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ON THE HOCHSCHILD HOMOLOGY OF QUANTUM SL(N)
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Abstract. We show that the quantized coordinate ring A := kq[SL(N)] satis-
fies van den Bergh’s analogue of Poincaré duality for Hochschild (co)homology
with dualizing bimodule being Aσ , the A-bimodule which is A as k-vector
space with right multiplication twisted by the modular automorphism σ of
the Haar functional. This implies that HN2

−1
(A,Aσ) ∼= k, generalizing our

previous result for kq[SL(2)].

1. Introduction and statement of the result

According to the Hochschild-Kostant-Rosenberg theorem [11], the dimension of
a regular affine variety V over an algebraically closed field k of characteristic 0 can
be expressed in terms of the Hochschild homology of its coordinate ring k[V ] as

(1) dim(V ) = sup{n ≥ 0 |HHn(k[V ]) 6= 0}.

However, even for well-behaved noncommutative algebras Hochschild homology is
often rather degenerate. For example, the standard quantized coordinate ring A :=
kq[SL(N)] is for generic q Auslander regular and Cohen-Macaulay with global and
Gelfand-Kirillov dimension equal to the classical dimension N2 − 1 of SL(N) [15],
but HHn(A) = 0 for n ≥ N [6]. In this note we show that this “dimension drop”
is overcome by passing to Hochschild homology H∗(A,M) with coefficients in a
suitable bimodule M.

The cosemisimple Hopf algebra structure on A determines the Haar functional
h : A → k which is left and right invariant under the coaction of A on itself, and
there is a unique automorphism σ ∈ Aut(A), the so-called modular automorphism,
such that h(xy) = h(σ(y)x) for all x, y ∈ A (see [13], Section 11.3). The crucial
coefficient bimodule M is then Aσ which is A as k-vector space with bimodule
structure x ⊲ y ⊳ z := xyσ(z). Our main result is:

Theorem 1.1. There is an isomorphism of k-vector spaces HN2−1(A,Aσ) ∼= k.
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For N = 2 this was shown by explicit calculation in [10]. The proof for arbitrary
N given below relies on the following analogue of Poincaré duality for Hochschild
(co)homology proven by van den Bergh:

Theorem 1.2. [19] Let X be a smooth algebra such that there exists dX ∈ N

with Hn(X ,X e) = 0 for n 6= dX , and that UX := HdX (X ,X e) is an invertible

X -bimodule. Then for every X -bimodule M we have

(2) Hn(X ,M) ∼= HdX−n(X ,UX ⊗X M).

Here X e := X ⊗ X op is the enveloping algebra of X (throughout this paper
an unadorned ⊗ means tensor product over k), so the Hochschild homology and

cohomology groups of X with coefficients in M are Hn(X ,M) = TorX
e

n (M,X )
and Hn(X ,M) = Extn

X e(X ,M), respectively. Following [19] (erratum) an alge-
bra X is called smooth if it has finite projective dimension pdX e(X ) = inf{n ≥
0 |Hn+1(X , ·) = 0} as an X e-module. As in [3] we call pdX e(X ) the dimension of
X and denote it by dim(X ). As pointed out by van den Bergh, X is smooth if and
only if X e has finite global dimension. This follows from gldim(X ) ≤ dim(X ) ≤
gldim(X e) and dim(X ⊗ Y) ≤ dim(X ) + dim(Y) ([3], Propositions 7.4-7.6), which
gives gldim(X e) ≤ dim(X e) ≤ 2 dim(X ) ≤ 2 gldim(X e). In the sequel we say
that an algebra has the Poincaré duality property if it satisfies the assumptions of
Theorem 1.2.

The principal technical result of this note consists of remarking successively that
Theorem 1.2 applies to the quantized coordinate rings B := kq[M(N)] of N × N -
matrices, C := kq[GL(N)] and A = kq[SL(N)]. Theorem 1.1 then follows from the
well-known fact that the center of A consists only of the scalars.

Our main motivation for studying H∗(A,Aσ) is the so-called twisted cyclic co-
homology and its link to covariant differential calculi over quantum groups both
due to Kustermans, Murphy and Tuset [14]. Twisted cyclic cohomology is defined
by a cyclic object in the sense of Connes [4] depending on an algebra X and an
automorphism σ. Its underlying simplicial homology is H∗(X ,Xσ) (at least when
σ is diagonalizable, see Proposition 2.1 in [10]). The volume forms of covariant
differential calculi over quantum groups define twisted cyclic cocycles, with the ap-
pearance of the twisting automorphism forced by the modular properties of the Haar
functional that replaces the traces of Connes’ original construction [4]. In view of
Theorem 1.2 twisted coefficients appear very naturally also for purely homological
reasons, and Theorem 1.1 and similar results for quantum hyperplanes and Podleś
quantum spheres [9, 18] show that the twist determines as in the classical case a
unique class of top degree in Hochschild homology.

