemination in an efficient manner including symmetric publish/subscribe.
Data from WSNs can be multidimensional and searching for these complex data may
require more advanced queries and indexing mechanisms than simply hashing values to
construct a DHT so that multiple pattern recognitions and similarities can be applied.
Subscribing to unstructured documents that do not have a precise description may need
some way to describe the semantics of the documents. Another aspect is that searching
a DHT requires the exact key for hashing, while users may not require exact results.
This section discusses the expressiveness of query and subscription.

The eCube can express these subscriptions and filtering by use of another dimen-
sion with time values. A simple real world example for use of the eCube can be with
geographical data coordinates in 2-dimensional values. A query such as Find all book
stores within 2 miles of my current location can be expressed in an RTree with the data
splitting space of hierarchically nested, and possibly overlapping, rectangles.

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1253

4.5 Experimental Prototype

The prototype implementation of RTree is an extension of the Java implementation
[16] based on the paper by Guttman [15]. We extended it to become more compact.
It currently supports range, point, and nearest neighbour queries. The prototype is a
100KB class library in Java with JDK 1.5 SE. The experiments aim to demonstrate the
applicability of an RTree for event and subscription representation.

4.6 Evaluation of eCube with Sensor Data

In this section, we show the brief evaluation of the eCube addressing the filtering ca-
pability. We experiment the eCube with live traffic data from the city of Cambridge.
Data is gathered from sensors of inductive loops installed at various key junctions
across Cambridge and collected every five minutes from raw signal information. Dif-
ferent sizes of data sets are used for the experiments, ranging from 100 to 40,000. The
motor-way data from April 3rd 2006 is used, which is transformed into 1-, 3-, and 6-
dimensional data with attributes Date, Day, Time, Location, Flow and Occupancy. The
raw data are point data, which are converted to zero size range data so that range queries
can be issued against them by the intersection operation. This experiment demonstrates
the functionality of RTree and compares the operation with a simple brute force opera-
tion, where the set of predicates are used for query matching.

Complex range queries directly mapping to real world incidents can be processed
such as speed of average car passing at junction A is slower than at junction B at
1:00 pm on Wednesdays. It is not easy to show the capability of the eCube filtering for
expressive and complex queries in a quantitative manner. Thus, experiments focus on
the performance of a high-volume range filtering processes.

Dimension Size. Fig. 7 and Fig. 8 show the processing speed of a range query. The X
axis indicates the data size with bytes; it is not linearly scaled over the entire range. This
X axis coordination is same in Fig. 7-11. The sizes of data sets are selected between
100 and 40,000 as seen on the X axis. Two partitions (between 1000 and 5000, and
between 10,000 and 40,000) are scaled linearly. This applies to all the experiments,
where different data sets are used. An RTree has been created for data of 1, 3, and 6
dimensions.

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
ill

is
e
co

n
d
s

Brute Force (6D)
RTree (6D)

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
ill

is
e
co

n
d
s

Brute Force (3D)
RTree (3D)

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
ill

is
e
co

n
d
s

Brute Force (1D)
RTree (1D)

Fig. 7. Single Range Query Operation: RTree vs. Brute Force

1254 E. Yoneki and J. Bacon

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Rtree: Data Size

m
ill

is
e
co

n
d
s

6 Dimensions
3 Dimensions
1 Dimension

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Brute Force: Data Size

m
ill

is
e
co

n
d
s

6 Dimensions
3 Dimensions
1 Dimension

Fig. 8. Single Range Query: Dimensions

The operation using the brute force method is also shown, where each predicate is
compared with the query. For 1-dimensional data, the use of RTree incurs too much
overhead, but the RTree outperforms at increasing numbers of dimensions. The differ-
ence in the number of dimensions has little influence over the RTree performance. Thus,
once the structure is set, it guarantees an upper bound on the search time.

Matching Time. Fig. 9 and Fig. 10 show average matching operation times for a data
entry against a single query. The Y axis indicates total matching time / number of data
items. Fig. 9 is depicted the comparison between RTree and Brute Force within the same
dimensional data, while Fig. 10 shows the same experiment results for comparison of
different dimensional data. For 1-dimensional data, the use of RTree incurs too much
overhead, but increasing dimensions does not affect operation time. In these figures,
the X axes are in non-linear scales. The cost of the brute force method increases with
increasing dimension of data, which is shown in Fig. 10.

RTree Storage Size. Fig. 11 shows the storage requirement for RTree. The left figure
shows storage usage, while the right one shows construction time. The current configu-
ration uses 4096B per block. Since the index may also contain user defined data, there
is no way to know how big a single node may become. The same data set is used for
the repeating experiments and the standard deviation is therefore 0. The storage man-
ager will use multiple blocks per node if needed, which will slow down performance.
There are only few differences with changing dimension size, because the data size in
each element is about the same in this experiment. The standard deviation value is ∼= 0,
because the input data for each experiment is identical.

Data Size (6D)

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
t
c
h
in

g
 t

im
e
 (

m
s
)

p
e
r
 d

a
t
a
 i
t
e
m

Brute Force

RTree

Data Size (3D)

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
t
c
h
in

g
 t

im
e
 (

m
s
)

p
e
r
 d

a
t
a
 i
t
e
m

Brute Force

RTree

Data Size (1D)

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
t
c
h
in

g
 t

im
e
 (

m
s
)

p
e
r
 d

a
t
a
 i
t
e
m

Brute Force

RTree

Fig. 9. Single Range Query Matching Time

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1255

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
tc

h
in

g
 t

im
e
 (

m
s)

p
e
r

d
a
ta

 i
te

m

RTree 1D
RTree 3D
RTree 6D

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
tc

h
in

g
 t

im
e
 (

m
s)

p
e
r

d
a
ta

 i
te

m

Brute Force 1D
Brute Force 3D
Brute Force 6D

Fig. 10. Matching Time

0

500

1000

1500

2000

2500

3000

3500

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

N
u
m

 o
f
P
a
g
e
s

(4
0
9
6
B
/p

a
g
e
)

6 Dimensions
3 Dimensions
1 Dimension

0

0.1

0.2

0.3

0.4

0.5

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
in

u
te

s
6 Dimensions
3 Dimensions
1 Dimension

Fig. 11. Construction of RTree

The experiments highlight that RTree based indexing is effective for providing data
selectivity among high volumes of data. It gives an advantage for incremental operation
without the need for complete reconstruction. These experiments are not exhaustive
and different trends of data may produce different results. Thus, it will be necessary to
conduct further experiments with various real world data as future work.

RTree indexing enables neighbourhood search, which allows similarity searches.
This will be an advantage for supporting subscriptions that do not pose an exact ques-
tion or only need approximate results. Approximation or summarisation of sensor data
can be modelled using this function.

5 Event Broker Grid with eCube Filter

We present an extension to a typed content-based publish/subscribe system (i.e. Her-
mes) with the eCube filtering. In content-based publish/subscribe, the eCube filter can
be placed in the publisher and subscriber edge brokers, or distributed over the networks
based on the coverage relationship of filters. If the publish/subscribe system takes ren-
dezvous routing, a rendezvous node needs to keep all the subscriptions for the matching.
Multidimensional range queries support selective data to subscribers who are interested
in specific data.

Hermes [23] is a typed content-based publish/subscribe system built over Pastry. The
basic mechanism is based on the rendezvous mechanism that Scribe uses [7]. Addition-

1256 E. Yoneki and J. Bacon

B4

B2

B5

B1

B3

P1
P2

S1

S2RR

P: Publisher

S: Subscriber

B: Broker

R: Rendezvous Broker

Fig. 12. Content-Based Routing for Publish/Subscribe in Hermes

ally, Hermes enforces a typed event schema providing type safety by type checking on
notifications and subscriptions at runtime. The rendezvous nodes are chosen by hashing
the event type name. Thus, it extends the expressiveness of subscriptions and aims to al-
low multiple inheritance of event types. In Hermes, the content-based publish/subscribe
routing algorithm is an adaptation of SIENA [6] and Scribe using rendezvous nodes.
Both advertisements and subscriptions are sent towards the rendezvous node, and each
node en route keeps track. Routing between the publisher, where the advertisement
comes from, and the subscriber is created through this process. An advertisement and
subscriptions meet in the worst case at the rendezvous node. The event notification fol-
lows this routing, and the event dissemination tree is therefore rooted from the publisher
node. This will save some workload from the rendezvous nodes.

Fig. 12 shows routing mechanisms for content-based publish/subscribe. Arrows are
white for advertisements, light grey for subscriptions, and black for publications. The
black arrow from broker 1 to broker 3 shows a shortcut to subscriber 1 that is different
from the routing mechanism of Scribe. Subscription 2 in content-based routing travels
up to the broker hosting the publisher Fig. 12. Grey circles indicate where filtering states
are kept.