2. Proof of Theorem 1.1

We first consider the quantized coordinate ring B = kq[M(N)]. Recall that this
has generators uij , 1 ≤ i, j ≤ N , with relations

uikuil = quiluik, uikujk = qujkuik, uikujk = qujkuik,

ujkujl = qujlujk, uilujk = ujkuil, uikujl − ujluik = (q − q−1)uilujk(3)

for all i < j, k < l. Here q ∈ k \ {0} is a fixed deformation parameter, assumed not
to be a root of unity.
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Proposition 2.1. B has the Poincaré duality property with dB = N2 and UB = Bσ,

with σ defined by

(4) σ(uij) := q2(N+1−i−j)uij

We will use here and later the following Künneth-type isomorphism of Cartan
and Eilenberg:

Theorem 2.2. [3], Theorem XI.3.1. Let k be a field, A1,A2 be two left Noetherian

k-algebras and Mi,Ni be finitely generated left modules over Ai. Then

(5)
⊕

i+j=n

Exti
A1

(M1,N1) ⊗ Extj
A2

(M2,N2) ∼= ExtnA1⊗A2
(M1 ⊗M2,N1 ⊗N2).

Proof of Proposition 2.1. The claim follows from Proposition 2 in [19]: As
mentioned in [16] it follows from a result of Priddy ([17], Theorem 5.3) that B is
a graded Koszul algebra. By definition the Koszul dual B! has generators ûij with
relations orthogonal to (3):

û2
ij = 0 ∀ i, j, ûikûil = −q−1ûilûik, ûikûjk = −q−1ûjkûik

ûikûjk = −q−1ûjkûik, ûjkûjl = −q−1ûjlûjk, ûikûjl = −ûjlûik,

ûilûjk + ûjkûil = (q−1 − q)ûikûjl,(6)

where i < j, k < l. These relations imply that the monomials ûi1j1 · · · ûinjn
,

n = 1, . . . , N2, i1j1 ≺ . . . ≺ injn with respect to lexicographical ordering, form a

k-linear basis, and that B! is Frobenius with Frobenius functional ĥ : B! → k being
projection onto the component of the longest basis element û11û12 · · · ûNN−1ûNN

(that is, for each nonzero x ∈ B! there exists y ∈ B! with ĥ(xy) 6= 0). The formula
for σ follows by straightforward computation using the relations (6).

Smoothness of B follows from some well-known facts about Koszul algebras (see

e.g. the survey [7]). First, TorB
e

n (k, k) ∼= ExtnBe(k, k), and by Theorem 2.2 and
Koszulity this can be written as

∑
i+j=n B!

i ⊗ B!
j (note that B ∼= Bop). Thus

TorB
e

n (k, k) = 0 for n > 2N2, hence dim(B) ≤ 2N2 by [1], Corollary 8.7.5. 2

It was shown by Farinati that the class of algebras having the Poincaré duality
property is closed under localization [5], Theorem 1.5. The quantized coordinate
ring C = kq[GL(N)] of the general linear group is the localization of B = kq[M(N)]
at the central quantum determinant [16]

(7) detq =
∑

π∈SN

(−q)l(π)u1π(1) · · ·uNπ(N),

with SN the permutation group on N elements and l(π) the length of a permutation.
This is σ-invariant, so σ passes to an automorphism of C, still denoted by σ and
given by (4). Proposition 2.1 now implies:

Corollary 2.3. C has the Poincaré duality property with dC = dB = N2 and

UC = C ⊗B UB = Cσ.

The algebra A = kq[SL(N)] is the quotient of B by the relation detq = 1, and
again by σ-invariance of detq, σ descends to an automorphism of A. Following the
strategy of Levasseur and Stafford [15] we will use the isomorphism C ∼= A ⊗ D,
where D := k[t, t−1] to deduce Poincaré duality for A from B via C. This enables
us to prove finally:
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Proposition 2.4. The algebra A has the Poincaré duality property with dA =
N2 − 1 and UA = Aσ.

Proof. We apply Theorem 2.2 with A1 = N1 = Ae, M1 = A and A2 = N2 =
De, M2 = D. Since A = Aop (the antipode of the standard Hopf algebra structure
gives an isomorphism) we have Ae ∼= kq[SL(N) × SL(N)], so it is (both left and
right) Noetherian by [12], Proposition 9.2.2 and further A is smooth by [8]. It is
elementary to show that D satisfies Poincaré duality with dD = 1, UD = D. So
ExtnAe(A,Ae) ⊗ D ∼= Extn+1

Ce (C, Ce) for each n ≥ 0. So by Corollary 2.3 we have

ExtN
2
−1

Ae (A,Ae) ⊗ D = Cσ, which is Aσ ⊗ D, and all other Extn
Ae(A,Ae) vanish.

The result follows. 2

Thus there is an isomorphism HN2−1(A,Aσ) ∼= H0(A,A). The latter is by
definition the center of A, and this consists only of the scalars (see e.g. [12], Theo-
rem 9.3.20). This completes the proof of Theorem 1.1.
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