5.1 eCube Event Filter

In content-based networks such as SIENA [6], the intermediate server node creates a
forwarding table based on subscriptions and operates event filtering. Under high event
publishing environments, the speed of filtering based on matching the subscription pred-
icates at each server is crucial for obtaining the required performance.

In [25] and [4], subscriptions are clustered to multicast trees. Thus, filtering is per-
formed at both the source and receiver nodes. In contrast, the intermediate nodes
perform filtering for selective event dissemination in [21]. In Hermes, a route for event
dissemination for a specific event type is rooted at the publisher node through a ren-
dezvous node to all subscribers by constructing a diffusion tree. The intermediate broker
nodes operate filtering for content-based publish/subscribe. The filtering mechanism is
primitive, with each predicate of the subscription filter being kept independently with-
out any aggregation within the subscriber edge broker. The coverage operation requires
a comparison of each predicate against an event notification.

The eCube is integrated to subscription filters to provide efficient matching and
coverage operations. In the experiments, the effectiveness and expressiveness of typed
channels and filtering attributes are compared. The advantages of this approach include
efficient range query and filter performance (resource and time).

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1257

The balance between typed-channel and content-based filtering is a complex issue.
In existing distributed systems, each broker has a multi-attribute data structure to match
the complex predicate for each subscription. The notion of weak filtering for hierarchi-
cal filtering can be used as summary-based routing (see [30] and [9]), so that the balance
between the latency of the matching process and event traffic can be controlled. When
highly complex event matching is operated on an event notification for all subscriptions,
it may result in too high message processing latency. This prevents reasonable perfor-
mance of publishing rates to all subscribers. The subscription indexing data structure
and filter matching algorithm are two important factors to impact the performance in
such environments including filter coverage over the network.

Event filtering in content-based publish/subscribe can provide better performance
if similar subscriptions are in a single broker or neighbour brokers. Physical proximity
provides low hop counts per event diffusion in the network with a content-based routing
algorithm [20]. If physical proximity is low, on the other hand, routing becomes similar
to simple flooding or unicasting.

5.2 Range Query

A DHT is not suited for range queries, which makes it hard to build a content-based
publish/subscribe system over structured overlay networks. When the subscription con-
tains attributes with continuous values, it becomes inefficient to walk through the entire
DHT entries for matching. Range queries are common with spatial data and desirable
in geographic-based applications of pervasive computing, such as queries relating to
intersections, containment, and nearest neighbours. Thus, eCube provides critical func-
tions. However, DHT mechanisms in most of the current structured overlay distribute
data uniformly without an exhaustive search. Range queries introduce new requirements
such as data placement and query routing in distributed publish/subscribe systems.

5.3 Experiments

The experiment in this section demonstrates a selective and expressive event filter that
can be used to provide flexibility to explore the subscriptions. The performance of scala-
bility issues in Hermes is reported in [23] and general control traffic (e.g. advertisement,
subscription propagation) are also reported in [27].

Thus, to keep the results independent of secondary variables, only the message traf-
fic for the dissemination of subscriptions is therefore measured. The metrics used for
the experiments are the number of publications disseminated in the publish/subscribe
system. The number of hops in the event dissemination structure varies depending on
the size of the network and the relative locations between publishers and subscribers.

Experimental Setup. The experiments are run on FreePastry [27], a Pastry simula-
tor. Publishers, subscribers and rendezvous nodes are configured with deterministic
node ids, and all the other brokers get node ids from Pastry simulations.

One thousand Pastry nodes are deployed. All pastry nodes are considered as bro-
kers, where the Hermes event broker function resides, and the total number of nodes
(N=1000) gives average hop counts from the source to the routing destination as

1258 E. Yoneki and J. Bacon

Sub 1

1990 2006

1993 2006

Year

Sub 2 1995 2004

Sub 3 1998 2003

Sub 4 2001 2006

Sub 5 2002 2005

Sub 6 1995 2002

Sub 7 2000 2006

Sub 8 1990 2006

1 100Rank

77 100

22 70

50 99

10 88

10 100

30 80

33 60

1 100

Pub 1 2001 60

Pub 2 1998 90

Pub 3 2003 50

Pub 4 2005 10

Fig. 13. Subscriptions and Publications

log24(1000) ≈ 2.5, where 4 is given as a configuration value. Eight subscribers con-
nect to the subscriber edge brokers individually. The subscriptions are listed in Fig. 13.
1000 publications are randomly created for each event type by a single publisher. This
is a relatively small scale experiment, but considering the characteristics of Hermes,
where each publisher creates an individual tree combining the rendezvous node, the
experiment is sufficient for evaluation.

Subscriptions and publications. A single type CD with two attributes (i.e. released
year and ranking) are used for the content-based subscription filter. In Fig. 13, eight
subscriptions are defined with different ranges on two attributes. The publications take
the form of a point for the eCube RTree. Four different publications are defined and
250 instances of each publication are published: 1000 event notifications are processed

Fig. 14. Pub/Sub System over Pastry

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1259

0

20

40

60

80

100

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8
Subscribers

M
at

ch
in

g
Pu

bl
ic

at
io

n
R

at
e

 %

Fig. 15. Matching Rate in Scribe (No Filtering)

in total. Same sets of publications and subscriptions are used in all experiments unless
stated otherwise.

Base Case with eCube Event Filter. This experiment demonstrates the basic operation
of eCube event filters. The experiment is operated on Hermes with eCube filtering and
Scribe, where no filtering is equipped. Fig. 14 shows the logical topology consisting
of 8 subscribers (i.e. Sub01-Sub08), a publisher, and a rendezvous node along router
nodes. Identifiers indicate the addresses assigned by the Pastry simulation.

Fig. 15 depicts the matching publication rate for each subscriber node in the Scribe
experiment. With eCubes, there are no false positives and subscribers receive only
matching publications. It is obvious that filters significantly help to control the traffic of
event dissemination.

Multiple Types vs. Additional Dimension as Type. When multiple types share the
same attributes, there will be two ways: first, defining three predefined types for sepa-
rated channels and second, defining a single channel with an additional attribute, which
distinguish different types.

This experiment operates two settings and compares the publication traffic. In the
first scenario, three types are used: Classic, Jazz, and Pop. Thus, 3 rendezvous nodes
are created. All three types share the same attributes. Table 1 shows the defined types
along the subscriptions. The publisher publishes 1000 events for each type, 3000 pub-
lications in total. Unless there is a super type defined for three types, each type creates
an independent dissemination tree and causes multiple traffic.

In Fig. 17, three rendezvous nodes appear for each type. For the second set-
ting, instead of using multiple types, an additional dimension is added to the eCube.
Fig. 16(a) depicts the total event traffic between two settings. The apparent result shows

Table 1. 3 Types and Matching Subscriptions

Subscriber Classic Jazz Pop
Sub 1 � �
Sub 2 � �
Sub 3 � �
Sub 4 � �
Sub 5 � � �
Sub 6 � � �
Sub 7 � �
Sub 8 � � �

1260 E. Yoneki and J. Bacon

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8
Subscribers

N
um

be
r o

f P
ub

lic
at

io
ns

3 Types Additional Dimensions

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8
Subscribers

N
um

be
r o

f P
ub

lic
at

io
ns

Unmatch Match

(a) Traffic Comparaison (b) Matching Rate (3 types)

Fig. 16. Comparison between Channels on Types vs. Additional Dimensions

significant improvement of the traffic with the additional dimensional approach.
Fig. 16(b) shows the matching ratio on received events in the experiment with 3 types.

When different event types are used, which are not hierarchical, separated route con-
struction for each event type is performed for event dissemination. Different types,
which may contain the same attributes, may not have a super type. Also super types
may contain many other subtypes, of which the client may not want to receive notifica-
tions. Thus, additional dimensions on the filtering attributes may be a better approach
for flexible indexing. Transforming the type name to the dimension can preserve local-
ity, similarity or even hierarchy. This will provide an advantage for neighbour matching.

Fig. 17. Publish/Subscribe System with 3 Event Types

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1261

The eCube filter introduces flexibility between the topic and content-based subscrip-
tion models. The experiments show that adding additional dimensions in the hypercube
filter transforming from type outperforms constructing on individual channel for type.
Transforming the type name to a dimension can preserve similarity and hierarchy, that
automatically provides neighbour matching capability. Further experiments for flexible
indexing will be useful future work.

DHT mechanisms contain two contradictory sides: the hash function distributes the
data object evenly within the space to achieve a balanced load, whereas the locality
information among similar subscriptions may be completely destroyed by applying a
hash function. For example the current Pastry intends to construct DHT with random
elements to accomplish load balance. Nevertheless similarity information among sub-
scriptions is important in publish/subscribe systems.

6 Related Work

In database systems, multidimensional range query is solved using indexing techniques,
and indices are centralised. Recently distributed indexing is becoming popular, espe-
cially in the context of P2P and sensor networks. Indexing techniques tradeoff data
insertion cost against efficient querying (see [32] for further details).

A similar idea to the eCube is CAN-based multicast [24]. In [19], Z-ordering [22] is
used for the implementation of CAN multicast. Z-ordering interleaves the bits of each
value for each dimension to create a one-dimensional bit string. For matching algo-
rithms, fast and efficient matching algorithms are investigated for publish/subscribe sys-
tem in [10]. Topic-based publish/subscribe is realised by a basic DHT-based multicast
mechanism in [35], [36], [24]. More recently, some attempts on distributed content-based
publish/subscribe systems based on multicast have become popular [2], [5], [29]. An ap-
proach combining topic-based and content-based systems using Scribe is described in
[28]. In these approaches, the publications and the subscriptions are classified in topics
using an appropriate application-specific schema. The design of the domain schema is
a key element for system performance, and managing false positives is critical for such
approach.

Recently, several proposals have been made to extend P2P functionality to more
complex queries (e.g. range queries [14], joins [17], XML [12]). [13] describes the Range
Search Tree (RST), which maps data partitions into nodes. Range queries are broken
to sub-queries corresponding to nodes in the RST. Data locality is obtained by the RST
structure, which allows fast local matching. However, sub-queries make the matching
process complex.

Our eCube demonstrates a unique approach for representing events and can be used
in different systems.

7 Conclusions

In this paper, we have introduced eCube, a novel event representation structure for
efficient indexing, filtering and matching events and have applied it with a typed
content-based publish/subscribe system for improvement of event filtering processes.

1262 E. Yoneki and J. Bacon

The experiments show various advantages including efficiency of range queries and ad-
ditional dimensions in the hypercube filter transforming from type. Transforming the
type name to a dimension can preserve similarity and hierarchy that automatically pro-
vides neighbour matching capability.

We continue to work on a regular expression version of RTree for a better indexing
structure. Transformation mechanisms such as a feature extraction process to reduce
the number of dimensions may be useful. A series of future work include lightweight
versions of indexing structure for supporting resource-constrained devices and fuzzy
semantic queries for the matching mechanism. An important aspect is that the values
used to index eCube will have a huge impact. For example, the use of a locality sensitive
hashing value from string data and the current form of the eCube filter can both be
exploited with the locality property. This will be worthwhile future work.

Acknowledgment. I would like to thank to Derek Murray for valuable comments.

References

1. Ahn, H.K., Mamoulis, N., Wong, H.M.: A survey on multidimensional access methods. Tech-
nical report, Utrecht University (2001)

2. Banavar, G., et al.: An efficient multicast protocol for content-based publish-subscribe sys-
tems. In: Proc. ICDCS, pp. 262–272 (1999)

3. Bayer, R.: The universal B-tree for multidimensional indexing. Technical Report TUM-
I9637, Technische Universitat Munchen (1996)

4. Cao, F., Singh, J.: Efficient event routing in content-based publish-subscribe service net-
works. In: Proc. IEEE INFOCOM (2004)

5. Carzaniga, A., Rosenblum, D., Wolf, L.: Design and evaluation of a wise-area event notifi-
cation service. ACM Trans. on Computer Systems 19(3) (2001)

6. Carzaniga, A., Rutherford, M., Wolf, A.: A routing scheme for content-based networking.
In: Proc. IEEE INFOCOM (2004)

7. Castro, M., et al.: Scribe: A large-scale and decentralized application-level multicast infras-
tructure. Journal on Selected Areas in Communication 20 (2002)

8. de Berg, M., et al.: Computational Geometry-Algorithms and Applications. Springer, Hei-
delberg (1998)

9. Eugster, P., Felber, P., et al.: Event systems: How to have your cake and eat it too. In: Proc.
Workshop on DEBS (2002)

10. Fabret, F., Jacobsen, H.A., et al.: Filtering algorithms and implementation for very fast pub-
lish/subscribe systems. In: Proc. SIGMOD, pp. 115–126 (2001)

11. Gaede, V., et al.: Multidimensional access methods. ACM Computing Surverys 30(2) (1998)
12. Galanis, L., Wang, Y., et al.: Locating data sources in large distributed systems. In: Proc.

VLDB, pp. 874–885 (2003)
13. Gao, J., Steenkiste, P.: An adaptive protocol for efficient support of range queries in DHT-

based systems. In: Proc. IEEE International Conference on Network Protocols (2004)
14. Gupta, A., et al.: Approximate range selection queries in peer-to-peer systems. In: Proc.

CIDR, pp. 141–151 (2003)
15. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. ACM SIG-

MOD (1984)
16. Hadjueleftheriou, M.: Spatial index,

http://research.att.com/∼marioh/spatialindex/index.html.

http://research.att.com/~marioh/spatialindex/index.html.

eCube: Hypercube Event for Efficient Filtering in Content-Based Routing 1263

17. Harren, M., et al.: Complex queries in DHT-based peer-to-peer networks. In: Proc. Workshop
on P2P Systems, pp. 242–250 (2002)

18. IBM. IBM MQ Series (2000), http://www.ibm.com/software/ts/mqseries/
19. jxta.org. http://www.jxta.org/
20. Meuhl, G., Fiege, L., Buchmann, A.: Filter similarities in content-based publish/subscribe

systems. In: Proc. ARCS (2002)
21. Oliveira, M., et al.: Router level filtering on receiver interest delivery. In: Proc. NGC (2000)
22. Orenstein, J., Merrett, T.: A class of data structures for associative searching. In: Proc. Prin-

ciples of Database Systems (1984)
23. Pietzuch, P., Bacon, J.: Hermes: A distributed event-based middleware architecture. In: Proc.

Workshop on DEBS (2002)
24. Ratnasamy, S., et al.: Application-level multicast using content-addressable networks. In:

Crowcroft, J., Hofmann, M. (eds.) NGC 2001. LNCS, vol. 2233, Springer, Heidelberg (2001)
25. Riabov, A., Liu, Z., Wolf, J., Yu, P., Zhang, L.: Clustering algorithms for content-based

publication-subscription systems. In: Proc. ICDCS (2002)
26. Rjaibi, W., Dittrich, K.R., Jaepel, D.: Event matching in symmetric subscription systems. In:

Proc. CASCON (2002)
27. Rowstron, A., Druschel, P.: Pastry: scalable, decentraized object location and routing for

large-scale peer-to-peer systems. In: Proc. ACM.IFIP/USENIX Middleware, pp. 329–350
(2001)

28. Tam, D., Azimi, R., Jacobsen, H.-A.: Building content- based publish/subscribe systems with
distributed hash tables. In: DBISP2P 2004 (2003)

29. Terpstra, W.W., et al.: A peer-to-peer approach to content-based publish/subscribe. In: Proc.
Workshop on DEBS (2003)

30. Wang, Y., et al.: Summary-based routing for content-based event distribution networks. ACM
Computer Communication Review (2004)

31. Yoneki, E.: Event broker grids with filtering, aggregation, and correlation for wireless sensor
data. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762, pp. 304–
313. Springer, Heidelberg (2005)

32. Yoneki, E.: ECCO: Data Centric Asynchronous Communitcation. PhD thesis, University of
Cambridge, Technical Report UCAM-CL-TR677 (2006)

33. Yoneki, E., Bacon, J.: Object tracking using durative events. In: Enokido, T., Yan, L., Xiao,
B., Kim, D., Dai, Y., Yang, L.T. (eds.) Embedded and Ubiquitous Computing – EUC 2005
Workshops. LNCS, vol. 3823, pp. 652–662. Springer, Heidelberg (2005)

34. Yoneki, E., Bacon, J.: Openness and Interoperability in Mobile Middleware. CRC Press,
Boca Raton (2006)

35. Zhao, B.Y., et al.: Tapestry: A resilient global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications 22 (2004)

36. Zhuang, S.Q., et al.: Bayeux: An architecture for scalable and fault-tolerant wide-area data
dissemination. In: Proc. ACM NOSSDAV, pp. 11–20 (2001)

 http://www.ibm.com/software/ts/mqseries/
http://www.jxta.org/

	Introduction
	Publish/Subscribe Communication
	Content-Based Subscription and Routing
	Symmetric Publish/Subscribe

	Event Model
	Event
	Typed Event

	eCube Hypercube Event
	RTree
	Adaptation to Publish/Subscribe
	Cube Subscription
	Expressiveness
	Experimental Prototype
	Evaluation of eCube with Sensor Data

	Event Broker Grid with eCube Filter
	eCube Event Filter
	Range Query
	Experiments

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

